Properties

Label 3060.2.be.b
Level 30603060
Weight 22
Character orbit 3060.be
Analytic conductor 24.43424.434
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(361,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: N N == 3060=2232517 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3060.be (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 24.434223018524.4342230185
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(i)\Q(i)
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12+6x1016x9+9x872x7+114x6144x5+391x4484x3++121 x^{12} + 6 x^{10} - 16 x^{9} + 9 x^{8} - 72 x^{7} + 114 x^{6} - 144 x^{5} + 391 x^{4} - 484 x^{3} + \cdots + 121 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q5+(β11+β8++β2)q7+(β112β92β8++2)q11+(β10β8β4++2)q13++(β11+2β10+3)q97+O(q100) q - \beta_{3} q^{5} + ( - \beta_{11} + \beta_{8} + \cdots + \beta_{2}) q^{7} + (\beta_{11} - 2 \beta_{9} - 2 \beta_{8} + \cdots + 2) q^{11} + (\beta_{10} - \beta_{8} - \beta_{4} + \cdots + 2) q^{13}+ \cdots + ( - \beta_{11} + 2 \beta_{10} + \cdots - 3) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+12q11+16q13+4q1712q234q298q31+8q3520q378q41+8q47+16q558q614q65+32q6728q7124q794q85+56q89+44q97+O(q100) 12 q + 12 q^{11} + 16 q^{13} + 4 q^{17} - 12 q^{23} - 4 q^{29} - 8 q^{31} + 8 q^{35} - 20 q^{37} - 8 q^{41} + 8 q^{47} + 16 q^{55} - 8 q^{61} - 4 q^{65} + 32 q^{67} - 28 q^{71} - 24 q^{79} - 4 q^{85} + 56 q^{89}+ \cdots - 44 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+6x1016x9+9x872x7+114x6144x5+391x4484x3++121 x^{12} + 6 x^{10} - 16 x^{9} + 9 x^{8} - 72 x^{7} + 114 x^{6} - 144 x^{5} + 391 x^{4} - 484 x^{3} + \cdots + 121 : Copy content Toggle raw display

β1\beta_{1}== (237029484ν11+452648926ν10+1781832384ν9+7020348ν8++229900141235)/91818516077 ( 237029484 \nu^{11} + 452648926 \nu^{10} + 1781832384 \nu^{9} + 7020348 \nu^{8} + \cdots + 229900141235 ) / 91818516077 Copy content Toggle raw display
β2\beta_{2}== (6748724960ν117586462510ν1049427698226ν9+46585030124ν8+730333528452)/1010003676847 ( - 6748724960 \nu^{11} - 7586462510 \nu^{10} - 49427698226 \nu^{9} + 46585030124 \nu^{8} + \cdots - 730333528452 ) / 1010003676847 Copy content Toggle raw display
β3\beta_{3}== (1681562281ν11+1206883623ν10+10971218980ν918940257967ν8+291050856503)/59411980991 ( 1681562281 \nu^{11} + 1206883623 \nu^{10} + 10971218980 \nu^{9} - 18940257967 \nu^{8} + \cdots - 291050856503 ) / 59411980991 Copy content Toggle raw display
β4\beta_{4}== (1877462551ν11+702587919ν10+11535649657ν925605083005ν8+392384744796)/59411980991 ( 1877462551 \nu^{11} + 702587919 \nu^{10} + 11535649657 \nu^{9} - 25605083005 \nu^{8} + \cdots - 392384744796 ) / 59411980991 Copy content Toggle raw display
