Properties

Label 1134.2.k.a.647.1
Level $1134$
Weight $2$
Character 1134.647
Analytic conductor $9.055$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,2,Mod(647,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.647"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.k (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,-4,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 647.1
Root \(1.71298 - 0.256290i\) of defining polynomial
Character \(\chi\) \(=\) 1134.647
Dual form 1134.2.k.a.971.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-1.80966 - 3.13442i) q^{5} +(2.14611 + 1.54733i) q^{7} +1.00000i q^{8} +(3.13442 + 1.80966i) q^{10} +(1.73534 + 1.00190i) q^{11} +3.40874i q^{13} +(-2.63225 - 0.266972i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-3.08709 + 5.34700i) q^{17} +(0.877353 - 0.506540i) q^{19} -3.61932 q^{20} -2.00379 q^{22} +(2.62232 - 1.51400i) q^{23} +(-4.04972 + 7.01433i) q^{25} +(-1.70437 - 2.95206i) q^{26} +(2.41308 - 1.08492i) q^{28} -5.82616i q^{29} +(-0.787812 - 0.454844i) q^{31} +(0.866025 + 0.500000i) q^{32} -6.17418i q^{34} +(0.966257 - 9.52693i) q^{35} +(3.66825 + 6.35359i) q^{37} +(-0.506540 + 0.877353i) q^{38} +(3.13442 - 1.80966i) q^{40} +5.70089 q^{41} +4.79899 q^{43} +(1.73534 - 1.00190i) q^{44} +(-1.51400 + 2.62232i) q^{46} +(1.11511 + 1.93143i) q^{47} +(2.21155 + 6.64146i) q^{49} -8.09945i q^{50} +(2.95206 + 1.70437i) q^{52} +(7.58088 + 4.37683i) q^{53} -7.25237i q^{55} +(-1.54733 + 2.14611i) q^{56} +(2.91308 + 5.04560i) q^{58} +(-4.49313 + 7.78233i) q^{59} +(12.7410 - 7.35603i) q^{61} +0.909687 q^{62} -1.00000 q^{64} +(10.6844 - 6.16866i) q^{65} +(4.15821 - 7.20222i) q^{67} +(3.08709 + 5.34700i) q^{68} +(3.92666 + 8.73370i) q^{70} -0.466287i q^{71} +(-3.65022 - 2.10746i) q^{73} +(-6.35359 - 3.66825i) q^{74} -1.01308i q^{76} +(2.17395 + 4.83532i) q^{77} +(-1.91267 - 3.31284i) q^{79} +(-1.80966 + 3.13442i) q^{80} +(-4.93712 + 2.85045i) q^{82} +8.00963 q^{83} +22.3463 q^{85} +(-4.15605 + 2.39949i) q^{86} +(-1.00190 + 1.73534i) q^{88} +(-2.39324 - 4.14521i) q^{89} +(-5.27445 + 7.31553i) q^{91} -3.02799i q^{92} +(-1.93143 - 1.11511i) q^{94} +(-3.17542 - 1.83333i) q^{95} +11.7589i q^{97} +(-5.23599 - 4.64590i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 4 q^{7} - 12 q^{11} - 8 q^{16} - 18 q^{17} + 6 q^{23} - 8 q^{25} + 12 q^{26} - 2 q^{28} - 6 q^{31} + 30 q^{35} - 2 q^{37} + 12 q^{41} + 4 q^{43} - 12 q^{44} + 6 q^{46} + 18 q^{47} - 2 q^{49}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.80966 3.13442i −0.809304 1.40175i −0.913347 0.407182i \(-0.866511\pi\)
0.104043 0.994573i \(-0.466822\pi\)
\(6\) 0 0
\(7\) 2.14611 + 1.54733i 0.811152 + 0.584835i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 3.13442 + 1.80966i 0.991190 + 0.572264i
\(11\) 1.73534 + 1.00190i 0.523224 + 0.302083i 0.738253 0.674524i \(-0.235651\pi\)
−0.215029 + 0.976608i \(0.568985\pi\)
\(12\) 0 0
\(13\) 3.40874i 0.945415i 0.881219 + 0.472708i \(0.156723\pi\)
−0.881219 + 0.472708i \(0.843277\pi\)
\(14\) −2.63225 0.266972i −0.703498 0.0713513i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.08709 + 5.34700i −0.748730 + 1.29684i 0.199702 + 0.979857i \(0.436002\pi\)
−0.948432 + 0.316981i \(0.897331\pi\)
\(18\) 0 0
\(19\) 0.877353 0.506540i 0.201279 0.116208i −0.395973 0.918262i \(-0.629593\pi\)
0.597252 + 0.802054i \(0.296259\pi\)
\(20\) −3.61932 −0.809304
\(21\) 0 0
\(22\) −2.00379 −0.427210
\(23\) 2.62232 1.51400i 0.546791 0.315690i −0.201035 0.979584i \(-0.564431\pi\)
0.747827 + 0.663894i \(0.231097\pi\)
\(24\) 0 0
\(25\) −4.04972 + 7.01433i −0.809945 + 1.40287i
\(26\) −1.70437 2.95206i −0.334255 0.578946i
\(27\) 0 0
\(28\) 2.41308 1.08492i 0.456029 0.205030i
\(29\) 5.82616i 1.08189i −0.841058 0.540945i \(-0.818067\pi\)
0.841058 0.540945i \(-0.181933\pi\)
\(30\) 0 0
\(31\) −0.787812 0.454844i −0.141495 0.0816923i 0.427581 0.903977i \(-0.359366\pi\)
−0.569076 + 0.822285i \(0.692699\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 6.17418i 1.05886i
\(35\) 0.966257 9.52693i 0.163327 1.61035i
\(36\) 0 0
\(37\) 3.66825 + 6.35359i 0.603056 + 1.04452i 0.992355 + 0.123413i \(0.0393839\pi\)
−0.389299 + 0.921111i \(0.627283\pi\)
\(38\) −0.506540 + 0.877353i −0.0821717 + 0.142325i
\(39\) 0 0
\(40\) 3.13442 1.80966i 0.495595 0.286132i
\(41\) 5.70089 0.890330 0.445165 0.895449i \(-0.353145\pi\)
0.445165 + 0.895449i \(0.353145\pi\)
\(42\) 0 0
\(43\) 4.79899 0.731839 0.365919 0.930647i \(-0.380755\pi\)
0.365919 + 0.930647i \(0.380755\pi\)
\(44\) 1.73534 1.00190i 0.261612 0.151042i
\(45\) 0 0
\(46\) −1.51400 + 2.62232i −0.223227 + 0.386640i
\(47\) 1.11511 + 1.93143i 0.162655 + 0.281727i 0.935820 0.352478i \(-0.114661\pi\)
−0.773165 + 0.634205i \(0.781327\pi\)
\(48\) 0 0
\(49\) 2.21155 + 6.64146i 0.315936 + 0.948781i
\(50\) 8.09945i 1.14543i
\(51\) 0 0
\(52\) 2.95206 + 1.70437i 0.409377 + 0.236354i
\(53\) 7.58088 + 4.37683i 1.04131 + 0.601203i 0.920205 0.391436i \(-0.128022\pi\)
0.121109 + 0.992639i \(0.461355\pi\)
\(54\) 0 0
\(55\) 7.25237i 0.977909i
\(56\) −1.54733 + 2.14611i −0.206770 + 0.286786i
\(57\) 0 0
\(58\) 2.91308 + 5.04560i 0.382506 + 0.662520i
\(59\) −4.49313 + 7.78233i −0.584956 + 1.01317i 0.409925 + 0.912119i \(0.365555\pi\)
−0.994881 + 0.101054i \(0.967778\pi\)
\(60\) 0 0
\(61\) 12.7410 7.35603i 1.63132 0.941843i 0.647634 0.761952i \(-0.275759\pi\)
0.983686 0.179892i \(-0.0575747\pi\)
\(62\) 0.909687 0.115530
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 10.6844 6.16866i 1.32524 0.765128i
\(66\) 0 0
\(67\) 4.15821 7.20222i 0.508006 0.879892i −0.491951 0.870623i \(-0.663716\pi\)
0.999957 0.00926908i \(-0.00295048\pi\)
\(68\) 3.08709 + 5.34700i 0.374365 + 0.648419i
\(69\) 0 0
\(70\) 3.92666 + 8.73370i 0.469326 + 1.04388i
\(71\) 0.466287i 0.0553381i −0.999617 0.0276691i \(-0.991192\pi\)
0.999617 0.0276691i \(-0.00880846\pi\)
\(72\) 0 0
\(73\) −3.65022 2.10746i −0.427226 0.246659i 0.270938 0.962597i \(-0.412666\pi\)
−0.698164 + 0.715938i \(0.746000\pi\)
\(74\) −6.35359 3.66825i −0.738590 0.426425i
\(75\) 0 0
\(76\) 1.01308i 0.116208i
\(77\) 2.17395 + 4.83532i 0.247745 + 0.551035i
\(78\) 0 0
