gp: [N,k,chi] = [3060,2,Mod(361,3060)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3060.361");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3060, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [12,0,0,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 + 6 x 10 − 16 x 9 + 9 x 8 − 72 x 7 + 114 x 6 − 144 x 5 + 391 x 4 − 484 x 3 + ⋯ + 121 x^{12} + 6 x^{10} - 16 x^{9} + 9 x^{8} - 72 x^{7} + 114 x^{6} - 144 x^{5} + 391 x^{4} - 484 x^{3} + \cdots + 121 x 1 2 + 6 x 1 0 − 1 6 x 9 + 9 x 8 − 7 2 x 7 + 1 1 4 x 6 − 1 4 4 x 5 + 3 9 1 x 4 − 4 8 4 x 3 + ⋯ + 1 2 1
x^12 + 6*x^10 - 16*x^9 + 9*x^8 - 72*x^7 + 114*x^6 - 144*x^5 + 391*x^4 - 484*x^3 + 504*x^2 - 396*x + 121
:
β 1 \beta_{1} β 1 = = =
( 237029484 ν 11 + 452648926 ν 10 + 1781832384 ν 9 + 7020348 ν 8 + ⋯ + 229900141235 ) / 91818516077 ( 237029484 \nu^{11} + 452648926 \nu^{10} + 1781832384 \nu^{9} + 7020348 \nu^{8} + \cdots + 229900141235 ) / 91818516077 ( 2 3 7 0 2 9 4 8 4 ν 1 1 + 4 5 2 6 4 8 9 2 6 ν 1 0 + 1 7 8 1 8 3 2 3 8 4 ν 9 + 7 0 2 0 3 4 8 ν 8 + ⋯ + 2 2 9 9 0 0 1 4 1 2 3 5 ) / 9 1 8 1 8 5 1 6 0 7 7
(237029484*v^11 + 452648926*v^10 + 1781832384*v^9 + 7020348*v^8 - 2154195286*v^7 - 11213095538*v^6 - 11375060157*v^5 - 11073903716*v^4 - 10963179920*v^3 + 46892612187*v^2 - 14415761207*v + 229900141235) / 91818516077
β 2 \beta_{2} β 2 = = =
( − 6748724960 ν 11 − 7586462510 ν 10 − 49427698226 ν 9 + 46585030124 ν 8 + ⋯ − 730333528452 ) / 1010003676847 ( - 6748724960 \nu^{11} - 7586462510 \nu^{10} - 49427698226 \nu^{9} + 46585030124 \nu^{8} + \cdots - 730333528452 ) / 1010003676847 ( − 6 7 4 8 7 2 4 9 6 0 ν 1 1 − 7 5 8 6 4 6 2 5 1 0 ν 1 0 − 4 9 4 2 7 6 9 8 2 2 6 ν 9 + 4 6 5 8 5 0 3 0 1 2 4 ν 8 + ⋯ − 7 3 0 3 3 3 5 2 8 4 5 2 ) / 1 0 1 0 0 0 3 6 7 6 8 4 7
(-6748724960*v^11 - 7586462510*v^10 - 49427698226*v^9 + 46585030124*v^8 - 13653681406*v^7 + 445221044856*v^6 - 223649959859*v^5 + 843300294187*v^4 - 1376879728680*v^3 + 1609214152887*v^2 - 1434507604477*v - 730333528452) / 1010003676847
β 3 \beta_{3} β 3 = = =
( 1681562281 ν 11 + 1206883623 ν 10 + 10971218980 ν 9 − 18940257967 ν 8 + ⋯ − 291050856503 ) / 59411980991 ( 1681562281 \nu^{11} + 1206883623 \nu^{10} + 10971218980 \nu^{9} - 18940257967 \nu^{8} + \cdots - 291050856503 ) / 59411980991 ( 1 6 8 1 5 6 2 2 8 1 ν 1 1 + 1 2 0 6 8 8 3 6 2 3 ν 1 0 + 1 0 9 7 1 2 1 8 9 8 0 ν 9 − 1 8 9 4 0 2 5 7 9 6 7 ν 8 + ⋯ − 2 9 1 0 5 0 8 5 6 5 0 3 ) / 5 9 4 1 1 9 8 0 9 9 1