β5\beta_{5}== (32219944720ν11+37654083852ν10+222519008952ν9272711613374ν8+2812980959800)/1010003676847 ( 32219944720 \nu^{11} + 37654083852 \nu^{10} + 222519008952 \nu^{9} - 272711613374 \nu^{8} + \cdots - 2812980959800 ) / 1010003676847 Copy content Toggle raw display
β6\beta_{6}== (2354972ν11+1834921ν10+15435730ν925839746ν8+945970ν7+385736208)/49800487 ( 2354972 \nu^{11} + 1834921 \nu^{10} + 15435730 \nu^{9} - 25839746 \nu^{8} + 945970 \nu^{7} + \cdots - 385736208 ) / 49800487 Copy content Toggle raw display
β7\beta_{7}== (73257346909ν11+56161613079ν10+490247008135ν9801822345473ν8+12607579566516)/1010003676847 ( 73257346909 \nu^{11} + 56161613079 \nu^{10} + 490247008135 \nu^{9} - 801822345473 \nu^{8} + \cdots - 12607579566516 ) / 1010003676847 Copy content Toggle raw display
β8\beta_{8}== (84496178552ν1152566459528ν10527061304371ν9++17037121470248)/1010003676847 ( - 84496178552 \nu^{11} - 52566459528 \nu^{10} - 527061304371 \nu^{9} + \cdots + 17037121470248 ) / 1010003676847 Copy content Toggle raw display
β9\beta_{9}== (85003027341ν11+45952103197ν10+532895178107ν91072415229638ν8+17011911372159)/1010003676847 ( 85003027341 \nu^{11} + 45952103197 \nu^{10} + 532895178107 \nu^{9} - 1072415229638 \nu^{8} + \cdots - 17011911372159 ) / 1010003676847 Copy content Toggle raw display
β10\beta_{10}== (86757664220ν1164707732221ν10564718779799ν9++13315455160535)/1010003676847 ( - 86757664220 \nu^{11} - 64707732221 \nu^{10} - 564718779799 \nu^{9} + \cdots + 13315455160535 ) / 1010003676847 Copy content Toggle raw display
β11\beta_{11}== (127836924130ν11+85006522887ν10+831492598779ν91466105836771ν8+22714181280351)/1010003676847 ( 127836924130 \nu^{11} + 85006522887 \nu^{10} + 831492598779 \nu^{9} - 1466105836771 \nu^{8} + \cdots - 22714181280351 ) / 1010003676847 Copy content Toggle raw display
ν\nu== (β11β102β9β82β5β4β3+β2+β1)/2 ( \beta_{11} - \beta_{10} - 2\beta_{9} - \beta_{8} - 2\beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β11+2β10+β9+β7+β6+β5+β4+β3+β1 -\beta_{11} + 2\beta_{10} + \beta_{9} + \beta_{7} + \beta_{6} + \beta_{5} + \beta_{4} + \beta_{3} + \beta_1 Copy content Toggle raw display
ν3\nu^{3}== (β11+β10+4β9+β86β6+4β53β4β3++8)/2 ( \beta_{11} + \beta_{10} + 4 \beta_{9} + \beta_{8} - 6 \beta_{6} + 4 \beta_{5} - 3 \beta_{4} - \beta_{3} + \cdots + 8 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== 3β117β106β9+β84β7+4β66β5+1 3 \beta_{11} - 7 \beta_{10} - 6 \beta_{9} + \beta_{8} - 4 \beta_{7} + 4 \beta_{6} - 6 \beta_{5} + \cdots - 1 Copy content Toggle raw display
ν5\nu^{5}== (3β11+29β1024β927β8+18β7+22β68β5++10)/2 ( - 3 \beta_{11} + 29 \beta_{10} - 24 \beta_{9} - 27 \beta_{8} + 18 \beta_{7} + 22 \beta_{6} - 8 \beta_{5} + \cdots + 10 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 7β11+15β10+44β9+11β8+12β734β6+31β5+1 - 7 \beta_{11} + 15 \beta_{10} + 44 \beta_{9} + 11 \beta_{8} + 12 \beta_{7} - 34 \beta_{6} + 31 \beta_{5} + \cdots - 1 Copy content Toggle raw display
