Properties

Label 3024.2.df.c.17.7
Level $3024$
Weight $2$
Character 3024.17
Analytic conductor $24.147$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(17,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.7
Root \(1.71298 + 0.256290i\) of defining polynomial
Character \(\chi\) \(=\) 3024.17
Dual form 3024.2.df.c.1601.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.61932 q^{5} +(-0.266972 + 2.63225i) q^{7} +2.00379i q^{11} +(-2.95206 - 1.70437i) q^{13} +(-3.08709 + 5.34700i) q^{17} +(-0.877353 + 0.506540i) q^{19} -3.02799i q^{23} +8.09945 q^{25} +(-5.04560 + 2.91308i) q^{29} +(-0.787812 + 0.454844i) q^{31} +(-0.966257 + 9.52693i) q^{35} +(3.66825 + 6.35359i) q^{37} +(-2.85045 + 4.93712i) q^{41} +(2.39949 + 4.15605i) q^{43} +(-1.11511 + 1.93143i) q^{47} +(-6.85745 - 1.40547i) q^{49} +(7.58088 + 4.37683i) q^{53} +7.25237i q^{55} +(4.49313 + 7.78233i) q^{59} +(-12.7410 - 7.35603i) q^{61} +(-10.6844 - 6.16866i) q^{65} +(-4.15821 - 7.20222i) q^{67} +0.466287i q^{71} +(-3.65022 - 2.10746i) q^{73} +(-5.27448 - 0.534957i) q^{77} +(1.91267 - 3.31284i) q^{79} +(4.00481 + 6.93654i) q^{83} +(-11.1732 + 19.3525i) q^{85} +(-2.39324 - 4.14521i) q^{89} +(5.27445 - 7.31553i) q^{91} +(-3.17542 + 1.83333i) q^{95} +(10.1835 - 5.87944i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{7} - 6 q^{13} - 18 q^{17} + 16 q^{25} - 6 q^{29} - 6 q^{31} - 30 q^{35} - 2 q^{37} - 6 q^{41} + 2 q^{43} - 18 q^{47} + 10 q^{49} - 36 q^{53} + 30 q^{59} - 60 q^{61} - 42 q^{65} - 14 q^{67} + 18 q^{77}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.61932 1.61861 0.809304 0.587391i \(-0.199845\pi\)
0.809304 + 0.587391i \(0.199845\pi\)
\(6\) 0 0
\(7\) −0.266972 + 2.63225i −0.100906 + 0.994896i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00379i 0.604167i 0.953281 + 0.302083i \(0.0976821\pi\)
−0.953281 + 0.302083i \(0.902318\pi\)
\(12\) 0 0
\(13\) −2.95206 1.70437i −0.818754 0.472708i 0.0312328 0.999512i \(-0.490057\pi\)
−0.849987 + 0.526804i \(0.823390\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.08709 + 5.34700i −0.748730 + 1.29684i 0.199702 + 0.979857i \(0.436002\pi\)
−0.948432 + 0.316981i \(0.897331\pi\)
\(18\) 0 0
\(19\) −0.877353 + 0.506540i −0.201279 + 0.116208i −0.597252 0.802054i \(-0.703741\pi\)
0.395973 + 0.918262i \(0.370407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.02799i 0.631380i −0.948862 0.315690i \(-0.897764\pi\)
0.948862 0.315690i \(-0.102236\pi\)
\(24\) 0 0
\(25\) 8.09945 1.61989
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.04560 + 2.91308i −0.936945 + 0.540945i −0.889001 0.457905i \(-0.848600\pi\)
−0.0479434 + 0.998850i \(0.515267\pi\)
\(30\) 0 0
\(31\) −0.787812 + 0.454844i −0.141495 + 0.0816923i −0.569076 0.822285i \(-0.692699\pi\)
0.427581 + 0.903977i \(0.359366\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.966257 + 9.52693i −0.163327 + 1.61035i
\(36\) 0 0
\(37\) 3.66825 + 6.35359i 0.603056 + 1.04452i 0.992355 + 0.123413i \(0.0393839\pi\)
−0.389299 + 0.921111i \(0.627283\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.85045 + 4.93712i −0.445165 + 0.771048i −0.998064 0.0622002i \(-0.980188\pi\)
0.552899 + 0.833248i \(0.313522\pi\)
\(42\) 0 0
\(43\) 2.39949 + 4.15605i 0.365919 + 0.633791i 0.988923 0.148428i \(-0.0474212\pi\)
−0.623004 + 0.782219i \(0.714088\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.11511 + 1.93143i −0.162655 + 0.281727i −0.935820 0.352478i \(-0.885339\pi\)
0.773165 + 0.634205i \(0.218673\pi\)
\(48\) 0 0
\(49\) −6.85745 1.40547i −0.979636 0.200782i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.58088 + 4.37683i 1.04131 + 0.601203i 0.920205 0.391436i \(-0.128022\pi\)
0.121109 + 0.992639i \(0.461355\pi\)
\(54\) 0 0
\(55\) 7.25237i 0.977909i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.49313 + 7.78233i 0.584956 + 1.01317i 0.994881 + 0.101054i \(0.0322216\pi\)
−0.409925 + 0.912119i \(0.634445\pi\)
\(60\) 0 0
\(61\) −12.7410 7.35603i −1.63132 0.941843i −0.983686 0.179892i \(-0.942425\pi\)
−0.647634 0.761952i \(-0.724241\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10.6844 6.16866i −1.32524 0.765128i
\(66\) 0 0
\(67\) −4.15821 7.20222i −0.508006 0.879892i −0.999957 0.00926908i \(-0.997050\pi\)
0.491951 0.870623i \(-0.336284\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.466287i 0.0553381i 0.999617 + 0.0276691i \(0.00880846\pi\)
−0.999617 + 0.0276691i \(0.991192\pi\)
\(72\) 0 0
\(73\) −3.65022 2.10746i −0.427226 0.246659i 0.270938 0.962597i \(-0.412666\pi\)
−0.698164 + 0.715938i \(0.746000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.27448 0.534957i −0.601083 0.0609641i
\(78\) 0 0
\(79\) 1.91267 3.31284i 0.215192 0.372723i −0.738140 0.674648i \(-0.764296\pi\)
0.953332 + 0.301924i \(0.0976290\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.00481 + 6.93654i 0.439585 + 0.761384i 0.997657 0.0684084i \(-0.0217921\pi\)
