Properties

Label 2646.2.t.b.1979.5
Level $2646$
Weight $2$
Character 2646.1979
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(1979,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.1979"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,0,0,0,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1979.5
Root \(1.71298 + 0.256290i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1979
Dual form 2646.2.t.b.2285.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} -3.61932 q^{5} -1.00000i q^{8} +(-3.13442 + 1.80966i) q^{10} +2.00379i q^{11} +(2.95206 - 1.70437i) q^{13} +(-0.500000 - 0.866025i) q^{16} +(3.08709 + 5.34700i) q^{17} +(-0.877353 - 0.506540i) q^{19} +(-1.80966 + 3.13442i) q^{20} +(1.00190 + 1.73534i) q^{22} -3.02799i q^{23} +8.09945 q^{25} +(1.70437 - 2.95206i) q^{26} +(-5.04560 - 2.91308i) q^{29} +(-0.787812 - 0.454844i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(5.34700 + 3.08709i) q^{34} +(3.66825 - 6.35359i) q^{37} -1.01308 q^{38} +3.61932i q^{40} +(2.85045 + 4.93712i) q^{41} +(-2.39949 + 4.15605i) q^{43} +(1.73534 + 1.00190i) q^{44} +(-1.51400 - 2.62232i) q^{46} +(-1.11511 - 1.93143i) q^{47} +(7.01433 - 4.04972i) q^{50} -3.40874i q^{52} +(7.58088 - 4.37683i) q^{53} -7.25237i q^{55} -5.82616 q^{58} +(4.49313 - 7.78233i) q^{59} +(12.7410 - 7.35603i) q^{61} -0.909687 q^{62} -1.00000 q^{64} +(-10.6844 + 6.16866i) q^{65} +(4.15821 - 7.20222i) q^{67} +6.17418 q^{68} +0.466287i q^{71} +(3.65022 - 2.10746i) q^{73} -7.33650i q^{74} +(-0.877353 + 0.506540i) q^{76} +(-1.91267 - 3.31284i) q^{79} +(1.80966 + 3.13442i) q^{80} +(4.93712 + 2.85045i) q^{82} +(4.00481 - 6.93654i) q^{83} +(-11.1732 - 19.3525i) q^{85} +4.79899i q^{86} +2.00379 q^{88} +(2.39324 - 4.14521i) q^{89} +(-2.62232 - 1.51400i) q^{92} +(-1.93143 - 1.11511i) q^{94} +(3.17542 + 1.83333i) q^{95} +(-10.1835 - 5.87944i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 6 q^{13} - 8 q^{16} + 18 q^{17} + 16 q^{25} - 12 q^{26} - 6 q^{29} - 6 q^{31} - 2 q^{37} + 6 q^{41} - 2 q^{43} - 12 q^{44} + 6 q^{46} - 18 q^{47} + 12 q^{50} - 36 q^{53} - 12 q^{58} + 30 q^{59}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −3.61932 −1.61861 −0.809304 0.587391i \(-0.800155\pi\)
−0.809304 + 0.587391i \(0.800155\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −3.13442 + 1.80966i −0.991190 + 0.572264i
\(11\) 2.00379i 0.604167i 0.953281 + 0.302083i \(0.0976821\pi\)
−0.953281 + 0.302083i \(0.902318\pi\)
\(12\) 0 0
\(13\) 2.95206 1.70437i 0.818754 0.472708i −0.0312328 0.999512i \(-0.509943\pi\)
0.849987 + 0.526804i \(0.176610\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.08709 + 5.34700i 0.748730 + 1.29684i 0.948432 + 0.316981i \(0.102669\pi\)
−0.199702 + 0.979857i \(0.563998\pi\)
\(18\) 0 0
\(19\) −0.877353 0.506540i −0.201279 0.116208i 0.395973 0.918262i \(-0.370407\pi\)
−0.597252 + 0.802054i \(0.703741\pi\)
\(20\) −1.80966 + 3.13442i −0.404652 + 0.700877i
\(21\) 0 0
\(22\) 1.00190 + 1.73534i 0.213605 + 0.369975i
\(23\) 3.02799i 0.631380i −0.948862 0.315690i \(-0.897764\pi\)
0.948862 0.315690i \(-0.102236\pi\)