\(79\) −1.91267 3.31284i −0.215192 0.372723i 0.738140 0.674648i \(-0.235704\pi\)
−0.953332 + 0.301924i \(0.902371\pi\)
\(80\) −1.80966 + 3.13442i −0.202326 + 0.350439i
\(81\) 0 0
\(82\) −4.93712 + 2.85045i −0.545213 + 0.314779i
\(83\) 8.00963 0.879171 0.439585 0.898201i \(-0.355125\pi\)
0.439585 + 0.898201i \(0.355125\pi\)
\(84\) 0 0
\(85\) 22.3463 2.42380
\(86\) −4.15605 + 2.39949i −0.448158 + 0.258744i
\(87\) 0 0
\(88\) −1.00190 + 1.73534i −0.106803 + 0.184988i
\(89\) −2.39324 4.14521i −0.253683 0.439391i 0.710854 0.703339i \(-0.248309\pi\)
−0.964537 + 0.263948i \(0.914975\pi\)
\(90\) 0 0
\(91\) −5.27445 + 7.31553i −0.552912 + 0.766876i
\(92\) 3.02799i 0.315690i
\(93\) 0 0
\(94\) −1.93143 1.11511i −0.199211 0.115015i
\(95\) −3.17542 1.83333i −0.325791 0.188096i
\(96\) 0 0
\(97\) 11.7589i 1.19393i 0.802266 + 0.596967i \(0.203628\pi\)
−0.802266 + 0.596967i \(0.796372\pi\)
\(98\) −5.23599 4.64590i −0.528915 0.469307i
\(99\) 0 0
\(100\) 4.04972 + 7.01433i 0.404972 + 0.701433i
\(101\) −6.44610 + 11.1650i −0.641411 + 1.11096i 0.343707 + 0.939077i \(0.388317\pi\)
−0.985118 + 0.171879i \(0.945016\pi\)
\(102\) 0 0
\(103\) −9.31740 + 5.37940i −0.918070 + 0.530048i −0.883019 0.469337i \(-0.844493\pi\)
−0.0350515 + 0.999386i \(0.511160\pi\)
\(104\) −3.40874 −0.334255
\(105\) 0 0
\(106\) −8.75365 −0.850230
\(107\) −2.28602 + 1.31983i −0.220998 + 0.127593i −0.606412 0.795151i \(-0.707392\pi\)
0.385414 + 0.922744i \(0.374058\pi\)
\(108\) 0 0
\(109\) 4.51768 7.82484i 0.432715 0.749484i −0.564391 0.825507i \(-0.690889\pi\)
0.997106 + 0.0760233i \(0.0242224\pi\)
\(110\) 3.62618 + 6.28073i 0.345743 + 0.598844i
\(111\) 0 0
\(112\) 0.266972 2.63225i 0.0252265 0.248724i
\(113\) 1.69061i 0.159039i −0.996833 0.0795197i \(-0.974661\pi\)
0.996833 0.0795197i \(-0.0253387\pi\)
\(114\) 0 0
\(115\) −9.49100 5.47963i −0.885041 0.510978i
\(116\) −5.04560 2.91308i −0.468472 0.270473i
\(117\) 0 0
\(118\) 8.98627i 0.827253i
\(119\) −14.8988 + 6.69849i −1.36577 + 0.614049i
\(120\) 0 0
\(121\) −3.49240 6.04902i −0.317491 0.549911i
\(122\) −7.35603 + 12.7410i −0.665984 + 1.15352i
\(123\) 0 0
\(124\) −0.787812 + 0.454844i −0.0707476 + 0.0408462i
\(125\) 11.2179 1.00336
\(126\) 0 0
\(127\) 17.9292 1.59096 0.795478 0.605983i \(-0.207220\pi\)
0.795478 + 0.605983i \(0.207220\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −6.16866 + 10.6844i −0.541027 + 0.937087i
\(131\) 8.66567 + 15.0094i 0.757123 + 1.31138i 0.944312 + 0.329052i \(0.106729\pi\)
−0.187188 + 0.982324i \(0.559938\pi\)
\(132\) 0 0
\(133\) 2.66668 + 0.270464i 0.231230 + 0.0234522i
\(134\) 8.31641i 0.718429i
\(135\) 0 0
\(136\) −5.34700 3.08709i −0.458501 0.264716i
\(137\) −0.000558693 0 0.000322562i −4.77324e−5 0 2.75583e-5i 0.499976 0.866039i \(-0.333342\pi\)
−0.500024 + 0.866012i \(0.666675\pi\)
\(138\) 0 0
\(139\) 10.0837i 0.855288i −0.903947 0.427644i \(-0.859344\pi\)
0.903947 0.427644i \(-0.140656\pi\)
\(140\) −7.76744 5.60027i −0.656468 0.473309i
\(141\) 0 0
\(142\) 0.233144 + 0.403817i 0.0195650 + 0.0338875i
\(143\) −3.41521 + 5.91532i −0.285594 + 0.494664i
\(144\) 0 0
\(145\) −18.2616 + 10.5434i −1.51655 + 0.875578i
\(146\) 4.21492 0.348829
\(147\) 0 0
\(148\) 7.33650 0.603056
\(149\) 9.74064 5.62376i 0.797984 0.460716i −0.0447816 0.998997i \(-0.514259\pi\)
0.842766 + 0.538280i \(0.180926\pi\)
\(150\) 0 0
\(151\) 2.36189 4.09092i 0.192208 0.332914i −0.753774 0.657134i \(-0.771768\pi\)
0.945982 + 0.324220i \(0.105102\pi\)
\(152\) 0.506540 + 0.877353i 0.0410858 + 0.0711627i
\(153\) 0 0
\(154\) −4.30036 3.10053i −0.346533 0.249848i
\(155\) 3.29245i 0.264456i
\(156\) 0 0
\(157\) −2.65845 1.53486i −0.212168 0.122495i 0.390151 0.920751i \(-0.372423\pi\)
−0.602318 + 0.798256i \(0.705756\pi\)
\(158\) 3.31284 + 1.91267i 0.263555 + 0.152164i
\(159\) 0 0
\(160\) 3.61932i 0.286132i
\(161\) 7.97043 + 0.808390i 0.628158 + 0.0637101i
\(162\) 0 0
\(163\) −1.43687 2.48873i −0.112544 0.194932i 0.804251 0.594289i \(-0.202567\pi\)
−0.916795 + 0.399357i \(0.869233\pi\)
\(164\) 2.85045 4.93712i 0.222582 0.385524i
\(165\) 0 0
\(166\) −6.93654 + 4.00481i −0.538380 + 0.310834i
\(167\) −1.46103 −0.113058 −0.0565291 0.998401i \(-0.518003\pi\)
−0.0565291 + 0.998401i \(0.518003\pi\)
\(168\) 0 0
\(169\) 1.38047 0.106190
\(170\) −19.3525 + 11.1732i −1.48427 + 0.856942i
\(171\) 0 0
\(172\) 2.39949 4.15605i 0.182960 0.316896i
\(173\) 1.53541 + 2.65940i 0.116735 + 0.202191i 0.918472 0.395486i \(-0.129424\pi\)
−0.801737 + 0.597677i \(0.796091\pi\)
\(174\) 0 0
\(175\) −19.5446 + 8.78724i −1.47743 + 0.664253i
\(176\) 2.00379i 0.151042i
\(177\) 0 0
\(178\) 4.14521 + 2.39324i 0.310696 + 0.179381i
\(179\) 16.7310 + 9.65966i 1.25054 + 0.721997i 0.971216 0.238201i \(-0.0765578\pi\)
0.279320 + 0.960198i \(0.409891\pi\)
\(180\) 0 0
\(181\) 7.89318i 0.586695i 0.956006 + 0.293348i \(0.0947693\pi\)
−0.956006 + 0.293348i \(0.905231\pi\)
\(182\) 0.910040 8.97266i 0.0674566 0.665098i
\(183\) 0 0
\(184\) 1.51400 + 2.62232i 0.111613 + 0.193320i
\(185\) 13.2765 22.9957i 0.976111 1.69067i
\(186\) 0 0
\(187\) −10.7143 + 6.18590i −0.783506 + 0.452358i
\(188\) 2.23022 0.162655
\(189\) 0 0
\(190\) 3.66666 0.266007
\(191\) 11.5218 6.65211i 0.833688 0.481330i −0.0214259 0.999770i \(-0.506821\pi\)
0.855114 + 0.518441i \(0.173487\pi\)
\(192\) 0 0
\(193\) −3.26786 + 5.66011i −0.235226 + 0.407423i −0.959338 0.282259i \(-0.908916\pi\)
0.724112 + 0.689682i \(0.242250\pi\)
\(194\) −5.87944 10.1835i −0.422119 0.731132i
\(195\) 0 0
\(196\) 6.85745 + 1.40547i 0.489818 + 0.100391i
\(197\) 4.44250i 0.316515i 0.987398 + 0.158258i \(0.0505876\pi\)
−0.987398 + 0.158258i \(0.949412\pi\)
\(198\) 0 0
\(199\) 9.96868 + 5.75542i 0.706661 + 0.407991i 0.809823 0.586674i \(-0.199563\pi\)
−0.103163 + 0.994665i \(0.532896\pi\)
\(200\) −7.01433 4.04972i −0.495988 0.286359i
\(201\) 0 0
\(202\) 12.8922i 0.907092i
\(203\) 9.01498 12.5036i 0.632728 0.877578i
\(204\) 0 0
\(205\) −10.3167 17.8690i −0.720547 1.24802i
\(206\) 5.37940 9.31740i 0.374801 0.649174i
\(207\) 0 0
\(208\) 2.95206 1.70437i 0.204688 0.118177i
\(209\) 2.03000 0.140418
\(210\) 0 0
\(211\) −22.6011 −1.55592 −0.777961 0.628313i \(-0.783746\pi\)