−0.558072 + 0.829792i \(0.688459\pi\)
\(84\) 0 0
\(85\) −11.1732 + 19.3525i −1.21190 + 2.09907i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.39324 4.14521i −0.253683 0.439391i 0.710854 0.703339i \(-0.248309\pi\)
−0.964537 + 0.263948i \(0.914975\pi\)
\(90\) 0 0
\(91\) 5.27445 7.31553i 0.552912 0.766876i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.17542 + 1.83333i −0.325791 + 0.188096i
\(96\) 0 0
\(97\) 10.1835 5.87944i 1.03398 0.596967i 0.115856 0.993266i \(-0.463039\pi\)
0.918121 + 0.396299i \(0.129706\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.8922 1.28282 0.641411 0.767197i \(-0.278349\pi\)
0.641411 + 0.767197i \(0.278349\pi\)
\(102\) 0 0
\(103\) 10.7588i 1.06010i 0.847968 + 0.530048i \(0.177826\pi\)
−0.847968 + 0.530048i \(0.822174\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.28602 1.31983i 0.220998 0.127593i −0.385414 0.922744i \(-0.625942\pi\)
0.606412 + 0.795151i \(0.292608\pi\)
\(108\) 0 0
\(109\) 4.51768 7.82484i 0.432715 0.749484i −0.564391 0.825507i \(-0.690889\pi\)
0.997106 + 0.0760233i \(0.0242224\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.46411 + 0.845306i 0.137732 + 0.0795197i 0.567283 0.823523i \(-0.307995\pi\)
−0.429551 + 0.903043i \(0.641328\pi\)
\(114\) 0 0
\(115\) 10.9593i 1.02196i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −13.2505 9.55349i −1.21467 0.875767i
\(120\) 0 0
\(121\) 6.98481 0.634982
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.2179 1.00336
\(126\) 0 0
\(127\) −17.9292 −1.59096 −0.795478 0.605983i \(-0.792780\pi\)
−0.795478 + 0.605983i \(0.792780\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 17.3313 1.51425 0.757123 0.653272i \(-0.226604\pi\)
0.757123 + 0.653272i \(0.226604\pi\)
\(132\) 0 0
\(133\) −1.09911 2.44464i −0.0953049 0.211977i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0.000645123i 0 5.51166e-5i 1.00000 2.75583e-5i \(8.77208e-6\pi\)
−1.00000 2.75583e-5i \(0.999991\pi\)
\(138\) 0 0
\(139\) −8.73273 5.04185i −0.740701 0.427644i 0.0816233 0.996663i \(-0.473990\pi\)
−0.822324 + 0.569019i \(0.807323\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.41521 5.91532i 0.285594 0.494664i
\(144\) 0 0
\(145\) −18.2616 + 10.5434i −1.51655 + 0.875578i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.2475i 0.921433i 0.887547 + 0.460716i \(0.152407\pi\)
−0.887547 + 0.460716i \(0.847593\pi\)
\(150\) 0 0
\(151\) 4.72379 0.384417 0.192208 0.981354i \(-0.438435\pi\)
0.192208 + 0.981354i \(0.438435\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.85134 + 1.64622i −0.229025 + 0.132228i
\(156\) 0 0
\(157\) 2.65845 1.53486i 0.212168 0.122495i −0.390151 0.920751i \(-0.627577\pi\)
0.602318 + 0.798256i \(0.294244\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.97043 + 0.808390i 0.628158 + 0.0637101i
\(162\) 0 0
\(163\) 1.43687 + 2.48873i 0.112544 + 0.194932i 0.916795 0.399357i \(-0.130767\pi\)
−0.804251 + 0.594289i \(0.797433\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.730517 + 1.26529i −0.0565291 + 0.0979113i −0.892905 0.450245i \(-0.851337\pi\)
0.836376 + 0.548156i \(0.184670\pi\)
\(168\) 0 0
\(169\) −0.690233 1.19552i −0.0530948 0.0919630i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.53541 2.65940i 0.116735 0.202191i −0.801737 0.597677i \(-0.796091\pi\)
0.918472 + 0.395486i \(0.129424\pi\)
\(174\) 0 0
\(175\) −2.16233 + 21.3197i −0.163457 + 1.61162i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.7310 9.65966i −1.25054 0.721997i −0.279320 0.960198i \(-0.590109\pi\)
−0.971216 + 0.238201i \(0.923442\pi\)
\(180\) 0 0
\(181\) 7.89318i 0.586695i 0.956006 + 0.293348i \(0.0947693\pi\)
−0.956006 + 0.293348i \(0.905231\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.2765 + 22.9957i 0.976111 + 1.69067i
\(186\) 0 0
\(187\) −10.7143 6.18590i −0.783506 0.452358i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.5218 + 6.65211i 0.833688 + 0.481330i 0.855114 0.518441i \(-0.173487\pi\)
−0.0214259 + 0.999770i \(0.506821\pi\)
\(192\) 0 0
\(193\) −3.26786 5.66011i −0.235226 0.407423i 0.724112 0.689682i \(-0.242250\pi\)
−0.959338 + 0.282259i \(0.908916\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.44250i 0.316515i 0.987398 + 0.158258i \(0.0505876\pi\)
−0.987398 + 0.158258i \(0.949412\pi\)
\(198\) 0 0
\(199\) −9.96868 5.75542i −0.706661 0.407991i 0.103163 0.994665i \(-0.467104\pi\)
−0.809823 + 0.586674i \(0.800437\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.32091 14.0590i −0.443641 0.986747i
\(204\) 0 0
\(205\) −10.3167 + 17.8690i −0.720547 + 1.24802i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.01500 1.75804i −0.0702092 0.121606i
\(210\) 0 0
\(211\) −11.3005 + 19.5731i −0.777961 + 1.34747i 0.155155 + 0.987890i \(0.450412\pi\)
−0.933115 + 0.359577i \(0.882921\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.68453 + 15.0420i 0.592280 + 1.02586i
\(216\) 0 0
