Properties

Label 3060.2.be
Level 30603060
Weight 22
Character orbit 3060.be
Rep. character χ3060(361,)\chi_{3060}(361,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 6060
Newform subspaces 44
Sturm bound 12961296
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3060=2232517 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3060.be (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 17 17
Character field: Q(i)\Q(i)
Newform subspaces: 4 4
Sturm bound: 12961296
Trace bound: 77
Distinguishing TpT_p: 77

Dimensions

The following table gives the dimensions of various subspaces of M2(3060,[χ])M_{2}(3060, [\chi]).

Total New Old
Modular forms 1344 60 1284
Cusp forms 1248 60 1188
Eisenstein series 96 0 96

Trace form

60q+4q11+16q134q1712q23+12q298q31+8q35+28q378q418q4716q558q614q6532q6720q71+16q7356q794q85+28q97+O(q100) 60 q + 4 q^{11} + 16 q^{13} - 4 q^{17} - 12 q^{23} + 12 q^{29} - 8 q^{31} + 8 q^{35} + 28 q^{37} - 8 q^{41} - 8 q^{47} - 16 q^{55} - 8 q^{61} - 4 q^{65} - 32 q^{67} - 20 q^{71} + 16 q^{73} - 56 q^{79} - 4 q^{85}+ \cdots - 28 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3060,[χ])S_{2}^{\mathrm{new}}(3060, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
3060.2.be.a 3060.be 17.c 1212 24.43424.434 Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots) None 1020.2.bd.a 00 00 00 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β2q5β9q7+(2β1β7β10+)q11+q+\beta _{2}q^{5}-\beta _{9}q^{7}+(-2\beta _{1}-\beta _{7}-\beta _{10}+\cdots)q^{11}+\cdots
3060.2.be.b 3060.be 17.c 1212 24.43424.434 Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots) None 340.2.o.a 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ3q5+(β2+β3+β4+β5+β8+)q7+q-\beta _{3}q^{5}+(\beta _{2}+\beta _{3}+\beta _{4}+\beta _{5}+\beta _{8}+\cdots)q^{7}+\cdots
3060.2.be.c 3060.be 17.c 1212 24.43424.434 Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots) None 1020.2.bd.b 00 00 00 44 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ1q5β9q7+(β4+β52β6+)q11+q-\beta _{1}q^{5}-\beta _{9}q^{7}+(-\beta _{4}+\beta _{5}-2\beta _{6}+\cdots)q^{11}+\cdots
3060.2.be.d 3060.be 17.c 2424 24.43424.434 None 3060.2.be.d 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Decomposition of S2old(3060,[χ])S_{2}^{\mathrm{old}}(3060, [\chi]) into lower level spaces

S2old(3060,[χ]) S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq S2new(34,[χ])S_{2}^{\mathrm{new}}(34, [\chi])12^{\oplus 12}\oplusS2new(51,[χ])S_{2}^{\mathrm{new}}(51, [\chi])12^{\oplus 12}\oplusS2new(68,[χ])S_{2}^{\mathrm{new}}(68, [\chi])6^{\oplus 6}\oplusS2new(85,[χ])S_{2}^{\mathrm{new}}(85, [\chi])9^{\oplus 9}\oplusS2new(102,[χ])S_{2}^{\mathrm{new}}(102, [\chi])8^{\oplus 8}\oplusS2new(153,[χ])S_{2}^{\mathrm{new}}(153, [\chi])6^{\oplus 6}\oplusS2new(170,[χ])S_{2}^{\mathrm{new}}(170, [\chi])6^{\oplus 6}\oplusS2new(204,[χ])S_{2}^{\mathrm{new}}(204, [\chi])4^{\oplus 4}\oplusS2new(255,[χ])S_{2}^{\mathrm{new}}(255, [\chi])6^{\oplus 6}\oplusS2new(306,[χ])S_{2}^{\mathrm{new}}(306, [\chi])4^{\oplus 4}\oplusS2new(340,[χ])S_{2}^{\mathrm{new}}(340, [\chi])3^{\oplus 3}\oplusS2new(510,[χ])S_{2}^{\mathrm{new}}(510, [\chi])4^{\oplus 4}\oplusS2new(612,[χ])S_{2}^{\mathrm{new}}(612, [\chi])2^{\oplus 2}\oplusS2new(765,[χ])S_{2}^{\mathrm{new}}(765, [\chi])3^{\oplus 3}\oplusS2new(1020,[χ])S_{2}^{\mathrm{new}}(1020, [\chi])2^{\oplus 2}\oplusS2new(1530,[χ])S_{2}^{\mathrm{new}}(1530, [\chi])2^{\oplus 2}