−0.777961 + 0.628313i \(0.783746\pi\)
\(212\) 7.58088 4.37683i 0.520657 0.300602i
\(213\) 0 0
\(214\) 1.31983 2.28602i 0.0902219 0.156269i
\(215\) −8.68453 15.0420i −0.592280 1.02586i
\(216\) 0 0
\(217\) −0.986937 2.19515i −0.0669976 0.149016i
\(218\) 9.03535i 0.611951i
\(219\) 0 0
\(220\) −6.28073 3.62618i −0.423447 0.244477i
\(221\) −18.2265 10.5231i −1.22605 0.707860i
\(222\) 0 0
\(223\) 18.8209i 1.26034i −0.776457 0.630170i \(-0.782985\pi\)
0.776457 0.630170i \(-0.217015\pi\)
\(224\) 1.08492 + 2.41308i 0.0724892 + 0.161231i
\(225\) 0 0
\(226\) 0.845306 + 1.46411i 0.0562289 + 0.0973914i
\(227\) −7.30665 + 12.6555i −0.484960 + 0.839975i −0.999851 0.0172809i \(-0.994499\pi\)
0.514891 + 0.857256i \(0.327832\pi\)
\(228\) 0 0
\(229\) −2.06044 + 1.18959i −0.136158 + 0.0786106i −0.566531 0.824040i \(-0.691715\pi\)
0.430374 + 0.902651i \(0.358382\pi\)
\(230\) 10.9593 0.722633
\(231\) 0 0
\(232\) 5.82616 0.382506
\(233\) 9.03470 5.21619i 0.591883 0.341724i −0.173959 0.984753i \(-0.555656\pi\)
0.765842 + 0.643029i \(0.222323\pi\)
\(234\) 0 0
\(235\) 4.03593 6.99044i 0.263275 0.456006i
\(236\) 4.49313 + 7.78233i 0.292478 + 0.506587i
\(237\) 0 0
\(238\) 9.55349 13.2505i 0.619261 0.858899i
\(239\) 23.7835i 1.53843i 0.638992 + 0.769213i \(0.279352\pi\)
−0.638992 + 0.769213i \(0.720648\pi\)
\(240\) 0 0
\(241\) −24.8105 14.3243i −1.59818 0.922712i −0.991837 0.127513i \(-0.959301\pi\)
−0.606348 0.795200i \(-0.707366\pi\)
\(242\) 6.04902 + 3.49240i 0.388846 + 0.224500i
\(243\) 0 0
\(244\) 14.7121i 0.941843i
\(245\) 16.8150 18.9507i 1.07427 1.21072i
\(246\) 0 0
\(247\) 1.72667 + 2.99067i 0.109865 + 0.190292i
\(248\) 0.454844 0.787812i 0.0288826 0.0500261i
\(249\) 0 0
\(250\) −9.71496 + 5.60894i −0.614428 + 0.354740i
\(251\) −11.0301 −0.696216 −0.348108 0.937454i \(-0.613176\pi\)
−0.348108 + 0.937454i \(0.613176\pi\)
\(252\) 0 0
\(253\) 6.06748 0.381459
\(254\) −15.5271 + 8.96458i −0.974257 + 0.562488i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.54890 13.0751i −0.470888 0.815601i 0.528558 0.848897i \(-0.322733\pi\)
−0.999446 + 0.0332960i \(0.989400\pi\)
\(258\) 0 0
\(259\) −1.95864 + 19.3115i −0.121704 + 1.19996i
\(260\) 12.3373i 0.765128i
\(261\) 0 0
\(262\) −15.0094 8.66567i −0.927283 0.535367i
\(263\) −17.0075 9.81926i −1.04873 0.605482i −0.126433 0.991975i \(-0.540353\pi\)
−0.922292 + 0.386493i \(0.873686\pi\)
\(264\) 0 0
\(265\) 31.6822i 1.94622i
\(266\) −2.44464 + 1.09911i −0.149891 + 0.0673908i
\(267\) 0 0
\(268\) −4.15821 7.20222i −0.254003 0.439946i
\(269\) 0.245503 0.425223i 0.0149686 0.0259263i −0.858444 0.512907i \(-0.828569\pi\)
0.873413 + 0.486981i \(0.161902\pi\)
\(270\) 0 0
\(271\) −12.1927 + 7.03945i −0.740653 + 0.427616i −0.822307 0.569045i \(-0.807313\pi\)
0.0816537 + 0.996661i \(0.473980\pi\)
\(272\) 6.17418 0.374365
\(273\) 0 0
\(274\) 0.000645123 0 3.89733e−5 0
\(275\) −14.0553 + 8.11481i −0.847565 + 0.489342i
\(276\) 0 0
\(277\) −15.3600 + 26.6043i −0.922894 + 1.59850i −0.127981 + 0.991777i \(0.540850\pi\)
−0.794913 + 0.606723i \(0.792484\pi\)
\(278\) 5.04185 + 8.73273i 0.302390 + 0.523755i
\(279\) 0 0
\(280\) 9.52693 + 0.966257i 0.569343 + 0.0577449i
\(281\) 7.92455i 0.472739i −0.971663 0.236369i \(-0.924042\pi\)
0.971663 0.236369i \(-0.0759576\pi\)
\(282\) 0 0
\(283\) 9.97303 + 5.75793i 0.592835 + 0.342273i 0.766218 0.642581i \(-0.222136\pi\)
−0.173383 + 0.984855i \(0.555470\pi\)
\(284\) −0.403817 0.233144i −0.0239621 0.0138345i
\(285\) 0 0
\(286\) 6.83042i 0.403891i
\(287\) 12.2347 + 8.82115i 0.722193 + 0.520696i
\(288\) 0 0
\(289\) −10.5603 18.2909i −0.621192 1.07594i
\(290\) 10.5434 18.2616i 0.619127 1.07236i
\(291\) 0 0
\(292\) −3.65022 + 2.10746i −0.213613 + 0.123330i
\(293\) 5.01875 0.293198 0.146599 0.989196i \(-0.453167\pi\)
0.146599 + 0.989196i \(0.453167\pi\)
\(294\) 0 0
\(295\) 32.5241 1.89363
\(296\) −6.35359 + 3.66825i −0.369295 + 0.213213i
\(297\) 0 0
\(298\) −5.62376 + 9.74064i −0.325776 + 0.564260i
\(299\) 5.16083 + 8.93882i 0.298458 + 0.516945i
\(300\) 0 0
\(301\) 10.2991 + 7.42561i 0.593633 + 0.428005i
\(302\) 4.72379i 0.271824i
\(303\) 0 0
\(304\) −0.877353 0.506540i −0.0503197 0.0290521i
\(305\) −46.1138 26.6238i −2.64047 1.52447i
\(306\) 0 0
\(307\) 17.5309i 1.00054i −0.865869 0.500271i \(-0.833234\pi\)
0.865869 0.500271i \(-0.166766\pi\)
\(308\) 5.27448 + 0.534957i 0.300542 + 0.0304820i
\(309\) 0 0
\(310\) −1.64622 2.85134i −0.0934992 0.161945i
\(311\) −8.64759 + 14.9781i −0.490360 + 0.849328i −0.999938 0.0110959i \(-0.996468\pi\)
0.509579 + 0.860424i \(0.329801\pi\)
\(312\) 0 0
\(313\) −7.78988 + 4.49749i −0.440310 + 0.254213i −0.703729 0.710468i \(-0.748483\pi\)
0.263419 + 0.964681i \(0.415150\pi\)
\(314\) 3.06972 0.173234
\(315\) 0 0
\(316\) −3.82533 −0.215192
\(317\) −5.82002 + 3.36019i −0.326885 + 0.188727i −0.654457 0.756099i \(-0.727103\pi\)
0.327572 + 0.944826i \(0.393770\pi\)
\(318\) 0 0
\(319\) 5.83721 10.1103i 0.326821 0.566071i
\(320\) 1.80966 + 3.13442i 0.101163 + 0.175219i
\(321\) 0 0
\(322\) −7.30679 + 3.28513i −0.407191 + 0.183073i
\(323\) 6.25494i 0.348034i
\(324\) 0 0
\(325\) −23.9100 13.8045i −1.32629 0.765734i
\(326\) 2.48873 + 1.43687i 0.137838 + 0.0795807i
\(327\) 0 0
\(328\) 5.70089i 0.314779i
\(329\) −0.595406 + 5.87048i −0.0328258 + 0.323650i
\(330\) 0 0
\(331\) 9.38725 + 16.2592i 0.515970 + 0.893686i 0.999828 + 0.0185396i \(0.00590167\pi\)
−0.483858 + 0.875146i \(0.660765\pi\)
\(332\) 4.00481 6.93654i 0.219793 0.380692i
\(333\) 0 0
\(334\) 1.26529 0.730517i 0.0692338 0.0399721i
\(335\) −30.0997 −1.64452
\(336\) 0 0
\(337\) −4.84575 −0.263965 −0.131982 0.991252i \(-0.542134\pi\)
−0.131982 + 0.991252i \(0.542134\pi\)
\(338\) −1.19552 + 0.690233i −0.0650276 + 0.0375437i
\(339\) 0 0
\(340\) 11.1732 19.3525i 0.605949 1.04954i
\(341\) −0.911413 1.57861i −0.0493558 0.0854868i
\(342\) 0 0
\(343\) −5.53030 + 17.6753i −0.298608 + 0.954376i
\(344\) 4.79899i 0.258744i
\(345\) 0 0
\(346\) −2.65940 1.53541i −0.142970 0.0825440i
\(347\) −15.1305 8.73559i −0.812247 0.468951i 0.0354887 0.999370i \(-0.488701\pi\)
−0.847736 + 0.530419i \(0.822035\pi\)
\(348\) 0 0