\(217\) −0.986937 2.19515i −0.0669976 0.149016i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.2265 10.5231i 1.22605 0.707860i
\(222\) 0 0
\(223\) 16.2994 9.41045i 1.09149 0.630170i 0.157515 0.987517i \(-0.449652\pi\)
0.933972 + 0.357346i \(0.116318\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.6133 −0.969919 −0.484960 0.874537i \(-0.661166\pi\)
−0.484960 + 0.874537i \(0.661166\pi\)
\(228\) 0 0
\(229\) 2.37919i 0.157221i −0.996905 0.0786106i \(-0.974952\pi\)
0.996905 0.0786106i \(-0.0250484\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.03470 5.21619i 0.591883 0.341724i −0.173959 0.984753i \(-0.555656\pi\)
0.765842 + 0.643029i \(0.222323\pi\)
\(234\) 0 0
\(235\) −4.03593 + 6.99044i −0.263275 + 0.456006i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.5971 + 11.8917i 1.33232 + 0.769213i 0.985654 0.168777i \(-0.0539818\pi\)
0.346662 + 0.937990i \(0.387315\pi\)
\(240\) 0 0
\(241\) 28.6487i 1.84542i 0.385489 + 0.922712i \(0.374033\pi\)
−0.385489 + 0.922712i \(0.625967\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −24.8193 5.08685i −1.58565 0.324987i
\(246\) 0 0
\(247\) 3.45333 0.219730
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.0301 0.696216 0.348108 0.937454i \(-0.386824\pi\)
0.348108 + 0.937454i \(0.386824\pi\)
\(252\) 0 0
\(253\) 6.06748 0.381459
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.0978 0.941775 0.470888 0.882193i \(-0.343934\pi\)
0.470888 + 0.882193i \(0.343934\pi\)
\(258\) 0 0
\(259\) −17.7035 + 7.95950i −1.10004 + 0.494579i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 19.6385i 1.21096i −0.795859 0.605482i \(-0.792980\pi\)
0.795859 0.605482i \(-0.207020\pi\)
\(264\) 0 0
\(265\) 27.4376 + 15.8411i 1.68548 + 0.973112i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.245503 0.425223i 0.0149686 0.0259263i −0.858444 0.512907i \(-0.828569\pi\)
0.873413 + 0.486981i \(0.161902\pi\)
\(270\) 0 0
\(271\) 12.1927 7.03945i 0.740653 0.427616i −0.0816537 0.996661i \(-0.526020\pi\)
0.822307 + 0.569045i \(0.192687\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16.2296i 0.978683i
\(276\) 0 0
\(277\) 30.7200 1.84579 0.922894 0.385054i \(-0.125817\pi\)
0.922894 + 0.385054i \(0.125817\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.86286 + 3.96227i −0.409404 + 0.236369i −0.690534 0.723300i \(-0.742624\pi\)
0.281130 + 0.959670i \(0.409291\pi\)
\(282\) 0 0
\(283\) 9.97303 5.75793i 0.592835 0.342273i −0.173383 0.984855i \(-0.555470\pi\)
0.766218 + 0.642581i \(0.222136\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.2347 8.82115i −0.722193 0.520696i
\(288\) 0 0
\(289\) −10.5603 18.2909i −0.621192 1.07594i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.50937 + 4.34636i −0.146599 + 0.253917i −0.929968 0.367639i \(-0.880166\pi\)
0.783369 + 0.621557i \(0.213499\pi\)
\(294\) 0 0
\(295\) 16.2621 + 28.1667i 0.946814 + 1.63993i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.16083 + 8.93882i −0.298458 + 0.516945i
\(300\) 0 0
\(301\) −11.5803 + 5.20651i −0.667480 + 0.300098i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −46.1138 26.6238i −2.64047 1.52447i
\(306\) 0 0
\(307\) 17.5309i 1.00054i 0.865869 + 0.500271i \(0.166766\pi\)
−0.865869 + 0.500271i \(0.833234\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.64759 + 14.9781i 0.490360 + 0.849328i 0.999938 0.0110959i \(-0.00353200\pi\)
−0.509579 + 0.860424i \(0.670199\pi\)
\(312\) 0 0
\(313\) 7.78988 + 4.49749i 0.440310 + 0.254213i 0.703729 0.710468i \(-0.251517\pi\)
−0.263419 + 0.964681i \(0.584850\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.82002 + 3.36019i 0.326885 + 0.188727i 0.654457 0.756099i \(-0.272897\pi\)
−0.327572 + 0.944826i \(0.606230\pi\)
\(318\) 0 0
\(319\) −5.83721 10.1103i −0.326821 0.566071i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.25494i 0.348034i
\(324\) 0 0
\(325\) −23.9100 13.8045i −1.32629 0.765734i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.78629 3.45088i −0.263876 0.190253i
\(330\) 0 0
\(331\) −9.38725 + 16.2592i −0.515970 + 0.893686i 0.483858 + 0.875146i \(0.339235\pi\)
−0.999828 + 0.0185396i \(0.994098\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −15.0499 26.0671i −0.822262 1.42420i
\(336\) 0 0
\(337\) 2.42287 4.19654i 0.131982 0.228600i −0.792458 0.609926i \(-0.791199\pi\)
0.924441 + 0.381326i \(0.124532\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.911413 1.57861i −0.0493558 0.0854868i
\(342\) 0 0
\(343\) 5.53030 17.6753i 0.298608 0.954376i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −15.1305 + 8.73559i −0.812247 + 0.468951i −0.847736 0.530419i \(-0.822035\pi\)
0.0354887 + 0.999370i \(0.488701\pi\)
\(348\) 0 0
\(349\) −20.6338 + 11.9129i −1.10450 + 0.637683i −0.937399 0.348257i \(-0.886774\pi\)
−0.167101 + 0.985940i \(0.553440\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.0412 −0.534441 −0.267220 0.963635i \(-0.586105\pi\)
−0.267220 + 0.963635i \(0.586105\pi\)
