Properties

Label 5780.2.c.h.5201.11
Level $5780$
Weight $2$
Character 5780.5201
Analytic conductor $46.154$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5780,2,Mod(5201,5780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5780.5201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5780, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5780 = 2^{2} \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5780.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-4,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.1535323683\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 6 x^{10} - 16 x^{9} + 9 x^{8} - 72 x^{7} + 114 x^{6} - 144 x^{5} + 391 x^{4} - 484 x^{3} + \cdots + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 5201.11
Root \(-1.47591 + 1.40653i\) of defining polynomial
Character \(\chi\) \(=\) 5780.5201
Dual form 5780.2.c.h.5201.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.79518i q^{3} -1.00000i q^{5} -5.23303i q^{7} -0.222687 q^{9} +5.28579i q^{11} -2.63690 q^{13} +1.79518 q^{15} -4.31329 q^{19} +9.39426 q^{21} -4.16595i q^{23} -1.00000 q^{25} +4.98579i q^{27} -2.54692i q^{29} +3.00972i q^{31} -9.48896 q^{33} -5.23303 q^{35} +9.47127i q^{37} -4.73372i q^{39} +1.35277i q^{41} +0.613266 q^{43} +0.222687i q^{45} +5.18546 q^{47} -20.3846 q^{49} +1.77451 q^{53} +5.28579 q^{55} -7.74315i q^{57} -7.97014 q^{59} -3.64785i q^{61} +1.16533i q^{63} +2.63690i q^{65} +11.7984 q^{67} +7.47865 q^{69} -7.19428i q^{71} +6.49108i q^{73} -1.79518i q^{75} +27.6607 q^{77} -1.79108i q^{79} -9.61847 q^{81} -12.8929 q^{83} +4.57220 q^{87} +3.34014 q^{89} +13.7990i q^{91} -5.40301 q^{93} +4.31329i q^{95} +4.62864i q^{97} -1.17708i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{9} - 16 q^{13} - 24 q^{19} - 16 q^{21} - 12 q^{25} - 48 q^{33} - 8 q^{35} + 8 q^{43} + 8 q^{47} - 44 q^{49} + 16 q^{53} - 16 q^{55} + 32 q^{67} - 32 q^{69} + 48 q^{77} + 4 q^{81} - 16 q^{83}+ \cdots + 24 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5780\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\) \(2891\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.79518i 1.03645i 0.855244 + 0.518225i \(0.173407\pi\)
−0.855244 + 0.518225i \(0.826593\pi\)
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) − 5.23303i − 1.97790i −0.148248 0.988950i \(-0.547363\pi\)
0.148248 0.988950i \(-0.452637\pi\)
\(8\) 0 0
\(9\) −0.222687 −0.0742291
\(10\) 0 0
\(11\) 5.28579i 1.59372i 0.604161 + 0.796862i \(0.293508\pi\)
−0.604161 + 0.796862i \(0.706492\pi\)
\(12\) 0 0
\(13\) −2.63690 −0.731345 −0.365672 0.930744i \(-0.619161\pi\)
−0.365672 + 0.930744i \(0.619161\pi\)
\(14\) 0 0
\(15\) 1.79518 0.463515
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −4.31329 −0.989536 −0.494768 0.869025i \(-0.664747\pi\)
−0.494768 + 0.869025i \(0.664747\pi\)
\(20\) 0 0
\(21\) 9.39426 2.05000
\(22\) 0 0
\(23\) − 4.16595i − 0.868661i −0.900754 0.434331i \(-0.856985\pi\)
0.900754 0.434331i \(-0.143015\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 4.98579i 0.959515i
\(28\) 0 0
\(29\) − 2.54692i − 0.472952i −0.971637 0.236476i \(-0.924008\pi\)
0.971637 0.236476i \(-0.0759925\pi\)
\(30\) 0 0
\(31\) 3.00972i 0.540562i 0.962781 + 0.270281i \(0.0871166\pi\)
−0.962781 + 0.270281i \(0.912883\pi\)
\(32\) 0 0
\(33\) −9.48896 −1.65182
\(34\) 0 0
\(35\) −5.23303 −0.884544
\(36\) 0 0
\(37\) 9.47127i 1.55707i 0.627603 + 0.778534i \(0.284036\pi\)
−0.627603 + 0.778534i \(0.715964\pi\)
\(38\) 0 0
\(39\) − 4.73372i − 0.758002i
\(40\) 0 0
\(41\) 1.35277i 0.211268i 0.994405 + 0.105634i \(0.0336871\pi\)
−0.994405 + 0.105634i \(0.966313\pi\)
\(42\) 0 0
\(43\) 0.613266 0.0935222 0.0467611 0.998906i \(-0.485110\pi\)
0.0467611 + 0.998906i \(0.485110\pi\)
\(44\) 0 0
\(45\) 0.222687i 0.0331963i
\(46\) 0 0
\(47\) 5.18546 0.756378 0.378189 0.925728i \(-0.376547\pi\)
0.378189 + 0.925728i \(0.376547\pi\)
\(48\) 0 0
\(49\) −20.3846 −2.91209
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.77451 0.243748 0.121874 0.992546i \(-0.461110\pi\)
0.121874 + 0.992546i \(0.461110\pi\)
\(54\) 0 0
\(55\) 5.28579 0.712735
\(56\) 0 0
\(57\) − 7.74315i − 1.02560i
\(58\) 0 0
\(59\) −7.97014 −1.03762 −0.518812 0.854888i \(-0.673626\pi\)
−0.518812 + 0.854888i \(0.673626\pi\)
\(60\) 0 0
\(61\) − 3.64785i − 0.467059i −0.972350 0.233530i \(-0.924972\pi\)
0.972350 0.233530i \(-0.0750276\pi\)
\(62\) 0 0
\(63\) 1.16533i 0.146818i
