Properties

Label 2646.2.l.a.521.5
Level $2646$
Weight $2$
Character 2646.521
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(521,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,0,0,0,0,0,0,-12,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.5
Root \(1.71298 + 0.256290i\) of defining polynomial
Character \(\chi\) \(=\) 2646.521
Dual form 2646.2.l.a.1097.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(-1.80966 + 3.13442i) q^{5} -1.00000i q^{8} +(-3.13442 - 1.80966i) q^{10} +(1.73534 - 1.00190i) q^{11} +(-2.95206 + 1.70437i) q^{13} +1.00000 q^{16} +(-3.08709 + 5.34700i) q^{17} +(-0.877353 + 0.506540i) q^{19} +(1.80966 - 3.13442i) q^{20} +(1.00190 + 1.73534i) q^{22} +(2.62232 + 1.51400i) q^{23} +(-4.04972 - 7.01433i) q^{25} +(-1.70437 - 2.95206i) q^{26} +(-5.04560 - 2.91308i) q^{29} -0.909687i q^{31} +1.00000i q^{32} +(-5.34700 - 3.08709i) q^{34} +(3.66825 + 6.35359i) q^{37} +(-0.506540 - 0.877353i) q^{38} +(3.13442 + 1.80966i) q^{40} +(-2.85045 - 4.93712i) q^{41} +(-2.39949 + 4.15605i) q^{43} +(-1.73534 + 1.00190i) q^{44} +(-1.51400 + 2.62232i) q^{46} -2.23022 q^{47} +(7.01433 - 4.04972i) q^{50} +(2.95206 - 1.70437i) q^{52} +(-7.58088 - 4.37683i) q^{53} +7.25237i q^{55} +(2.91308 - 5.04560i) q^{58} +8.98627 q^{59} -14.7121i q^{61} +0.909687 q^{62} -1.00000 q^{64} -12.3373i q^{65} -8.31641 q^{67} +(3.08709 - 5.34700i) q^{68} +0.466287i q^{71} +(3.65022 + 2.10746i) q^{73} +(-6.35359 + 3.66825i) q^{74} +(0.877353 - 0.506540i) q^{76} +3.82533 q^{79} +(-1.80966 + 3.13442i) q^{80} +(4.93712 - 2.85045i) q^{82} +(-4.00481 + 6.93654i) q^{83} +(-11.1732 - 19.3525i) q^{85} +(-4.15605 - 2.39949i) q^{86} +(-1.00190 - 1.73534i) q^{88} +(-2.39324 - 4.14521i) q^{89} +(-2.62232 - 1.51400i) q^{92} -2.23022i q^{94} -3.66666i q^{95} +(10.1835 + 5.87944i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} - 12 q^{11} - 6 q^{13} + 16 q^{16} - 18 q^{17} + 6 q^{23} - 8 q^{25} + 12 q^{26} - 6 q^{29} - 2 q^{37} - 6 q^{41} - 2 q^{43} + 12 q^{44} + 6 q^{46} - 36 q^{47} + 12 q^{50} + 6 q^{52} + 36 q^{53}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −1.80966 + 3.13442i −0.809304 + 1.40175i 0.104043 + 0.994573i \(0.466822\pi\)
−0.913347 + 0.407182i \(0.866511\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −3.13442 1.80966i −0.991190 0.572264i
\(11\) 1.73534 1.00190i 0.523224 0.302083i −0.215029 0.976608i \(-0.568985\pi\)
0.738253 + 0.674524i \(0.235651\pi\)
\(12\) 0 0
\(13\) −2.95206 + 1.70437i −0.818754 + 0.472708i −0.849987 0.526804i \(-0.823390\pi\)
0.0312328 + 0.999512i \(0.490057\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.08709 + 5.34700i −0.748730 + 1.29684i 0.199702 + 0.979857i \(0.436002\pi\)
−0.948432 + 0.316981i \(0.897331\pi\)
\(18\) 0 0
\(19\) −0.877353 + 0.506540i −0.201279 + 0.116208i −0.597252 0.802054i \(-0.703741\pi\)
0.395973 + 0.918262i \(0.370407\pi\)
\(20\) 1.80966 3.13442i 0.404652 0.700877i
\(21\) 0 0
\(22\) 1.00190 + 1.73534i 0.213605 + 0.369975i
\(23\) 2.62232 + 1.51400i 0.546791 + 0.315690i 0.747827 0.663894i \(-0.231097\pi\)
−0.201035 + 0.979584i \(0.564431\pi\)
\(24\) 0 0
\(25\) −4.04972 7.01433i −0.809945 1.40287i
\(26\) −1.70437 2.95206i −0.334255 0.578946i
\(27\) 0 0
\(28\) 0 0
\(29\) −5.04560 2.91308i −0.936945 0.540945i −0.0479434 0.998850i \(-0.515267\pi\)
−0.889001 + 0.457905i \(0.848600\pi\)
\(30\) 0 0
\(31\) 0.909687i 0.163385i −0.996658 0.0816923i \(-0.973968\pi\)
0.996658 0.0816923i \(-0.0260325\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −5.34700 3.08709i −0.917003 0.529432i
\(35\) 0 0
\(36\) 0 0
\(37\) 3.66825 + 6.35359i 0.603056 + 1.04452i 0.992355 + 0.123413i \(0.0393839\pi\)
−0.389299 + 0.921111i \(0.627283\pi\)
\(38\) −0.506540 0.877353i −0.0821717 0.142325i
\(39\) 0 0
\(40\) 3.13442 + 1.80966i 0.495595 + 0.286132i
\(41\) −2.85045 4.93712i −0.445165 0.771048i 0.552899 0.833248i \(-0.313522\pi\)
−0.998064 + 0.0622002i \(0.980188\pi\)
\(42\) 0 0
\(43\) −2.39949 + 4.15605i −0.365919 + 0.633791i −0.988923 0.148428i \(-0.952579\pi\)
0.623004 + 0.782219i \(0.285912\pi\)
\(44\) −1.73534 + 1.00190i −0.261612 + 0.151042i
\(45\) 0 0
\(46\) −1.51400 + 2.62232i −0.223227 + 0.386640i
\(47\) −2.23022 −0.325311 −0.162655 0.986683i \(-0.552006\pi\)
−0.162655 + 0.986683i \(0.552006\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 7.01433 4.04972i 0.991975 0.572717i
\(51\) 0 0
\(52\) 2.95206 1.70437i 0.409377 0.236354i
\(53\) −7.58088 4.37683i −1.04131 0.601203i −0.121109 0.992639i \(-0.538645\pi\)
−0.920205 + 0.391436i \(0.871978\pi\)
\(54\) 0 0
\(55\) 7.25237i 0.977909i
\(56\) 0 0
\(57\) 0 0
\(58\) 2.91308 5.04560i 0.382506 0.662520i
\(59\) 8.98627 1.16991 0.584956 0.811065i \(-0.301112\pi\)
0.584956 + 0.811065i \(0.301112\pi\)
\(60\) 0 0
\(61\) 14.7121i 1.88369i −0.336053 0.941843i \(-0.609092\pi\)
0.336053 0.941843i \(-0.390908\pi\)
\(62\) 0.909687 0.115530
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 12.3373i 1.53026i
\(66\) 0 0
\(67\) −8.31641 −1.01601 −0.508006 0.861354i \(-0.669617\pi\)
−0.508006 + 0.861354i \(0.669617\pi\)
\(68\) 3.08709 5.34700i 0.374365 0.648419i
\(69\) 0 0
\(70\) 0 0
\(71\) 0.466287i 0.0553381i 0.999617 + 0.0276691i \(0.00880846\pi\)
−0.999617 + 0.0276691i \(0.991192\pi\)
\(72\) 0 0
\(73\) 3.65022 + 2.10746i 0.427226 + 0.246659i 0.698164 0.715938i \(-0.254000\pi\)
−0.270938 + 0.962597i \(0.587334\pi\)
\(74\) −6.35359 + 3.66825i −0.738590 + 0.426425i
\(75\) 0 0
\(76\) 0.877353 0.506540i 0.100639 0.0581041i
\(77\) 0 0
\(78\) 0 0
\(79\) 3.82533 0.430384 0.215192 0.976572i \(-0.430962\pi\)
0.215192 + 0.976572i \(0.430962\pi\)
\(80\) −1.80966 + 3.13442i −0.202326 + 0.350439i
\(81\) 0 0
\(82\) 4.93712 2.85045i 0.545213 0.314779i