\(24\) 0 0
\(25\) 8.09945 1.61989
\(26\) 1.70437 2.95206i 0.334255 0.578946i
\(27\) 0 0
\(28\) 0 0
\(29\) −5.04560 2.91308i −0.936945 0.540945i −0.0479434 0.998850i \(-0.515267\pi\)
−0.889001 + 0.457905i \(0.848600\pi\)
\(30\) 0 0
\(31\) −0.787812 0.454844i −0.141495 0.0816923i 0.427581 0.903977i \(-0.359366\pi\)
−0.569076 + 0.822285i \(0.692699\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 5.34700 + 3.08709i 0.917003 + 0.529432i
\(35\) 0 0
\(36\) 0 0
\(37\) 3.66825 6.35359i 0.603056 1.04452i −0.389299 0.921111i \(-0.627283\pi\)
0.992355 0.123413i \(-0.0393839\pi\)
\(38\) −1.01308 −0.164343
\(39\) 0 0
\(40\) 3.61932i 0.572264i
\(41\) 2.85045 + 4.93712i 0.445165 + 0.771048i 0.998064 0.0622002i \(-0.0198117\pi\)
−0.552899 + 0.833248i \(0.686478\pi\)
\(42\) 0 0
\(43\) −2.39949 + 4.15605i −0.365919 + 0.633791i −0.988923 0.148428i \(-0.952579\pi\)
0.623004 + 0.782219i \(0.285912\pi\)
\(44\) 1.73534 + 1.00190i 0.261612 + 0.151042i
\(45\) 0 0
\(46\) −1.51400 2.62232i −0.223227 0.386640i
\(47\) −1.11511 1.93143i −0.162655 0.281727i 0.773165 0.634205i \(-0.218673\pi\)
−0.935820 + 0.352478i \(0.885339\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 7.01433 4.04972i 0.991975 0.572717i
\(51\) 0 0
\(52\) 3.40874i 0.472708i
\(53\) 7.58088 4.37683i 1.04131 0.601203i 0.121109 0.992639i \(-0.461355\pi\)
0.920205 + 0.391436i \(0.128022\pi\)
\(54\) 0 0
\(55\) 7.25237i 0.977909i
\(56\) 0 0
\(57\) 0 0
\(58\) −5.82616 −0.765012
\(59\) 4.49313 7.78233i 0.584956 1.01317i −0.409925 0.912119i \(-0.634445\pi\)
0.994881 0.101054i \(-0.0322216\pi\)
\(60\) 0 0
\(61\) 12.7410 7.35603i 1.63132 0.941843i 0.647634 0.761952i \(-0.275759\pi\)
0.983686 0.179892i \(-0.0575747\pi\)
\(62\) −0.909687 −0.115530
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −10.6844 + 6.16866i −1.32524 + 0.765128i
\(66\) 0 0
\(67\) 4.15821 7.20222i 0.508006 0.879892i −0.491951 0.870623i \(-0.663716\pi\)
0.999957 0.00926908i \(-0.00295048\pi\)
\(68\) 6.17418 0.748730
\(69\) 0 0
\(70\) 0 0
\(71\) 0.466287i 0.0553381i 0.999617 + 0.0276691i \(0.00880846\pi\)
−0.999617 + 0.0276691i \(0.991192\pi\)
\(72\) 0 0
\(73\) 3.65022 2.10746i 0.427226 0.246659i −0.270938 0.962597i \(-0.587334\pi\)
0.698164 + 0.715938i \(0.254000\pi\)
\(74\) 7.33650i 0.852850i
\(75\) 0 0
\(76\) −0.877353 + 0.506540i −0.100639 + 0.0581041i
\(77\) 0 0
\(78\) 0 0
\(79\) −1.91267 3.31284i −0.215192 0.372723i 0.738140 0.674648i \(-0.235704\pi\)
−0.953332 + 0.301924i \(0.902371\pi\)
\(80\) 1.80966 + 3.13442i 0.202326 + 0.350439i
\(81\) 0 0
\(82\) 4.93712 + 2.85045i 0.545213 + 0.314779i
\(83\) 4.00481 6.93654i 0.439585 0.761384i −0.558072 0.829792i \(-0.688459\pi\)
0.997657 + 0.0684084i \(0.0217921\pi\)
\(84\) 0 0
\(85\) −11.1732 19.3525i −1.21190 2.09907i
\(86\) 4.79899i 0.517488i
\(87\) 0 0
\(88\) 2.00379 0.213605
\(89\) 2.39324 4.14521i 0.253683 0.439391i −0.710854 0.703339i \(-0.751691\pi\)
0.964537 + 0.263948i \(0.0850248\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.62232 1.51400i −0.273396 0.157845i
\(93\) 0 0
\(94\) −1.93143 1.11511i −0.199211 0.115015i