\(64\) 0 0
\(65\) 2.63690i 0.327067i
\(66\) 0 0
\(67\) 11.7984 1.44141 0.720703 0.693244i \(-0.243819\pi\)
0.720703 + 0.693244i \(0.243819\pi\)
\(68\) 0 0
\(69\) 7.47865 0.900324
\(70\) 0 0
\(71\) − 7.19428i − 0.853804i −0.904298 0.426902i \(-0.859605\pi\)
0.904298 0.426902i \(-0.140395\pi\)
\(72\) 0 0
\(73\) 6.49108i 0.759724i 0.925043 + 0.379862i \(0.124028\pi\)
−0.925043 + 0.379862i \(0.875972\pi\)
\(74\) 0 0
\(75\) − 1.79518i − 0.207290i
\(76\) 0 0
\(77\) 27.6607 3.15223
\(78\) 0 0
\(79\) − 1.79108i − 0.201513i −0.994911 0.100756i \(-0.967874\pi\)
0.994911 0.100756i \(-0.0321262\pi\)
\(80\) 0 0
\(81\) −9.61847 −1.06872
\(82\) 0 0
\(83\) −12.8929 −1.41518 −0.707588 0.706625i \(-0.750217\pi\)
−0.707588 + 0.706625i \(0.750217\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.57220 0.490191
\(88\) 0 0
\(89\) 3.34014 0.354055 0.177027 0.984206i \(-0.443352\pi\)
0.177027 + 0.984206i \(0.443352\pi\)
\(90\) 0 0
\(91\) 13.7990i 1.44653i
\(92\) 0 0
\(93\) −5.40301 −0.560266
\(94\) 0 0
\(95\) 4.31329i 0.442534i
\(96\) 0 0
\(97\) 4.62864i 0.469967i 0.971999 + 0.234983i \(0.0755036\pi\)
−0.971999 + 0.234983i \(0.924496\pi\)
\(98\) 0 0
\(99\) − 1.17708i − 0.118301i
\(100\) 0 0
\(101\) −17.3002 −1.72144 −0.860719 0.509081i \(-0.829985\pi\)
−0.860719 + 0.509081i \(0.829985\pi\)
\(102\) 0 0
\(103\) 18.0638 1.77988 0.889940 0.456077i \(-0.150746\pi\)
0.889940 + 0.456077i \(0.150746\pi\)
\(104\) 0 0
\(105\) − 9.39426i − 0.916786i
\(106\) 0 0
\(107\) 12.3333i 1.19231i 0.802870 + 0.596154i \(0.203305\pi\)
−0.802870 + 0.596154i \(0.796695\pi\)
\(108\) 0 0
\(109\) 5.86139i 0.561419i 0.959793 + 0.280710i \(0.0905698\pi\)
−0.959793 + 0.280710i \(0.909430\pi\)
\(110\) 0 0
\(111\) −17.0027 −1.61382
\(112\) 0 0
\(113\) 4.39938i 0.413859i 0.978356 + 0.206929i \(0.0663470\pi\)
−0.978356 + 0.206929i \(0.933653\pi\)
\(114\) 0 0
\(115\) −4.16595 −0.388477
\(116\) 0 0
\(117\) 0.587204 0.0542871
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −16.9395 −1.53996
\(122\) 0 0
\(123\) −2.42848 −0.218968
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −4.13619 −0.367027 −0.183514 0.983017i \(-0.558747\pi\)
−0.183514 + 0.983017i \(0.558747\pi\)
\(128\) 0 0
\(129\) 1.10093i 0.0969311i
\(130\) 0 0
\(131\) 22.1002i 1.93090i 0.260581 + 0.965452i \(0.416086\pi\)
−0.260581 + 0.965452i \(0.583914\pi\)
\(132\) 0 0
\(133\) 22.5716i 1.95720i
\(134\) 0 0
\(135\) 4.98579 0.429108
\(136\) 0 0
\(137\) −2.63690 −0.225286 −0.112643 0.993636i \(-0.535932\pi\)
−0.112643 + 0.993636i \(0.535932\pi\)
\(138\) 0 0
\(139\) 12.9759i 1.10060i 0.834966 + 0.550301i \(0.185487\pi\)
−0.834966 + 0.550301i \(0.814513\pi\)
\(140\) 0 0
\(141\) 9.30887i 0.783948i
\(142\) 0 0
\(143\) − 13.9381i − 1.16556i
\(144\) 0 0
\(145\) −2.54692 −0.211511
\(146\) 0 0
\(147\) − 36.5942i − 3.01824i
\(148\) 0 0
\(149\) −5.47255 −0.448329 −0.224164 0.974551i \(-0.571965\pi\)
−0.224164 + 0.974551i \(0.571965\pi\)
\(150\) 0 0
\(151\) 22.6375 1.84221 0.921105 0.389314i \(-0.127288\pi\)
0.921105 + 0.389314i \(0.127288\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.00972 0.241747
\(156\) 0 0
\(157\) −11.0324 −0.880480 −0.440240 0.897880i \(-0.645107\pi\)
−0.440240 + 0.897880i \(0.645107\pi\)
\(158\) 0 0
\(159\) 3.18558i 0.252633i
\(160\) 0 0
\(161\) −21.8006 −1.71813
\(162\) 0 0
\(163\) 9.88026i 0.773882i 0.922105 + 0.386941i \(0.126468\pi\)
−0.922105 + 0.386941i \(0.873532\pi\)
\(164\) 0 0
\(165\) 9.48896i 0.738715i
\(166\) 0 0
\(167\) 16.1670i 1.25104i 0.780209 + 0.625519i \(0.215113\pi\)
−0.780209 + 0.625519i \(0.784887\pi\)
\(168\) 0 0
\(169\) −6.04675 −0.465135
\(170\) 0 0
\(171\) 0.960514 0.0734524
\(172\) 0 0
\(173\) 6.01359i 0.457205i 0.973520 + 0.228602i \(0.0734155\pi\)
−0.973520 + 0.228602i \(0.926584\pi\)
\(174\) 0 0
\(175\) 5.23303i 0.395580i
\(176\) 0 0
\(177\) − 14.3079i − 1.07545i
\(178\) 0 0
\(179\) 12.0604 0.901438 0.450719 0.892666i \(-0.351168\pi\)
0.450719 + 0.892666i \(0.351168\pi\)
\(180\) 0 0
\(181\) 3.47549i 0.258331i 0.991623 + 0.129166i \(0.0412298\pi\)
−0.991623 + 0.129166i \(0.958770\pi\)
\(182\) 0 0
\(183\) 6.54856 0.484084
\(184\) 0 0
\(185\) 9.47127 0.696342
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 26.0908 1.89783
\(190\) 0 0
\(191\) 4.77866 0.345772 0.172886 0.984942i \(-0.444691\pi\)
0.172886 + 0.984942i \(0.444691\pi\)
\(192\) 0 0
\(193\) 22.7383i 1.63674i 0.574691 + 0.818370i \(0.305122\pi\)