\(354\) 0 0
\(355\) 1.68764i 0.0895707i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.5353 6.08254i 0.556030 0.321024i −0.195521 0.980700i \(-0.562640\pi\)
0.751550 + 0.659676i \(0.229306\pi\)
\(360\) 0 0
\(361\) −8.98683 + 15.5657i −0.472991 + 0.819245i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −13.2113 7.62756i −0.691512 0.399245i
\(366\) 0 0
\(367\) 3.63061i 0.189516i −0.995500 0.0947582i \(-0.969792\pi\)
0.995500 0.0947582i \(-0.0302078\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.5448 + 18.7863i −0.703210 + 0.975335i
\(372\) 0 0
\(373\) 5.49231 0.284381 0.142191 0.989839i \(-0.454585\pi\)
0.142191 + 0.989839i \(0.454585\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.8599 1.02284
\(378\) 0 0
\(379\) 15.5960 0.801112 0.400556 0.916272i \(-0.368817\pi\)
0.400556 + 0.916272i \(0.368817\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.43067 0.481885 0.240942 0.970539i \(-0.422544\pi\)
0.240942 + 0.970539i \(0.422544\pi\)
\(384\) 0 0
\(385\) −19.0900 1.93618i −0.972918 0.0986769i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.42177i 0.325597i 0.986659 + 0.162798i \(0.0520520\pi\)
−0.986659 + 0.162798i \(0.947948\pi\)
\(390\) 0 0
\(391\) 16.1907 + 9.34769i 0.818798 + 0.472733i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.92255 11.9902i 0.348311 0.603293i
\(396\) 0 0
\(397\) 5.99750 3.46266i 0.301006 0.173786i −0.341889 0.939740i \(-0.611067\pi\)
0.642895 + 0.765955i \(0.277733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.5869i 0.528682i 0.964429 + 0.264341i \(0.0851545\pi\)
−0.964429 + 0.264341i \(0.914846\pi\)
\(402\) 0 0
\(403\) 3.10089 0.154466
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.7313 + 7.35042i −0.631067 + 0.364347i
\(408\) 0 0
\(409\) 7.72792 4.46172i 0.382121 0.220618i −0.296620 0.954996i \(-0.595859\pi\)
0.678741 + 0.734378i \(0.262526\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −21.6846 + 9.74937i −1.06703 + 0.479735i
\(414\) 0 0
\(415\) 14.4947 + 25.1055i 0.711516 + 1.23238i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.1924 + 29.7781i −0.839903 + 1.45475i 0.0500724 + 0.998746i \(0.484055\pi\)
−0.889975 + 0.456009i \(0.849279\pi\)
\(420\) 0 0
\(421\) −17.7840 30.8028i −0.866739 1.50124i −0.865310 0.501237i \(-0.832879\pi\)
−0.00142877 0.999999i \(-0.500455\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −25.0037 + 43.3077i −1.21286 + 2.10073i
\(426\) 0 0
\(427\) 22.7644 31.5737i 1.10165 1.52796i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 26.7338 + 15.4348i 1.28772 + 0.743466i 0.978247 0.207442i \(-0.0665138\pi\)
0.309474 + 0.950908i \(0.399847\pi\)
\(432\) 0 0
\(433\) 23.2463i 1.11715i −0.829455 0.558574i \(-0.811349\pi\)
0.829455 0.558574i \(-0.188651\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.53380 + 2.65662i 0.0733716 + 0.127083i
\(438\) 0 0
\(439\) −19.2887 11.1364i −0.920601 0.531509i −0.0367744 0.999324i \(-0.511708\pi\)
−0.883827 + 0.467814i \(0.845042\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.5756 + 8.99259i 0.740020 + 0.427251i 0.822077 0.569377i \(-0.192815\pi\)
−0.0820566 + 0.996628i \(0.526149\pi\)
\(444\) 0 0
\(445\) −8.66188 15.0028i −0.410612 0.711202i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.44363i 0.445673i −0.974856 0.222836i \(-0.928468\pi\)
0.974856 0.222836i \(-0.0715315\pi\)
\(450\) 0 0
\(451\) −9.89297 5.71171i −0.465842 0.268954i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 19.0899 26.4772i 0.894948 1.24127i
\(456\) 0 0
\(457\) 0.922251 1.59739i 0.0431411 0.0747225i −0.843649 0.536896i \(-0.819597\pi\)
0.886790 + 0.462173i \(0.152930\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.1869 31.5007i −0.847050 1.46713i −0.883829 0.467810i \(-0.845043\pi\)
0.0367790 0.999323i \(-0.488290\pi\)
\(462\) 0 0
\(463\) 15.9830 27.6834i 0.742794 1.28656i −0.208425 0.978038i \(-0.566834\pi\)
0.951219 0.308518i \(-0.0998330\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.2206 21.1666i −0.565500 0.979475i −0.997003 0.0773632i \(-0.975350\pi\)
0.431503 0.902112i \(-0.357983\pi\)
\(468\) 0 0
\(469\) 20.0682 9.02263i 0.926662 0.416627i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.32786 + 4.80809i −0.382916 + 0.221076i
\(474\) 0 0
\(475\) −7.10607 + 4.10269i −0.326049 + 0.188245i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.9606 0.500805 0.250402 0.968142i \(-0.419437\pi\)
0.250402 + 0.968142i \(0.419437\pi\)
\(480\) 0 0
\(481\) 25.0082i 1.14028i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 36.8573 21.2796i 1.67360 0.966255i
\(486\) 0 0
\(487\) 16.8087 29.1136i 0.761677 1.31926i −0.180309 0.983610i \(-0.557710\pi\)
0.941986 0.335653i \(-0.108957\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −19.6893 11.3676i −0.888568 0.513015i −0.0150939 0.999886i \(-0.504805\pi\)
−0.873474 + 0.486871i \(0.838138\pi\)
\(492\) 0 0