(1681562281*v^11 + 1206883623*v^10 + 10971218980*v^9 - 18940257967*v^8 + 1569096424*v^7 - 121943505218*v^6 + 100961817419*v^5 - 176541913276*v^4 + 541727327456*v^3 - 405063970212*v^2 + 575293488258*v - 291050856503) / 59411980991
β 4 \beta_{4} β 4 = = =
( 1877462551 ν 11 + 702587919 ν 10 + 11535649657 ν 9 − 25605083005 ν 8 + ⋯ − 392384744796 ) / 59411980991 ( 1877462551 \nu^{11} + 702587919 \nu^{10} + 11535649657 \nu^{9} - 25605083005 \nu^{8} + \cdots - 392384744796 ) / 59411980991 ( 1 8 7 7 4 6 2 5 5 1 ν 1 1 + 7 0 2 5 8 7 9 1 9 ν 1 0 + 1 1 5 3 5 6 4 9 6 5 7 ν 9 − 2 5 6 0 5 0 8 3 0 0 5 ν 8 + ⋯ − 3 9 2 3 8 4 7 4 4 7 9 6 ) / 5 9 4 1 1 9 8 0 9 9 1
(1877462551*v^11 + 702587919*v^10 + 11535649657*v^9 - 25605083005*v^8 + 6206244710*v^7 - 133897993651*v^6 + 155956130923*v^5 - 205296597965*v^4 + 653017838202*v^3 - 607285810857*v^2 + 686426960951*v - 392384744796) / 59411980991
β 5 \beta_{5} β 5 = = =
( 32219944720 ν 11 + 37654083852 ν 10 + 222519008952 ν 9 − 272711613374 ν 8 + ⋯ − 2812980959800 ) / 1010003676847 ( 32219944720 \nu^{11} + 37654083852 \nu^{10} + 222519008952 \nu^{9} - 272711613374 \nu^{8} + \cdots - 2812980959800 ) / 1010003676847 ( 3 2 2 1 9 9 4 4 7 2 0 ν 1 1 + 3 7 6 5 4 0 8 3 8 5 2 ν 1 0 + 2 2 2 5 1 9 0 0 8 9 5 2 ν 9 − 2 7 2 7 1 1 6 1 3 3 7 4 ν 8 + ⋯ − 2 8 1 2 9 8 0 9 5 9 8 0 0 ) / 1 0 1 0 0 0 3 6 7 6 8 4 7
(32219944720*v^11 + 37654083852*v^10 + 222519008952*v^9 - 272711613374*v^8 - 138478128814*v^7 - 2325141152849*v^6 + 1046088013009*v^5 - 2191973179656*v^4 + 9351939602630*v^3 - 4037516195405*v^2 + 6221724061759*v - 2812980959800) / 1010003676847
β 6 \beta_{6} β 6 = = =
( 2354972 ν 11 + 1834921 ν 10 + 15435730 ν 9 − 25839746 ν 8 + 945970 ν 7 + ⋯ − 385736208 ) / 49800487 ( 2354972 \nu^{11} + 1834921 \nu^{10} + 15435730 \nu^{9} - 25839746 \nu^{8} + 945970 \nu^{7} + \cdots - 385736208 ) / 49800487 ( 2 3 5 4 9 7 2 ν 1 1 + 1 8 3 4 9 2 1 ν 1 0 + 1 5 4 3 5 7 3 0 ν 9 − 2 5 8 3 9 7 4 6 ν 8 + 9 4 5 9 7 0 ν 7 + ⋯ − 3 8 5 7 3 6 2 0 8 ) / 4 9 8 0 0 4 8 7
(2354972*v^11 + 1834921*v^10 + 15435730*v^9 - 25839746*v^8 + 945970*v^7 - 166696279*v^6 + 144512890*v^5 - 218703357*v^4 + 739653400*v^3 - 584723216*v^2 + 696299706*v - 385736208) / 49800487