−0.574691 + 0.818370i \(0.694878\pi\)
\(194\) 0 0
\(195\) −4.73372 −0.338989
\(196\) 0 0
\(197\) − 12.6763i − 0.903149i −0.892234 0.451574i \(-0.850863\pi\)
0.892234 0.451574i \(-0.149137\pi\)
\(198\) 0 0
\(199\) − 6.16604i − 0.437099i −0.975826 0.218549i \(-0.929867\pi\)
0.975826 0.218549i \(-0.0701325\pi\)
\(200\) 0 0
\(201\) 21.1803i 1.49395i
\(202\) 0 0
\(203\) −13.3281 −0.935452
\(204\) 0 0
\(205\) 1.35277 0.0944818
\(206\) 0 0
\(207\) 0.927705i 0.0644799i
\(208\) 0 0
\(209\) − 22.7991i − 1.57705i
\(210\) 0 0
\(211\) 19.7285i 1.35816i 0.734062 + 0.679082i \(0.237622\pi\)
−0.734062 + 0.679082i \(0.762378\pi\)
\(212\) 0 0
\(213\) 12.9151 0.884926
\(214\) 0 0
\(215\) − 0.613266i − 0.0418244i
\(216\) 0 0
\(217\) 15.7500 1.06918
\(218\) 0 0
\(219\) −11.6527 −0.787416
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −23.7682 −1.59164 −0.795818 0.605536i \(-0.792959\pi\)
−0.795818 + 0.605536i \(0.792959\pi\)
\(224\) 0 0
\(225\) 0.222687 0.0148458
\(226\) 0 0
\(227\) 12.9091i 0.856807i 0.903587 + 0.428404i \(0.140924\pi\)
−0.903587 + 0.428404i \(0.859076\pi\)
\(228\) 0 0
\(229\) 23.9466 1.58244 0.791218 0.611534i \(-0.209447\pi\)
0.791218 + 0.611534i \(0.209447\pi\)
\(230\) 0 0
\(231\) 49.6560i 3.26713i
\(232\) 0 0
\(233\) 9.68125i 0.634239i 0.948386 + 0.317120i \(0.102716\pi\)
−0.948386 + 0.317120i \(0.897284\pi\)
\(234\) 0 0
\(235\) − 5.18546i − 0.338262i
\(236\) 0 0
\(237\) 3.21532 0.208858
\(238\) 0 0
\(239\) −18.7624 −1.21364 −0.606820 0.794839i \(-0.707555\pi\)
−0.606820 + 0.794839i \(0.707555\pi\)
\(240\) 0 0
\(241\) − 0.565814i − 0.0364473i −0.999834 0.0182236i \(-0.994199\pi\)
0.999834 0.0182236i \(-0.00580108\pi\)
\(242\) 0 0
\(243\) − 2.30957i − 0.148159i
\(244\) 0 0
\(245\) 20.3846i 1.30233i
\(246\) 0 0
\(247\) 11.3737 0.723692
\(248\) 0 0
\(249\) − 23.1451i − 1.46676i
\(250\) 0 0
\(251\) −22.5898 −1.42585 −0.712927 0.701238i \(-0.752631\pi\)
−0.712927 + 0.701238i \(0.752631\pi\)
\(252\) 0 0
\(253\) 22.0203 1.38441
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.4988 1.21630 0.608149 0.793823i \(-0.291912\pi\)
0.608149 + 0.793823i \(0.291912\pi\)
\(258\) 0 0
\(259\) 49.5635 3.07972
\(260\) 0 0
\(261\) 0.567168i 0.0351068i
\(262\) 0 0
\(263\) −3.17067 −0.195512 −0.0977560 0.995210i \(-0.531166\pi\)
−0.0977560 + 0.995210i \(0.531166\pi\)
\(264\) 0 0
\(265\) − 1.77451i − 0.109007i
\(266\) 0 0
\(267\) 5.99617i 0.366960i
\(268\) 0 0
\(269\) − 15.9119i − 0.970163i −0.874469 0.485082i \(-0.838790\pi\)
0.874469 0.485082i \(-0.161210\pi\)
\(270\) 0 0
\(271\) −12.7342 −0.773546 −0.386773 0.922175i \(-0.626410\pi\)
−0.386773 + 0.922175i \(0.626410\pi\)
\(272\) 0 0
\(273\) −24.7717 −1.49925
\(274\) 0 0
\(275\) − 5.28579i − 0.318745i
\(276\) 0 0
\(277\) 11.9946i 0.720683i 0.932820 + 0.360342i \(0.117340\pi\)
−0.932820 + 0.360342i \(0.882660\pi\)
\(278\) 0 0
\(279\) − 0.670227i − 0.0401254i
\(280\) 0 0
\(281\) 3.10194 0.185046 0.0925232 0.995711i \(-0.470507\pi\)
0.0925232 + 0.995711i \(0.470507\pi\)
\(282\) 0 0
\(283\) − 25.9628i − 1.54333i −0.636029 0.771665i \(-0.719424\pi\)
0.636029 0.771665i \(-0.280576\pi\)
\(284\) 0 0
\(285\) −7.74315 −0.458664
\(286\) 0 0
\(287\) 7.07911 0.417866
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −8.30926 −0.487097
\(292\) 0 0
\(293\) −4.39037 −0.256488 −0.128244 0.991743i \(-0.540934\pi\)
−0.128244 + 0.991743i \(0.540934\pi\)
\(294\) 0 0
\(295\) 7.97014i 0.464040i
\(296\) 0 0
\(297\) −26.3538 −1.52920
\(298\) 0 0
\(299\) 10.9852i 0.635291i
\(300\) 0 0
\(301\) − 3.20924i − 0.184978i
\(302\) 0 0
\(303\) − 31.0571i − 1.78418i
\(304\) 0 0
\(305\) −3.64785 −0.208875
\(306\) 0 0
\(307\) 14.1398 0.806998 0.403499 0.914980i \(-0.367794\pi\)
0.403499 + 0.914980i \(0.367794\pi\)
\(308\) 0 0
\(309\) 32.4279i 1.84476i
\(310\) 0 0
\(311\) 9.90859i 0.561865i 0.959728 + 0.280932i \(0.0906437\pi\)
−0.959728 + 0.280932i \(0.909356\pi\)
\(312\) 0 0
\(313\) − 1.13927i − 0.0643954i −0.999482 0.0321977i \(-0.989749\pi\)
0.999482 0.0321977i \(-0.0102506\pi\)
\(314\) 0 0
\(315\) 1.16533 0.0656589
\(316\) 0 0
\(317\) − 1.69556i − 0.0952319i −0.998866 0.0476159i \(-0.984838\pi\)
0.998866 0.0476159i \(-0.0151624\pi\)
\(318\) 0 0
\(319\) 13.4625 0.753755
\(320\) 0 0
\(321\) −22.1406 −1.23577
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.63690 0.146269
\(326\) 0 0
\(327\) −10.5223 −0.581883
\(328\) 0 0
\(329\) − 27.1357i − 1.49604i
\(330\) 0 0