\(95\) 3.17542 + 1.83333i 0.325791 + 0.188096i
\(96\) 0 0
\(97\) −10.1835 5.87944i −1.03398 0.596967i −0.115856 0.993266i \(-0.536961\pi\)
−0.918121 + 0.396299i \(0.870294\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4.04972 7.01433i 0.404972 0.701433i
\(101\) −12.8922 −1.28282 −0.641411 0.767197i \(-0.721651\pi\)
−0.641411 + 0.767197i \(0.721651\pi\)
\(102\) 0 0
\(103\) 10.7588i 1.06010i −0.847968 0.530048i \(-0.822174\pi\)
0.847968 0.530048i \(-0.177826\pi\)
\(104\) −1.70437 2.95206i −0.167127 0.289473i
\(105\) 0 0
\(106\) 4.37683 7.58088i 0.425115 0.736321i
\(107\) −2.28602 1.31983i −0.220998 0.127593i 0.385414 0.922744i \(-0.374058\pi\)
−0.606412 + 0.795151i \(0.707392\pi\)
\(108\) 0 0
\(109\) 4.51768 + 7.82484i 0.432715 + 0.749484i 0.997106 0.0760233i \(-0.0242224\pi\)
−0.564391 + 0.825507i \(0.690889\pi\)
\(110\) −3.62618 6.28073i −0.345743 0.598844i
\(111\) 0 0
\(112\) 0 0
\(113\) 1.46411 0.845306i 0.137732 0.0795197i −0.429551 0.903043i \(-0.641328\pi\)
0.567283 + 0.823523i \(0.307995\pi\)
\(114\) 0 0
\(115\) 10.9593i 1.02196i
\(116\) −5.04560 + 2.91308i −0.468472 + 0.270473i
\(117\) 0 0
\(118\) 8.98627i 0.827253i
\(119\) 0 0
\(120\) 0 0
\(121\) 6.98481 0.634982
\(122\) 7.35603 12.7410i 0.665984 1.15352i
\(123\) 0 0
\(124\) −0.787812 + 0.454844i −0.0707476 + 0.0408462i
\(125\) −11.2179 −1.00336
\(126\) 0 0
\(127\) 17.9292 1.59096 0.795478 0.605983i \(-0.207220\pi\)
0.795478 + 0.605983i \(0.207220\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −6.16866 + 10.6844i −0.541027 + 0.937087i
\(131\) 17.3313 1.51425 0.757123 0.653272i \(-0.226604\pi\)
0.757123 + 0.653272i \(0.226604\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.31641i 0.718429i
\(135\) 0 0
\(136\) 5.34700 3.08709i 0.458501 0.264716i
\(137\) 0 0.000645123i 0 5.51166e-5i −1.00000 2.75583e-5i \(-0.999991\pi\)
1.00000 2.75583e-5i \(-8.77208e-6\pi\)
\(138\) 0 0
\(139\) −8.73273 + 5.04185i −0.740701 + 0.427644i −0.822324 0.569019i \(-0.807323\pi\)
0.0816233 + 0.996663i \(0.473990\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.233144 + 0.403817i 0.0195650 + 0.0338875i
\(143\) 3.41521 + 5.91532i 0.285594 + 0.494664i
\(144\) 0 0
\(145\) 18.2616 + 10.5434i 1.51655 + 0.875578i
\(146\) 2.10746 3.65022i 0.174414 0.302095i
\(147\) 0 0
\(148\) −3.66825 6.35359i −0.301528 0.522262i
\(149\) 11.2475i 0.921433i −0.887547 0.460716i \(-0.847593\pi\)
0.887547 0.460716i \(-0.152407\pi\)
\(150\) 0 0
\(151\) −4.72379 −0.384417 −0.192208 0.981354i \(-0.561565\pi\)
−0.192208 + 0.981354i \(0.561565\pi\)
\(152\) −0.506540 + 0.877353i −0.0410858 + 0.0711627i
\(153\) 0 0
\(154\) 0 0
\(155\) 2.85134 + 1.64622i 0.229025 + 0.132228i
\(156\) 0 0
\(157\) −2.65845 1.53486i −0.212168 0.122495i 0.390151 0.920751i \(-0.372423\pi\)
−0.602318 + 0.798256i \(0.705756\pi\)
\(158\) −3.31284 1.91267i −0.263555 0.152164i
\(159\) 0 0
\(160\) 3.13442 + 1.80966i 0.247798 + 0.143066i
\(161\) 0 0
\(162\) 0 0
\(163\) −1.43687 + 2.48873i −0.112544 + 0.194932i −0.916795 0.399357i \(-0.869233\pi\)
0.804251 + 0.594289i \(0.202567\pi\)