β 7 \beta_{7} β 7 = = =
( 73257346909 ν 11 + 56161613079 ν 10 + 490247008135 ν 9 − 801822345473 ν 8 + ⋯ − 12607579566516 ) / 1010003676847 ( 73257346909 \nu^{11} + 56161613079 \nu^{10} + 490247008135 \nu^{9} - 801822345473 \nu^{8} + \cdots - 12607579566516 ) / 1010003676847 ( 7 3 2 5 7 3 4 6 9 0 9 ν 1 1 + 5 6 1 6 1 6 1 3 0 7 9 ν 1 0 + 4 9 0 2 4 7 0 0 8 1 3 5 ν 9 − 8 0 1 8 2 2 3 4 5 4 7 3 ν 8 + ⋯ − 1 2 6 0 7 5 7 9 5 6 6 5 1 6 ) / 1 0 1 0 0 0 3 6 7 6 8 4 7
(73257346909*v^11 + 56161613079*v^10 + 490247008135*v^9 - 801822345473*v^8 + 68761161218*v^7 - 5345644673517*v^6 + 4299759622066*v^5 - 7543561488176*v^4 + 23728481266737*v^3 - 17959072699491*v^2 + 25065472715263*v - 12607579566516) / 1010003676847
β 8 \beta_{8} β 8 = = =
( − 84496178552 ν 11 − 52566459528 ν 10 − 527061304371 ν 9 + ⋯ + 17037121470248 ) / 1010003676847 ( - 84496178552 \nu^{11} - 52566459528 \nu^{10} - 527061304371 \nu^{9} + \cdots + 17037121470248 ) / 1010003676847 ( − 8 4 4 9 6 1 7 8 5 5 2 ν 1 1 − 5 2 5 6 6 4 5 9 5 2 8 ν 1 0 − 5 2 7 0 6 1 3 0 4 3 7 1 ν 9 + ⋯ + 1 7 0 3 7 1 2 1 4 7 0 2 4 8 ) / 1 0 1 0 0 0 3 6 7 6 8 4 7
(-84496178552*v^11 - 52566459528*v^10 - 527061304371*v^9 + 1047034493211*v^8 - 30608455483*v^7 + 6025893557670*v^6 - 6020317331675*v^5 + 7881505857241*v^4 - 28201658254877*v^3 + 23215477313116*v^2 - 27447383123964*v + 17037121470248) / 1010003676847
β 9 \beta_{9} β 9 = = =
( 85003027341 ν 11 + 45952103197 ν 10 + 532895178107 ν 9 − 1072415229638 ν 8 + ⋯ − 17011911372159 ) / 1010003676847 ( 85003027341 \nu^{11} + 45952103197 \nu^{10} + 532895178107 \nu^{9} - 1072415229638 \nu^{8} + \cdots - 17011911372159 ) / 1010003676847 ( 8 5 0 0 3 0 2 7 3 4 1 ν 1 1 + 4 5 9 5 2 1 0 3 1 9 7 ν 1 0 + 5 3 2 8 9 5 1 7 8 1 0 7 ν 9 − 1 0 7 2 4 1 5 2 2 9 6 3 8 ν 8 + ⋯ − 1 7 0 1 1 9 1 1 3 7 2 1 5 9 ) / 1 0 1 0 0 0 3 6 7 6 8 4 7
(85003027341*v^11 + 45952103197*v^10 + 532895178107*v^9 - 1072415229638*v^8 + 189424835950*v^7 - 5986089291485*v^6 + 6451651885166*v^5 - 8853691313006*v^4 + 28244932267173*v^3 - 25834105522797*v^2 + 29532601568435*v - 17011911372159) / 1010003676847
β 10 \beta_{10} β 1 0 = = =