\(331\) 14.1128 0.775711 0.387856 0.921720i \(-0.373216\pi\)
0.387856 + 0.921720i \(0.373216\pi\)
\(332\) 0 0
\(333\) − 2.10913i − 0.115580i
\(334\) 0 0
\(335\) − 11.7984i − 0.644617i
\(336\) 0 0
\(337\) 3.08406i 0.168000i 0.996466 + 0.0839998i \(0.0267695\pi\)
−0.996466 + 0.0839998i \(0.973230\pi\)
\(338\) 0 0
\(339\) −7.89769 −0.428944
\(340\) 0 0
\(341\) −15.9087 −0.861507
\(342\) 0 0
\(343\) 70.0422i 3.78192i
\(344\) 0 0
\(345\) − 7.47865i − 0.402637i
\(346\) 0 0
\(347\) − 6.32536i − 0.339563i −0.985482 0.169782i \(-0.945694\pi\)
0.985482 0.169782i \(-0.0543062\pi\)
\(348\) 0 0
\(349\) 7.89867 0.422806 0.211403 0.977399i \(-0.432197\pi\)
0.211403 + 0.977399i \(0.432197\pi\)
\(350\) 0 0
\(351\) − 13.1470i − 0.701737i
\(352\) 0 0
\(353\) −29.9338 −1.59321 −0.796607 0.604498i \(-0.793374\pi\)
−0.796607 + 0.604498i \(0.793374\pi\)
\(354\) 0 0
\(355\) −7.19428 −0.381833
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.08403 −0.268325 −0.134163 0.990959i \(-0.542834\pi\)
−0.134163 + 0.990959i \(0.542834\pi\)
\(360\) 0 0
\(361\) −0.395551 −0.0208185
\(362\) 0 0
\(363\) − 30.4096i − 1.59609i
\(364\) 0 0
\(365\) 6.49108 0.339759
\(366\) 0 0
\(367\) − 9.15114i − 0.477686i −0.971058 0.238843i \(-0.923232\pi\)
0.971058 0.238843i \(-0.0767681\pi\)
\(368\) 0 0
\(369\) − 0.301245i − 0.0156822i
\(370\) 0 0
\(371\) − 9.28609i − 0.482110i
\(372\) 0 0
\(373\) −9.45731 −0.489681 −0.244840 0.969563i \(-0.578736\pi\)
−0.244840 + 0.969563i \(0.578736\pi\)
\(374\) 0 0
\(375\) −1.79518 −0.0927029
\(376\) 0 0
\(377\) 6.71599i 0.345891i
\(378\) 0 0
\(379\) − 0.461891i − 0.0237257i −0.999930 0.0118629i \(-0.996224\pi\)
0.999930 0.0118629i \(-0.00377616\pi\)
\(380\) 0 0
\(381\) − 7.42522i − 0.380406i
\(382\) 0 0
\(383\) −24.2666 −1.23996 −0.619982 0.784616i \(-0.712860\pi\)
−0.619982 + 0.784616i \(0.712860\pi\)
\(384\) 0 0
\(385\) − 27.6607i − 1.40972i
\(386\) 0 0
\(387\) −0.136567 −0.00694207
\(388\) 0 0
\(389\) −10.9870 −0.557065 −0.278533 0.960427i \(-0.589848\pi\)
−0.278533 + 0.960427i \(0.589848\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −39.6739 −2.00129
\(394\) 0 0
\(395\) −1.79108 −0.0901191
\(396\) 0 0
\(397\) 17.2610i 0.866306i 0.901320 + 0.433153i \(0.142599\pi\)
−0.901320 + 0.433153i \(0.857401\pi\)
\(398\) 0 0
\(399\) −40.5201 −2.02854
\(400\) 0 0
\(401\) − 15.4421i − 0.771140i −0.922679 0.385570i \(-0.874005\pi\)
0.922679 0.385570i \(-0.125995\pi\)
\(402\) 0 0
\(403\) − 7.93634i − 0.395337i
\(404\) 0 0
\(405\) 9.61847i 0.477946i
\(406\) 0 0
\(407\) −50.0631 −2.48154
\(408\) 0 0
\(409\) −30.1548 −1.49106 −0.745530 0.666472i \(-0.767803\pi\)
−0.745530 + 0.666472i \(0.767803\pi\)
\(410\) 0 0
\(411\) − 4.73372i − 0.233497i
\(412\) 0 0
\(413\) 41.7080i 2.05232i
\(414\) 0 0
\(415\) 12.8929i 0.632886i
\(416\) 0 0
\(417\) −23.2941 −1.14072
\(418\) 0 0
\(419\) 1.74566i 0.0852811i 0.999090 + 0.0426405i \(0.0135770\pi\)
−0.999090 + 0.0426405i \(0.986423\pi\)
\(420\) 0 0
\(421\) −27.3370 −1.33233 −0.666163 0.745806i \(-0.732064\pi\)
−0.666163 + 0.745806i \(0.732064\pi\)
\(422\) 0 0
\(423\) −1.15474 −0.0561452
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −19.0893 −0.923797
\(428\) 0 0
\(429\) 25.0215 1.20805
\(430\) 0 0
\(431\) − 36.9528i − 1.77996i −0.456003 0.889978i \(-0.650720\pi\)
0.456003 0.889978i \(-0.349280\pi\)
\(432\) 0 0
\(433\) −30.8419 −1.48217 −0.741084 0.671413i \(-0.765688\pi\)
−0.741084 + 0.671413i \(0.765688\pi\)
\(434\) 0 0
\(435\) − 4.57220i − 0.219220i
\(436\) 0 0
\(437\) 17.9690i 0.859572i
\(438\) 0 0
\(439\) 5.38634i 0.257076i 0.991705 + 0.128538i \(0.0410284\pi\)
−0.991705 + 0.128538i \(0.958972\pi\)
\(440\) 0 0
\(441\) 4.53940 0.216162
\(442\) 0 0
\(443\) 26.4761 1.25792 0.628958 0.777440i \(-0.283482\pi\)
0.628958 + 0.777440i \(0.283482\pi\)
\(444\) 0 0
\(445\) − 3.34014i − 0.158338i
\(446\) 0 0
\(447\) − 9.82424i − 0.464670i
\(448\) 0 0
\(449\) 11.3573i 0.535983i 0.963421 + 0.267992i \(0.0863600\pi\)
−0.963421 + 0.267992i \(0.913640\pi\)
\(450\) 0 0
\(451\) −7.15047 −0.336703
\(452\) 0 0
\(453\) 40.6384i 1.90936i
\(454\) 0 0
\(455\) 13.7990 0.646907
\(456\) 0 0
\(457\) 3.71394 0.173731 0.0868653 0.996220i \(-0.472315\pi\)
0.0868653 + 0.996220i \(0.472315\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −13.3511 −0.621821 −0.310910 0.950439i \(-0.600634\pi\)
−0.310910 + 0.950439i \(0.600634\pi\)
\(462\) 0 0
\(463\) 30.5506 1.41981 0.709904 0.704298i \(-0.248738\pi\)