\(164\) 5.70089 0.445165
\(165\) 0 0
\(166\) 8.00963i 0.621668i
\(167\) −0.730517 1.26529i −0.0565291 0.0979113i 0.836376 0.548156i \(-0.184670\pi\)
−0.892905 + 0.450245i \(0.851337\pi\)
\(168\) 0 0
\(169\) −0.690233 + 1.19552i −0.0530948 + 0.0919630i
\(170\) −19.3525 11.1732i −1.48427 0.856942i
\(171\) 0 0
\(172\) 2.39949 + 4.15605i 0.182960 + 0.316896i
\(173\) −1.53541 2.65940i −0.116735 0.202191i 0.801737 0.597677i \(-0.203909\pi\)
−0.918472 + 0.395486i \(0.870576\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.73534 1.00190i 0.130806 0.0755209i
\(177\) 0 0
\(178\) 4.78647i 0.358761i
\(179\) 16.7310 9.65966i 1.25054 0.721997i 0.279320 0.960198i \(-0.409891\pi\)
0.971216 + 0.238201i \(0.0765578\pi\)
\(180\) 0 0
\(181\) 7.89318i 0.586695i 0.956006 + 0.293348i \(0.0947693\pi\)
−0.956006 + 0.293348i \(0.905231\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.02799 −0.223227
\(185\) −13.2765 + 22.9957i −0.976111 + 1.69067i
\(186\) 0 0
\(187\) −10.7143 + 6.18590i −0.783506 + 0.452358i
\(188\) −2.23022 −0.162655
\(189\) 0 0
\(190\) 3.66666 0.266007
\(191\) −11.5218 + 6.65211i −0.833688 + 0.481330i −0.855114 0.518441i \(-0.826513\pi\)
0.0214259 + 0.999770i \(0.493179\pi\)
\(192\) 0 0
\(193\) −3.26786 + 5.66011i −0.235226 + 0.407423i −0.959338 0.282259i \(-0.908916\pi\)
0.724112 + 0.689682i \(0.242250\pi\)
\(194\) −11.7589 −0.844239
\(195\) 0 0
\(196\) 0 0
\(197\) 4.44250i 0.316515i −0.987398 0.158258i \(-0.949412\pi\)
0.987398 0.158258i \(-0.0505876\pi\)
\(198\) 0 0
\(199\) −9.96868 + 5.75542i −0.706661 + 0.407991i −0.809823 0.586674i \(-0.800437\pi\)
0.103163 + 0.994665i \(0.467104\pi\)
\(200\) 8.09945i 0.572717i
\(201\) 0 0
\(202\) −11.1650 + 6.44610i −0.785565 + 0.453546i
\(203\) 0 0
\(204\) 0 0
\(205\) −10.3167 17.8690i −0.720547 1.24802i
\(206\) −5.37940 9.31740i −0.374801 0.649174i
\(207\) 0 0
\(208\) −2.95206 1.70437i −0.204688 0.118177i
\(209\) 1.01500 1.75804i 0.0702092 0.121606i
\(210\) 0 0
\(211\) 11.3005 + 19.5731i 0.777961 + 1.34747i 0.933115 + 0.359577i \(0.117079\pi\)
−0.155155 + 0.987890i \(0.549588\pi\)
\(212\) 8.75365i 0.601203i
\(213\) 0 0
\(214\) −2.63967 −0.180444
\(215\) 8.68453 15.0420i 0.592280 1.02586i
\(216\) 0 0
\(217\) 0 0
\(218\) 7.82484 + 4.51768i 0.529965 + 0.305976i
\(219\) 0 0
\(220\) −6.28073 3.62618i −0.423447 0.244477i
\(221\) 18.2265 + 10.5231i 1.22605 + 0.707860i
\(222\) 0 0
\(223\) 16.2994 + 9.41045i 1.09149 + 0.630170i 0.933972 0.357346i \(-0.116318\pi\)
0.157515 + 0.987517i \(0.449652\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0.845306 1.46411i 0.0562289 0.0973914i
\(227\) −14.6133 −0.969919 −0.484960 0.874537i \(-0.661166\pi\)
−0.484960 + 0.874537i \(0.661166\pi\)
\(228\) 0 0
\(229\) 2.37919i 0.157221i −0.996905 0.0786106i \(-0.974952\pi\)
0.996905 0.0786106i \(-0.0250484\pi\)
\(230\) 5.47963 + 9.49100i 0.361316 + 0.625818i
\(231\) 0 0
\(232\) −2.91308 + 5.04560i −0.191253 + 0.331260i
\(233\) 9.03470 + 5.21619i 0.591883 + 0.341724i 0.765842 0.643029i \(-0.222323\pi\)
−0.173959 + 0.984753i \(0.555656\pi\)
\(234\) 0 0