ν7\nu^{7}== (13β11101β10+74β9+137β898β7+86β6++28)/2 ( - 13 \beta_{11} - 101 \beta_{10} + 74 \beta_{9} + 137 \beta_{8} - 98 \beta_{7} + 86 \beta_{6} + \cdots + 28 ) / 2 Copy content Toggle raw display
ν8\nu^{8}== 138β1116β10369β9212β819β7+56β6196β5++83 138 \beta_{11} - 16 \beta_{10} - 369 \beta_{9} - 212 \beta_{8} - 19 \beta_{7} + 56 \beta_{6} - 196 \beta_{5} + \cdots + 83 Copy content Toggle raw display
ν9\nu^{9}== (329β11+599β10+572β917β8+666β7314β6+514)/2 ( - 329 \beta_{11} + 599 \beta_{10} + 572 \beta_{9} - 17 \beta_{8} + 666 \beta_{7} - 314 \beta_{6} + \cdots - 514 ) / 2 Copy content Toggle raw display
ν10\nu^{10}== 668β11+66β10+1756β9+1072β8120β7+187β6++346 - 668 \beta_{11} + 66 \beta_{10} + 1756 \beta_{9} + 1072 \beta_{8} - 120 \beta_{7} + 187 \beta_{6} + \cdots + 346 Copy content Toggle raw display
ν11\nu^{11}== (4875β114321β108194β92885β84208β736β6++1514)/2 ( 4875 \beta_{11} - 4321 \beta_{10} - 8194 \beta_{9} - 2885 \beta_{8} - 4208 \beta_{7} - 36 \beta_{6} + \cdots + 1514 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3060Z)×\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times.

nn 12611261 13611361 15311531 18371837
χ(n)\chi(n) β6\beta_{6} 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
−1.47591 + 1.40653i
−0.609374 2.33025i
0.671074 0.0762761i
0.150127 + 1.01316i
1.67572 0.131109i
−0.411629 1.88205i
−1.47591 1.40653i
−0.609374 + 2.33025i
0.671074 + 0.0762761i
0.150127 1.01316i
1.67572 + 0.131109i
−0.411629 + 1.88205i
0 0 0 −0.707107 + 0.707107i 0 −3.70031 3.70031i 0 0 0
361.2 0 0 0 −0.707107 + 0.707107i 0 −0.260019 0.260019i 0 0 0
361.3 0 0 0 −0.707107 + 0.707107i 0 2.54612 + 2.54612i 0 0 0
361.4 0 0 0 0.707107 0.707107i 0 −2.24258 2.24258i 0 0 0
361.5 0 0 0 0.707107 0.707107i 0 1.68323 + 1.68323i 0 0 0
361.6 0 0 0 0.707107 0.707107i 0 1.97356 + 1.97356i 0 0 0
1441.1 0 0 0 −0.707107 0.707107i 0 −3.70031 + 3.70031i 0 0 0
1441.2 0 0 0 −0.707107 0.707107i 0 −0.260019 + 0.260019i 0 0 0
1441.3 0 0 0 −0.707107 0.707107i 0 2.54612 2.54612i 0 0 0
1441.4 0 0 0 0.707107 + 0.707107i 0 −2.24258 + 2.24258i 0 0 0
1441.5 0 0 0 0.707107 + 0.707107i 0 1.68323 1.68323i 0 0 0
1441.6 0 0 0 0.707107 + 0.707107i 0 1.97356 1.97356i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 361.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3060.2.be.b 12
3.b odd 2 1 340.2.o.a 12
12.b even 2 1 1360.2.bt.c 12
15.d odd 2 1 1700.2.o.d 12
15.e even 4 1 1700.2.m.c 12
15.e even 4 1 1700.2.m.f 12
17.c even 4 1 inner 3060.2.be.b 12
51.f odd 4 1 340.2.o.a 12
51.g odd 8 1 5780.2.a.m 6
51.g odd 8 1 5780.2.a.n 6
51.g odd 8 2 5780.2.c.h 12
204.l even 4 1 1360.2.bt.c 12
255.i odd 4 1 1700.2.o.d 12
255.k even 4 1 1700.2.m.c 12
255.r even 4 1 1700.2.m.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