0.709904 + 0.704298i \(0.248738\pi\)
\(464\) 0 0
\(465\) 5.40301i 0.250558i
\(466\) 0 0
\(467\) 12.1558 0.562504 0.281252 0.959634i \(-0.409250\pi\)
0.281252 + 0.959634i \(0.409250\pi\)
\(468\) 0 0
\(469\) − 61.7415i − 2.85096i
\(470\) 0 0
\(471\) − 19.8052i − 0.912573i
\(472\) 0 0
\(473\) 3.24159i 0.149049i
\(474\) 0 0
\(475\) 4.31329 0.197907
\(476\) 0 0
\(477\) −0.395162 −0.0180932
\(478\) 0 0
\(479\) − 7.22471i − 0.330105i −0.986285 0.165053i \(-0.947221\pi\)
0.986285 0.165053i \(-0.0527794\pi\)
\(480\) 0 0
\(481\) − 24.9748i − 1.13875i
\(482\) 0 0
\(483\) − 39.1360i − 1.78075i
\(484\) 0 0
\(485\) 4.62864 0.210176
\(486\) 0 0
\(487\) − 1.15911i − 0.0525243i −0.999655 0.0262622i \(-0.991640\pi\)
0.999655 0.0262622i \(-0.00836047\pi\)
\(488\) 0 0
\(489\) −17.7369 −0.802090
\(490\) 0 0
\(491\) 19.9684 0.901163 0.450581 0.892735i \(-0.351217\pi\)
0.450581 + 0.892735i \(0.351217\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −1.17708 −0.0529057
\(496\) 0 0
\(497\) −37.6479 −1.68874
\(498\) 0 0
\(499\) − 0.666349i − 0.0298299i −0.999889 0.0149149i \(-0.995252\pi\)
0.999889 0.0149149i \(-0.00474775\pi\)
\(500\) 0 0
\(501\) −29.0227 −1.29664
\(502\) 0 0
\(503\) − 5.67408i − 0.252995i −0.991967 0.126497i \(-0.959626\pi\)
0.991967 0.126497i \(-0.0403735\pi\)
\(504\) 0 0
\(505\) 17.3002i 0.769850i
\(506\) 0 0
\(507\) − 10.8550i − 0.482089i
\(508\) 0 0
\(509\) −13.8648 −0.614545 −0.307273 0.951622i \(-0.599416\pi\)
−0.307273 + 0.951622i \(0.599416\pi\)
\(510\) 0 0
\(511\) 33.9680 1.50266
\(512\) 0 0
\(513\) − 21.5051i − 0.949475i
\(514\) 0 0
\(515\) − 18.0638i − 0.795987i
\(516\) 0 0
\(517\) 27.4093i 1.20546i
\(518\) 0 0
\(519\) −10.7955 −0.473870
\(520\) 0 0
\(521\) − 30.5723i − 1.33940i −0.742633 0.669699i \(-0.766423\pi\)
0.742633 0.669699i \(-0.233577\pi\)
\(522\) 0 0
\(523\) 10.0946 0.441405 0.220703 0.975341i \(-0.429165\pi\)
0.220703 + 0.975341i \(0.429165\pi\)
\(524\) 0 0
\(525\) −9.39426 −0.409999
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 5.64483 0.245428
\(530\) 0 0
\(531\) 1.77485 0.0770219
\(532\) 0 0
\(533\) − 3.56713i − 0.154510i
\(534\) 0 0
\(535\) 12.3333 0.533217
\(536\) 0 0
\(537\) 21.6507i 0.934296i
\(538\) 0 0
\(539\) − 107.749i − 4.64107i
\(540\) 0 0
\(541\) − 25.8933i − 1.11324i −0.830767 0.556620i \(-0.812098\pi\)
0.830767 0.556620i \(-0.187902\pi\)
\(542\) 0 0
\(543\) −6.23914 −0.267747
\(544\) 0 0
\(545\) 5.86139 0.251074
\(546\) 0 0
\(547\) − 12.2960i − 0.525739i −0.964831 0.262869i \(-0.915331\pi\)
0.964831 0.262869i \(-0.0846688\pi\)
\(548\) 0 0
\(549\) 0.812330i 0.0346694i
\(550\) 0 0
\(551\) 10.9856i 0.468003i
\(552\) 0 0
\(553\) −9.37279 −0.398572
\(554\) 0 0
\(555\) 17.0027i 0.721724i
\(556\) 0 0
\(557\) −28.6723 −1.21489 −0.607443 0.794363i \(-0.707805\pi\)
−0.607443 + 0.794363i \(0.707805\pi\)
\(558\) 0 0
\(559\) −1.61712 −0.0683970
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 29.7196 1.25253 0.626266 0.779609i \(-0.284582\pi\)
0.626266 + 0.779609i \(0.284582\pi\)
\(564\) 0 0
\(565\) 4.39938 0.185083
\(566\) 0 0
\(567\) 50.3338i 2.11382i
\(568\) 0 0
\(569\) −28.0263 −1.17492 −0.587462 0.809251i \(-0.699873\pi\)
−0.587462 + 0.809251i \(0.699873\pi\)
\(570\) 0 0
\(571\) − 42.3794i − 1.77352i −0.462226 0.886762i \(-0.652949\pi\)
0.462226 0.886762i \(-0.347051\pi\)
\(572\) 0 0
\(573\) 8.57858i 0.358375i
\(574\) 0 0
\(575\) 4.16595i 0.173732i
\(576\) 0 0
\(577\) 8.16367 0.339858 0.169929 0.985456i \(-0.445646\pi\)
0.169929 + 0.985456i \(0.445646\pi\)
\(578\) 0 0
\(579\) −40.8195 −1.69640
\(580\) 0 0
\(581\) 67.4688i 2.79908i
\(582\) 0 0
\(583\) 9.37970i 0.388467i
\(584\) 0 0
\(585\) − 0.587204i − 0.0242779i
\(586\) 0 0
\(587\) 13.4440 0.554894 0.277447 0.960741i \(-0.410512\pi\)
0.277447 + 0.960741i \(0.410512\pi\)
\(588\) 0 0
\(589\) − 12.9818i − 0.534906i
\(590\) 0 0
\(591\) 22.7563 0.936069
\(592\) 0 0
\(593\) −14.4936 −0.595182 −0.297591 0.954693i \(-0.596183\pi\)
−0.297591 + 0.954693i \(0.596183\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 11.0692 0.453031
\(598\) 0 0
\(599\) 24.1901 0.988382 0.494191 0.869353i \(-0.335464\pi\)
0.494191 + 0.869353i \(0.335464\pi\)
\(600\) 0 0
\(601\) − 8.27989i − 0.337744i −0.985638 0.168872i \(-0.945988\pi\)
0.985638 0.168872i \(-0.0540124\pi\)
\(602\) 0 0
\(603\) −2.62736 −0.106994
\(604\) 0 0
\(605\) 16.9395i 0.688690i
\(606\) 0 0