\(83\) −4.00481 + 6.93654i −0.439585 + 0.761384i −0.997657 0.0684084i \(-0.978208\pi\)
0.558072 + 0.829792i \(0.311541\pi\)
\(84\) 0 0
\(85\) −11.1732 19.3525i −1.21190 2.09907i
\(86\) −4.15605 2.39949i −0.448158 0.258744i
\(87\) 0 0
\(88\) −1.00190 1.73534i −0.106803 0.184988i
\(89\) −2.39324 4.14521i −0.253683 0.439391i 0.710854 0.703339i \(-0.248309\pi\)
−0.964537 + 0.263948i \(0.914975\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.62232 1.51400i −0.273396 0.157845i
\(93\) 0 0
\(94\) 2.23022i 0.230029i
\(95\) 3.66666i 0.376191i
\(96\) 0 0
\(97\) 10.1835 + 5.87944i 1.03398 + 0.596967i 0.918121 0.396299i \(-0.129706\pi\)
0.115856 + 0.993266i \(0.463039\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4.04972 + 7.01433i 0.404972 + 0.701433i
\(101\) −6.44610 11.1650i −0.641411 1.11096i −0.985118 0.171879i \(-0.945016\pi\)
0.343707 0.939077i \(-0.388317\pi\)
\(102\) 0 0
\(103\) −9.31740 5.37940i −0.918070 0.530048i −0.0350515 0.999386i \(-0.511160\pi\)
−0.883019 + 0.469337i \(0.844493\pi\)
\(104\) 1.70437 + 2.95206i 0.167127 + 0.289473i
\(105\) 0 0
\(106\) 4.37683 7.58088i 0.425115 0.736321i
\(107\) 2.28602 1.31983i 0.220998 0.127593i −0.385414 0.922744i \(-0.625942\pi\)
0.606412 + 0.795151i \(0.292608\pi\)
\(108\) 0 0
\(109\) 4.51768 7.82484i 0.432715 0.749484i −0.564391 0.825507i \(-0.690889\pi\)
0.997106 + 0.0760233i \(0.0242224\pi\)
\(110\) −7.25237 −0.691486
\(111\) 0 0
\(112\) 0 0
\(113\) 1.46411 0.845306i 0.137732 0.0795197i −0.429551 0.903043i \(-0.641328\pi\)
0.567283 + 0.823523i \(0.307995\pi\)
\(114\) 0 0
\(115\) −9.49100 + 5.47963i −0.885041 + 0.510978i
\(116\) 5.04560 + 2.91308i 0.468472 + 0.270473i
\(117\) 0 0
\(118\) 8.98627i 0.827253i
\(119\) 0 0
\(120\) 0 0
\(121\) −3.49240 + 6.04902i −0.317491 + 0.549911i
\(122\) 14.7121 1.33197
\(123\) 0 0
\(124\) 0.909687i 0.0816923i
\(125\) 11.2179 1.00336
\(126\) 0 0
\(127\) 17.9292 1.59096 0.795478 0.605983i \(-0.207220\pi\)
0.795478 + 0.605983i \(0.207220\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 12.3373 1.08205
\(131\) 8.66567 15.0094i 0.757123 1.31138i −0.187188 0.982324i \(-0.559938\pi\)
0.944312 0.329052i \(-0.106729\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.31641i 0.718429i
\(135\) 0 0
\(136\) 5.34700 + 3.08709i 0.458501 + 0.264716i
\(137\) −0.000558693 0 0.000322562i −4.77324e−5 0 2.75583e-5i −0.500024 0.866012i \(-0.666675\pi\)
0.499976 + 0.866039i \(0.333342\pi\)
\(138\) 0 0
\(139\) 8.73273 5.04185i 0.740701 0.427644i −0.0816233 0.996663i \(-0.526010\pi\)
0.822324 + 0.569019i \(0.192677\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.466287 −0.0391300
\(143\) −3.41521 + 5.91532i −0.285594 + 0.494664i
\(144\) 0 0
\(145\) 18.2616 10.5434i 1.51655 0.875578i
\(146\) −2.10746 + 3.65022i −0.174414 + 0.302095i
\(147\) 0 0
\(148\) −3.66825 6.35359i −0.301528 0.522262i
\(149\) 9.74064 + 5.62376i 0.797984 + 0.460716i 0.842766 0.538280i \(-0.180926\pi\)
−0.0447816 + 0.998997i \(0.514259\pi\)
\(150\) 0 0
\(151\) 2.36189 + 4.09092i 0.192208 + 0.332914i 0.945982 0.324220i \(-0.105102\pi\)
−0.753774 + 0.657134i \(0.771768\pi\)
\(152\) 0.506540 + 0.877353i 0.0410858 + 0.0711627i
\(153\) 0 0
\(154\) 0 0
\(155\) 2.85134 + 1.64622i 0.229025 + 0.132228i
\(156\) 0 0
\(157\) 3.06972i 0.244990i −0.992469 0.122495i \(-0.960910\pi\)
0.992469 0.122495i \(-0.0390895\pi\)
\(158\) 3.82533i 0.304327i
\(159\) 0 0
\(160\) −3.13442 1.80966i −0.247798 0.143066i
\(161\) 0 0
\(162\) 0 0
\(163\) −1.43687 2.48873i −0.112544 0.194932i 0.804251 0.594289i \(-0.202567\pi\)
−0.916795 + 0.399357i \(0.869233\pi\)
\(164\) 2.85045 + 4.93712i 0.222582 + 0.385524i
\(165\) 0 0
\(166\) −6.93654 4.00481i −0.538380 0.310834i
\(167\) 0.730517 + 1.26529i 0.0565291 + 0.0979113i 0.892905 0.450245i \(-0.148663\pi\)
−0.836376 + 0.548156i \(0.815330\pi\)
\(168\) 0 0
\(169\) −0.690233 + 1.19552i −0.0530948 + 0.0919630i
\(170\) 19.3525 11.1732i 1.48427 0.856942i
\(171\) 0 0
\(172\) 2.39949 4.15605i 0.182960 0.316896i
\(173\) −3.07081 −0.233470 −0.116735 0.993163i \(-0.537243\pi\)
−0.116735 + 0.993163i \(0.537243\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.73534 1.00190i 0.130806 0.0755209i
\(177\) 0 0
\(178\) 4.14521 2.39324i 0.310696 0.179381i
\(179\) −16.7310 9.65966i −1.25054 0.721997i −0.279320 0.960198i \(-0.590109\pi\)
−0.971216 + 0.238201i \(0.923442\pi\)
\(180\) 0 0
\(181\) 7.89318i 0.586695i −0.956006 0.293348i \(-0.905231\pi\)
0.956006 0.293348i \(-0.0947693\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.51400 2.62232i 0.111613 0.193320i
\(185\) −26.5531 −1.95222
\(186\) 0 0
\(187\) 12.3718i 0.904715i
\(188\) 2.23022 0.162655
\(189\) 0 0
\(190\) 3.66666 0.266007
\(191\) 13.3042i 0.962660i −0.876540 0.481330i \(-0.840154\pi\)
0.876540 0.481330i \(-0.159846\pi\)
\(192\) 0 0
\(193\) 6.53573 0.470452 0.235226 0.971941i \(-0.424417\pi\)
0.235226 + 0.971941i \(0.424417\pi\)
\(194\) −5.87944 + 10.1835i −0.422119 + 0.731132i
\(195\) 0 0
\(196\) 0 0
\(197\) 4.44250i 0.316515i −0.987398 0.158258i \(-0.949412\pi\)
0.987398 0.158258i \(-0.0505876\pi\)
\(198\) 0 0
\(199\) −9.96868 5.75542i −0.706661 0.407991i 0.103163 0.994665i \(-0.467104\pi\)
−0.809823 + 0.586674i \(0.800437\pi\)
\(200\) −7.01433 + 4.04972i −0.495988 + 0.286359i
\(201\) 0 0
\(202\) 11.1650 6.44610i 0.785565 0.453546i
\(203\) 0 0
\(204\) 0 0
\(205\) 20.6333 1.44109
\(206\) 5.37940 9.31740i 0.374801 0.649174i
\(207\) 0 0
\(208\) −2.95206 + 1.70437i −0.204688 + 0.118177i
\(209\) −1.01500 + 1.75804i −0.0702092 + 0.121606i
\(210\) 0 0
\(211\) 11.3005 + 19.5731i 0.777961 + 1.34747i 0.933115 + 0.359577i \(0.117079\pi\)
−0.155155 + 0.987890i \(0.549588\pi\)
\(212\) 7.58088 + 4.37683i 0.520657 + 0.300602i
\(213\) 0 0
\(214\) 1.31983 + 2.28602i 0.0902219 + 0.156269i