( − 86757664220 ν 11 − 64707732221 ν 10 − 564718779799 ν 9 + ⋯ + 13315455160535 ) / 1010003676847 ( - 86757664220 \nu^{11} - 64707732221 \nu^{10} - 564718779799 \nu^{9} + \cdots + 13315455160535 ) / 1010003676847 ( − 8 6 7 5 7 6 6 4 2 2 0 ν 1 1 − 6 4 7 0 7 7 3 2 2 2 1 ν 1 0 − 5 6 4 7 1 8 7 7 9 7 9 9 ν 9 + ⋯ + 1 3 3 1 5 4 5 5 1 6 0 5 3 5 ) / 1 0 1 0 0 0 3 6 7 6 8 4 7
(-86757664220*v^11 - 64707732221*v^10 - 564718779799*v^9 + 981046406518*v^8 - 6562149437*v^7 + 6242542078232*v^6 - 5279301694343*v^5 + 8215251223637*v^4 - 27716108570291*v^3 + 21530851893947*v^2 - 27108522841694*v + 13315455160535) / 1010003676847
β 11 \beta_{11} β 1 1 = = =
( 127836924130 ν 11 + 85006522887 ν 10 + 831492598779 ν 9 − 1466105836771 ν 8 + ⋯ − 22714181280351 ) / 1010003676847 ( 127836924130 \nu^{11} + 85006522887 \nu^{10} + 831492598779 \nu^{9} - 1466105836771 \nu^{8} + \cdots - 22714181280351 ) / 1010003676847 ( 1 2 7 8 3 6 9 2 4 1 3 0 ν 1 1 + 8 5 0 0 6 5 2 2 8 8 7 ν 1 0 + 8 3 1 4 9 2 5 9 8 7 7 9 ν 9 − 1 4 6 6 1 0 5 8 3 6 7 7 1 ν 8 + ⋯ − 2 2 7 1 4 1 8 1 2 8 0 3 5 1 ) / 1 0 1 0 0 0 3 6 7 6 8 4 7
(127836924130*v^11 + 85006522887*v^10 + 831492598779*v^9 - 1466105836771*v^8 + 234253438182*v^7 - 9025207727477*v^6 + 8412241513732*v^5 - 13207313948854*v^4 + 41084119438424*v^3 - 34331893394458*v^2 + 42015081262731*v - 22714181280351) / 1010003676847
ν \nu ν = = =
( β 11 − β 10 − 2 β 9 − β 8 − 2 β 5 − β 4 − β 3 + β 2 + β 1 ) / 2 ( \beta_{11} - \beta_{10} - 2\beta_{9} - \beta_{8} - 2\beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + \beta_1 ) / 2 ( β 1 1 − β 1 0 − 2 β 9 − β 8 − 2 β 5 − β 4 − β 3 + β 2 + β 1 ) / 2
(b11 - b10 - 2*b9 - b8 - 2*b5 - b4 - b3 + b2 + b1) / 2
ν 2 \nu^{2} ν 2 = = =
− β 11 + 2 β 10 + β 9 + β 7 + β 6 + β 5 + β 4 + β 3 + β 1 -\beta_{11} + 2\beta_{10} + \beta_{9} + \beta_{7} + \beta_{6} + \beta_{5} + \beta_{4} + \beta_{3} + \beta_1 − β 1 1 + 2 β 1 0 + β 9 + β 7 + β 6 + β 5 + β 4 + β 3 + β 1
-b11 + 2*b10 + b9 + b7 + b6 + b5 + b4 + b3 + b1
ν 3 \nu^{3} ν 3 = = =
( β 11 + β 10 + 4 β 9 + β 8 − 6 β 6 + 4 β 5 − 3 β 4 − β 3 + ⋯ + 8 ) / 2 ( \beta_{11} + \beta_{10} + 4 \beta_{9} + \beta_{8} - 6 \beta_{6} + 4 \beta_{5} - 3 \beta_{4} - \beta_{3} + \cdots + 8 ) / 2 ( β 1 1 + β 1 0 + 4 β 9 + β 8 − 6 β 6 + 4 β 5 − 3 β 4 − β 3 + ⋯ + 8 ) / 2
(b11 + b10 + 4*b9 + b8 - 6*b6 + 4*b5 - 3*b4 - b3 + b2 - 3*b1 + 8) / 2