\(607\) 30.0214i 1.21853i 0.792967 + 0.609265i \(0.208535\pi\)
−0.792967 + 0.609265i \(0.791465\pi\)
\(608\) 0 0
\(609\) − 23.9265i − 0.969549i
\(610\) 0 0
\(611\) −13.6736 −0.553173
\(612\) 0 0
\(613\) 1.77264 0.0715963 0.0357982 0.999359i \(-0.488603\pi\)
0.0357982 + 0.999359i \(0.488603\pi\)
\(614\) 0 0
\(615\) 2.42848i 0.0979257i
\(616\) 0 0
\(617\) − 27.7453i − 1.11698i −0.829510 0.558492i \(-0.811380\pi\)
0.829510 0.558492i \(-0.188620\pi\)
\(618\) 0 0
\(619\) 47.4316i 1.90644i 0.302279 + 0.953219i \(0.402252\pi\)
−0.302279 + 0.953219i \(0.597748\pi\)
\(620\) 0 0
\(621\) 20.7706 0.833494
\(622\) 0 0
\(623\) − 17.4791i − 0.700285i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 40.9286 1.63453
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 4.14957 0.165192 0.0825960 0.996583i \(-0.473679\pi\)
0.0825960 + 0.996583i \(0.473679\pi\)
\(632\) 0 0
\(633\) −35.4163 −1.40767
\(634\) 0 0
\(635\) 4.13619i 0.164140i
\(636\) 0 0
\(637\) 53.7522 2.12974
\(638\) 0 0
\(639\) 1.60208i 0.0633771i
\(640\) 0 0
\(641\) 33.6467i 1.32897i 0.747303 + 0.664483i \(0.231348\pi\)
−0.747303 + 0.664483i \(0.768652\pi\)
\(642\) 0 0
\(643\) 13.8052i 0.544423i 0.962237 + 0.272212i \(0.0877551\pi\)
−0.962237 + 0.272212i \(0.912245\pi\)
\(644\) 0 0
\(645\) 1.10093 0.0433489
\(646\) 0 0
\(647\) −24.0014 −0.943594 −0.471797 0.881707i \(-0.656395\pi\)
−0.471797 + 0.881707i \(0.656395\pi\)
\(648\) 0 0
\(649\) − 42.1285i − 1.65369i
\(650\) 0 0
\(651\) 28.2741i 1.10815i
\(652\) 0 0
\(653\) 10.9628i 0.429009i 0.976723 + 0.214505i \(0.0688137\pi\)
−0.976723 + 0.214505i \(0.931186\pi\)
\(654\) 0 0
\(655\) 22.1002 0.863526
\(656\) 0 0
\(657\) − 1.44548i − 0.0563936i
\(658\) 0 0
\(659\) 13.8658 0.540136 0.270068 0.962841i \(-0.412954\pi\)
0.270068 + 0.962841i \(0.412954\pi\)
\(660\) 0 0
\(661\) −2.31432 −0.0900166 −0.0450083 0.998987i \(-0.514331\pi\)
−0.0450083 + 0.998987i \(0.514331\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 22.5716 0.875288
\(666\) 0 0
\(667\) −10.6104 −0.410835
\(668\) 0 0
\(669\) − 42.6683i − 1.64965i
\(670\) 0 0
\(671\) 19.2818 0.744364
\(672\) 0 0
\(673\) − 1.67123i − 0.0644213i −0.999481 0.0322106i \(-0.989745\pi\)
0.999481 0.0322106i \(-0.0102547\pi\)
\(674\) 0 0
\(675\) − 4.98579i − 0.191903i
\(676\) 0 0
\(677\) 9.36814i 0.360047i 0.983662 + 0.180023i \(0.0576173\pi\)
−0.983662 + 0.180023i \(0.942383\pi\)
\(678\) 0 0
\(679\) 24.2218 0.929548
\(680\) 0 0
\(681\) −23.1742 −0.888038
\(682\) 0 0
\(683\) − 34.5712i − 1.32283i −0.750020 0.661415i \(-0.769956\pi\)
0.750020 0.661415i \(-0.230044\pi\)
\(684\) 0 0
\(685\) 2.63690i 0.100751i
\(686\) 0 0
\(687\) 42.9886i 1.64012i
\(688\) 0 0
\(689\) −4.67922 −0.178264
\(690\) 0 0
\(691\) 19.1908i 0.730054i 0.930997 + 0.365027i \(0.118940\pi\)
−0.930997 + 0.365027i \(0.881060\pi\)
\(692\) 0 0
\(693\) −6.15968 −0.233987
\(694\) 0 0
\(695\) 12.9759 0.492204
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −17.3796 −0.657358
\(700\) 0 0
\(701\) −31.8819 −1.20416 −0.602081 0.798435i \(-0.705661\pi\)
−0.602081 + 0.798435i \(0.705661\pi\)
\(702\) 0 0
\(703\) − 40.8523i − 1.54077i
\(704\) 0 0
\(705\) 9.30887 0.350592
\(706\) 0 0
\(707\) 90.5327i 3.40483i
\(708\) 0 0
\(709\) 39.0093i 1.46502i 0.680755 + 0.732512i \(0.261652\pi\)
−0.680755 + 0.732512i \(0.738348\pi\)
\(710\) 0 0
\(711\) 0.398851i 0.0149581i
\(712\) 0 0
\(713\) 12.5384 0.469565
\(714\) 0 0
\(715\) −13.9381 −0.521255
\(716\) 0 0
\(717\) − 33.6820i − 1.25788i
\(718\) 0 0
\(719\) 12.9105i 0.481479i 0.970590 + 0.240740i \(0.0773900\pi\)
−0.970590 + 0.240740i \(0.922610\pi\)
\(720\) 0 0
\(721\) − 94.5285i − 3.52043i
\(722\) 0 0
\(723\) 1.01574 0.0377758
\(724\) 0 0
\(725\) 2.54692i 0.0945904i
\(726\) 0 0
\(727\) 10.4543 0.387728 0.193864 0.981028i \(-0.437898\pi\)
0.193864 + 0.981028i \(0.437898\pi\)
\(728\) 0 0
\(729\) −24.7093 −0.915160
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −32.9360 −1.21652 −0.608259 0.793739i \(-0.708132\pi\)
−0.608259 + 0.793739i \(0.708132\pi\)
\(734\) 0 0
\(735\) −36.5942 −1.34980
\(736\) 0 0
\(737\) 62.3639i 2.29721i
\(738\) 0 0
\(739\) 18.8281 0.692601 0.346301 0.938124i \(-0.387438\pi\)
0.346301 + 0.938124i \(0.387438\pi\)
\(740\) 0 0
\(741\) 20.4179i 0.750071i
\(742\) 0 0
\(743\) 22.0220i 0.807909i 0.914779 + 0.403955i \(0.132365\pi\)
−0.914779 + 0.403955i \(0.867635\pi\)
\(744\) 0 0
\(745\) 5.47255i 0.200499i
\(746\) 0 0
\(747\) 2.87108 0.105047