\(349\) 23.8258i 1.27537i −0.770299 0.637683i \(-0.779893\pi\)
0.770299 0.637683i \(-0.220107\pi\)
\(350\) 12.5325 17.3823i 0.669890 0.929122i
\(351\) 0 0
\(352\) 1.00190 + 1.73534i 0.0534013 + 0.0924938i
\(353\) 5.02061 8.69596i 0.267220 0.462839i −0.700923 0.713237i \(-0.747228\pi\)
0.968143 + 0.250398i \(0.0805615\pi\)
\(354\) 0 0
\(355\) −1.46154 + 0.843820i −0.0775705 + 0.0447853i
\(356\) −4.78647 −0.253683
\(357\) 0 0
\(358\) −19.3193 −1.02106
\(359\) −10.5353 + 6.08254i −0.556030 + 0.321024i −0.751550 0.659676i \(-0.770694\pi\)
0.195521 + 0.980700i \(0.437360\pi\)
\(360\) 0 0
\(361\) −8.98683 + 15.5657i −0.472991 + 0.819245i
\(362\) −3.94659 6.83569i −0.207428 0.359276i
\(363\) 0 0
\(364\) 3.69821 + 8.22557i 0.193839 + 0.431137i
\(365\) 15.2551i 0.798489i
\(366\) 0 0
\(367\) −3.14420 1.81531i −0.164126 0.0947582i 0.415687 0.909508i \(-0.363541\pi\)
−0.579813 + 0.814749i \(0.696874\pi\)
\(368\) −2.62232 1.51400i −0.136698 0.0789225i
\(369\) 0 0
\(370\) 26.5531i 1.38043i
\(371\) 9.49700 + 21.1233i 0.493060 + 1.09666i
\(372\) 0 0
\(373\) −2.74616 4.75648i −0.142191 0.246281i 0.786131 0.618060i \(-0.212081\pi\)
−0.928321 + 0.371779i \(0.878748\pi\)
\(374\) 6.18590 10.7143i 0.319865 0.554023i
\(375\) 0 0
\(376\) −1.93143 + 1.11511i −0.0996057 + 0.0575074i
\(377\) 19.8599 1.02284
\(378\) 0 0
\(379\) −15.5960 −0.801112 −0.400556 0.916272i \(-0.631183\pi\)
−0.400556 + 0.916272i \(0.631183\pi\)
\(380\) −3.17542 + 1.83333i −0.162896 + 0.0940478i
\(381\) 0 0
\(382\) −6.65211 + 11.5218i −0.340352 + 0.589506i
\(383\) 4.71534 + 8.16720i 0.240942 + 0.417324i 0.960983 0.276607i \(-0.0892102\pi\)
−0.720041 + 0.693932i \(0.755877\pi\)
\(384\) 0 0
\(385\) 11.2218 15.5644i 0.571915 0.793233i
\(386\) 6.53573i 0.332660i
\(387\) 0 0
\(388\) 10.1835 + 5.87944i 0.516989 + 0.298483i
\(389\) −5.56142 3.21089i −0.281975 0.162798i 0.352342 0.935871i \(-0.385385\pi\)
−0.634317 + 0.773073i \(0.718719\pi\)
\(390\) 0 0
\(391\) 18.6954i 0.945466i
\(392\) −6.64146 + 2.21155i −0.335445 + 0.111700i
\(393\) 0 0
\(394\) −2.22125 3.84732i −0.111905 0.193825i
\(395\) −6.92255 + 11.9902i −0.348311 + 0.603293i
\(396\) 0 0
\(397\) 5.99750 3.46266i 0.301006 0.173786i −0.341889 0.939740i \(-0.611067\pi\)
0.642895 + 0.765955i \(0.277733\pi\)
\(398\) −11.5108 −0.576986
\(399\) 0 0
\(400\) 8.09945 0.404972
\(401\) 9.16848 5.29343i 0.457852 0.264341i −0.253289 0.967391i \(-0.581512\pi\)
0.711141 + 0.703050i \(0.248179\pi\)
\(402\) 0 0
\(403\) 1.55045 2.68545i 0.0772332 0.133772i
\(404\) 6.44610 + 11.1650i 0.320705 + 0.555478i
\(405\) 0 0
\(406\) −1.55542 + 15.3359i −0.0771943 + 0.761107i
\(407\) 14.7008i 0.728693i
\(408\) 0 0
\(409\) −7.72792 4.46172i −0.382121 0.220618i 0.296620 0.954996i \(-0.404141\pi\)
−0.678741 + 0.734378i \(0.737474\pi\)
\(410\) 17.8690 + 10.3167i 0.882486 + 0.509504i
\(411\) 0 0
\(412\) 10.7588i 0.530048i
\(413\) −21.6846 + 9.74937i −1.06703 + 0.479735i
\(414\) 0 0
\(415\) −14.4947 25.1055i −0.711516 1.23238i
\(416\) −1.70437 + 2.95206i −0.0835637 + 0.144737i
\(417\) 0 0
\(418\) −1.75804 + 1.01500i −0.0859883 + 0.0496454i
\(419\) −34.3848 −1.67981 −0.839903 0.542737i \(-0.817388\pi\)
−0.839903 + 0.542737i \(0.817388\pi\)
\(420\) 0 0
\(421\) 35.5680 1.73348 0.866739 0.498762i \(-0.166212\pi\)
0.866739 + 0.498762i \(0.166212\pi\)
\(422\) 19.5731 11.3005i 0.952803 0.550101i
\(423\) 0 0
\(424\) −4.37683 + 7.58088i −0.212557 + 0.368160i
\(425\) −25.0037 43.3077i −1.21286 2.10073i
\(426\) 0 0
\(427\) 38.7258 + 3.92771i 1.87407 + 0.190075i
\(428\) 2.63967i 0.127593i
\(429\) 0 0
\(430\) 15.0420 + 8.68453i 0.725392 + 0.418805i
\(431\) −26.7338 15.4348i −1.28772 0.743466i −0.309474 0.950908i \(-0.600153\pi\)
−0.978247 + 0.207442i \(0.933486\pi\)
\(432\) 0 0
\(433\) 23.2463i 1.11715i −0.829455 0.558574i \(-0.811349\pi\)
0.829455 0.558574i \(-0.188651\pi\)
\(434\) 1.95229 + 1.40758i 0.0937127 + 0.0675662i
\(435\) 0 0
\(436\) −4.51768 7.82484i −0.216357 0.374742i
\(437\) 1.53380 2.65662i 0.0733716 0.127083i
\(438\) 0 0
\(439\) −19.2887 + 11.1364i −0.920601 + 0.531509i −0.883827 0.467814i \(-0.845042\pi\)
−0.0367744 + 0.999324i \(0.511708\pi\)
\(440\) 7.25237 0.345743
\(441\) 0 0
\(442\) 21.0462 1.00107
\(443\) 15.5756 8.99259i 0.740020 0.427251i −0.0820566 0.996628i \(-0.526149\pi\)
0.822077 + 0.569377i \(0.192815\pi\)
\(444\) 0 0
\(445\) −8.66188 + 15.0028i −0.410612 + 0.711202i
\(446\) 9.41045 + 16.2994i 0.445598 + 0.771798i
\(447\) 0 0
\(448\) −2.14611 1.54733i −0.101394 0.0731044i
\(449\) 9.44363i 0.445673i −0.974856 0.222836i \(-0.928468\pi\)
0.974856 0.222836i \(-0.0715315\pi\)
\(450\) 0 0
\(451\) 9.89297 + 5.71171i 0.465842 + 0.268954i
\(452\) −1.46411 0.845306i −0.0688661 0.0397599i
\(453\) 0 0
\(454\) 14.6133i 0.685837i
\(455\) 32.4749 + 3.29372i 1.52245 + 0.154412i
\(456\) 0 0
\(457\) 0.922251 + 1.59739i 0.0431411 + 0.0747225i 0.886790 0.462173i \(-0.152930\pi\)
−0.843649 + 0.536896i \(0.819597\pi\)
\(458\) 1.18959 2.06044i 0.0555861 0.0962779i
\(459\) 0 0
\(460\) −9.49100 + 5.47963i −0.442520 + 0.255489i
\(461\) 36.3739 1.69410 0.847050 0.531513i \(-0.178376\pi\)
0.847050 + 0.531513i \(0.178376\pi\)
\(462\) 0 0
\(463\) 31.9660 1.48559 0.742794 0.669520i \(-0.233500\pi\)
0.742794 + 0.669520i \(0.233500\pi\)
\(464\) −5.04560 + 2.91308i −0.234236 + 0.135236i
\(465\) 0 0
\(466\) −5.21619 + 9.03470i −0.241635 + 0.418525i
\(467\) 12.2206 + 21.1666i 0.565500 + 0.979475i 0.997003 + 0.0773632i \(0.0246501\pi\)
−0.431503 + 0.902112i \(0.642017\pi\)
\(468\) 0 0
\(469\) 20.0682 9.02263i 0.926662 0.416627i
\(470\) 8.07186i 0.372327i
\(471\) 0 0
\(472\) −7.78233 4.49313i −0.358211 0.206813i
\(473\) 8.32786 + 4.80809i 0.382916 + 0.221076i
\(474\) 0 0
\(475\) 8.20539i 0.376489i
\(476\) −1.64833 + 16.2520i −0.0755513 + 0.744908i
\(477\) 0 0
\(478\) −11.8917 20.5971i −0.543916 0.942090i
\(479\) 5.48032 9.49220i 0.250402 0.433710i −0.713234 0.700926i \(-0.752770\pi\)
0.963637 + 0.267216i \(0.0861037\pi\)
\(480\) 0 0
\(481\) −21.6578 + 12.5041i −0.987509 + 0.570139i
\(482\) 28.6487 1.30491
\(483\) 0 0
\(484\) −6.98481 −0.317491
\(485\) 36.8573 21.2796i 1.67360 0.966255i
\(486\) 0 0