\(235\) 4.03593 + 6.99044i 0.263275 + 0.456006i
\(236\) −4.49313 7.78233i −0.292478 0.506587i
\(237\) 0 0
\(238\) 0 0
\(239\) −20.5971 + 11.8917i −1.33232 + 0.769213i −0.985654 0.168777i \(-0.946018\pi\)
−0.346662 + 0.937990i \(0.612685\pi\)
\(240\) 0 0
\(241\) 28.6487i 1.84542i 0.385489 + 0.922712i \(0.374033\pi\)
−0.385489 + 0.922712i \(0.625967\pi\)
\(242\) 6.04902 3.49240i 0.388846 0.224500i
\(243\) 0 0
\(244\) 14.7121i 0.941843i
\(245\) 0 0
\(246\) 0 0
\(247\) −3.45333 −0.219730
\(248\) −0.454844 + 0.787812i −0.0288826 + 0.0500261i
\(249\) 0 0
\(250\) −9.71496 + 5.60894i −0.614428 + 0.354740i
\(251\) 11.0301 0.696216 0.348108 0.937454i \(-0.386824\pi\)
0.348108 + 0.937454i \(0.386824\pi\)
\(252\) 0 0
\(253\) 6.06748 0.381459
\(254\) 15.5271 8.96458i 0.974257 0.562488i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −15.0978 −0.941775 −0.470888 0.882193i \(-0.656066\pi\)
−0.470888 + 0.882193i \(0.656066\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 12.3373i 0.765128i
\(261\) 0 0
\(262\) 15.0094 8.66567i 0.927283 0.535367i
\(263\) 19.6385i 1.21096i −0.795859 0.605482i \(-0.792980\pi\)
0.795859 0.605482i \(-0.207020\pi\)
\(264\) 0 0
\(265\) −27.4376 + 15.8411i −1.68548 + 0.973112i
\(266\) 0 0
\(267\) 0 0
\(268\) −4.15821 7.20222i −0.254003 0.439946i
\(269\) −0.245503 0.425223i −0.0149686 0.0259263i 0.858444 0.512907i \(-0.171431\pi\)
−0.873413 + 0.486981i \(0.838098\pi\)
\(270\) 0 0
\(271\) 12.1927 + 7.03945i 0.740653 + 0.427616i 0.822307 0.569045i \(-0.192687\pi\)
−0.0816537 + 0.996661i \(0.526020\pi\)
\(272\) 3.08709 5.34700i 0.187182 0.324209i
\(273\) 0 0
\(274\) −0.000322562 0 0.000558693i −1.94867e−5 0 3.37519e-5i
\(275\) 16.2296i 0.978683i
\(276\) 0 0
\(277\) 30.7200 1.84579 0.922894 0.385054i \(-0.125817\pi\)
0.922894 + 0.385054i \(0.125817\pi\)
\(278\) −5.04185 + 8.73273i −0.302390 + 0.523755i
\(279\) 0 0
\(280\) 0 0
\(281\) −6.86286 3.96227i −0.409404 0.236369i 0.281130 0.959670i \(-0.409291\pi\)
−0.690534 + 0.723300i \(0.742624\pi\)
\(282\) 0 0
\(283\) 9.97303 + 5.75793i 0.592835 + 0.342273i 0.766218 0.642581i \(-0.222136\pi\)
−0.173383 + 0.984855i \(0.555470\pi\)
\(284\) 0.403817 + 0.233144i 0.0239621 + 0.0138345i
\(285\) 0 0
\(286\) 5.91532 + 3.41521i 0.349780 + 0.201946i
\(287\) 0 0
\(288\) 0 0
\(289\) −10.5603 + 18.2909i −0.621192 + 1.07594i
\(290\) 21.0867 1.23825
\(291\) 0 0
\(292\) 4.21492i 0.246659i
\(293\) 2.50937 + 4.34636i 0.146599 + 0.253917i 0.929968 0.367639i \(-0.119834\pi\)
−0.783369 + 0.621557i \(0.786501\pi\)
\(294\) 0 0
\(295\) −16.2621 + 28.1667i −0.946814 + 1.63993i
\(296\) −6.35359 3.66825i −0.369295 0.213213i
\(297\) 0 0
\(298\) −5.62376 9.74064i −0.325776 0.564260i
\(299\) −5.16083 8.93882i −0.298458 0.516945i
\(300\) 0 0
\(301\) 0 0
\(302\) −4.09092 + 2.36189i −0.235406 + 0.135912i
\(303\) 0 0
\(304\) 1.01308i 0.0581041i
\(305\) −46.1138 + 26.6238i −2.64047 + 1.52447i
\(306\) 0 0
\(307\) 17.5309i 1.00054i −0.865869 0.500271i \(-0.833234\pi\)
0.865869 0.500271i \(-0.166766\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3.29245 0.186998