\(748\) 0 0
\(749\) 64.5407 2.35827
\(750\) 0 0
\(751\) − 15.6631i − 0.571554i −0.958296 0.285777i \(-0.907748\pi\)
0.958296 0.285777i \(-0.0922516\pi\)
\(752\) 0 0
\(753\) − 40.5528i − 1.47783i
\(754\) 0 0
\(755\) − 22.6375i − 0.823862i
\(756\) 0 0
\(757\) 0.298820 0.0108608 0.00543041 0.999985i \(-0.498271\pi\)
0.00543041 + 0.999985i \(0.498271\pi\)
\(758\) 0 0
\(759\) 39.5306i 1.43487i
\(760\) 0 0
\(761\) 49.5107 1.79476 0.897381 0.441257i \(-0.145467\pi\)
0.897381 + 0.441257i \(0.145467\pi\)
\(762\) 0 0
\(763\) 30.6728 1.11043
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 21.0165 0.758861
\(768\) 0 0
\(769\) 28.9566 1.04420 0.522100 0.852884i \(-0.325149\pi\)
0.522100 + 0.852884i \(0.325149\pi\)
\(770\) 0 0
\(771\) 35.0039i 1.26063i
\(772\) 0 0
\(773\) 2.56888 0.0923962 0.0461981 0.998932i \(-0.485289\pi\)
0.0461981 + 0.998932i \(0.485289\pi\)
\(774\) 0 0
\(775\) − 3.00972i − 0.108112i
\(776\) 0 0
\(777\) 88.9756i 3.19198i
\(778\) 0 0
\(779\) − 5.83490i − 0.209057i
\(780\) 0 0
\(781\) 38.0275 1.36073
\(782\) 0 0
\(783\) 12.6984 0.453805
\(784\) 0 0
\(785\) 11.0324i 0.393762i
\(786\) 0 0
\(787\) − 40.8493i − 1.45612i −0.685513 0.728060i \(-0.740422\pi\)
0.685513 0.728060i \(-0.259578\pi\)
\(788\) 0 0
\(789\) − 5.69194i − 0.202639i
\(790\) 0 0
\(791\) 23.0221 0.818571
\(792\) 0 0
\(793\) 9.61902i 0.341581i
\(794\) 0 0
\(795\) 3.18558 0.112981
\(796\) 0 0
\(797\) 21.4521 0.759873 0.379937 0.925013i \(-0.375946\pi\)
0.379937 + 0.925013i \(0.375946\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −0.743808 −0.0262811
\(802\) 0 0
\(803\) −34.3105 −1.21079
\(804\) 0 0
\(805\) 21.8006i 0.768369i
\(806\) 0 0
\(807\) 28.5647 1.00553
\(808\) 0 0
\(809\) 21.7141i 0.763427i 0.924281 + 0.381714i \(0.124666\pi\)
−0.924281 + 0.381714i \(0.875334\pi\)
\(810\) 0 0
\(811\) − 43.0923i − 1.51317i −0.653893 0.756587i \(-0.726865\pi\)
0.653893 0.756587i \(-0.273135\pi\)
\(812\) 0 0
\(813\) − 22.8602i − 0.801742i
\(814\) 0 0
\(815\) 9.88026 0.346090
\(816\) 0 0
\(817\) −2.64519 −0.0925436
\(818\) 0 0
\(819\) − 3.07286i − 0.107374i
\(820\) 0 0
\(821\) 29.4400i 1.02746i 0.857951 + 0.513731i \(0.171737\pi\)
−0.857951 + 0.513731i \(0.828263\pi\)
\(822\) 0 0
\(823\) − 27.2734i − 0.950692i −0.879799 0.475346i \(-0.842323\pi\)
0.879799 0.475346i \(-0.157677\pi\)
\(824\) 0 0
\(825\) 9.48896 0.330363
\(826\) 0 0
\(827\) 3.04713i 0.105959i 0.998596 + 0.0529795i \(0.0168718\pi\)
−0.998596 + 0.0529795i \(0.983128\pi\)
\(828\) 0 0
\(829\) −36.6800 −1.27395 −0.636975 0.770885i \(-0.719814\pi\)
−0.636975 + 0.770885i \(0.719814\pi\)
\(830\) 0 0
\(831\) −21.5325 −0.746952
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 16.1670 0.559481
\(836\) 0 0
\(837\) −15.0058 −0.518678
\(838\) 0 0
\(839\) − 16.7172i − 0.577142i −0.957458 0.288571i \(-0.906820\pi\)
0.957458 0.288571i \(-0.0931802\pi\)
\(840\) 0 0
\(841\) 22.5132 0.776316
\(842\) 0 0
\(843\) 5.56856i 0.191791i
\(844\) 0 0
\(845\) 6.04675i 0.208015i
\(846\) 0 0
\(847\) 88.6452i 3.04588i
\(848\) 0 0
\(849\) 46.6081 1.59958
\(850\) 0 0
\(851\) 39.4569 1.35256
\(852\) 0 0
\(853\) − 1.26567i − 0.0433356i −0.999765 0.0216678i \(-0.993102\pi\)
0.999765 0.0216678i \(-0.00689762\pi\)
\(854\) 0 0
\(855\) − 0.960514i − 0.0328489i
\(856\) 0 0
\(857\) 12.4928i 0.426746i 0.976971 + 0.213373i \(0.0684450\pi\)
−0.976971 + 0.213373i \(0.931555\pi\)
\(858\) 0 0
\(859\) 30.5126 1.04108 0.520538 0.853839i \(-0.325731\pi\)
0.520538 + 0.853839i \(0.325731\pi\)
\(860\) 0 0
\(861\) 12.7083i 0.433098i
\(862\) 0 0
\(863\) 24.4910 0.833685 0.416842 0.908979i \(-0.363137\pi\)
0.416842 + 0.908979i \(0.363137\pi\)
\(864\) 0 0
\(865\) 6.01359 0.204468
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.46728 0.321155
\(870\) 0 0
\(871\) −31.1113 −1.05417
\(872\) 0 0
\(873\) − 1.03074i − 0.0348852i
\(874\) 0 0
\(875\) 5.23303 0.176909
\(876\) 0 0
\(877\) − 24.9590i − 0.842805i −0.906874 0.421403i \(-0.861538\pi\)
0.906874 0.421403i \(-0.138462\pi\)
\(878\) 0 0
\(879\) − 7.88153i − 0.265837i
\(880\) 0 0
\(881\) 34.3804i 1.15830i 0.815219 + 0.579152i \(0.196616\pi\)
−0.815219 + 0.579152i \(0.803384\pi\)
\(882\) 0 0
\(883\) −32.9362 −1.10839 −0.554196 0.832386i \(-0.686974\pi\)
−0.554196 + 0.832386i \(0.686974\pi\)
\(884\) 0 0
\(885\) −14.3079 −0.480954
\(886\) 0 0
\(887\) − 29.5748i − 0.993025i −0.868029 0.496513i \(-0.834614\pi\)
0.868029 0.496513i \(-0.165386\pi\)