\(487\) −16.8087 + 29.1136i −0.761677 + 1.31926i 0.180309 + 0.983610i \(0.442290\pi\)
−0.941986 + 0.335653i \(0.891043\pi\)
\(488\) 7.35603 + 12.7410i 0.332992 + 0.576759i
\(489\) 0 0
\(490\) −5.08685 + 24.8193i −0.229801 + 1.12122i
\(491\) 22.7353i 1.02603i −0.858380 0.513015i \(-0.828529\pi\)
0.858380 0.513015i \(-0.171471\pi\)
\(492\) 0 0
\(493\) 31.1525 + 17.9859i 1.40304 + 0.810043i
\(494\) −2.99067 1.72667i −0.134557 0.0776863i
\(495\) 0 0
\(496\) 0.909687i 0.0408462i
\(497\) 0.721500 1.00070i 0.0323637 0.0448876i
\(498\) 0 0
\(499\) −9.76175 16.9079i −0.436996 0.756899i 0.560460 0.828181i \(-0.310624\pi\)
−0.997456 + 0.0712820i \(0.977291\pi\)
\(500\) 5.60894 9.71496i 0.250839 0.434466i
\(501\) 0 0
\(502\) 9.55238 5.51507i 0.426343 0.246149i
\(503\) −13.6867 −0.610262 −0.305131 0.952310i \(-0.598700\pi\)
−0.305131 + 0.952310i \(0.598700\pi\)
\(504\) 0 0
\(505\) 46.6609 2.07638
\(506\) −5.25459 + 3.03374i −0.233595 + 0.134866i
\(507\) 0 0
\(508\) 8.96458 15.5271i 0.397739 0.688904i
\(509\) −1.14583 1.98464i −0.0507881 0.0879675i 0.839514 0.543338i \(-0.182840\pi\)
−0.890302 + 0.455371i \(0.849507\pi\)
\(510\) 0 0
\(511\) −4.57284 10.1709i −0.202291 0.449935i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 13.0751 + 7.54890i 0.576717 + 0.332968i
\(515\) 33.7226 + 19.4698i 1.48600 + 0.857940i
\(516\) 0 0
\(517\) 4.46890i 0.196542i
\(518\) −7.95950 17.7035i −0.349720 0.777849i
\(519\) 0 0
\(520\) 6.16866 + 10.6844i 0.270514 + 0.468543i
\(521\) 8.54102 14.7935i 0.374189 0.648114i −0.616017 0.787733i \(-0.711255\pi\)
0.990205 + 0.139619i \(0.0445879\pi\)
\(522\) 0 0
\(523\) 35.7462 20.6381i 1.56307 0.902440i 0.566128 0.824317i \(-0.308441\pi\)
0.996944 0.0781229i \(-0.0248927\pi\)
\(524\) 17.3313 0.757123
\(525\) 0 0
\(526\) 19.6385 0.856280
\(527\) 4.86410 2.80829i 0.211883 0.122331i
\(528\) 0 0
\(529\) −6.91563 + 11.9782i −0.300679 + 0.520792i
\(530\) 15.8411 + 27.4376i 0.688094 + 1.19181i
\(531\) 0 0
\(532\) 1.56757 2.17418i 0.0679627 0.0942626i
\(533\) 19.4329i 0.841731i
\(534\) 0 0
\(535\) 8.27382 + 4.77689i 0.357708 + 0.206523i
\(536\) 7.20222 + 4.15821i 0.311089 + 0.179607i
\(537\) 0 0
\(538\) 0.491005i 0.0211687i
\(539\) −2.81628 + 13.7409i −0.121306 + 0.591864i
\(540\) 0 0
\(541\) 22.7197 + 39.3516i 0.976795 + 1.69186i 0.673880 + 0.738841i \(0.264627\pi\)
0.302915 + 0.953018i \(0.402040\pi\)
\(542\) 7.03945 12.1927i 0.302370 0.523721i
\(543\) 0 0
\(544\) −5.34700 + 3.08709i −0.229251 + 0.132358i
\(545\) −32.7018 −1.40079
\(546\) 0 0
\(547\) −30.2191 −1.29207 −0.646037 0.763306i \(-0.723575\pi\)
−0.646037 + 0.763306i \(0.723575\pi\)
\(548\) −0.000558693 0 0.000322562i −2.38662e−5 0 1.37791e-5i
\(549\) 0 0
\(550\) 8.11481 14.0553i 0.346017 0.599319i
\(551\) −2.95118 5.11160i −0.125725 0.217761i
\(552\) 0 0
\(553\) 1.02126 10.0692i 0.0434283 0.428187i
\(554\) 30.7200i 1.30517i
\(555\) 0 0
\(556\) −8.73273 5.04185i −0.370350 0.213822i
\(557\) 22.0154 + 12.7106i 0.932822 + 0.538565i 0.887703 0.460417i \(-0.152300\pi\)
0.0451189 + 0.998982i \(0.485633\pi\)
\(558\) 0 0
\(559\) 16.3585i 0.691892i
\(560\) −8.73370 + 3.92666i −0.369066 + 0.165932i
\(561\) 0 0
\(562\) 3.96227 + 6.86286i 0.167138 + 0.289492i
\(563\) −1.44346 + 2.50015i −0.0608346 + 0.105369i −0.894839 0.446390i \(-0.852710\pi\)
0.834004 + 0.551758i \(0.186043\pi\)
\(564\) 0 0
\(565\) −5.29909 + 3.05943i −0.222934 + 0.128711i
\(566\) −11.5159 −0.484048
\(567\) 0 0
\(568\) 0.466287 0.0195650
\(569\) −38.5945 + 22.2826i −1.61797 + 0.934134i −0.630523 + 0.776171i \(0.717159\pi\)
−0.987445 + 0.157963i \(0.949507\pi\)
\(570\) 0 0
\(571\) 3.26470 5.65462i 0.136623 0.236638i −0.789593 0.613631i \(-0.789708\pi\)
0.926216 + 0.376992i \(0.123042\pi\)
\(572\) 3.41521 + 5.91532i 0.142797 + 0.247332i
\(573\) 0 0
\(574\) −15.0062 1.52198i −0.626345 0.0635262i
\(575\) 24.5251i 1.02277i
\(576\) 0 0
\(577\) 1.17720 + 0.679658i 0.0490076 + 0.0282945i 0.524304 0.851531i \(-0.324326\pi\)
−0.475296 + 0.879826i \(0.657659\pi\)
\(578\) 18.2909 + 10.5603i 0.760802 + 0.439249i
\(579\) 0 0
\(580\) 21.0867i 0.875578i
\(581\) 17.1895 + 12.3935i 0.713141 + 0.514170i
\(582\) 0 0
\(583\) 8.77026 + 15.1905i 0.363227 + 0.629128i
\(584\) 2.10746 3.65022i 0.0872072 0.151047i
\(585\) 0 0
\(586\) −4.34636 + 2.50937i −0.179547 + 0.103661i
\(587\) −44.4051 −1.83279 −0.916397 0.400270i \(-0.868916\pi\)
−0.916397 + 0.400270i \(0.868916\pi\)
\(588\) 0 0
\(589\) −0.921586 −0.0379733
\(590\) −28.1667 + 16.2621i −1.15961 + 0.669499i
\(591\) 0 0
\(592\) 3.66825 6.35359i 0.150764 0.261131i
\(593\) 7.17564 + 12.4286i 0.294668 + 0.510380i 0.974908 0.222610i \(-0.0714576\pi\)
−0.680240 + 0.732990i \(0.738124\pi\)
\(594\) 0 0
\(595\) 47.9576 + 34.5771i 1.96607 + 1.41752i
\(596\) 11.2475i 0.460716i
\(597\) 0 0
\(598\) −8.93882 5.16083i −0.365535 0.211042i
\(599\) −3.03349 1.75139i −0.123945 0.0715597i 0.436746 0.899585i \(-0.356131\pi\)
−0.560691 + 0.828025i \(0.689464\pi\)
\(600\) 0 0
\(601\) 17.5337i 0.715214i −0.933872 0.357607i \(-0.883593\pi\)
0.933872 0.357607i \(-0.116407\pi\)
\(602\) −12.6321 1.28120i −0.514847 0.0522177i
\(603\) 0 0
\(604\) −2.36189 4.09092i −0.0961041 0.166457i
\(605\) −12.6401 + 21.8933i −0.513894 + 0.890090i
\(606\) 0 0
\(607\) −0.0755923 + 0.0436432i −0.00306820 + 0.00177142i −0.501533 0.865138i \(-0.667231\pi\)
0.498465 + 0.866910i \(0.333897\pi\)
\(608\) 1.01308 0.0410858
\(609\) 0 0
\(610\) 53.2476 2.15593
\(611\) −6.58373 + 3.80112i −0.266349 + 0.153777i
\(612\) 0 0
\(613\) 12.5352 21.7116i 0.506292 0.876924i −0.493681 0.869643i \(-0.664349\pi\)
0.999973 0.00728071i \(-0.00231754\pi\)
\(614\) 8.76545 + 15.1822i 0.353745 + 0.612704i
\(615\) 0 0
\(616\) −4.83532 + 2.17395i −0.194820 + 0.0875911i
\(617\) 12.2820i 0.494455i −0.968957 0.247228i \(-0.920480\pi\)
0.968957 0.247228i \(-0.0795196\pi\)
\(618\) 0 0
\(619\) 17.5869 + 10.1538i 0.706875 + 0.408115i 0.809903 0.586564i \(-0.199520\pi\)
−0.103028 + 0.994678i \(0.532853\pi\)
\(620\) 2.85134 + 1.64622i 0.114513 + 0.0661139i
\(621\) 0 0
\(622\) 17.2952i 0.693474i
\(623\) 1.27786 12.5992i 0.0511962 0.504776i
\(624\) 0 0
\(625\) −0.0518970 0.0898882i −0.00207588 0.00359553i