\(215\) −8.68453 15.0420i −0.592280 1.02586i
\(216\) 0 0
\(217\) 0 0
\(218\) 7.82484 + 4.51768i 0.529965 + 0.305976i
\(219\) 0 0
\(220\) 7.25237i 0.488954i
\(221\) 21.0462i 1.41572i
\(222\) 0 0
\(223\) −16.2994 9.41045i −1.09149 0.630170i −0.157515 0.987517i \(-0.550348\pi\)
−0.933972 + 0.357346i \(0.883682\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0.845306 + 1.46411i 0.0562289 + 0.0973914i
\(227\) −7.30665 12.6555i −0.484960 0.839975i 0.514891 0.857256i \(-0.327832\pi\)
−0.999851 + 0.0172809i \(0.994499\pi\)
\(228\) 0 0
\(229\) −2.06044 1.18959i −0.136158 0.0786106i 0.430374 0.902651i \(-0.358382\pi\)
−0.566531 + 0.824040i \(0.691715\pi\)
\(230\) −5.47963 9.49100i −0.361316 0.625818i
\(231\) 0 0
\(232\) −2.91308 + 5.04560i −0.191253 + 0.331260i
\(233\) −9.03470 + 5.21619i −0.591883 + 0.341724i −0.765842 0.643029i \(-0.777677\pi\)
0.173959 + 0.984753i \(0.444344\pi\)
\(234\) 0 0
\(235\) 4.03593 6.99044i 0.263275 0.456006i
\(236\) −8.98627 −0.584956
\(237\) 0 0
\(238\) 0 0
\(239\) −20.5971 + 11.8917i −1.33232 + 0.769213i −0.985654 0.168777i \(-0.946018\pi\)
−0.346662 + 0.937990i \(0.612685\pi\)
\(240\) 0 0
\(241\) −24.8105 + 14.3243i −1.59818 + 0.922712i −0.606348 + 0.795200i \(0.707366\pi\)
−0.991837 + 0.127513i \(0.959301\pi\)
\(242\) −6.04902 3.49240i −0.388846 0.224500i
\(243\) 0 0
\(244\) 14.7121i 0.941843i
\(245\) 0 0
\(246\) 0 0
\(247\) 1.72667 2.99067i 0.109865 0.190292i
\(248\) −0.909687 −0.0577652
\(249\) 0 0
\(250\) 11.2179i 0.709481i
\(251\) −11.0301 −0.696216 −0.348108 0.937454i \(-0.613176\pi\)
−0.348108 + 0.937454i \(0.613176\pi\)
\(252\) 0 0
\(253\) 6.06748 0.381459
\(254\) 17.9292i 1.12498i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −7.54890 + 13.0751i −0.470888 + 0.815601i −0.999446 0.0332960i \(-0.989400\pi\)
0.528558 + 0.848897i \(0.322733\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 12.3373i 0.765128i
\(261\) 0 0
\(262\) 15.0094 + 8.66567i 0.927283 + 0.535367i
\(263\) −17.0075 + 9.81926i −1.04873 + 0.605482i −0.922292 0.386493i \(-0.873686\pi\)
−0.126433 + 0.991975i \(0.540353\pi\)
\(264\) 0 0
\(265\) 27.4376 15.8411i 1.68548 0.973112i
\(266\) 0 0
\(267\) 0 0
\(268\) 8.31641 0.508006
\(269\) 0.245503 0.425223i 0.0149686 0.0259263i −0.858444 0.512907i \(-0.828569\pi\)
0.873413 + 0.486981i \(0.161902\pi\)
\(270\) 0 0
\(271\) 12.1927 7.03945i 0.740653 0.427616i −0.0816537 0.996661i \(-0.526020\pi\)
0.822307 + 0.569045i \(0.192687\pi\)
\(272\) −3.08709 + 5.34700i −0.187182 + 0.324209i
\(273\) 0 0
\(274\) −0.000322562 0 0.000558693i −1.94867e−5 0 3.37519e-5i
\(275\) −14.0553 8.11481i −0.847565 0.489342i
\(276\) 0 0
\(277\) −15.3600 26.6043i −0.922894 1.59850i −0.794913 0.606723i \(-0.792484\pi\)
−0.127981 0.991777i \(-0.540850\pi\)
\(278\) 5.04185 + 8.73273i 0.302390 + 0.523755i
\(279\) 0 0
\(280\) 0 0
\(281\) −6.86286 3.96227i −0.409404 0.236369i 0.281130 0.959670i \(-0.409291\pi\)
−0.690534 + 0.723300i \(0.742624\pi\)
\(282\) 0 0
\(283\) 11.5159i 0.684547i 0.939600 + 0.342273i \(0.111197\pi\)
−0.939600 + 0.342273i \(0.888803\pi\)
\(284\) 0.466287i 0.0276691i
\(285\) 0 0
\(286\) −5.91532 3.41521i −0.349780 0.201946i
\(287\) 0 0
\(288\) 0 0
\(289\) −10.5603 18.2909i −0.621192 1.07594i
\(290\) 10.5434 + 18.2616i 0.619127 + 1.07236i
\(291\) 0 0
\(292\) −3.65022 2.10746i −0.213613 0.123330i
\(293\) −2.50937 4.34636i −0.146599 0.253917i 0.783369 0.621557i \(-0.213499\pi\)
−0.929968 + 0.367639i \(0.880166\pi\)
\(294\) 0 0
\(295\) −16.2621 + 28.1667i −0.946814 + 1.63993i
\(296\) 6.35359 3.66825i 0.369295 0.213213i
\(297\) 0 0
\(298\) −5.62376 + 9.74064i −0.325776 + 0.564260i
\(299\) −10.3217 −0.596917
\(300\) 0 0
\(301\) 0 0
\(302\) −4.09092 + 2.36189i −0.235406 + 0.135912i
\(303\) 0 0
\(304\) −0.877353 + 0.506540i −0.0503197 + 0.0290521i
\(305\) 46.1138 + 26.6238i 2.64047 + 1.52447i
\(306\) 0 0
\(307\) 17.5309i 1.00054i 0.865869 + 0.500271i \(0.166766\pi\)
−0.865869 + 0.500271i \(0.833234\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.64622 + 2.85134i −0.0934992 + 0.161945i
\(311\) 17.2952 0.980720 0.490360 0.871520i \(-0.336865\pi\)
0.490360 + 0.871520i \(0.336865\pi\)
\(312\) 0 0
\(313\) 8.99498i 0.508426i 0.967148 + 0.254213i \(0.0818165\pi\)
−0.967148 + 0.254213i \(0.918184\pi\)
\(314\) 3.06972 0.173234
\(315\) 0 0
\(316\) −3.82533 −0.215192
\(317\) 6.72038i 0.377454i 0.982030 + 0.188727i \(0.0604362\pi\)
−0.982030 + 0.188727i \(0.939564\pi\)
\(318\) 0 0
\(319\) −11.6744 −0.653642
\(320\) 1.80966 3.13442i 0.101163 0.175219i
\(321\) 0 0
\(322\) 0 0
\(323\) 6.25494i 0.348034i
\(324\) 0 0
\(325\) 23.9100 + 13.8045i 1.32629 + 0.765734i
\(326\) 2.48873 1.43687i 0.137838 0.0795807i
\(327\) 0 0
\(328\) −4.93712 + 2.85045i −0.272607 + 0.157390i
\(329\) 0 0
\(330\) 0 0
\(331\) −18.7745 −1.03194 −0.515970 0.856607i \(-0.672568\pi\)
−0.515970 + 0.856607i \(0.672568\pi\)
\(332\) 4.00481 6.93654i 0.219793 0.380692i
\(333\) 0 0
\(334\) −1.26529 + 0.730517i −0.0692338 + 0.0399721i
\(335\) 15.0499 26.0671i 0.822262 1.42420i
\(336\) 0 0
\(337\) 2.42287 + 4.19654i 0.131982 + 0.228600i 0.924441 0.381326i \(-0.124532\pi\)
−0.792458 + 0.609926i \(0.791199\pi\)
\(338\) −1.19552 0.690233i −0.0650276 0.0375437i
\(339\) 0 0
\(340\) 11.1732 + 19.3525i 0.605949 + 1.04954i
\(341\) −0.911413 1.57861i −0.0493558 0.0854868i
\(342\) 0 0
\(343\) 0 0
\(344\) 4.15605 + 2.39949i 0.224079 + 0.129372i
\(345\) 0 0
\(346\) 3.07081i 0.165088i
\(347\) 17.4712i 0.937902i −0.883224 0.468951i \(-0.844632\pi\)
0.883224 0.468951i \(-0.155368\pi\)
\(348\) 0 0
\(349\) −20.6338 11.9129i −1.10450 0.637683i −0.167101 0.985940i \(-0.553440\pi\)
−0.937399 + 0.348257i \(0.886774\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.00190 + 1.73534i 0.0534013 + 0.0924938i