ν 4 \nu^{4} ν 4 = = =
3 β 11 − 7 β 10 − 6 β 9 + β 8 − 4 β 7 + 4 β 6 − 6 β 5 + ⋯ − 1 3 \beta_{11} - 7 \beta_{10} - 6 \beta_{9} + \beta_{8} - 4 \beta_{7} + 4 \beta_{6} - 6 \beta_{5} + \cdots - 1 3 β 1 1 − 7 β 1 0 − 6 β 9 + β 8 − 4 β 7 + 4 β 6 − 6 β 5 + ⋯ − 1
3*b11 - 7*b10 - 6*b9 + b8 - 4*b7 + 4*b6 - 6*b5 - b4 - b3 + 6*b2 - 1
ν 5 \nu^{5} ν 5 = = =
( − 3 β 11 + 29 β 10 − 24 β 9 − 27 β 8 + 18 β 7 + 22 β 6 − 8 β 5 + ⋯ + 10 ) / 2 ( - 3 \beta_{11} + 29 \beta_{10} - 24 \beta_{9} - 27 \beta_{8} + 18 \beta_{7} + 22 \beta_{6} - 8 \beta_{5} + \cdots + 10 ) / 2 ( − 3 β 1 1 + 2 9 β 1 0 − 2 4 β 9 − 2 7 β 8 + 1 8 β 7 + 2 2 β 6 − 8 β 5 + ⋯ + 1 0 ) / 2
(-3*b11 + 29*b10 - 24*b9 - 27*b8 + 18*b7 + 22*b6 - 8*b5 + 19*b4 - 9*b3 - 25*b2 + 11*b1 + 10) / 2
ν 6 \nu^{6} ν 6 = = =
− 7 β 11 + 15 β 10 + 44 β 9 + 11 β 8 + 12 β 7 − 34 β 6 + 31 β 5 + ⋯ − 1 - 7 \beta_{11} + 15 \beta_{10} + 44 \beta_{9} + 11 \beta_{8} + 12 \beta_{7} - 34 \beta_{6} + 31 \beta_{5} + \cdots - 1 − 7 β 1 1 + 1 5 β 1 0 + 4 4 β 9 + 1 1 β 8 + 1 2 β 7 − 3 4 β 6 + 3 1 β 5 + ⋯ − 1
-7*b11 + 15*b10 + 44*b9 + 11*b8 + 12*b7 - 34*b6 + 31*b5 - 15*b4 - 13*b3 + 5*b2 + 6*b1 - 1
ν 7 \nu^{7} ν 7 = = =
( − 13 β 11 − 101 β 10 + 74 β 9 + 137 β 8 − 98 β 7 + 86 β 6 + ⋯ + 28 ) / 2 ( - 13 \beta_{11} - 101 \beta_{10} + 74 \beta_{9} + 137 \beta_{8} - 98 \beta_{7} + 86 \beta_{6} + \cdots + 28 ) / 2 ( − 1 3 β 1 1 − 1 0 1 β 1 0 + 7 4 β 9 + 1 3 7 β 8 − 9 8 β 7 + 8 6 β 6 + ⋯ + 2 8 ) / 2
(-13*b11 - 101*b10 + 74*b9 + 137*b8 - 98*b7 + 86*b6 - 10*b5 - 43*b4 + 143*b3 + 151*b2 - 45*b1 + 28) / 2
ν 8 \nu^{8} ν 8 = = =
138 β 11 − 16 β 10 − 369 β 9 − 212 β 8 − 19 β 7 + 56 β 6 − 196 β 5 + ⋯ + 83 138 \beta_{11} - 16 \beta_{10} - 369 \beta_{9} - 212 \beta_{8} - 19 \beta_{7} + 56 \beta_{6} - 196 \beta_{5} + \cdots + 83 1 3 8 β 1 1 − 1 6 β 1 0 − 3 6 9 β 9 − 2 1 2 β 8 − 1 9 β 7 + 5 6 β 6 − 1 9 6 β 5 + ⋯ + 8 3
138*b11 - 16*b10 - 369*b9 - 212*b8 - 19*b7 + 56*b6 - 196*b5 + 46*b4 - 98*b3 - 120*b2 - 8*b1 + 83
ν 9 \nu^{9} ν 9 = = =
( − 329 β 11 + 599 β 10 + 572 β 9 − 17 β 8 + 666 β 7 − 314 β 6 + ⋯ − 514 ) / 2 ( - 329 \beta_{11} + 599 \beta_{10} + 572 \beta_{9} - 17 \beta_{8} + 666 \beta_{7} - 314 \beta_{6} + \cdots - 514 ) / 2 ( − 3 2 9 β 1 1 + 5 9 9 β 1 0 + 5 7 2 β 9 − 1 7 β 8 + 6 6 6 β 7 − 3 1 4 β 6 + ⋯ − 5 1 4 ) / 2