\(626\) 4.49749 7.78988i 0.179756 0.311346i
\(627\) 0 0
\(628\) −2.65845 + 1.53486i −0.106084 + 0.0612475i
\(629\) −45.2969 −1.80610
\(630\) 0 0
\(631\) −45.9665 −1.82990 −0.914950 0.403568i \(-0.867770\pi\)
−0.914950 + 0.403568i \(0.867770\pi\)
\(632\) 3.31284 1.91267i 0.131778 0.0760818i
\(633\) 0 0
\(634\) 3.36019 5.82002i 0.133450 0.231143i
\(635\) −32.4456 56.1975i −1.28757 2.23013i
\(636\) 0 0
\(637\) −22.6390 + 7.53861i −0.896992 + 0.298690i
\(638\) 11.6744i 0.462195i
\(639\) 0 0
\(640\) −3.13442 1.80966i −0.123899 0.0715330i
\(641\) 27.4104 + 15.8254i 1.08265 + 0.625067i 0.931609 0.363461i \(-0.118405\pi\)
0.151038 + 0.988528i \(0.451738\pi\)
\(642\) 0 0
\(643\) 11.5592i 0.455851i −0.973679 0.227925i \(-0.926806\pi\)
0.973679 0.227925i \(-0.0731942\pi\)
\(644\) 4.68530 6.49840i 0.184627 0.256073i
\(645\) 0 0
\(646\) −3.12747 5.41694i −0.123049 0.213127i
\(647\) −13.0365 + 22.5799i −0.512519 + 0.887708i 0.487376 + 0.873192i \(0.337954\pi\)
−0.999895 + 0.0145160i \(0.995379\pi\)
\(648\) 0 0
\(649\) −15.5942 + 9.00332i −0.612126 + 0.353411i
\(650\) 27.6089 1.08291
\(651\) 0 0
\(652\) −2.87373 −0.112544
\(653\) −16.3952 + 9.46576i −0.641593 + 0.370424i −0.785228 0.619207i \(-0.787454\pi\)
0.143635 + 0.989631i \(0.454121\pi\)
\(654\) 0 0
\(655\) 31.3638 54.3237i 1.22549 2.12260i
\(656\) −2.85045 4.93712i −0.111291 0.192762i
\(657\) 0 0
\(658\) −2.41961 5.38169i −0.0943260 0.209800i
\(659\) 26.9632i 1.05034i −0.850998 0.525168i \(-0.824002\pi\)
0.850998 0.525168i \(-0.175998\pi\)
\(660\) 0 0
\(661\) −22.3201 12.8865i −0.868151 0.501227i −0.00141768 0.999999i \(-0.500451\pi\)
−0.866733 + 0.498772i \(0.833785\pi\)
\(662\) −16.2592 9.38725i −0.631931 0.364846i
\(663\) 0 0
\(664\) 8.00963i 0.310834i
\(665\) −3.97803 8.84793i −0.154261 0.343108i
\(666\) 0 0
\(667\) −8.82079 15.2780i −0.341542 0.591568i
\(668\) −0.730517 + 1.26529i −0.0282646 + 0.0489557i
\(669\) 0 0
\(670\) 26.0671 15.0499i 1.00706 0.581427i
\(671\) 29.4800 1.13806
\(672\) 0 0
\(673\) 25.9216 0.999203 0.499601 0.866255i \(-0.333480\pi\)
0.499601 + 0.866255i \(0.333480\pi\)
\(674\) 4.19654 2.42287i 0.161645 0.0933256i
\(675\) 0 0
\(676\) 0.690233 1.19552i 0.0265474 0.0459815i
\(677\) −6.55382 11.3515i −0.251884 0.436275i 0.712161 0.702016i \(-0.247717\pi\)
−0.964044 + 0.265741i \(0.914383\pi\)
\(678\) 0 0
\(679\) −18.1949 + 25.2358i −0.698254 + 0.968462i
\(680\) 22.3463i 0.856942i
\(681\) 0 0
\(682\) 1.57861 + 0.911413i 0.0604483 + 0.0348998i
\(683\) 25.6910 + 14.8327i 0.983038 + 0.567557i 0.903186 0.429249i \(-0.141222\pi\)
0.0798523 + 0.996807i \(0.474555\pi\)
\(684\) 0 0
\(685\) 0.00233490i 8.92121e-5i
\(686\) −4.04826 18.0724i −0.154563 0.690007i
\(687\) 0 0
\(688\) −2.39949 4.15605i −0.0914799 0.158448i
\(689\) −14.9195 + 25.8413i −0.568387 + 0.984475i
\(690\) 0 0
\(691\) −40.9767 + 23.6579i −1.55883 + 0.899990i −0.561459 + 0.827504i \(0.689760\pi\)
−0.997369 + 0.0724857i \(0.976907\pi\)
\(692\) 3.07081 0.116735
\(693\) 0 0
\(694\) 17.4712 0.663197
\(695\) −31.6065 + 18.2480i −1.19890 + 0.692187i
\(696\) 0 0
\(697\) −17.5992 + 30.4827i −0.666616 + 1.15461i
\(698\) 11.9129 + 20.6338i 0.450910 + 0.780999i
\(699\) 0 0
\(700\) −2.16233 + 21.3197i −0.0817283 + 0.805811i
\(701\) 13.7742i 0.520244i −0.965576 0.260122i \(-0.916237\pi\)
0.965576 0.260122i \(-0.0837627\pi\)
\(702\) 0 0
\(703\) 6.43670 + 3.71623i 0.242765 + 0.140160i
\(704\) −1.73534 1.00190i −0.0654030 0.0377604i
\(705\) 0 0
\(706\) 10.0412i 0.377907i
\(707\) −31.1099 + 13.9870i −1.17001 + 0.526035i
\(708\) 0 0
\(709\) 21.9691 + 38.0517i 0.825069 + 1.42906i 0.901867 + 0.432014i \(0.142197\pi\)
−0.0767981 + 0.997047i \(0.524470\pi\)
\(710\) 0.843820 1.46154i 0.0316680 0.0548506i
\(711\) 0 0
\(712\) 4.14521 2.39324i 0.155348 0.0896903i
\(713\) −2.75453 −0.103158
\(714\) 0 0
\(715\) 24.7215 0.924530
\(716\) 16.7310 9.65966i 0.625268 0.360998i
\(717\) 0 0
\(718\) 6.08254 10.5353i 0.226998 0.393173i
\(719\) −14.7930 25.6223i −0.551687 0.955549i −0.998153 0.0607489i \(-0.980651\pi\)
0.446466 0.894800i \(-0.352682\pi\)
\(720\) 0 0
\(721\) −28.3198 2.87230i −1.05469 0.106970i
\(722\) 17.9737i 0.668911i
\(723\) 0 0
\(724\) 6.83569 + 3.94659i 0.254046 + 0.146674i
\(725\) 40.8666 + 23.5943i 1.51775 + 0.876271i
\(726\) 0 0
\(727\) 11.6907i 0.433584i −0.976218 0.216792i \(-0.930441\pi\)
0.976218 0.216792i \(-0.0695593\pi\)
\(728\) −7.31553 5.27445i −0.271132 0.195484i
\(729\) 0 0
\(730\) −7.62756 13.2113i −0.282308 0.488973i
\(731\) −14.8149 + 25.6602i −0.547949 + 0.949076i
\(732\) 0 0
\(733\) 28.6423 16.5366i 1.05793 0.610795i 0.133070 0.991107i \(-0.457517\pi\)
0.924858 + 0.380312i \(0.124183\pi\)
\(734\) 3.63061 0.134008
\(735\) 0 0
\(736\) 3.02799 0.111613
\(737\) 14.4318 8.33219i 0.531601 0.306920i
\(738\) 0 0
\(739\) −21.7528 + 37.6770i −0.800190 + 1.38597i 0.119301 + 0.992858i \(0.461935\pi\)
−0.919491 + 0.393111i \(0.871399\pi\)
\(740\) −13.2765 22.9957i −0.488056 0.845337i
\(741\) 0 0
\(742\) −18.7863 13.5448i −0.689666 0.497244i
\(743\) 20.8084i 0.763386i 0.924289 + 0.381693i \(0.124659\pi\)
−0.924289 + 0.381693i \(0.875341\pi\)
\(744\) 0 0
\(745\) −35.2544 20.3542i −1.29162 0.745719i
\(746\) 4.75648 + 2.74616i 0.174147 + 0.100544i
\(747\) 0 0
\(748\) 12.3718i 0.452358i
\(749\) −6.94825 0.704717i −0.253884 0.0257498i
\(750\) 0 0
\(751\) 19.9492 + 34.5531i 0.727957 + 1.26086i 0.957745 + 0.287618i \(0.0928634\pi\)
−0.229788 + 0.973241i \(0.573803\pi\)
\(752\) 1.11511 1.93143i 0.0406638 0.0704318i
\(753\) 0 0
\(754\) −17.1992 + 9.92994i −0.626357 + 0.361627i
\(755\) −17.0969 −0.622219
\(756\) 0 0
\(757\) 7.45545 0.270973 0.135486 0.990779i \(-0.456740\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(758\) 13.5065 7.79800i 0.490579 0.283236i
\(759\) 0 0
\(760\) 1.83333 3.17542i 0.0665018 0.115185i
\(761\) −4.32462 7.49046i −0.156767 0.271529i 0.776934 0.629582i \(-0.216774\pi\)
−0.933701 + 0.358053i \(0.883441\pi\)
\(762\) 0 0
\(763\) 21.8030 9.80262i 0.789322 0.354879i
\(764\) 13.3042i 0.481330i
\(765\) 0 0
\(766\) −8.16720 4.71534i −0.295093 0.170372i
\(767\) −26.5280 15.3159i −0.957870 0.553026i
\(768\) 0 0