\(311\) 8.64759 14.9781i 0.490360 0.849328i −0.509579 0.860424i \(-0.670199\pi\)
0.999938 + 0.0110959i \(0.00353200\pi\)
\(312\) 0 0
\(313\) −7.78988 + 4.49749i −0.440310 + 0.254213i −0.703729 0.710468i \(-0.748483\pi\)
0.263419 + 0.964681i \(0.415150\pi\)
\(314\) −3.06972 −0.173234
\(315\) 0 0
\(316\) −3.82533 −0.215192
\(317\) 5.82002 3.36019i 0.326885 0.188727i −0.327572 0.944826i \(-0.606230\pi\)
0.654457 + 0.756099i \(0.272897\pi\)
\(318\) 0 0
\(319\) 5.83721 10.1103i 0.326821 0.566071i
\(320\) 3.61932 0.202326
\(321\) 0 0
\(322\) 0 0
\(323\) 6.25494i 0.348034i
\(324\) 0 0
\(325\) 23.9100 13.8045i 1.32629 0.765734i
\(326\) 2.87373i 0.159161i
\(327\) 0 0
\(328\) 4.93712 2.85045i 0.272607 0.157390i
\(329\) 0 0
\(330\) 0 0
\(331\) 9.38725 + 16.2592i 0.515970 + 0.893686i 0.999828 + 0.0185396i \(0.00590167\pi\)
−0.483858 + 0.875146i \(0.660765\pi\)
\(332\) −4.00481 6.93654i −0.219793 0.380692i
\(333\) 0 0
\(334\) −1.26529 0.730517i −0.0692338 0.0399721i
\(335\) −15.0499 + 26.0671i −0.822262 + 1.42420i
\(336\) 0 0
\(337\) 2.42287 + 4.19654i 0.131982 + 0.228600i 0.924441 0.381326i \(-0.124532\pi\)
−0.792458 + 0.609926i \(0.791199\pi\)
\(338\) 1.38047i 0.0750874i
\(339\) 0 0
\(340\) −22.3463 −1.21190
\(341\) 0.911413 1.57861i 0.0493558 0.0854868i
\(342\) 0 0
\(343\) 0 0
\(344\) 4.15605 + 2.39949i 0.224079 + 0.129372i
\(345\) 0 0
\(346\) −2.65940 1.53541i −0.142970 0.0825440i
\(347\) 15.1305 + 8.73559i 0.812247 + 0.468951i 0.847736 0.530419i \(-0.177965\pi\)
−0.0354887 + 0.999370i \(0.511299\pi\)
\(348\) 0 0
\(349\) 20.6338 + 11.9129i 1.10450 + 0.637683i 0.937399 0.348257i \(-0.113226\pi\)
0.167101 + 0.985940i \(0.446560\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.00190 1.73534i 0.0534013 0.0924938i
\(353\) 10.0412 0.534441 0.267220 0.963635i \(-0.413895\pi\)
0.267220 + 0.963635i \(0.413895\pi\)
\(354\) 0 0
\(355\) 1.68764i 0.0895707i
\(356\) −2.39324 4.14521i −0.126841 0.219696i
\(357\) 0 0
\(358\) 9.65966 16.7310i 0.510529 0.884262i
\(359\) −10.5353 6.08254i −0.556030 0.321024i 0.195521 0.980700i \(-0.437360\pi\)
−0.751550 + 0.659676i \(0.770694\pi\)
\(360\) 0 0
\(361\) −8.98683 15.5657i −0.472991 0.819245i
\(362\) 3.94659 + 6.83569i 0.207428 + 0.359276i
\(363\) 0 0
\(364\) 0 0
\(365\) −13.2113 + 7.62756i −0.691512 + 0.399245i
\(366\) 0 0
\(367\) 3.63061i 0.189516i 0.995500 + 0.0947582i \(0.0302078\pi\)
−0.995500 + 0.0947582i \(0.969792\pi\)
\(368\) −2.62232 + 1.51400i −0.136698 + 0.0789225i
\(369\) 0 0
\(370\) 26.5531i 1.38043i
\(371\) 0 0
\(372\) 0 0
\(373\) 5.49231 0.284381 0.142191 0.989839i \(-0.454585\pi\)
0.142191 + 0.989839i \(0.454585\pi\)
\(374\) −6.18590 + 10.7143i −0.319865 + 0.554023i
\(375\) 0 0
\(376\) −1.93143 + 1.11511i −0.0996057 + 0.0575074i
\(377\) −19.8599 −1.02284
\(378\) 0 0
\(379\) −15.5960 −0.801112 −0.400556 0.916272i \(-0.631183\pi\)
−0.400556 + 0.916272i \(0.631183\pi\)
\(380\) 3.17542 1.83333i 0.162896 0.0940478i
\(381\) 0 0
\(382\) −6.65211 + 11.5218i −0.340352 + 0.589506i
\(383\) 9.43067 0.481885 0.240942 0.970539i \(-0.422544\pi\)