\(353\) 5.02061 + 8.69596i 0.267220 + 0.462839i 0.968143 0.250398i \(-0.0805615\pi\)
−0.700923 + 0.713237i \(0.747228\pi\)
\(354\) 0 0
\(355\) −1.46154 0.843820i −0.0775705 0.0447853i
\(356\) 2.39324 + 4.14521i 0.126841 + 0.219696i
\(357\) 0 0
\(358\) 9.65966 16.7310i 0.510529 0.884262i
\(359\) 10.5353 6.08254i 0.556030 0.321024i −0.195521 0.980700i \(-0.562640\pi\)
0.751550 + 0.659676i \(0.229306\pi\)
\(360\) 0 0
\(361\) −8.98683 + 15.5657i −0.472991 + 0.819245i
\(362\) 7.89318 0.414856
\(363\) 0 0
\(364\) 0 0
\(365\) −13.2113 + 7.62756i −0.691512 + 0.399245i
\(366\) 0 0
\(367\) −3.14420 + 1.81531i −0.164126 + 0.0947582i −0.579813 0.814749i \(-0.696874\pi\)
0.415687 + 0.909508i \(0.363541\pi\)
\(368\) 2.62232 + 1.51400i 0.136698 + 0.0789225i
\(369\) 0 0
\(370\) 26.5531i 1.38043i
\(371\) 0 0
\(372\) 0 0
\(373\) −2.74616 + 4.75648i −0.142191 + 0.246281i −0.928321 0.371779i \(-0.878748\pi\)
0.786131 + 0.618060i \(0.212081\pi\)
\(374\) −12.3718 −0.639730
\(375\) 0 0
\(376\) 2.23022i 0.115015i
\(377\) 19.8599 1.02284
\(378\) 0 0
\(379\) −15.5960 −0.801112 −0.400556 0.916272i \(-0.631183\pi\)
−0.400556 + 0.916272i \(0.631183\pi\)
\(380\) 3.66666i 0.188096i
\(381\) 0 0
\(382\) 13.3042 0.680703
\(383\) 4.71534 8.16720i 0.240942 0.417324i −0.720041 0.693932i \(-0.755877\pi\)
0.960983 + 0.276607i \(0.0892102\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.53573i 0.332660i
\(387\) 0 0
\(388\) −10.1835 5.87944i −0.516989 0.298483i
\(389\) −5.56142 + 3.21089i −0.281975 + 0.162798i −0.634317 0.773073i \(-0.718719\pi\)
0.352342 + 0.935871i \(0.385385\pi\)
\(390\) 0 0
\(391\) −16.1907 + 9.34769i −0.818798 + 0.472733i
\(392\) 0 0
\(393\) 0 0
\(394\) 4.44250 0.223810
\(395\) −6.92255 + 11.9902i −0.348311 + 0.603293i
\(396\) 0 0
\(397\) −5.99750 + 3.46266i −0.301006 + 0.173786i −0.642895 0.765955i \(-0.722267\pi\)
0.341889 + 0.939740i \(0.388933\pi\)
\(398\) 5.75542 9.96868i 0.288493 0.499685i
\(399\) 0 0
\(400\) −4.04972 7.01433i −0.202486 0.350716i
\(401\) 9.16848 + 5.29343i 0.457852 + 0.264341i 0.711141 0.703050i \(-0.248179\pi\)
−0.253289 + 0.967391i \(0.581512\pi\)
\(402\) 0 0
\(403\) 1.55045 + 2.68545i 0.0772332 + 0.133772i
\(404\) 6.44610 + 11.1650i 0.320705 + 0.555478i
\(405\) 0 0
\(406\) 0 0
\(407\) 12.7313 + 7.35042i 0.631067 + 0.364347i
\(408\) 0 0
\(409\) 8.92343i 0.441235i −0.975360 0.220618i \(-0.929193\pi\)
0.975360 0.220618i \(-0.0708073\pi\)
\(410\) 20.6333i 1.01901i
\(411\) 0 0
\(412\) 9.31740 + 5.37940i 0.459035 + 0.265024i
\(413\) 0 0
\(414\) 0 0
\(415\) −14.4947 25.1055i −0.711516 1.23238i
\(416\) −1.70437 2.95206i −0.0835637 0.144737i
\(417\) 0 0
\(418\) −1.75804 1.01500i −0.0859883 0.0496454i
\(419\) 17.1924 + 29.7781i 0.839903 + 1.45475i 0.889975 + 0.456009i \(0.150721\pi\)
−0.0500724 + 0.998746i \(0.515945\pi\)
\(420\) 0 0
\(421\) −17.7840 + 30.8028i −0.866739 + 1.50124i −0.00142877 + 0.999999i \(0.500455\pi\)
−0.865310 + 0.501237i \(0.832879\pi\)
\(422\) −19.5731 + 11.3005i −0.952803 + 0.550101i
\(423\) 0 0
\(424\) −4.37683 + 7.58088i −0.212557 + 0.368160i
\(425\) 50.0075 2.42572
\(426\) 0 0
\(427\) 0 0
\(428\) −2.28602 + 1.31983i −0.110499 + 0.0637965i
\(429\) 0 0
\(430\) 15.0420 8.68453i 0.725392 0.418805i
\(431\) 26.7338 + 15.4348i 1.28772 + 0.743466i 0.978247 0.207442i \(-0.0665138\pi\)
0.309474 + 0.950908i \(0.399847\pi\)
\(432\) 0 0
\(433\) 23.2463i 1.11715i 0.829455 + 0.558574i \(0.188651\pi\)
−0.829455 + 0.558574i \(0.811349\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.51768 + 7.82484i −0.216357 + 0.374742i
\(437\) −3.06760 −0.146743
\(438\) 0 0
\(439\) 22.2727i 1.06302i 0.847052 + 0.531509i \(0.178375\pi\)
−0.847052 + 0.531509i \(0.821625\pi\)
\(440\) 7.25237 0.345743
\(441\) 0 0
\(442\) 21.0462 1.00107
\(443\) 17.9852i 0.854501i −0.904133 0.427251i \(-0.859482\pi\)
0.904133 0.427251i \(-0.140518\pi\)
\(444\) 0 0
\(445\) 17.3238 0.821225
\(446\) 9.41045 16.2994i 0.445598 0.771798i
\(447\) 0 0
\(448\) 0 0
\(449\) 9.44363i 0.445673i 0.974856 + 0.222836i \(0.0715315\pi\)
−0.974856 + 0.222836i \(0.928468\pi\)
\(450\) 0 0
\(451\) −9.89297 5.71171i −0.465842 0.268954i
\(452\) −1.46411 + 0.845306i −0.0688661 + 0.0397599i
\(453\) 0 0
\(454\) 12.6555 7.30665i 0.593952 0.342918i
\(455\) 0 0
\(456\) 0 0
\(457\) −1.84450 −0.0862821 −0.0431411 0.999069i \(-0.513736\pi\)
−0.0431411 + 0.999069i \(0.513736\pi\)
\(458\) 1.18959 2.06044i 0.0555861 0.0962779i
\(459\) 0 0
\(460\) 9.49100 5.47963i 0.442520 0.255489i
\(461\) −18.1869 + 31.5007i −0.847050 + 1.46713i 0.0367790 + 0.999323i \(0.488290\pi\)
−0.883829 + 0.467810i \(0.845043\pi\)
\(462\) 0 0
\(463\) −15.9830 27.6834i −0.742794 1.28656i −0.951219 0.308518i \(-0.900167\pi\)
0.208425 0.978038i \(-0.433166\pi\)
\(464\) −5.04560 2.91308i −0.234236 0.135236i
\(465\) 0 0
\(466\) −5.21619 9.03470i −0.241635 0.418525i
\(467\) 12.2206 + 21.1666i 0.565500 + 0.979475i 0.997003 + 0.0773632i \(0.0246501\pi\)
−0.431503 + 0.902112i \(0.642017\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 6.99044 + 4.03593i 0.322445 + 0.186164i
\(471\) 0 0
\(472\) 8.98627i 0.413626i
\(473\) 9.61619i 0.442153i
\(474\) 0 0
\(475\) 7.10607 + 4.10269i 0.326049 + 0.188245i
\(476\) 0 0
\(477\) 0 0
\(478\) −11.8917 20.5971i −0.543916 0.942090i
\(479\) 5.48032 + 9.49220i 0.250402 + 0.433710i 0.963637 0.267216i \(-0.0861037\pi\)
−0.713234 + 0.700926i \(0.752770\pi\)
\(480\) 0 0
\(481\) −21.6578 12.5041i −0.987509 0.570139i
\(482\) −14.3243 24.8105i −0.652456 1.13009i
\(483\) 0 0
\(484\) 3.49240 6.04902i 0.158746 0.274955i
\(485\) −36.8573 + 21.2796i −1.67360 + 0.966255i
\(486\) 0 0
\(487\) −16.8087 + 29.1136i −0.761677 + 1.31926i 0.180309 + 0.983610i \(0.442290\pi\)
−0.941986 + 0.335653i \(0.891043\pi\)