\(769\) 23.6503i 0.852853i 0.904522 + 0.426426i \(0.140228\pi\)
−0.904522 + 0.426426i \(0.859772\pi\)
\(770\) −1.93618 + 19.0900i −0.0697751 + 0.687957i
\(771\) 0 0
\(772\) 3.26786 + 5.66011i 0.117613 + 0.203712i
\(773\) 23.2849 40.3307i 0.837501 1.45059i −0.0544774 0.998515i \(-0.517349\pi\)
0.891978 0.452079i \(-0.149317\pi\)
\(774\) 0 0
\(775\) 6.38084 3.68398i 0.229207 0.132333i
\(776\) −11.7589 −0.422119
\(777\) 0 0
\(778\) 6.42177 0.230232
\(779\) 5.00170 2.88773i 0.179204 0.103464i
\(780\) 0 0
\(781\) 0.467172 0.809166i 0.0167167 0.0289542i
\(782\) −9.34769 16.1907i −0.334273 0.578977i
\(783\) 0 0
\(784\) 4.64590 5.23599i 0.165925 0.187000i
\(785\) 11.1103i 0.396543i
\(786\) 0 0
\(787\) 21.1657 + 12.2200i 0.754474 + 0.435596i 0.827308 0.561748i \(-0.189871\pi\)
−0.0728341 + 0.997344i \(0.523204\pi\)
\(788\) 3.84732 + 2.22125i 0.137055 + 0.0791288i
\(789\) 0 0
\(790\) 13.8451i 0.492586i
\(791\) 2.61593 3.62823i 0.0930118 0.129005i
\(792\) 0 0
\(793\) 25.0748 + 43.4309i 0.890433 + 1.54228i
\(794\) −3.46266 + 5.99750i −0.122885 + 0.212843i
\(795\) 0 0
\(796\) 9.96868 5.75542i 0.353330 0.203995i
\(797\) 49.8404 1.76544 0.882719 0.469901i \(-0.155711\pi\)
0.882719 + 0.469901i \(0.155711\pi\)
\(798\) 0 0
\(799\) −13.7698 −0.487139
\(800\) −7.01433 + 4.04972i −0.247994 + 0.143179i
\(801\) 0 0
\(802\) −5.29343 + 9.16848i −0.186917 + 0.323750i
\(803\) −4.22291 7.31430i −0.149023 0.258116i
\(804\) 0 0
\(805\) −11.8899 26.4456i −0.419064 0.932084i
\(806\) 3.10089i 0.109224i
\(807\) 0 0
\(808\) −11.1650 6.44610i −0.392782 0.226773i
\(809\) −10.6735 6.16237i −0.375262 0.216657i 0.300493 0.953784i \(-0.402849\pi\)
−0.675755 + 0.737127i \(0.736182\pi\)
\(810\) 0 0
\(811\) 24.8017i 0.870906i −0.900212 0.435453i \(-0.856588\pi\)
0.900212 0.435453i \(-0.143412\pi\)
\(812\) −6.32091 14.0590i −0.221820 0.493374i
\(813\) 0 0
\(814\) −7.35042 12.7313i −0.257632 0.446232i
\(815\) −5.20047 + 9.00748i −0.182165 + 0.315518i
\(816\) 0 0
\(817\) 4.21041 2.43088i 0.147304 0.0850457i
\(818\) 8.92343 0.312000
\(819\) 0 0
\(820\) −20.6333 −0.720547
\(821\) 31.3573 18.1041i 1.09438 0.631839i 0.159639 0.987175i \(-0.448967\pi\)
0.934738 + 0.355336i \(0.115634\pi\)
\(822\) 0 0
\(823\) 9.54093 16.5254i 0.332576 0.576038i −0.650440 0.759557i \(-0.725416\pi\)
0.983016 + 0.183519i \(0.0587489\pi\)
\(824\) −5.37940 9.31740i −0.187400 0.324587i
\(825\) 0 0
\(826\) 13.9047 19.2855i 0.483807 0.671028i
\(827\) 31.9013i 1.10932i −0.832079 0.554658i \(-0.812849\pi\)
0.832079 0.554658i \(-0.187151\pi\)
\(828\) 0 0
\(829\) 13.0645 + 7.54278i 0.453748 + 0.261971i 0.709412 0.704794i \(-0.248961\pi\)
−0.255664 + 0.966766i \(0.582294\pi\)
\(830\) 25.1055 + 14.4947i 0.871425 + 0.503118i
\(831\) 0 0
\(832\) 3.40874i 0.118177i
\(833\) −42.3392 8.67765i −1.46696 0.300663i
\(834\) 0 0
\(835\) 2.64397 + 4.57950i 0.0914985 + 0.158480i
\(836\) 1.01500 1.75804i 0.0351046 0.0608029i
\(837\) 0 0
\(838\) 29.7781 17.1924i 1.02867 0.593901i
\(839\) 16.3972 0.566094 0.283047 0.959106i \(-0.408655\pi\)
0.283047 + 0.959106i \(0.408655\pi\)
\(840\) 0 0
\(841\) −4.94412 −0.170487
\(842\) −30.8028 + 17.7840i −1.06153 + 0.612877i
\(843\) 0 0
\(844\) −11.3005 + 19.5731i −0.388980 + 0.673734i
\(845\) −2.49817 4.32696i −0.0859397 0.148852i
\(846\) 0 0
\(847\) 1.86475 18.3857i 0.0640735 0.631741i
\(848\) 8.75365i 0.300602i
\(849\) 0 0
\(850\) 43.3077 + 25.0037i 1.48544 + 0.857621i
\(851\) 19.2386 + 11.1074i 0.659492 + 0.380758i
\(852\) 0 0
\(853\) 19.1606i 0.656046i −0.944670 0.328023i \(-0.893618\pi\)
0.944670 0.328023i \(-0.106382\pi\)
\(854\) −35.5014 + 15.9614i −1.21483 + 0.546188i
\(855\) 0 0
\(856\) −1.31983 2.28602i −0.0451110 0.0781345i
\(857\) 8.05723 13.9555i 0.275230 0.476712i −0.694963 0.719045i \(-0.744579\pi\)
0.970193 + 0.242333i \(0.0779127\pi\)
\(858\) 0 0
\(859\) −10.4830 + 6.05238i −0.357677 + 0.206505i −0.668061 0.744106i \(-0.732876\pi\)
0.310384 + 0.950611i \(0.399542\pi\)
\(860\) −17.3691 −0.592280
\(861\) 0 0
\(862\) 30.8695 1.05142
\(863\) 32.2728 18.6327i 1.09858 0.634265i 0.162732 0.986670i \(-0.447969\pi\)
0.935848 + 0.352405i \(0.114636\pi\)
\(864\) 0 0
\(865\) 5.55712 9.62522i 0.188948 0.327267i
\(866\) 11.6232 + 20.1319i 0.394971 + 0.684110i
\(867\) 0 0
\(868\) −2.39452 0.242861i −0.0812754 0.00824325i
\(869\) 7.66518i 0.260024i
\(870\) 0 0
\(871\) 24.5505 + 14.1743i 0.831863 + 0.480276i
\(872\) 7.82484 + 4.51768i 0.264983 + 0.152988i
\(873\) 0 0
\(874\) 3.06760i 0.103763i
\(875\) 24.0748 + 17.3577i 0.813875 + 0.586798i
\(876\) 0 0
\(877\) 4.85474 + 8.40866i 0.163933 + 0.283940i 0.936276 0.351266i \(-0.114249\pi\)
−0.772343 + 0.635206i \(0.780915\pi\)
\(878\) 11.1364 19.2887i 0.375834 0.650963i
\(879\) 0 0
\(880\) −6.28073 + 3.62618i −0.211723 + 0.122239i
\(881\) −2.63241 −0.0886881 −0.0443440 0.999016i \(-0.514120\pi\)
−0.0443440 + 0.999016i \(0.514120\pi\)
\(882\) 0 0
\(883\) −36.3181 −1.22220 −0.611101 0.791553i \(-0.709273\pi\)
−0.611101 + 0.791553i \(0.709273\pi\)
\(884\) −18.2265 + 10.5231i −0.613025 + 0.353930i
\(885\) 0 0
\(886\) −8.99259 + 15.5756i −0.302112 + 0.523273i
\(887\) −8.18209 14.1718i −0.274728 0.475842i 0.695339 0.718682i \(-0.255254\pi\)
−0.970066 + 0.242840i \(0.921921\pi\)
\(888\) 0 0
\(889\) 38.4779 + 27.7423i 1.29051 + 0.930447i
\(890\) 17.3238i 0.580694i
\(891\) 0 0
\(892\) −16.2994 9.41045i −0.545744 0.315085i
\(893\) 1.95669 + 1.12969i 0.0654781 + 0.0378038i
\(894\) 0 0
\(895\) 69.9227i 2.33726i
\(896\) 2.63225 + 0.266972i 0.0879372 + 0.00891892i
\(897\) 0 0
\(898\) 4.72182 + 8.17843i 0.157569 + 0.272918i
\(899\) −2.64999 + 4.58992i −0.0883822 + 0.153082i
\(900\) 0 0
\(901\) −46.8058 + 27.0233i −1.55933 + 0.900277i
\(902\) −11.4234 −0.380358
\(903\) 0 0
\(904\) 1.69061 0.0562289
\(905\) 24.7405 14.2839i 0.822403 0.474814i
\(906\) 0 0
\(907\) −5.41666 + 9.38192i −0.179857 + 0.311522i −0.941831 0.336086i \(-0.890897\pi\)
0.761974 + 0.647607i \(0.224230\pi\)
\(908\) 7.30665 + 12.6555i 0.242480 + 0.419987i
\(909\) 0 0
\(910\) −29.7709 + 13.3850i −0.986897 + 0.443708i
\(911\) 42.5521i 1.40981i −0.709300 0.704907i \(-0.750989\pi\)
0.709300 0.704907i \(-0.249011\pi\)