\(493\) 35.9718i 1.62009i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.22738 0.124486i −0.0550557 0.00558395i
\(498\) 0 0
\(499\) −19.5235 −0.873992 −0.436996 0.899463i \(-0.643958\pi\)
−0.436996 + 0.899463i \(0.643958\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13.6867 0.610262 0.305131 0.952310i \(-0.401300\pi\)
0.305131 + 0.952310i \(0.401300\pi\)
\(504\) 0 0
\(505\) 46.6609 2.07638
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.29166 0.101576 0.0507881 0.998709i \(-0.483827\pi\)
0.0507881 + 0.998709i \(0.483827\pi\)
\(510\) 0 0
\(511\) 6.52186 9.04566i 0.288510 0.400156i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 38.9395i 1.71588i
\(516\) 0 0
\(517\) −3.87018 2.23445i −0.170210 0.0982710i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.54102 14.7935i 0.374189 0.648114i −0.616017 0.787733i \(-0.711255\pi\)
0.990205 + 0.139619i \(0.0445879\pi\)
\(522\) 0 0
\(523\) −35.7462 + 20.6381i −1.56307 + 0.902440i −0.566128 + 0.824317i \(0.691559\pi\)
−0.996944 + 0.0781229i \(0.975107\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.61657i 0.244662i
\(528\) 0 0
\(529\) 13.8313 0.601359
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.8294 9.71644i 0.728961 0.420866i
\(534\) 0 0
\(535\) 8.27382 4.77689i 0.357708 0.206523i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.81628 13.7409i 0.121306 0.591864i
\(540\) 0 0
\(541\) 22.7197 + 39.3516i 0.976795 + 1.69186i 0.673880 + 0.738841i \(0.264627\pi\)
0.302915 + 0.953018i \(0.402040\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 16.3509 28.3206i 0.700395 1.21312i
\(546\) 0 0
\(547\) −15.1095 26.1705i −0.646037 1.11897i −0.984061 0.177832i \(-0.943092\pi\)
0.338024 0.941138i \(-0.390242\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.95118 5.11160i 0.125725 0.217761i
\(552\) 0 0
\(553\) 8.20958 + 5.91905i 0.349107 + 0.251704i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.0154 + 12.7106i 0.932822 + 0.538565i 0.887703 0.460417i \(-0.152300\pi\)
0.0451189 + 0.998982i \(0.485633\pi\)
\(558\) 0 0
\(559\) 16.3585i 0.691892i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.44346 + 2.50015i 0.0608346 + 0.105369i 0.894839 0.446390i \(-0.147290\pi\)
−0.834004 + 0.551758i \(0.813957\pi\)
\(564\) 0 0
\(565\) 5.29909 + 3.05943i 0.222934 + 0.128711i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 38.5945 + 22.2826i 1.61797 + 0.934134i 0.987445 + 0.157963i \(0.0504927\pi\)
0.630523 + 0.776171i \(0.282841\pi\)
\(570\) 0 0
\(571\) −3.26470 5.65462i −0.136623 0.236638i 0.789593 0.613631i \(-0.210292\pi\)
−0.926216 + 0.376992i \(0.876958\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24.5251i 1.02277i
\(576\) 0 0
\(577\) 1.17720 + 0.679658i 0.0490076 + 0.0282945i 0.524304 0.851531i \(-0.324326\pi\)
−0.475296 + 0.879826i \(0.657659\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −19.3279 + 8.68979i −0.801855 + 0.360513i
\(582\) 0 0
\(583\) −8.77026 + 15.1905i −0.363227 + 0.629128i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.2025 38.4559i −0.916397 1.58725i −0.804843 0.593488i \(-0.797750\pi\)
−0.111555 0.993758i \(-0.535583\pi\)
\(588\) 0 0
\(589\) 0.460793 0.798117i 0.0189866 0.0328858i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.17564 + 12.4286i 0.294668 + 0.510380i 0.974908 0.222610i \(-0.0714576\pi\)
−0.680240 + 0.732990i \(0.738124\pi\)
\(594\) 0 0
\(595\) −47.9576 34.5771i −1.96607 1.41752i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.03349 + 1.75139i −0.123945 + 0.0715597i −0.560691 0.828025i \(-0.689464\pi\)
0.436746 + 0.899585i \(0.356131\pi\)
\(600\) 0 0
\(601\) −15.1846 + 8.76685i −0.619394 + 0.357607i −0.776633 0.629953i \(-0.783074\pi\)
0.157239 + 0.987561i \(0.449741\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 25.2802 1.02779
\(606\) 0 0
\(607\) 0.0872864i 0.00354285i 0.999998 + 0.00177142i \(0.000563862\pi\)
−0.999998 + 0.00177142i \(0.999436\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.58373 3.80112i 0.266349 0.153777i
\(612\) 0 0
\(613\) 12.5352 21.7116i 0.506292 0.876924i −0.493681 0.869643i \(-0.664349\pi\)
0.999973 0.00728071i \(-0.00231754\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.6365 + 6.14101i 0.428211 + 0.247228i 0.698584 0.715528i \(-0.253814\pi\)
−0.270373 + 0.962756i \(0.587147\pi\)
\(618\) 0 0
\(619\) 20.3076i 0.816229i 0.912931 + 0.408115i \(0.133814\pi\)
−0.912931 + 0.408115i \(0.866186\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.5501 5.19294i 0.462747 0.208051i
\(624\) 0 0
\(625\) 0.103794 0.00415176
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −45.2969 −1.80610
\(630\) 0 0
\(631\) 45.9665 1.82990 0.914950 0.403568i \(-0.132230\pi\)
0.914950 + 0.403568i \(0.132230\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −64.8913 −2.57513
\(636\) 0 0
\(637\) 17.8482 + 15.8367i 0.707169 + 0.627472i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 31.6509i 1.25013i −0.780571 0.625067i \(-0.785072\pi\)