(-329*b11 + 599*b10 + 572*b9 - 17*b8 + 666*b7 - 314*b6 + 550*b5 + 307*b4 - 705*b3 - 273*b2 + 371*b1 - 514) / 2
ν 10 \nu^{10} ν 1 0 = = =
− 668 β 11 + 66 β 10 + 1756 β 9 + 1072 β 8 − 120 β 7 + 187 β 6 + ⋯ + 346 - 668 \beta_{11} + 66 \beta_{10} + 1756 \beta_{9} + 1072 \beta_{8} - 120 \beta_{7} + 187 \beta_{6} + \cdots + 346 − 6 6 8 β 1 1 + 6 6 β 1 0 + 1 7 5 6 β 9 + 1 0 7 2 β 8 − 1 2 0 β 7 + 1 8 7 β 6 + ⋯ + 3 4 6
-668*b11 + 66*b10 + 1756*b9 + 1072*b8 - 120*b7 + 187*b6 + 773*b5 - 518*b4 + 1018*b3 + 677*b2 - 234*b1 + 346
ν 11 \nu^{11} ν 1 1 = = =
( 4875 β 11 − 4321 β 10 − 8194 β 9 − 2885 β 8 − 4208 β 7 − 36 β 6 + ⋯ + 1514 ) / 2 ( 4875 \beta_{11} - 4321 \beta_{10} - 8194 \beta_{9} - 2885 \beta_{8} - 4208 \beta_{7} - 36 \beta_{6} + \cdots + 1514 ) / 2 ( 4 8 7 5 β 1 1 − 4 3 2 1 β 1 0 − 8 1 9 4 β 9 − 2 8 8 5 β 8 − 4 2 0 8 β 7 − 3 6 β 6 + ⋯ + 1 5 1 4 ) / 2
(4875*b11 - 4321*b10 - 8194*b9 - 2885*b8 - 4208*b7 - 36*b6 - 5510*b5 - 1919*b4 + 459*b3 + 787*b2 - 907*b1 + 1514) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 3060 Z ) × \left(\mathbb{Z}/3060\mathbb{Z}\right)^\times ( Z / 3 0 6 0 Z ) × .
n n n
1261 1261 1 2 6 1
1361 1361 1 3 6 1
1531 1531 1 5 3 1
1837 1837 1 8 3 7
χ ( n ) \chi(n) χ ( n )
β 6 \beta_{6} β 6
1 1 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 7 12 − 44 T 7 9 + 556 T 7 8 − 960 T 7 7 + 968 T 7 6 − 4040 T 7 5 + ⋯ + 21316 T_{7}^{12} - 44 T_{7}^{9} + 556 T_{7}^{8} - 960 T_{7}^{7} + 968 T_{7}^{6} - 4040 T_{7}^{5} + \cdots + 21316 T 7 1 2 − 4 4 T 7 9 + 5 5 6 T 7 8 − 9 6 0 T 7 7 + 9 6 8 T 7 6 − 4 0 4 0 T 7 5 + ⋯ + 2 1 3 1 6
T7^12 - 44*T7^9 + 556*T7^8 - 960*T7^7 + 968*T7^6 - 4040*T7^5 + 45412*T7^4 - 98408*T7^3 + 100352*T7^2 + 65408*T7 + 21316
acting on S 2 n e w ( 3060 , [ χ ] ) S_{2}^{\mathrm{new}}(3060, [\chi]) S 2 n e w ( 3 0 6 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
( T 4 + 1 ) 3 (T^{4} + 1)^{3} ( T 4 + 1 ) 3
(T^4 + 1)^3
7 7 7
T 12 − 44 T 9 + ⋯ + 21316 T^{12} - 44 T^{9} + \cdots + 21316 T 1 2 − 4 4 T 9 + ⋯ + 2 1 3 1 6
T^12 - 44*T^9 + 556*T^8 - 960*T^7 + 968*T^6 - 4040*T^5 + 45412*T^4 - 98408*T^3 + 100352*T^2 + 65408*T + 21316
11 11 1 1
T 12 − 12 T 11 + ⋯ + 24964 T^{12} - 12 T^{11} + \cdots + 24964 T 1 2 − 1 2 T 1 1 + ⋯ + 2 4 9 6 4