\(488\) −14.7121 −0.665984
\(489\) 0 0
\(490\) 0 0
\(491\) 19.6893 11.3676i 0.888568 0.513015i 0.0150939 0.999886i \(-0.495195\pi\)
0.873474 + 0.486871i \(0.161862\pi\)
\(492\) 0 0
\(493\) 31.1525 17.9859i 1.40304 0.810043i
\(494\) 2.99067 + 1.72667i 0.134557 + 0.0776863i
\(495\) 0 0
\(496\) 0.909687i 0.0408462i
\(497\) 0 0
\(498\) 0 0
\(499\) −9.76175 + 16.9079i −0.436996 + 0.756899i −0.997456 0.0712820i \(-0.977291\pi\)
0.560460 + 0.828181i \(0.310624\pi\)
\(500\) −11.2179 −0.501679
\(501\) 0 0
\(502\) 11.0301i 0.492299i
\(503\) −13.6867 −0.610262 −0.305131 0.952310i \(-0.598700\pi\)
−0.305131 + 0.952310i \(0.598700\pi\)
\(504\) 0 0
\(505\) 46.6609 2.07638
\(506\) 6.06748i 0.269732i
\(507\) 0 0
\(508\) −17.9292 −0.795478
\(509\) −1.14583 + 1.98464i −0.0507881 + 0.0879675i −0.890302 0.455371i \(-0.849507\pi\)
0.839514 + 0.543338i \(0.182840\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −13.0751 7.54890i −0.576717 0.332968i
\(515\) 33.7226 19.4698i 1.48600 0.857940i
\(516\) 0 0
\(517\) −3.87018 + 2.23445i −0.170210 + 0.0982710i
\(518\) 0 0
\(519\) 0 0
\(520\) −12.3373 −0.541027
\(521\) 8.54102 14.7935i 0.374189 0.648114i −0.616017 0.787733i \(-0.711255\pi\)
0.990205 + 0.139619i \(0.0445879\pi\)
\(522\) 0 0
\(523\) −35.7462 + 20.6381i −1.56307 + 0.902440i −0.566128 + 0.824317i \(0.691559\pi\)
−0.996944 + 0.0781229i \(0.975107\pi\)
\(524\) −8.66567 + 15.0094i −0.378562 + 0.655688i
\(525\) 0 0
\(526\) −9.81926 17.0075i −0.428140 0.741561i
\(527\) 4.86410 + 2.80829i 0.211883 + 0.122331i
\(528\) 0 0
\(529\) −6.91563 11.9782i −0.300679 0.520792i
\(530\) 15.8411 + 27.4376i 0.688094 + 1.19181i
\(531\) 0 0
\(532\) 0 0
\(533\) 16.8294 + 9.71644i 0.728961 + 0.420866i
\(534\) 0 0
\(535\) 9.55378i 0.413046i
\(536\) 8.31641i 0.359214i
\(537\) 0 0
\(538\) 0.425223 + 0.245503i 0.0183327 + 0.0105844i
\(539\) 0 0
\(540\) 0 0
\(541\) 22.7197 + 39.3516i 0.976795 + 1.69186i 0.673880 + 0.738841i \(0.264627\pi\)
0.302915 + 0.953018i \(0.402040\pi\)
\(542\) 7.03945 + 12.1927i 0.302370 + 0.523721i
\(543\) 0 0
\(544\) −5.34700 3.08709i −0.229251 0.132358i
\(545\) 16.3509 + 28.3206i 0.700395 + 1.21312i
\(546\) 0 0
\(547\) 15.1095 26.1705i 0.646037 1.11897i −0.338024 0.941138i \(-0.609758\pi\)
0.984061 0.177832i \(-0.0569082\pi\)
\(548\) 0.000558693 0 0.000322562i 2.38662e−5 0 1.37791e-5i
\(549\) 0 0
\(550\) 8.11481 14.0553i 0.346017 0.599319i
\(551\) 5.90237 0.251449
\(552\) 0 0
\(553\) 0 0
\(554\) 26.6043 15.3600i 1.13031 0.652585i
\(555\) 0 0
\(556\) −8.73273 + 5.04185i −0.370350 + 0.213822i
\(557\) −22.0154 12.7106i −0.932822 0.538565i −0.0451189 0.998982i \(-0.514367\pi\)
−0.887703 + 0.460417i \(0.847700\pi\)
\(558\) 0 0
\(559\) 16.3585i 0.691892i
\(560\) 0 0
\(561\) 0 0
\(562\) 3.96227 6.86286i 0.167138 0.289492i
\(563\) 2.88692 0.121669 0.0608346 0.998148i \(-0.480624\pi\)
0.0608346 + 0.998148i \(0.480624\pi\)
\(564\) 0 0
\(565\) 6.11886i 0.257422i
\(566\) −11.5159 −0.484048
\(567\) 0 0
\(568\) 0.466287 0.0195650
\(569\) 44.5651i 1.86827i 0.356922 + 0.934134i \(0.383826\pi\)
−0.356922 + 0.934134i \(0.616174\pi\)
\(570\) 0 0
\(571\) −6.52939 −0.273247 −0.136623 0.990623i \(-0.543625\pi\)
−0.136623 + 0.990623i \(0.543625\pi\)
\(572\) 3.41521 5.91532i 0.142797 0.247332i
\(573\) 0 0
\(574\) 0 0
\(575\) 24.5251i 1.02277i
\(576\) 0 0
\(577\) −1.17720 0.679658i −0.0490076 0.0282945i 0.475296 0.879826i \(-0.342341\pi\)
−0.524304 + 0.851531i \(0.675674\pi\)
\(578\) 18.2909 10.5603i 0.760802 0.439249i
\(579\) 0 0
\(580\) −18.2616 + 10.5434i −0.758273 + 0.437789i
\(581\) 0 0
\(582\) 0 0
\(583\) −17.5405 −0.726454
\(584\) 2.10746 3.65022i 0.0872072 0.151047i
\(585\) 0 0
\(586\) 4.34636 2.50937i 0.179547 0.103661i
\(587\) 22.2025 38.4559i 0.916397 1.58725i 0.111555 0.993758i \(-0.464417\pi\)
0.804843 0.593488i \(-0.202250\pi\)
\(588\) 0 0
\(589\) 0.460793 + 0.798117i 0.0189866 + 0.0328858i
\(590\) −28.1667 16.2621i −1.15961 0.669499i
\(591\) 0 0
\(592\) 3.66825 + 6.35359i 0.150764 + 0.261131i
\(593\) 7.17564 + 12.4286i 0.294668 + 0.510380i 0.974908 0.222610i \(-0.0714576\pi\)
−0.680240 + 0.732990i \(0.738124\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −9.74064 5.62376i −0.398992 0.230358i
\(597\) 0 0
\(598\) 10.3217i 0.422084i
\(599\) 3.50277i 0.143119i −0.997436 0.0715597i \(-0.977202\pi\)
0.997436 0.0715597i \(-0.0227977\pi\)
\(600\) 0 0
\(601\) −15.1846 8.76685i −0.619394 0.357607i 0.157239 0.987561i \(-0.449741\pi\)
−0.776633 + 0.629953i \(0.783074\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −2.36189 4.09092i −0.0961041 0.166457i
\(605\) −12.6401 21.8933i −0.513894 0.890090i
\(606\) 0 0
\(607\) −0.0755923 0.0436432i −0.00306820 0.00177142i 0.498465 0.866910i \(-0.333897\pi\)
−0.501533 + 0.865138i \(0.667231\pi\)
\(608\) −0.506540 0.877353i −0.0205429 0.0355814i
\(609\) 0 0
\(610\) −26.6238 + 46.1138i −1.07797 + 1.86709i
\(611\) 6.58373 3.80112i 0.266349 0.153777i
\(612\) 0 0
\(613\) 12.5352 21.7116i 0.506292 0.876924i −0.493681 0.869643i \(-0.664349\pi\)
0.999973 0.00728071i \(-0.00231754\pi\)
\(614\) −17.5309 −0.707490
\(615\) 0 0
\(616\) 0 0
\(617\) 10.6365 6.14101i 0.428211 0.247228i −0.270373 0.962756i \(-0.587147\pi\)
0.698584 + 0.715528i \(0.253814\pi\)
\(618\) 0 0
\(619\) 17.5869 10.1538i 0.706875 0.408115i −0.103028 0.994678i \(-0.532853\pi\)
0.809903 + 0.586564i \(0.199520\pi\)
\(620\) −2.85134 1.64622i −0.114513 0.0661139i
\(621\) 0 0
\(622\) 17.2952i 0.693474i
\(623\) 0 0
\(624\) 0 0
\(625\) −0.0518970 + 0.0898882i −0.00207588 + 0.00359553i
\(626\) −8.99498 −0.359512
\(627\) 0 0
\(628\) 3.06972i 0.122495i
\(629\) −45.2969 −1.80610
\(630\) 0 0
\(631\) −45.9665 −1.82990 −0.914950 0.403568i \(-0.867770\pi\)
−0.914950 + 0.403568i \(0.867770\pi\)