\(888\) 0 0
\(889\) 21.6448i 0.725944i
\(890\) 0 0
\(891\) − 50.8412i − 1.70324i
\(892\) 0 0
\(893\) −22.3664 −0.748463
\(894\) 0 0
\(895\) − 12.0604i − 0.403135i
\(896\) 0 0
\(897\) −19.7205 −0.658447
\(898\) 0 0
\(899\) 7.66553 0.255660
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 5.76118 0.191720
\(904\) 0 0
\(905\) 3.47549 0.115529
\(906\) 0 0
\(907\) − 2.41586i − 0.0802173i −0.999195 0.0401086i \(-0.987230\pi\)
0.999195 0.0401086i \(-0.0127704\pi\)
\(908\) 0 0
\(909\) 3.85254 0.127781
\(910\) 0 0
\(911\) − 54.1207i − 1.79310i −0.442942 0.896550i \(-0.646065\pi\)
0.442942 0.896550i \(-0.353935\pi\)
\(912\) 0 0
\(913\) − 68.1490i − 2.25540i
\(914\) 0 0
\(915\) − 6.54856i − 0.216489i
\(916\) 0 0
\(917\) 115.651 3.81914
\(918\) 0 0
\(919\) −9.64435 −0.318138 −0.159069 0.987267i \(-0.550849\pi\)
−0.159069 + 0.987267i \(0.550849\pi\)
\(920\) 0 0
\(921\) 25.3835i 0.836414i
\(922\) 0 0
\(923\) 18.9706i 0.624425i
\(924\) 0 0
\(925\) − 9.47127i − 0.311414i
\(926\) 0 0
\(927\) −4.02258 −0.132119
\(928\) 0 0
\(929\) 29.5153i 0.968365i 0.874967 + 0.484182i \(0.160883\pi\)
−0.874967 + 0.484182i \(0.839117\pi\)
\(930\) 0 0
\(931\) 87.9248 2.88162
\(932\) 0 0
\(933\) −17.7878 −0.582345
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8.00891 0.261640 0.130820 0.991406i \(-0.458239\pi\)
0.130820 + 0.991406i \(0.458239\pi\)
\(938\) 0 0
\(939\) 2.04520 0.0667426
\(940\) 0 0
\(941\) 47.2899i 1.54161i 0.637073 + 0.770804i \(0.280145\pi\)
−0.637073 + 0.770804i \(0.719855\pi\)
\(942\) 0 0
\(943\) 5.63559 0.183520
\(944\) 0 0
\(945\) − 26.0908i − 0.848734i
\(946\) 0 0
\(947\) 27.8278i 0.904282i 0.891947 + 0.452141i \(0.149340\pi\)
−0.891947 + 0.452141i \(0.850660\pi\)
\(948\) 0 0
\(949\) − 17.1163i − 0.555620i
\(950\) 0 0
\(951\) 3.04384 0.0987031
\(952\) 0 0
\(953\) −32.2796 −1.04564 −0.522819 0.852443i \(-0.675120\pi\)
−0.522819 + 0.852443i \(0.675120\pi\)
\(954\) 0 0
\(955\) − 4.77866i − 0.154634i
\(956\) 0 0
\(957\) 24.1677i 0.781230i
\(958\) 0 0
\(959\) 13.7990i 0.445593i
\(960\) 0 0
\(961\) 21.9416 0.707793
\(962\) 0 0
\(963\) − 2.74648i − 0.0885040i
\(964\) 0 0
\(965\) 22.7383 0.731973
\(966\) 0 0
\(967\) 60.1211 1.93337 0.966683 0.255978i \(-0.0823974\pi\)
0.966683 + 0.255978i \(0.0823974\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 56.9650 1.82809 0.914047 0.405608i \(-0.132940\pi\)
0.914047 + 0.405608i \(0.132940\pi\)
\(972\) 0 0
\(973\) 67.9033 2.17688
\(974\) 0 0
\(975\) 4.73372i 0.151600i
\(976\) 0 0
\(977\) 24.2881 0.777045 0.388522 0.921439i \(-0.372986\pi\)
0.388522 + 0.921439i \(0.372986\pi\)
\(978\) 0 0
\(979\) 17.6553i 0.564265i
\(980\) 0 0
\(981\) − 1.30526i − 0.0416736i
\(982\) 0 0
\(983\) 6.00189i 0.191430i 0.995409 + 0.0957152i \(0.0305138\pi\)
−0.995409 + 0.0957152i \(0.969486\pi\)
\(984\) 0 0
\(985\) −12.6763 −0.403900
\(986\) 0 0
\(987\) 48.7136 1.55057
\(988\) 0 0
\(989\) − 2.55484i − 0.0812391i
\(990\) 0 0
\(991\) − 38.9660i − 1.23780i −0.785471 0.618898i \(-0.787579\pi\)
0.785471 0.618898i \(-0.212421\pi\)
\(992\) 0 0
\(993\) 25.3351i 0.803986i
\(994\) 0 0
\(995\) −6.16604 −0.195477
\(996\) 0 0
\(997\) 27.0341i 0.856179i 0.903736 + 0.428090i \(0.140813\pi\)
−0.903736 + 0.428090i \(0.859187\pi\)
\(998\) 0 0
\(999\) −47.2218 −1.49403
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5780.2.c.h.5201.11 12
17.2 even 8 340.2.o.a.81.5 yes 12
17.4 even 4 5780.2.a.m.1.6 6
17.8 even 8 340.2.o.a.21.5 12
17.13 even 4 5780.2.a.n.1.1 6
17.16 even 2 inner 5780.2.c.h.5201.2 12
51.2 odd 8 3060.2.be.b.1441.1 12
51.8 odd 8 3060.2.be.b.361.1 12
68.19 odd 8 1360.2.bt.c.81.2 12
68.59 odd 8 1360.2.bt.c.1041.2 12
85.2 odd 8 1700.2.m.f.149.5 12
85.8 odd 8 1700.2.m.f.1449.5 12
85.19 even 8 1700.2.o.d.1101.2 12
85.42 odd 8 1700.2.m.c.1449.2 12
85.53 odd 8 1700.2.m.c.149.2 12
85.59 even 8 1700.2.o.d.701.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.o.a.21.5 12 17.8 even 8
340.2.o.a.81.5 yes 12 17.2 even 8
1360.2.bt.c.81.2 12 68.19 odd 8
1360.2.bt.c.1041.2 12 68.59 odd 8
1700.2.m.c.149.2 12 85.53 odd 8
1700.2.m.c.1449.2 12 85.42 odd 8
1700.2.m.f.149.5 12 85.2 odd 8
1700.2.m.f.1449.5 12 85.8 odd 8
1700.2.o.d.701.2 12 85.59 even 8
1700.2.o.d.1101.2 12 85.19 even 8
3060.2.be.b.361.1 12 51.8 odd 8
3060.2.be.b.1441.1 12 51.2 odd 8
5780.2.a.m.1.6 6 17.4 even 4
5780.2.a.n.1.1 6 17.13 even 4
5780.2.c.h.5201.2 12 17.16 even 2 inner
5780.2.c.h.5201.11 12 1.1 even 1 trivial