0.240942 + 0.970539i \(0.422544\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.53573i 0.332660i
\(387\) 0 0
\(388\) −10.1835 + 5.87944i −0.516989 + 0.298483i
\(389\) 6.42177i 0.325597i −0.986659 0.162798i \(-0.947948\pi\)
0.986659 0.162798i \(-0.0520520\pi\)
\(390\) 0 0
\(391\) 16.1907 9.34769i 0.818798 0.472733i
\(392\) 0 0
\(393\) 0 0
\(394\) −2.22125 3.84732i −0.111905 0.193825i
\(395\) 6.92255 + 11.9902i 0.348311 + 0.603293i
\(396\) 0 0
\(397\) −5.99750 3.46266i −0.301006 0.173786i 0.341889 0.939740i \(-0.388933\pi\)
−0.642895 + 0.765955i \(0.722267\pi\)
\(398\) −5.75542 + 9.96868i −0.288493 + 0.499685i
\(399\) 0 0
\(400\) −4.04972 7.01433i −0.202486 0.350716i
\(401\) 10.5869i 0.528682i −0.964429 0.264341i \(-0.914846\pi\)
0.964429 0.264341i \(-0.0851545\pi\)
\(402\) 0 0
\(403\) −3.10089 −0.154466
\(404\) −6.44610 + 11.1650i −0.320705 + 0.555478i
\(405\) 0 0
\(406\) 0 0
\(407\) 12.7313 + 7.35042i 0.631067 + 0.364347i
\(408\) 0 0
\(409\) −7.72792 4.46172i −0.382121 0.220618i 0.296620 0.954996i \(-0.404141\pi\)
−0.678741 + 0.734378i \(0.737474\pi\)
\(410\) −17.8690 10.3167i −0.882486 0.509504i
\(411\) 0 0
\(412\) −9.31740 5.37940i −0.459035 0.265024i
\(413\) 0 0
\(414\) 0 0
\(415\) −14.4947 + 25.1055i −0.711516 + 1.23238i
\(416\) −3.40874 −0.167127
\(417\) 0 0
\(418\) 2.03000i 0.0992908i
\(419\) −17.1924 29.7781i −0.839903 1.45475i −0.889975 0.456009i \(-0.849279\pi\)
0.0500724 0.998746i \(-0.484055\pi\)
\(420\) 0 0
\(421\) −17.7840 + 30.8028i −0.866739 + 1.50124i −0.00142877 + 0.999999i \(0.500455\pi\)
−0.865310 + 0.501237i \(0.832879\pi\)
\(422\) 19.5731 + 11.3005i 0.952803 + 0.550101i
\(423\) 0 0
\(424\) −4.37683 7.58088i −0.212557 0.368160i
\(425\) 25.0037 + 43.3077i 1.21286 + 2.10073i
\(426\) 0 0
\(427\) 0 0
\(428\) −2.28602 + 1.31983i −0.110499 + 0.0637965i
\(429\) 0 0
\(430\) 17.3691i 0.837610i
\(431\) −26.7338 + 15.4348i −1.28772 + 0.743466i −0.978247 0.207442i \(-0.933486\pi\)
−0.309474 + 0.950908i \(0.600153\pi\)
\(432\) 0 0
\(433\) 23.2463i 1.11715i −0.829455 0.558574i \(-0.811349\pi\)
0.829455 0.558574i \(-0.188651\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 9.03535 0.432715
\(437\) −1.53380 + 2.65662i −0.0733716 + 0.127083i
\(438\) 0 0
\(439\) −19.2887 + 11.1364i −0.920601 + 0.531509i −0.883827 0.467814i \(-0.845042\pi\)
−0.0367744 + 0.999324i \(0.511708\pi\)
\(440\) −7.25237 −0.345743
\(441\) 0 0
\(442\) 21.0462 1.00107
\(443\) −15.5756 + 8.99259i −0.740020 + 0.427251i −0.822077 0.569377i \(-0.807185\pi\)
0.0820566 + 0.996628i \(0.473851\pi\)
\(444\) 0 0
\(445\) −8.66188 + 15.0028i −0.410612 + 0.711202i
\(446\) 18.8209 0.891195
\(447\) 0 0
\(448\) 0 0
\(449\) 9.44363i 0.445673i 0.974856 + 0.222836i \(0.0715315\pi\)
−0.974856 + 0.222836i \(0.928468\pi\)
\(450\) 0 0
\(451\) −9.89297 + 5.71171i −0.465842 + 0.268954i
\(452\) 1.69061i 0.0795197i
\(453\) 0 0
\(454\) −12.6555 + 7.30665i −0.593952 + 0.342918i
\(455\) 0 0
\(456\) 0 0
\(457\) 0.922251 + 1.59739i 0.0431411 + 0.0747225i 0.886790 0.462173i \(-0.152930\pi\)
−0.843649 + 0.536896i \(0.819597\pi\)