\(632\) 3.82533i 0.152164i
\(633\) 0 0
\(634\) −6.72038 −0.266901
\(635\) −32.4456 + 56.1975i −1.28757 + 2.23013i
\(636\) 0 0
\(637\) 0 0
\(638\) 11.6744i 0.462195i
\(639\) 0 0
\(640\) 3.13442 + 1.80966i 0.123899 + 0.0715330i
\(641\) 27.4104 15.8254i 1.08265 0.625067i 0.151038 0.988528i \(-0.451738\pi\)
0.931609 + 0.363461i \(0.118405\pi\)
\(642\) 0 0
\(643\) 10.0106 5.77960i 0.394778 0.227925i −0.289450 0.957193i \(-0.593472\pi\)
0.684228 + 0.729268i \(0.260139\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 6.25494 0.246097
\(647\) −13.0365 + 22.5799i −0.512519 + 0.887708i 0.487376 + 0.873192i \(0.337954\pi\)
−0.999895 + 0.0145160i \(0.995379\pi\)
\(648\) 0 0
\(649\) 15.5942 9.00332i 0.612126 0.353411i
\(650\) −13.8045 + 23.9100i −0.541456 + 0.937829i
\(651\) 0 0
\(652\) 1.43687 + 2.48873i 0.0562720 + 0.0974660i
\(653\) −16.3952 9.46576i −0.641593 0.370424i 0.143635 0.989631i \(-0.454121\pi\)
−0.785228 + 0.619207i \(0.787454\pi\)
\(654\) 0 0
\(655\) 31.3638 + 54.3237i 1.22549 + 2.12260i
\(656\) −2.85045 4.93712i −0.111291 0.192762i
\(657\) 0 0
\(658\) 0 0
\(659\) −23.3508 13.4816i −0.909618 0.525168i −0.0293098 0.999570i \(-0.509331\pi\)
−0.880308 + 0.474402i \(0.842664\pi\)
\(660\) 0 0
\(661\) 25.7730i 1.00245i −0.865316 0.501227i \(-0.832882\pi\)
0.865316 0.501227i \(-0.167118\pi\)
\(662\) 18.7745i 0.729691i
\(663\) 0 0
\(664\) 6.93654 + 4.00481i 0.269190 + 0.155417i
\(665\) 0 0
\(666\) 0 0
\(667\) −8.82079 15.2780i −0.341542 0.591568i
\(668\) −0.730517 1.26529i −0.0282646 0.0489557i
\(669\) 0 0
\(670\) 26.0671 + 15.0499i 1.00706 + 0.581427i
\(671\) −14.7400 25.5304i −0.569030 0.985590i
\(672\) 0 0
\(673\) −12.9608 + 22.4487i −0.499601 + 0.865335i −1.00000 0.000460130i \(-0.999854\pi\)
0.500398 + 0.865795i \(0.333187\pi\)
\(674\) −4.19654 + 2.42287i −0.161645 + 0.0933256i
\(675\) 0 0
\(676\) 0.690233 1.19552i 0.0265474 0.0459815i
\(677\) 13.1076 0.503767 0.251884 0.967758i \(-0.418950\pi\)
0.251884 + 0.967758i \(0.418950\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −19.3525 + 11.1732i −0.742134 + 0.428471i
\(681\) 0 0
\(682\) 1.57861 0.911413i 0.0604483 0.0348998i
\(683\) −25.6910 14.8327i −0.983038 0.567557i −0.0798523 0.996807i \(-0.525445\pi\)
−0.903186 + 0.429249i \(0.858778\pi\)
\(684\) 0 0
\(685\) 0.00233490i 8.92121e-5i
\(686\) 0 0
\(687\) 0 0
\(688\) −2.39949 + 4.15605i −0.0914799 + 0.158448i
\(689\) 29.8390 1.13677
\(690\) 0 0
\(691\) 47.3159i 1.79998i 0.435910 + 0.899990i \(0.356427\pi\)
−0.435910 + 0.899990i \(0.643573\pi\)
\(692\) 3.07081 0.116735
\(693\) 0 0
\(694\) 17.4712 0.663197
\(695\) 36.4961i 1.38437i
\(696\) 0 0
\(697\) 35.1983 1.33323
\(698\) 11.9129 20.6338i 0.450910 0.780999i
\(699\) 0 0
\(700\) 0 0
\(701\) 13.7742i 0.520244i 0.965576 + 0.260122i \(0.0837627\pi\)
−0.965576 + 0.260122i \(0.916237\pi\)
\(702\) 0 0
\(703\) −6.43670 3.71623i −0.242765 0.140160i
\(704\) −1.73534 + 1.00190i −0.0654030 + 0.0377604i
\(705\) 0 0
\(706\) −8.69596 + 5.02061i −0.327277 + 0.188953i
\(707\) 0 0
\(708\) 0 0
\(709\) −43.9383 −1.65014 −0.825069 0.565032i \(-0.808864\pi\)
−0.825069 + 0.565032i \(0.808864\pi\)
\(710\) 0.843820 1.46154i 0.0316680 0.0548506i
\(711\) 0 0
\(712\) −4.14521 + 2.39324i −0.155348 + 0.0896903i
\(713\) 1.37726 2.38549i 0.0515789 0.0893373i
\(714\) 0 0
\(715\) −12.3607 21.4094i −0.462265 0.800667i
\(716\) 16.7310 + 9.65966i 0.625268 + 0.360998i
\(717\) 0 0
\(718\) 6.08254 + 10.5353i 0.226998 + 0.393173i
\(719\) −14.7930 25.6223i −0.551687 0.955549i −0.998153 0.0607489i \(-0.980651\pi\)
0.446466 0.894800i \(-0.352682\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15.5657 8.98683i −0.579294 0.334455i
\(723\) 0 0
\(724\) 7.89318i 0.293348i
\(725\) 47.1887i 1.75254i
\(726\) 0 0
\(727\) −10.1244 5.84534i −0.375494 0.216792i 0.300362 0.953825i \(-0.402893\pi\)
−0.675856 + 0.737034i \(0.736226\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −7.62756 13.2113i −0.282308 0.488973i
\(731\) −14.8149 25.6602i −0.547949 0.949076i
\(732\) 0 0
\(733\) 28.6423 + 16.5366i 1.05793 + 0.610795i 0.924858 0.380312i \(-0.124183\pi\)
0.133070 + 0.991107i \(0.457517\pi\)
\(734\) −1.81531 3.14420i −0.0670042 0.116055i
\(735\) 0 0
\(736\) −1.51400 + 2.62232i −0.0558067 + 0.0966600i
\(737\) −14.4318 + 8.33219i −0.531601 + 0.306920i
\(738\) 0 0
\(739\) −21.7528 + 37.6770i −0.800190 + 1.38597i 0.119301 + 0.992858i \(0.461935\pi\)
−0.919491 + 0.393111i \(0.871399\pi\)
\(740\) 26.5531 0.976111
\(741\) 0 0
\(742\) 0 0
\(743\) −18.0206 + 10.4042i −0.661112 + 0.381693i −0.792701 0.609611i \(-0.791326\pi\)
0.131589 + 0.991304i \(0.457992\pi\)
\(744\) 0 0
\(745\) −35.2544 + 20.3542i −1.29162 + 0.745719i
\(746\) −4.75648 2.74616i −0.174147 0.100544i
\(747\) 0 0
\(748\) 12.3718i 0.452358i
\(749\) 0 0
\(750\) 0 0
\(751\) 19.9492 34.5531i 0.727957 1.26086i −0.229788 0.973241i \(-0.573803\pi\)
0.957745 0.287618i \(-0.0928634\pi\)
\(752\) −2.23022 −0.0813277
\(753\) 0 0
\(754\) 19.8599i 0.723254i
\(755\) −17.0969 −0.622219
\(756\) 0 0
\(757\) 7.45545 0.270973 0.135486 0.990779i \(-0.456740\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(758\) 15.5960i 0.566472i
\(759\) 0 0
\(760\) −3.66666 −0.133004
\(761\) −4.32462 + 7.49046i −0.156767 + 0.271529i −0.933701 0.358053i \(-0.883441\pi\)
0.776934 + 0.629582i \(0.216774\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 13.3042i 0.481330i
\(765\) 0 0
\(766\) 8.16720 + 4.71534i 0.295093 + 0.170372i
\(767\) −26.5280 + 15.3159i −0.957870 + 0.553026i
\(768\) 0 0
\(769\) −20.4818 + 11.8252i −0.738592 + 0.426426i −0.821557 0.570126i \(-0.806894\pi\)
0.0829652 + 0.996552i \(0.473561\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −6.53573 −0.235226