\(912\) 0 0
\(913\) 13.8994 + 8.02482i 0.460003 + 0.265583i
\(914\) −1.59739 0.922251i −0.0528368 0.0305053i
\(915\) 0 0
\(916\) 2.37919i 0.0786106i
\(917\) −4.62699 + 45.6204i −0.152797 + 1.50652i
\(918\) 0 0
\(919\) −12.9697 22.4641i −0.427829 0.741022i 0.568851 0.822441i \(-0.307388\pi\)
−0.996680 + 0.0814187i \(0.974055\pi\)
\(920\) 5.47963 9.49100i 0.180658 0.312909i
\(921\) 0 0
\(922\) −31.5007 + 18.1869i −1.03742 + 0.598955i
\(923\) 1.58945 0.0523175
\(924\) 0 0
\(925\) −59.4216 −1.95377
\(926\) −27.6834 + 15.9830i −0.909733 + 0.525234i
\(927\) 0 0
\(928\) 2.91308 5.04560i 0.0956265 0.165630i
\(929\) −23.4456 40.6089i −0.769224 1.33234i −0.937984 0.346678i \(-0.887310\pi\)
0.168760 0.985657i \(-0.446024\pi\)
\(930\) 0 0
\(931\) 5.30448 + 4.70667i 0.173847 + 0.154255i
\(932\) 10.4324i 0.341724i
\(933\) 0 0
\(934\) −21.1666 12.2206i −0.692593 0.399869i
\(935\) 38.7784 + 22.3887i 1.26819 + 0.732189i
\(936\) 0 0
\(937\) 0.209357i 0.00683939i −0.999994 0.00341969i \(-0.998911\pi\)
0.999994 0.00341969i \(-0.00108852\pi\)
\(938\) −12.8682 + 17.8479i −0.420162 + 0.582755i
\(939\) 0 0
\(940\) −4.03593 6.99044i −0.131638 0.228003i
\(941\) 0.388565 0.673014i 0.0126669 0.0219396i −0.859622 0.510930i \(-0.829301\pi\)
0.872289 + 0.488990i \(0.162635\pi\)
\(942\) 0 0
\(943\) 14.9496 8.63113i 0.486825 0.281068i
\(944\) 8.98627 0.292478
\(945\) 0 0
\(946\) −9.61619 −0.312649
\(947\) 43.1233 24.8972i 1.40132 0.809052i 0.406791 0.913521i \(-0.366648\pi\)
0.994528 + 0.104470i \(0.0333145\pi\)
\(948\) 0 0
\(949\) 7.18378 12.4427i 0.233196 0.403906i
\(950\) −4.10269 7.10607i −0.133109 0.230552i
\(951\) 0 0
\(952\) −6.69849 14.8988i −0.217099 0.482873i
\(953\) 41.4104i 1.34141i −0.741722 0.670707i \(-0.765991\pi\)
0.741722 0.670707i \(-0.234009\pi\)
\(954\) 0 0
\(955\) −41.7010 24.0761i −1.34941 0.779084i
\(956\) 20.5971 + 11.8917i 0.666158 + 0.384607i
\(957\) 0 0
\(958\) 10.9606i 0.354122i
\(959\) −0.000699906 0.00155673i −2.26012e−5 5.02695e-5i
\(960\) 0 0
\(961\) −15.0862 26.1301i −0.486653 0.842907i
\(962\) 12.5041 21.6578i 0.403149 0.698274i
\(963\) 0 0
\(964\) −24.8105 + 14.3243i −0.799092 + 0.461356i
\(965\) 23.6549 0.761477
\(966\) 0 0
\(967\) −45.6056 −1.46658 −0.733289 0.679917i \(-0.762016\pi\)
−0.733289 + 0.679917i \(0.762016\pi\)
\(968\) 6.04902 3.49240i 0.194423 0.112250i
\(969\) 0 0
\(970\) −21.2796 + 36.8573i −0.683245 + 1.18342i
\(971\) −4.36733 7.56444i −0.140154 0.242754i 0.787400 0.616442i \(-0.211427\pi\)
−0.927555 + 0.373688i \(0.878093\pi\)
\(972\) 0 0
\(973\) 15.6028 21.6407i 0.500202 0.693768i
\(974\) 33.6175i 1.07717i
\(975\) 0 0
\(976\) −12.7410 7.35603i −0.407830 0.235461i
\(977\) −12.9058 7.45114i −0.412892 0.238383i 0.279140 0.960250i \(-0.409951\pi\)
−0.692031 + 0.721867i \(0.743284\pi\)
\(978\) 0 0
\(979\) 9.59111i 0.306533i
\(980\) −8.00430 24.0376i −0.255688 0.767852i
\(981\) 0 0
\(982\) 11.3676 + 19.6893i 0.362756 + 0.628312i
\(983\) −1.53458 + 2.65798i −0.0489456 + 0.0847763i −0.889460 0.457013i \(-0.848919\pi\)
0.840515 + 0.541789i \(0.182253\pi\)
\(984\) 0 0
\(985\) 13.9247 8.03941i 0.443677 0.256157i
\(986\) −35.9718 −1.14557
\(987\) 0 0
\(988\) 3.45333 0.109865
\(989\) 12.5845 7.26565i 0.400163 0.231034i
\(990\) 0 0
\(991\) 27.9075 48.3372i 0.886510 1.53548i 0.0425375 0.999095i \(-0.486456\pi\)
0.843973 0.536386i \(-0.180211\pi\)
\(992\) −0.454844 0.787812i −0.0144413 0.0250131i
\(993\) 0 0
\(994\) −0.124486 + 1.22738i −0.00394845 + 0.0389302i
\(995\) 41.6614i 1.32075i
\(996\) 0 0
\(997\) −5.30607 3.06346i −0.168045 0.0970208i 0.413619 0.910450i \(-0.364265\pi\)
−0.581664 + 0.813429i \(0.697598\pi\)
\(998\) 16.9079 + 9.76175i 0.535209 + 0.309003i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.k.a.647.1 16
3.2 odd 2 1134.2.k.b.647.8 16
7.5 odd 6 1134.2.k.b.971.8 16
9.2 odd 6 126.2.t.a.59.2 yes 16
9.4 even 3 126.2.l.a.101.1 yes 16
9.5 odd 6 378.2.l.a.143.8 16
9.7 even 3 378.2.t.a.17.8 16
21.5 even 6 inner 1134.2.k.a.971.1 16
36.7 odd 6 3024.2.df.c.17.7 16
36.11 even 6 1008.2.df.c.689.5 16
36.23 even 6 3024.2.ca.c.2033.7 16
36.31 odd 6 1008.2.ca.c.353.8 16
63.2 odd 6 882.2.l.b.509.8 16
63.4 even 3 882.2.m.b.587.7 16
63.5 even 6 378.2.t.a.89.8 16
63.11 odd 6 882.2.m.a.293.6 16
63.13 odd 6 882.2.l.b.227.4 16
63.16 even 3 2646.2.l.a.1097.1 16
63.20 even 6 882.2.t.a.815.3 16
63.23 odd 6 2646.2.t.b.1979.5 16
63.25 even 3 2646.2.m.a.881.1 16
63.31 odd 6 882.2.m.a.587.6 16
63.32 odd 6 2646.2.m.b.1763.4 16
63.34 odd 6 2646.2.t.b.2285.5 16
63.38 even 6 882.2.m.b.293.7 16
63.40 odd 6 126.2.t.a.47.2 yes 16
63.41 even 6 2646.2.l.a.521.5 16
63.47 even 6 126.2.l.a.5.5 16
63.52 odd 6 2646.2.m.b.881.4 16
63.58 even 3 882.2.t.a.803.3 16
63.59 even 6 2646.2.m.a.1763.1 16
63.61 odd 6 378.2.l.a.341.4 16
252.47 odd 6 1008.2.ca.c.257.8 16
252.103 even 6 1008.2.df.c.929.5 16
252.131 odd 6 3024.2.df.c.1601.7 16
252.187 even 6 3024.2.ca.c.2609.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.5 16 63.47 even 6
126.2.l.a.101.1 yes 16 9.4 even 3
126.2.t.a.47.2 yes 16 63.40 odd 6
126.2.t.a.59.2 yes 16 9.2 odd 6
378.2.l.a.143.8 16 9.5 odd 6
378.2.l.a.341.4 16 63.61 odd 6
378.2.t.a.17.8 16 9.7 even 3
378.2.t.a.89.8 16 63.5 even 6
882.2.l.b.227.4 16 63.13 odd 6
882.2.l.b.509.8 16 63.2 odd 6
882.2.m.a.293.6 16 63.11 odd 6
882.2.m.a.587.6 16 63.31 odd 6
882.2.m.b.293.7 16 63.38 even 6
882.2.m.b.587.7 16 63.4 even 3
882.2.t.a.803.3 16 63.58 even 3
882.2.t.a.815.3 16 63.20 even 6
1008.2.ca.c.257.8 16 252.47 odd 6
1008.2.ca.c.353.8 16 36.31 odd 6
1008.2.df.c.689.5 16 36.11 even 6
1008.2.df.c.929.5 16 252.103 even 6
1134.2.k.a.647.1 16 1.1 even 1 trivial
1134.2.k.a.971.1 16 21.5 even 6 inner
1134.2.k.b.647.8 16 3.2 odd 2
1134.2.k.b.971.8 16 7.5 odd 6
2646.2.l.a.521.5 16 63.41 even 6
2646.2.l.a.1097.1 16 63.16 even 3
2646.2.m.a.881.1 16 63.25 even 3
2646.2.m.a.1763.1 16 63.59 even 6
2646.2.m.b.881.4 16 63.52 odd 6
2646.2.m.b.1763.4 16 63.32 odd 6
2646.2.t.b.1979.5 16 63.23 odd 6
2646.2.t.b.2285.5 16 63.34 odd 6
3024.2.ca.c.2033.7 16 36.23 even 6
3024.2.ca.c.2609.7 16 252.187 even 6
3024.2.df.c.17.7 16 36.7 odd 6
3024.2.df.c.1601.7 16 252.131 odd 6