0.780571 0.625067i \(-0.214928\pi\)
\(642\) 0 0
\(643\) −10.0106 5.77960i −0.394778 0.227925i 0.289450 0.957193i \(-0.406528\pi\)
−0.684228 + 0.729268i \(0.739861\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13.0365 22.5799i 0.512519 0.887708i −0.487376 0.873192i \(-0.662046\pi\)
0.999895 0.0145160i \(-0.00462076\pi\)
\(648\) 0 0
\(649\) −15.5942 + 9.00332i −0.612126 + 0.353411i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.9315i 0.740847i −0.928863 0.370424i \(-0.879212\pi\)
0.928863 0.370424i \(-0.120788\pi\)
\(654\) 0 0
\(655\) 62.7276 2.45097
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23.3508 13.4816i 0.909618 0.525168i 0.0293098 0.999570i \(-0.490669\pi\)
0.880308 + 0.474402i \(0.157336\pi\)
\(660\) 0 0
\(661\) 22.3201 12.8865i 0.868151 0.501227i 0.00141768 0.999999i \(-0.499549\pi\)
0.866733 + 0.498772i \(0.166215\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.97803 8.84793i −0.154261 0.343108i
\(666\) 0 0
\(667\) 8.82079 + 15.2780i 0.341542 + 0.591568i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.7400 25.5304i 0.569030 0.985590i
\(672\) 0 0
\(673\) −12.9608 22.4487i −0.499601 0.865335i 0.500398 0.865795i \(-0.333187\pi\)
−1.00000 0.000460130i \(0.999854\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.55382 + 11.3515i −0.251884 + 0.436275i −0.964044 0.265741i \(-0.914383\pi\)
0.712161 + 0.702016i \(0.247717\pi\)
\(678\) 0 0
\(679\) 12.7574 + 28.3751i 0.489585 + 1.08894i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −25.6910 14.8327i −0.983038 0.567557i −0.0798523 0.996807i \(-0.525445\pi\)
−0.903186 + 0.429249i \(0.858778\pi\)
\(684\) 0 0
\(685\) 0.00233490i 8.92121e-5i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.9195 25.8413i −0.568387 0.984475i
\(690\) 0 0
\(691\) −40.9767 23.6579i −1.55883 0.899990i −0.997369 0.0724857i \(-0.976907\pi\)
−0.561459 0.827504i \(-0.689760\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −31.6065 18.2480i −1.19890 0.692187i
\(696\) 0 0
\(697\) −17.5992 30.4827i −0.666616 1.15461i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.7742i 0.520244i −0.965576 0.260122i \(-0.916237\pi\)
0.965576 0.260122i \(-0.0837627\pi\)
\(702\) 0 0
\(703\) −6.43670 3.71623i −0.242765 0.140160i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.44186 + 33.9355i −0.129444 + 1.27627i
\(708\) 0 0
\(709\) 21.9691 38.0517i 0.825069 1.42906i −0.0767981 0.997047i \(-0.524470\pi\)
0.901867 0.432014i \(-0.142197\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.37726 + 2.38549i 0.0515789 + 0.0893373i
\(714\) 0 0
\(715\) 12.3607 21.4094i 0.462265 0.800667i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.7930 + 25.6223i 0.551687 + 0.955549i 0.998153 + 0.0607489i \(0.0193489\pi\)
−0.446466 + 0.894800i \(0.647318\pi\)
\(720\) 0 0
\(721\) −28.3198 2.87230i −1.05469 0.106970i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −40.8666 + 23.5943i −1.51775 + 0.876271i
\(726\) 0 0
\(727\) 10.1244 5.84534i 0.375494 0.216792i −0.300362 0.953825i \(-0.597107\pi\)
0.675856 + 0.737034i \(0.263774\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −29.6298 −1.09590
\(732\) 0 0
\(733\) 33.0733i 1.22159i 0.791789 + 0.610795i \(0.209150\pi\)
−0.791789 + 0.610795i \(0.790850\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.4318 8.33219i 0.531601 0.306920i
\(738\) 0 0
\(739\) 21.7528 37.6770i 0.800190 1.38597i −0.119301 0.992858i \(-0.538065\pi\)
0.919491 0.393111i \(-0.128601\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.0206 + 10.4042i 0.661112 + 0.381693i 0.792701 0.609611i \(-0.208674\pi\)
−0.131589 + 0.991304i \(0.542008\pi\)
\(744\) 0 0
\(745\) 40.7083i 1.49144i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.86382 + 6.36972i 0.104642 + 0.232745i
\(750\) 0 0
\(751\) 39.8984 1.45591 0.727957 0.685623i \(-0.240470\pi\)
0.727957 + 0.685623i \(0.240470\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 17.0969 0.622219
\(756\) 0 0
\(757\) 7.45545 0.270973 0.135486 0.990779i \(-0.456740\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.64924 0.313535 0.156767 0.987636i \(-0.449893\pi\)
0.156767 + 0.987636i \(0.449893\pi\)
\(762\) 0 0
\(763\) 19.3908 + 13.9807i 0.701995 + 0.506134i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 30.6319i 1.10605i
\(768\) 0 0
\(769\) −20.4818 11.8252i −0.738592 0.426426i 0.0829652 0.996552i \(-0.473561\pi\)
−0.821557 + 0.570126i \(0.806894\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23.2849 40.3307i 0.837501 1.45059i −0.0544774 0.998515i \(-0.517349\pi\)
0.891978 0.452079i \(-0.149317\pi\)
\(774\) 0 0
\(775\) −6.38084 + 3.68398i −0.229207 + 0.132333i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.77546i 0.206927i
\(780\) 0 0
\(781\) −0.934344 −0.0334335
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9.62178 5.55513i 0.343416 0.198271i
\(786\) 0 0