\(773\) 23.2849 40.3307i 0.837501 1.45059i −0.0544774 0.998515i \(-0.517349\pi\)
0.891978 0.452079i \(-0.149317\pi\)
\(774\) 0 0
\(775\) −6.38084 + 3.68398i −0.229207 + 0.132333i
\(776\) 5.87944 10.1835i 0.211060 0.365566i
\(777\) 0 0
\(778\) −3.21089 5.56142i −0.115116 0.199387i
\(779\) 5.00170 + 2.88773i 0.179204 + 0.103464i
\(780\) 0 0
\(781\) 0.467172 + 0.809166i 0.0167167 + 0.0289542i
\(782\) −9.34769 16.1907i −0.334273 0.578977i
\(783\) 0 0
\(784\) 0 0
\(785\) 9.62178 + 5.55513i 0.343416 + 0.198271i
\(786\) 0 0
\(787\) 24.4400i 0.871192i 0.900142 + 0.435596i \(0.143462\pi\)
−0.900142 + 0.435596i \(0.856538\pi\)
\(788\) 4.44250i 0.158258i
\(789\) 0 0
\(790\) −11.9902 6.92255i −0.426592 0.246293i
\(791\) 0 0
\(792\) 0 0
\(793\) 25.0748 + 43.4309i 0.890433 + 1.54228i
\(794\) −3.46266 5.99750i −0.122885 0.212843i
\(795\) 0 0
\(796\) 9.96868 + 5.75542i 0.353330 + 0.203995i
\(797\) −24.9202 43.1631i −0.882719 1.52891i −0.848306 0.529506i \(-0.822377\pi\)
−0.0344128 0.999408i \(-0.510956\pi\)
\(798\) 0 0
\(799\) 6.88489 11.9250i 0.243570 0.421875i
\(800\) 7.01433 4.04972i 0.247994 0.143179i
\(801\) 0 0
\(802\) −5.29343 + 9.16848i −0.186917 + 0.323750i
\(803\) 8.44583 0.298047
\(804\) 0 0
\(805\) 0 0
\(806\) −2.68545 + 1.55045i −0.0945910 + 0.0546121i
\(807\) 0 0
\(808\) −11.1650 + 6.44610i −0.392782 + 0.226773i
\(809\) 10.6735 + 6.16237i 0.375262 + 0.216657i 0.675755 0.737127i \(-0.263818\pi\)
−0.300493 + 0.953784i \(0.597151\pi\)
\(810\) 0 0
\(811\) 24.8017i 0.870906i 0.900212 + 0.435453i \(0.143412\pi\)
−0.900212 + 0.435453i \(0.856588\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −7.35042 + 12.7313i −0.257632 + 0.446232i
\(815\) 10.4009 0.364329
\(816\) 0 0
\(817\) 4.86176i 0.170091i
\(818\) 8.92343 0.312000
\(819\) 0 0
\(820\) −20.6333 −0.720547
\(821\) 36.2083i 1.26368i −0.775100 0.631839i \(-0.782300\pi\)
0.775100 0.631839i \(-0.217700\pi\)
\(822\) 0 0
\(823\) −19.0819 −0.665152 −0.332576 0.943076i \(-0.607918\pi\)
−0.332576 + 0.943076i \(0.607918\pi\)
\(824\) −5.37940 + 9.31740i −0.187400 + 0.324587i
\(825\) 0 0
\(826\) 0 0
\(827\) 31.9013i 1.10932i 0.832079 + 0.554658i \(0.187151\pi\)
−0.832079 + 0.554658i \(0.812849\pi\)
\(828\) 0 0
\(829\) −13.0645 7.54278i −0.453748 0.261971i 0.255664 0.966766i \(-0.417706\pi\)
−0.709412 + 0.704794i \(0.751039\pi\)
\(830\) 25.1055 14.4947i 0.871425 0.503118i
\(831\) 0 0
\(832\) 2.95206 1.70437i 0.102344 0.0590885i
\(833\) 0 0
\(834\) 0 0
\(835\) −5.28795 −0.182997
\(836\) 1.01500 1.75804i 0.0351046 0.0608029i
\(837\) 0 0
\(838\) −29.7781 + 17.1924i −1.02867 + 0.593901i
\(839\) −8.19860 + 14.2004i −0.283047 + 0.490252i −0.972134 0.234427i \(-0.924679\pi\)
0.689087 + 0.724679i \(0.258012\pi\)
\(840\) 0 0
\(841\) 2.47206 + 4.28173i 0.0852434 + 0.147646i
\(842\) −30.8028 17.7840i −1.06153 0.612877i
\(843\) 0 0
\(844\) −11.3005 19.5731i −0.388980 0.673734i
\(845\) −2.49817 4.32696i −0.0859397 0.148852i
\(846\) 0 0
\(847\) 0 0
\(848\) −7.58088 4.37683i −0.260329 0.150301i
\(849\) 0 0
\(850\) 50.0075i 1.71524i
\(851\) 22.2149i 0.761516i
\(852\) 0 0
\(853\) −16.5936 9.58030i −0.568153 0.328023i 0.188258 0.982120i \(-0.439716\pi\)
−0.756411 + 0.654096i \(0.773049\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.31983 2.28602i −0.0451110 0.0781345i
\(857\) 8.05723 + 13.9555i 0.275230 + 0.476712i 0.970193 0.242333i \(-0.0779127\pi\)
−0.694963 + 0.719045i \(0.744579\pi\)
\(858\) 0 0
\(859\) −10.4830 6.05238i −0.357677 0.206505i 0.310384 0.950611i \(-0.399542\pi\)
−0.668061 + 0.744106i \(0.732876\pi\)
\(860\) 8.68453 + 15.0420i 0.296140 + 0.512929i
\(861\) 0 0
\(862\) −15.4348 + 26.7338i −0.525710 + 0.910556i
\(863\) −32.2728 + 18.6327i −1.09858 + 0.634265i −0.935848 0.352405i \(-0.885364\pi\)
−0.162732 + 0.986670i \(0.552031\pi\)
\(864\) 0 0
\(865\) 5.55712 9.62522i 0.188948 0.327267i
\(866\) −23.2463 −0.789942
\(867\) 0 0
\(868\) 0 0
\(869\) 6.63824 3.83259i 0.225187 0.130012i
\(870\) 0 0
\(871\) 24.5505 14.1743i 0.831863 0.480276i
\(872\) −7.82484 4.51768i −0.264983 0.152988i
\(873\) 0 0
\(874\) 3.06760i 0.103763i
\(875\) 0 0
\(876\) 0 0
\(877\) 4.85474 8.40866i 0.163933 0.283940i −0.772343 0.635206i \(-0.780915\pi\)
0.936276 + 0.351266i \(0.114249\pi\)
\(878\) −22.2727 −0.751668
\(879\) 0 0
\(880\) 7.25237i 0.244477i
\(881\) −2.63241 −0.0886881 −0.0443440 0.999016i \(-0.514120\pi\)
−0.0443440 + 0.999016i \(0.514120\pi\)
\(882\) 0 0
\(883\) −36.3181 −1.22220 −0.611101 0.791553i \(-0.709273\pi\)
−0.611101 + 0.791553i \(0.709273\pi\)
\(884\) 21.0462i 0.707860i
\(885\) 0 0
\(886\) 17.9852 0.604224
\(887\) −8.18209 + 14.1718i −0.274728 + 0.475842i −0.970066 0.242840i \(-0.921921\pi\)
0.695339 + 0.718682i \(0.255254\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 17.3238i 0.580694i
\(891\) 0 0
\(892\) 16.2994 + 9.41045i 0.545744 + 0.315085i
\(893\) 1.95669 1.12969i 0.0654781 0.0378038i
\(894\) 0 0
\(895\) 60.5549 34.9614i 2.02413 1.16863i
\(896\) 0 0
\(897\) 0 0
\(898\) −9.44363 −0.315138
\(899\) −2.64999 + 4.58992i −0.0883822 + 0.153082i
\(900\) 0 0
\(901\) 46.8058 27.0233i 1.55933 0.900277i
\(902\) 5.71171 9.89297i 0.190179 0.329400i
\(903\) 0 0
\(904\) −0.845306 1.46411i −0.0281145 0.0486957i
\(905\) 24.7405 + 14.2839i 0.822403 + 0.474814i
\(906\) 0 0
\(907\) −5.41666 9.38192i −0.179857 0.311522i 0.761974 0.647607i \(-0.224230\pi\)
−0.941831 + 0.336086i \(0.890897\pi\)
\(908\) 7.30665 + 12.6555i 0.242480 + 0.419987i
\(909\) 0 0
\(910\) 0 0
\(911\) −36.8512 21.2760i −1.22093 0.704907i −0.255817 0.966725i \(-0.582345\pi\)
−0.965117 + 0.261818i \(0.915678\pi\)
\(912\) 0 0
\(913\) 16.0496i 0.531166i
\(914\) 1.84450i 0.0610107i
\(915\) 0 0
\(916\) 2.06044 + 1.18959i 0.0680788 + 0.0393053i
\(917\) 0 0
\(918\) 0 0