T^12 - 12*T^11 + 72*T^10 - 220*T^9 + 836*T^8 - 5680*T^7 + 32168*T^6 - 99208*T^5 + 173688*T^4 - 121752*T^3 + 20000*T^2 + 31600*T + 24964
13 13 1 3
( T 6 − 8 T 5 − 2 T 4 + ⋯ + 68 ) 2 (T^{6} - 8 T^{5} - 2 T^{4} + \cdots + 68)^{2} ( T 6 − 8 T 5 − 2 T 4 + ⋯ + 6 8 ) 2
(T^6 - 8*T^5 - 2*T^4 + 92*T^3 - 128*T^2 - 32*T + 68)^2
17 17 1 7
T 12 − 4 T 11 + ⋯ + 24137569 T^{12} - 4 T^{11} + \cdots + 24137569 T 1 2 − 4 T 1 1 + ⋯ + 2 4 1 3 7 5 6 9
T^12 - 4*T^11 - 30*T^10 + 212*T^9 - 57*T^8 - 2384*T^7 + 9980*T^6 - 40528*T^5 - 16473*T^4 + 1041556*T^3 - 2505630*T^2 - 5679428*T + 24137569
19 19 1 9
T 12 + 104 T 10 + ⋯ + 1183744 T^{12} + 104 T^{10} + \cdots + 1183744 T 1 2 + 1 0 4 T 1 0 + ⋯ + 1 1 8 3 7 4 4
T^12 + 104*T^10 + 3440*T^8 + 50176*T^6 + 346880*T^4 + 1071104*T^2 + 1183744
23 23 2 3
T 12 + ⋯ + 220997956 T^{12} + \cdots + 220997956 T 1 2 + ⋯ + 2 2 0 9 9 7 9 5 6
T^12 + 12*T^11 + 72*T^10 - 196*T^9 + 584*T^8 + 8528*T^7 + 79496*T^6 - 349792*T^5 + 813516*T^4 + 1450872*T^3 + 17334272*T^2 - 87531008*T + 220997956
29 29 2 9
T 12 + 4 T 11 + ⋯ + 33856 T^{12} + 4 T^{11} + \cdots + 33856 T 1 2 + 4 T 1 1 + ⋯ + 3 3 8 5 6
T^12 + 4*T^11 + 8*T^10 - 296*T^9 + 4972*T^8 - 2208*T^7 - 4800*T^6 + 81600*T^5 + 737200*T^4 + 1157440*T^3 + 881792*T^2 - 244352*T + 33856
31 31 3 1
T 12 + ⋯ + 1726734916 T^{12} + \cdots + 1726734916 T 1 2 + ⋯ + 1 7 2 6 7 3 4 9 1 6
T^12 + 8*T^11 + 32*T^10 - 188*T^9 + 7328*T^8 + 54048*T^7 + 215560*T^6 - 1234320*T^5 + 5887184*T^4 + 20737528*T^3 + 90531968*T^2 - 559150624*T + 1726734916
37 37 3 7
T 12 + ⋯ + 17587003456 T^{12} + \cdots + 17587003456 T 1 2 + ⋯ + 1 7 5 8 7 0 0 3 4 5 6
T^12 + 20*T^11 + 200*T^10 + 840*T^9 + 11100*T^8 + 185344*T^7 + 1839680*T^6 + 7839552*T^5 + 26536368*T^4 + 193721792*T^3 + 1908137088*T^2 + 8192486016*T + 17587003456
41 41 4 1
T 12 + ⋯ + 6066540544 T^{12} + \cdots + 6066540544 T 1 2 + ⋯ + 6 0 6 6 5 4 0 5 4 4
T^12 + 8*T^11 + 32*T^10 + 32*T^9 + 28336*T^8 + 221952*T^7 + 869376*T^6 + 1741824*T^5 + 175323904*T^4 + 1405282304*T^3 + 5684338688*T^2 + 8304730112*T + 6066540544
43 43 4 3
T 12 + 116 T 10 + ⋯ + 1296 T^{12} + 116 T^{10} + \cdots + 1296 T 1 2 + 1 1 6 T 1 0 + ⋯ + 1 2 9 6
T^12 + 116*T^10 + 3868*T^8 + 29432*T^6 + 52672*T^4 + 19296*T^2 + 1296
47 47 4 7
( T 6 − 4 T 5 + ⋯ + 292 ) 2 (T^{6} - 4 T^{5} + \cdots + 292)^{2} ( T 6 − 4 T 5 + ⋯ + 2 9 2 ) 2