\(787\) 21.1657 12.2200i 0.754474 0.435596i −0.0728341 0.997344i \(-0.523204\pi\)
0.827308 + 0.561748i \(0.189871\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.61593 + 3.62823i −0.0930118 + 0.129005i
\(792\) 0 0
\(793\) 25.0748 + 43.4309i 0.890433 + 1.54228i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24.9202 + 43.1631i −0.882719 + 1.52891i −0.0344128 + 0.999408i \(0.510956\pi\)
−0.848306 + 0.529506i \(0.822377\pi\)
\(798\) 0 0
\(799\) −6.88489 11.9250i −0.243570 0.421875i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.22291 7.31430i 0.149023 0.258116i
\(804\) 0 0
\(805\) 28.8475 + 2.92582i 1.01674 + 0.103122i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10.6735 6.16237i −0.375262 0.216657i 0.300493 0.953784i \(-0.402849\pi\)
−0.675755 + 0.737127i \(0.736182\pi\)
\(810\) 0 0
\(811\) 24.8017i 0.870906i 0.900212 + 0.435453i \(0.143412\pi\)
−0.900212 + 0.435453i \(0.856588\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.20047 + 9.00748i 0.182165 + 0.315518i
\(816\) 0 0
\(817\) −4.21041 2.43088i −0.147304 0.0850457i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −31.3573 18.1041i −1.09438 0.631839i −0.159639 0.987175i \(-0.551033\pi\)
−0.934738 + 0.355336i \(0.884366\pi\)
\(822\) 0 0
\(823\) −9.54093 16.5254i −0.332576 0.576038i 0.650440 0.759557i \(-0.274584\pi\)
−0.983016 + 0.183519i \(0.941251\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 31.9013i 1.10932i 0.832079 + 0.554658i \(0.187151\pi\)
−0.832079 + 0.554658i \(0.812849\pi\)
\(828\) 0 0
\(829\) 13.0645 + 7.54278i 0.453748 + 0.261971i 0.709412 0.704794i \(-0.248961\pi\)
−0.255664 + 0.966766i \(0.582294\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 28.6846 32.3280i 0.993864 1.12010i
\(834\) 0 0
\(835\) −2.64397 + 4.57950i −0.0914985 + 0.158480i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8.19860 + 14.2004i 0.283047 + 0.490252i 0.972134 0.234427i \(-0.0753214\pi\)
−0.689087 + 0.724679i \(0.741988\pi\)
\(840\) 0 0
\(841\) 2.47206 4.28173i 0.0852434 0.147646i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.49817 4.32696i −0.0859397 0.148852i
\(846\) 0 0
\(847\) −1.86475 + 18.3857i −0.0640735 + 0.631741i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 19.2386 11.1074i 0.659492 0.380758i
\(852\) 0 0
\(853\) −16.5936 + 9.58030i −0.568153 + 0.328023i −0.756411 0.654096i \(-0.773049\pi\)
0.188258 + 0.982120i \(0.439716\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16.1145 −0.550460 −0.275230 0.961378i \(-0.588754\pi\)
−0.275230 + 0.961378i \(0.588754\pi\)
\(858\) 0 0
\(859\) 12.1048i 0.413009i 0.978446 + 0.206505i \(0.0662089\pi\)
−0.978446 + 0.206505i \(0.933791\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −32.2728 + 18.6327i −1.09858 + 0.634265i −0.935848 0.352405i \(-0.885364\pi\)
−0.162732 + 0.986670i \(0.552031\pi\)
\(864\) 0 0
\(865\) 5.55712 9.62522i 0.188948 0.327267i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.63824 + 3.83259i 0.225187 + 0.130012i
\(870\) 0 0
\(871\) 28.3485i 0.960553i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.99486 + 29.5282i −0.101245 + 0.998236i
\(876\) 0 0
\(877\) −9.70948 −0.327866 −0.163933 0.986471i \(-0.552418\pi\)
−0.163933 + 0.986471i \(0.552418\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.63241 −0.0886881 −0.0443440 0.999016i \(-0.514120\pi\)
−0.0443440 + 0.999016i \(0.514120\pi\)
\(882\) 0 0
\(883\) 36.3181 1.22220 0.611101 0.791553i \(-0.290727\pi\)
0.611101 + 0.791553i \(0.290727\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.3642 −0.549455 −0.274728 0.961522i \(-0.588588\pi\)
−0.274728 + 0.961522i \(0.588588\pi\)
\(888\) 0 0
\(889\) 4.78659 47.1940i 0.160537 1.58284i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.25939i 0.0756076i
\(894\) 0 0
\(895\) −60.5549 34.9614i −2.02413 1.16863i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.64999 4.58992i 0.0883822 0.153082i
\(900\) 0 0
\(901\) −46.8058 + 27.0233i −1.55933 + 0.900277i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 28.5679i 0.949629i
\(906\) 0 0
\(907\) −10.8333 −0.359714 −0.179857 0.983693i \(-0.557564\pi\)
−0.179857 + 0.983693i \(0.557564\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 36.8512 21.2760i 1.22093 0.704907i 0.255817 0.966725i \(-0.417655\pi\)
0.965117 + 0.261818i \(0.0843221\pi\)
\(912\) 0 0
\(913\) −13.8994 + 8.02482i −0.460003 + 0.265583i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.62699 + 45.6204i −0.152797 + 1.50652i
\(918\) 0 0
\(919\) 12.9697 + 22.4641i 0.427829 + 0.741022i 0.996680 0.0814187i \(-0.0259451\pi\)
−0.568851 + 0.822441i \(0.692612\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.794727 1.37651i 0.0261588 0.0453083i
\(924\) 0 0
\(925\) 29.7108 + 51.4606i 0.976884 + 1.69201i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −23.4456 + 40.6089i −0.769224 + 1.33234i 0.168760 + 0.985657i \(0.446024\pi\)