340.2.o.a 12 3.b odd 2 1
340.2.o.a 12 51.f odd 4 1
1360.2.bt.c 12 12.b even 2 1
1360.2.bt.c 12 204.l even 4 1
1700.2.m.c 12 15.e even 4 1
1700.2.m.c 12 255.k even 4 1
1700.2.m.f 12 15.e even 4 1
1700.2.m.f 12 255.r even 4 1
1700.2.o.d 12 15.d odd 2 1
1700.2.o.d 12 255.i odd 4 1
3060.2.be.b 12 1.a even 1 1 trivial
3060.2.be.b 12 17.c even 4 1 inner
5780.2.a.m 6 51.g odd 8 1
5780.2.a.n 6 51.g odd 8 1
5780.2.c.h 12 51.g odd 8 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T71244T79+556T78960T77+968T764040T75++21316 T_{7}^{12} - 44 T_{7}^{9} + 556 T_{7}^{8} - 960 T_{7}^{7} + 968 T_{7}^{6} - 4040 T_{7}^{5} + \cdots + 21316 acting on S2new(3060,[χ])S_{2}^{\mathrm{new}}(3060, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 (T4+1)3 (T^{4} + 1)^{3} Copy content Toggle raw display
77 T1244T9++21316 T^{12} - 44 T^{9} + \cdots + 21316 Copy content Toggle raw display
1111 T1212T11++24964 T^{12} - 12 T^{11} + \cdots + 24964 Copy content Toggle raw display
1313 (T68T52T4++68)2 (T^{6} - 8 T^{5} - 2 T^{4} + \cdots + 68)^{2} Copy content Toggle raw display
1717 T124T11++24137569 T^{12} - 4 T^{11} + \cdots + 24137569 Copy content Toggle raw display
1919 T12+104T10++1183744 T^{12} + 104 T^{10} + \cdots + 1183744 Copy content Toggle raw display
2323 T12++220997956 T^{12} + \cdots + 220997956 Copy content Toggle raw display
2929 T12+4T11++33856 T^{12} + 4 T^{11} + \cdots + 33856 Copy content Toggle raw display
3131 T12++1726734916 T^{12} + \cdots + 1726734916 Copy content Toggle raw display
3737 T12++17587003456 T^{12} + \cdots + 17587003456 Copy content Toggle raw display
4141 T12++6066540544 T^{12} + \cdots + 6066540544 Copy content Toggle raw display
4343 T12+116T10++1296 T^{12} + 116 T^{10} + \cdots + 1296 Copy content Toggle raw display
4747 (T64T5++292)2 (T^{6} - 4 T^{5} + \cdots + 292)^{2} Copy content Toggle raw display
5353 T12+144T10++135424 T^{12} + 144 T^{10} + \cdots + 135424 Copy content Toggle raw display
5959 T12++154157056 T^{12} + \cdots + 154157056 Copy content Toggle raw display
6161 T12+8T11++295936 T^{12} + 8 T^{11} + \cdots + 295936 Copy content Toggle raw display
6767 (T616T5++928964)2 (T^{6} - 16 T^{5} + \cdots + 928964)^{2} Copy content Toggle raw display
7171 T12++1942870084 T^{12} + \cdots + 1942870084 Copy content Toggle raw display
7373 T12++520569856 T^{12} + \cdots + 520569856 Copy content Toggle raw display
7979 T12++445969924 T^{12} + \cdots + 445969924 Copy content Toggle raw display
8383 T12+356T10++1336336 T^{12} + 356 T^{10} + \cdots + 1336336 Copy content Toggle raw display
8989 (T628T5++32996)2 (T^{6} - 28 T^{5} + \cdots + 32996)^{2} Copy content Toggle raw display
9797 T12+44T11++20720704 T^{12} + 44 T^{11} + \cdots + 20720704 Copy content Toggle raw display
show more
show less