(T^6 - 4*T^5 - 94*T^4 + 228*T^3 + 984*T^2 + 960*T + 292)^2
53 53 5 3
T 12 + 144 T 10 + ⋯ + 135424 T^{12} + 144 T^{10} + \cdots + 135424 T 1 2 + 1 4 4 T 1 0 + ⋯ + 1 3 5 4 2 4
T^12 + 144*T^10 + 5296*T^8 + 74976*T^6 + 428864*T^4 + 801536*T^2 + 135424
59 59 5 9
T 12 + ⋯ + 154157056 T^{12} + \cdots + 154157056 T 1 2 + ⋯ + 1 5 4 1 5 7 0 5 6
T^12 + 336*T^10 + 41408*T^8 + 2305280*T^6 + 56932352*T^4 + 494059520*T^2 + 154157056
61 61 6 1
T 12 + 8 T 11 + ⋯ + 295936 T^{12} + 8 T^{11} + \cdots + 295936 T 1 2 + 8 T 1 1 + ⋯ + 2 9 5 9 3 6
T^12 + 8*T^11 + 32*T^10 - 208*T^9 + 8016*T^8 + 45632*T^7 + 130176*T^6 - 7936*T^5 - 49920*T^4 - 29184*T^3 + 663552*T^2 - 626688*T + 295936
67 67 6 7
( T 6 − 16 T 5 + ⋯ + 928964 ) 2 (T^{6} - 16 T^{5} + \cdots + 928964)^{2} ( T 6 − 1 6 T 5 + ⋯ + 9 2 8 9 6 4 ) 2
(T^6 - 16*T^5 - 186*T^4 + 3972*T^3 - 632*T^2 - 237296*T + 928964)^2
71 71 7 1
T 12 + ⋯ + 1942870084 T^{12} + \cdots + 1942870084 T 1 2 + ⋯ + 1 9 4 2 8 7 0 0 8 4
T^12 + 28*T^11 + 392*T^10 + 1700*T^9 + 9452*T^8 + 249912*T^7 + 4737352*T^6 + 15696552*T^5 + 8381528*T^4 + 139842536*T^3 + 13764723200*T^2 + 7313421760*T + 1942870084
73 73 7 3
T 12 + ⋯ + 520569856 T^{12} + \cdots + 520569856 T 1 2 + ⋯ + 5 2 0 5 6 9 8 5 6
T^12 + 48*T^9 + 16320*T^8 - 4096*T^7 + 1152*T^6 + 1856000*T^5 + 45668352*T^4 + 90827264*T^3 + 78675968*T^2 - 286203904*T + 520569856
79 79 7 9
T 12 + ⋯ + 445969924 T^{12} + \cdots + 445969924 T 1 2 + ⋯ + 4 4 5 9 6 9 9 2 4
T^12 + 24*T^11 + 288*T^10 - 812*T^9 - 9672*T^8 - 34072*T^7 + 2297480*T^6 - 21569120*T^5 + 109332080*T^4 - 339859400*T^3 + 671537952*T^2 - 773932464*T + 445969924
83 83 8 3
T 12 + 356 T 10 + ⋯ + 1336336 T^{12} + 356 T^{10} + \cdots + 1336336 T 1 2 + 3 5 6 T 1 0 + ⋯ + 1 3 3 6 3 3 6
T^12 + 356*T^10 + 42276*T^8 + 1957704*T^6 + 29272944*T^4 + 58275200*T^2 + 1336336
89 89 8 9
( T 6 − 28 T 5 + ⋯ + 32996 ) 2 (T^{6} - 28 T^{5} + \cdots + 32996)^{2} ( T 6 − 2 8 T 5 + ⋯ + 3 2 9 9 6 ) 2
(T^6 - 28*T^5 + 164*T^4 + 804*T^3 - 5064*T^2 - 4976*T + 32996)^2
97 97 9 7
T 12 + 44 T 11 + ⋯ + 20720704 T^{12} + 44 T^{11} + \cdots + 20720704 T 1 2 + 4 4 T 1 1 + ⋯ + 2 0 7 2 0 7 0 4
T^12 + 44*T^11 + 968*T^10 + 11832*T^9 + 85596*T^8 + 302912*T^7 + 469312*T^6 - 416448*T^5 + 1006256*T^4 + 4632896*T^3 + 8988800*T^2 - 19300480*T + 20720704
show more
show less