−0.937984 + 0.346678i \(0.887310\pi\)
\(930\) 0 0
\(931\) 6.72834 2.24048i 0.220512 0.0734287i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −38.7784 22.3887i −1.26819 0.732189i
\(936\) 0 0
\(937\) 0.209357i 0.00683939i −0.999994 0.00341969i \(-0.998911\pi\)
0.999994 0.00341969i \(-0.00108852\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.388565 + 0.673014i 0.0126669 + 0.0219396i 0.872289 0.488990i \(-0.162635\pi\)
−0.859622 + 0.510930i \(0.829301\pi\)
\(942\) 0 0
\(943\) 14.9496 + 8.63113i 0.486825 + 0.281068i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 43.1233 + 24.8972i 1.40132 + 0.809052i 0.994528 0.104470i \(-0.0333145\pi\)
0.406791 + 0.913521i \(0.366648\pi\)
\(948\) 0 0
\(949\) 7.18378 + 12.4427i 0.233196 + 0.403906i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 41.4104i 1.34141i −0.741722 0.670707i \(-0.765991\pi\)
0.741722 0.670707i \(-0.234009\pi\)
\(954\) 0 0
\(955\) 41.7010 + 24.0761i 1.34941 + 0.779084i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.00169812 0.000172230i −5.48353e−5 5.56160e-6i
\(960\) 0 0
\(961\) −15.0862 + 26.1301i −0.486653 + 0.842907i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −11.8274 20.4857i −0.380739 0.659459i
\(966\) 0 0
\(967\) −22.8028 + 39.4956i −0.733289 + 1.27009i 0.222181 + 0.975005i \(0.428682\pi\)
−0.955470 + 0.295088i \(0.904651\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.36733 + 7.56444i 0.140154 + 0.242754i 0.927555 0.373688i \(-0.121907\pi\)
−0.787400 + 0.616442i \(0.788573\pi\)
\(972\) 0 0
\(973\) 15.6028 21.6407i 0.500202 0.693768i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.9058 7.45114i 0.412892 0.238383i −0.279140 0.960250i \(-0.590049\pi\)
0.692031 + 0.721867i \(0.256716\pi\)
\(978\) 0 0
\(979\) 8.30615 4.79556i 0.265466 0.153267i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.06917 −0.0978912 −0.0489456 0.998801i \(-0.515586\pi\)
−0.0489456 + 0.998801i \(0.515586\pi\)
\(984\) 0 0
\(985\) 16.0788i 0.512314i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.5845 7.26565i 0.400163 0.231034i
\(990\) 0 0
\(991\) −27.9075 + 48.3372i −0.886510 + 1.53548i −0.0425375 + 0.999095i \(0.513544\pi\)
−0.843973 + 0.536386i \(0.819789\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −36.0798 20.8307i −1.14381 0.660377i
\(996\) 0 0
\(997\) 6.12692i 0.194042i 0.995282 + 0.0970208i \(0.0309313\pi\)
−0.995282 + 0.0970208i \(0.969069\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.df.c.17.7 16
3.2 odd 2 1008.2.df.c.689.5 16
4.3 odd 2 378.2.t.a.17.8 16
7.5 odd 6 3024.2.ca.c.2609.7 16
9.2 odd 6 3024.2.ca.c.2033.7 16
9.7 even 3 1008.2.ca.c.353.8 16
12.11 even 2 126.2.t.a.59.2 yes 16
21.5 even 6 1008.2.ca.c.257.8 16
28.3 even 6 2646.2.m.b.881.4 16
28.11 odd 6 2646.2.m.a.881.1 16
28.19 even 6 378.2.l.a.341.4 16
28.23 odd 6 2646.2.l.a.1097.1 16
28.27 even 2 2646.2.t.b.2285.5 16
36.7 odd 6 126.2.l.a.101.1 yes 16
36.11 even 6 378.2.l.a.143.8 16
36.23 even 6 1134.2.k.b.647.8 16
36.31 odd 6 1134.2.k.a.647.1 16
63.47 even 6 inner 3024.2.df.c.1601.7 16
63.61 odd 6 1008.2.df.c.929.5 16
84.11 even 6 882.2.m.a.293.6 16
84.23 even 6 882.2.l.b.509.8 16
84.47 odd 6 126.2.l.a.5.5 16
84.59 odd 6 882.2.m.b.293.7 16
84.83 odd 2 882.2.t.a.815.3 16
252.11 even 6 2646.2.m.b.1763.4 16
252.47 odd 6 378.2.t.a.89.8 16
252.79 odd 6 882.2.t.a.803.3 16
252.83 odd 6 2646.2.l.a.521.5 16
252.103 even 6 1134.2.k.b.971.8 16
252.115 even 6 882.2.m.a.587.6 16
252.131 odd 6 1134.2.k.a.971.1 16
252.151 odd 6 882.2.m.b.587.7 16
252.187 even 6 126.2.t.a.47.2 yes 16
252.191 even 6 2646.2.t.b.1979.5 16
252.223 even 6 882.2.l.b.227.4 16
252.227 odd 6 2646.2.m.a.1763.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.5 16 84.47 odd 6
126.2.l.a.101.1 yes 16 36.7 odd 6
126.2.t.a.47.2 yes 16 252.187 even 6
126.2.t.a.59.2 yes 16 12.11 even 2
378.2.l.a.143.8 16 36.11 even 6
378.2.l.a.341.4 16 28.19 even 6
378.2.t.a.17.8 16 4.3 odd 2
378.2.t.a.89.8 16 252.47 odd 6
882.2.l.b.227.4 16 252.223 even 6
882.2.l.b.509.8 16 84.23 even 6
882.2.m.a.293.6 16 84.11 even 6
882.2.m.a.587.6 16 252.115 even 6
882.2.m.b.293.7 16 84.59 odd 6
882.2.m.b.587.7 16 252.151 odd 6
882.2.t.a.803.3 16 252.79 odd 6
882.2.t.a.815.3 16 84.83 odd 2
1008.2.ca.c.257.8 16 21.5 even 6
1008.2.ca.c.353.8 16 9.7 even 3
1008.2.df.c.689.5 16 3.2 odd 2
1008.2.df.c.929.5 16 63.61 odd 6
1134.2.k.a.647.1 16 36.31 odd 6
1134.2.k.a.971.1 16 252.131 odd 6
1134.2.k.b.647.8 16 36.23 even 6
1134.2.k.b.971.8 16 252.103 even 6
2646.2.l.a.521.5 16 252.83 odd 6
2646.2.l.a.1097.1 16 28.23 odd 6
2646.2.m.a.881.1 16 28.11 odd 6
2646.2.m.a.1763.1 16 252.227 odd 6
2646.2.m.b.881.4 16 28.3 even 6
2646.2.m.b.1763.4 16 252.11 even 6
2646.2.t.b.1979.5 16 252.191 even 6
2646.2.t.b.2285.5 16 28.27 even 2
3024.2.ca.c.2033.7 16 9.2 odd 6
3024.2.ca.c.2609.7 16 7.5 odd 6
3024.2.df.c.17.7 16 1.1 even 1 trivial
3024.2.df.c.1601.7 16 63.47 even 6 inner