\(919\) −12.9697 22.4641i −0.427829 0.741022i 0.568851 0.822441i \(-0.307388\pi\)
−0.996680 + 0.0814187i \(0.974055\pi\)
\(920\) 5.47963 + 9.49100i 0.180658 + 0.312909i
\(921\) 0 0
\(922\) −31.5007 18.1869i −1.03742 0.598955i
\(923\) −0.794727 1.37651i −0.0261588 0.0453083i
\(924\) 0 0
\(925\) 29.7108 51.4606i 0.976884 1.69201i
\(926\) 27.6834 15.9830i 0.909733 0.525234i
\(927\) 0 0
\(928\) 2.91308 5.04560i 0.0956265 0.165630i
\(929\) 46.8911 1.53845 0.769224 0.638979i \(-0.220643\pi\)
0.769224 + 0.638979i \(0.220643\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 9.03470 5.21619i 0.295942 0.170862i
\(933\) 0 0
\(934\) −21.1666 + 12.2206i −0.692593 + 0.399869i
\(935\) −38.7784 22.3887i −1.26819 0.732189i
\(936\) 0 0
\(937\) 0.209357i 0.00683939i 0.999994 + 0.00341969i \(0.00108852\pi\)
−0.999994 + 0.00341969i \(0.998911\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4.03593 + 6.99044i −0.131638 + 0.228003i
\(941\) −0.777130 −0.0253337 −0.0126669 0.999920i \(-0.504032\pi\)
−0.0126669 + 0.999920i \(0.504032\pi\)
\(942\) 0 0
\(943\) 17.2623i 0.562137i
\(944\) 8.98627 0.292478
\(945\) 0 0
\(946\) −9.61619 −0.312649
\(947\) 49.7945i 1.61810i −0.587737 0.809052i \(-0.699981\pi\)
0.587737 0.809052i \(-0.300019\pi\)
\(948\) 0 0
\(949\) −14.3676 −0.466391
\(950\) −4.10269 + 7.10607i −0.133109 + 0.230552i
\(951\) 0 0
\(952\) 0 0
\(953\) 41.4104i 1.34141i 0.741722 + 0.670707i \(0.234009\pi\)
−0.741722 + 0.670707i \(0.765991\pi\)
\(954\) 0 0
\(955\) 41.7010 + 24.0761i 1.34941 + 0.779084i
\(956\) 20.5971 11.8917i 0.666158 0.384607i
\(957\) 0 0
\(958\) −9.49220 + 5.48032i −0.306679 + 0.177061i
\(959\) 0 0
\(960\) 0 0
\(961\) 30.1725 0.973305
\(962\) 12.5041 21.6578i 0.403149 0.698274i
\(963\) 0 0
\(964\) 24.8105 14.3243i 0.799092 0.461356i
\(965\) −11.8274 + 20.4857i −0.380739 + 0.659459i
\(966\) 0 0
\(967\) 22.8028 + 39.4956i 0.733289 + 1.27009i 0.955470 + 0.295088i \(0.0953491\pi\)
−0.222181 + 0.975005i \(0.571318\pi\)
\(968\) 6.04902 + 3.49240i 0.194423 + 0.112250i
\(969\) 0 0
\(970\) −21.2796 36.8573i −0.683245 1.18342i
\(971\) −4.36733 7.56444i −0.140154 0.242754i 0.787400 0.616442i \(-0.211427\pi\)
−0.927555 + 0.373688i \(0.878093\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −29.1136 16.8087i −0.932860 0.538587i
\(975\) 0 0
\(976\) 14.7121i 0.470922i
\(977\) 14.9023i 0.476766i −0.971171 0.238383i \(-0.923383\pi\)
0.971171 0.238383i \(-0.0766174\pi\)
\(978\) 0 0
\(979\) −8.30615 4.79556i −0.265466 0.153267i
\(980\) 0 0
\(981\) 0 0
\(982\) 11.3676 + 19.6893i 0.362756 + 0.628312i
\(983\) −1.53458 2.65798i −0.0489456 0.0847763i 0.840515 0.541789i \(-0.182253\pi\)
−0.889460 + 0.457013i \(0.848919\pi\)
\(984\) 0 0
\(985\) 13.9247 + 8.03941i 0.443677 + 0.256157i
\(986\) 17.9859 + 31.1525i 0.572787 + 0.992096i
\(987\) 0 0
\(988\) −1.72667 + 2.99067i −0.0549325 + 0.0951460i
\(989\) −12.5845 + 7.26565i −0.400163 + 0.231034i
\(990\) 0 0
\(991\) 27.9075 48.3372i 0.886510 1.53548i 0.0425375 0.999095i \(-0.486456\pi\)
0.843973 0.536386i \(-0.180211\pi\)
\(992\) 0.909687 0.0288826
\(993\) 0 0
\(994\) 0 0
\(995\) 36.0798 20.8307i 1.14381 0.660377i
\(996\) 0 0
\(997\) −5.30607 + 3.06346i −0.168045 + 0.0970208i −0.581664 0.813429i \(-0.697598\pi\)
0.413619 + 0.910450i \(0.364265\pi\)
\(998\) −16.9079 9.76175i −0.535209 0.309003i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.l.a.521.5 16
3.2 odd 2 882.2.l.b.227.4 16
7.2 even 3 378.2.t.a.89.8 16
7.3 odd 6 2646.2.m.b.1763.4 16
7.4 even 3 2646.2.m.a.1763.1 16
7.5 odd 6 2646.2.t.b.1979.5 16
7.6 odd 2 378.2.l.a.143.8 16
9.4 even 3 882.2.t.a.815.3 16
9.5 odd 6 2646.2.t.b.2285.5 16
21.2 odd 6 126.2.t.a.47.2 yes 16
21.5 even 6 882.2.t.a.803.3 16
21.11 odd 6 882.2.m.a.587.6 16
21.17 even 6 882.2.m.b.587.7 16
21.20 even 2 126.2.l.a.101.1 yes 16
28.23 odd 6 3024.2.df.c.1601.7 16
28.27 even 2 3024.2.ca.c.2033.7 16
63.2 odd 6 1134.2.k.b.971.8 16
63.4 even 3 882.2.m.b.293.7 16
63.5 even 6 inner 2646.2.l.a.1097.1 16
63.13 odd 6 126.2.t.a.59.2 yes 16
63.16 even 3 1134.2.k.a.971.1 16
63.20 even 6 1134.2.k.a.647.1 16
63.23 odd 6 378.2.l.a.341.4 16
63.31 odd 6 882.2.m.a.293.6 16
63.32 odd 6 2646.2.m.b.881.4 16
63.34 odd 6 1134.2.k.b.647.8 16
63.40 odd 6 882.2.l.b.509.8 16
63.41 even 6 378.2.t.a.17.8 16
63.58 even 3 126.2.l.a.5.5 16
63.59 even 6 2646.2.m.a.881.1 16
84.23 even 6 1008.2.df.c.929.5 16
84.83 odd 2 1008.2.ca.c.353.8 16
252.23 even 6 3024.2.ca.c.2609.7 16
252.139 even 6 1008.2.df.c.689.5 16
252.167 odd 6 3024.2.df.c.17.7 16
252.247 odd 6 1008.2.ca.c.257.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.5 16 63.58 even 3
126.2.l.a.101.1 yes 16 21.20 even 2
126.2.t.a.47.2 yes 16 21.2 odd 6
126.2.t.a.59.2 yes 16 63.13 odd 6
378.2.l.a.143.8 16 7.6 odd 2
378.2.l.a.341.4 16 63.23 odd 6
378.2.t.a.17.8 16 63.41 even 6
378.2.t.a.89.8 16 7.2 even 3
882.2.l.b.227.4 16 3.2 odd 2
882.2.l.b.509.8 16 63.40 odd 6
882.2.m.a.293.6 16 63.31 odd 6
882.2.m.a.587.6 16 21.11 odd 6
882.2.m.b.293.7 16 63.4 even 3
882.2.m.b.587.7 16 21.17 even 6
882.2.t.a.803.3 16 21.5 even 6
882.2.t.a.815.3 16 9.4 even 3
1008.2.ca.c.257.8 16 252.247 odd 6
1008.2.ca.c.353.8 16 84.83 odd 2
1008.2.df.c.689.5 16 252.139 even 6
1008.2.df.c.929.5 16 84.23 even 6
1134.2.k.a.647.1 16 63.20 even 6
1134.2.k.a.971.1 16 63.16 even 3
1134.2.k.b.647.8 16 63.34 odd 6
1134.2.k.b.971.8 16 63.2 odd 6
2646.2.l.a.521.5 16 1.1 even 1 trivial
2646.2.l.a.1097.1 16 63.5 even 6 inner
2646.2.m.a.881.1 16 63.59 even 6
2646.2.m.a.1763.1 16 7.4 even 3
2646.2.m.b.881.4 16 63.32 odd 6
2646.2.m.b.1763.4 16 7.3 odd 6
2646.2.t.b.1979.5 16 7.5 odd 6
2646.2.t.b.2285.5 16 9.5 odd 6
3024.2.ca.c.2033.7 16 28.27 even 2
3024.2.ca.c.2609.7 16 252.23 even 6
3024.2.df.c.17.7 16 252.167 odd 6
3024.2.df.c.1601.7 16 28.23 odd 6