\(458\) −1.18959 2.06044i −0.0555861 0.0962779i
\(459\) 0 0
\(460\) 9.49100 + 5.47963i 0.442520 + 0.255489i
\(461\) 18.1869 31.5007i 0.847050 1.46713i −0.0367790 0.999323i \(-0.511710\pi\)
0.883829 0.467810i \(-0.154957\pi\)
\(462\) 0 0
\(463\) −15.9830 27.6834i −0.742794 1.28656i −0.951219 0.308518i \(-0.900167\pi\)
0.208425 0.978038i \(-0.433166\pi\)
\(464\) 5.82616i 0.270473i
\(465\) 0 0
\(466\) 10.4324 0.483271
\(467\) −12.2206 + 21.1666i −0.565500 + 0.979475i 0.431503 + 0.902112i \(0.357983\pi\)
−0.997003 + 0.0773632i \(0.975350\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 6.99044 + 4.03593i 0.322445 + 0.186164i
\(471\) 0 0
\(472\) −7.78233 4.49313i −0.358211 0.206813i
\(473\) −8.32786 4.80809i −0.382916 0.221076i
\(474\) 0 0
\(475\) −7.10607 4.10269i −0.326049 0.188245i
\(476\) 0 0
\(477\) 0 0
\(478\) −11.8917 + 20.5971i −0.543916 + 0.942090i
\(479\) 10.9606 0.500805 0.250402 0.968142i \(-0.419437\pi\)
0.250402 + 0.968142i \(0.419437\pi\)
\(480\) 0 0
\(481\) 25.0082i 1.14028i
\(482\) 14.3243 + 24.8105i 0.652456 + 1.13009i
\(483\) 0 0
\(484\) 3.49240 6.04902i 0.158746 0.274955i
\(485\) 36.8573 + 21.2796i 1.67360 + 0.966255i
\(486\) 0 0
\(487\) −16.8087 29.1136i −0.761677 1.31926i −0.941986 0.335653i \(-0.891043\pi\)
0.180309 0.983610i \(-0.442290\pi\)
\(488\) −7.35603 12.7410i −0.332992 0.576759i
\(489\) 0 0
\(490\) 0 0
\(491\) 19.6893 11.3676i 0.888568 0.513015i 0.0150939 0.999886i \(-0.495195\pi\)
0.873474 + 0.486871i \(0.161862\pi\)
\(492\) 0 0
\(493\) 35.9718i 1.62009i
\(494\) −2.99067 + 1.72667i −0.134557 + 0.0776863i
\(495\) 0 0
\(496\) 0.909687i 0.0408462i
\(497\) 0 0
\(498\) 0 0
\(499\) 19.5235 0.873992 0.436996 0.899463i \(-0.356042\pi\)
0.436996 + 0.899463i \(0.356042\pi\)
\(500\) −5.60894 + 9.71496i −0.250839 + 0.434466i
\(501\) 0 0
\(502\) 9.55238 5.51507i 0.426343 0.246149i
\(503\) 13.6867 0.610262 0.305131 0.952310i \(-0.401300\pi\)
0.305131 + 0.952310i \(0.401300\pi\)
\(504\) 0 0
\(505\) 46.6609 2.07638
\(506\) 5.25459 3.03374i 0.233595 0.134866i
\(507\) 0 0
\(508\) 8.96458 15.5271i 0.397739 0.688904i
\(509\) −2.29166 −0.101576 −0.0507881 0.998709i \(-0.516173\pi\)
−0.0507881 + 0.998709i \(0.516173\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −13.0751 + 7.54890i −0.576717 + 0.332968i
\(515\) 38.9395i 1.71588i
\(516\) 0 0
\(517\) 3.87018 2.23445i 0.170210 0.0982710i
\(518\) 0 0
\(519\) 0 0
\(520\) 6.16866 + 10.6844i 0.270514 + 0.468543i
\(521\) −8.54102 14.7935i −0.374189 0.648114i 0.616017 0.787733i \(-0.288745\pi\)
−0.990205 + 0.139619i \(0.955412\pi\)
\(522\) 0 0
\(523\) −35.7462 20.6381i −1.56307 0.902440i −0.996944 0.0781229i \(-0.975107\pi\)
−0.566128 0.824317i \(-0.691559\pi\)
\(524\) 8.66567 15.0094i 0.378562 0.655688i
\(525\) 0 0
\(526\) −9.81926 17.0075i −0.428140 0.741561i
\(527\) 5.61657i 0.244662i
\(528\) 0 0
\(529\) 13.8313 0.601359
\(530\) −15.8411 + 27.4376i −0.688094 + 1.19181i
\(531\) 0 0
\(532\) 0 0
\(533\) 16.8294 + 9.71644i 0.728961 + 0.420866i
\(534\) 0 0
\(535\) 8.27382 + 4.77689i 0.357708 + 0.206523i
\(536\) −7.20222 4.15821i −0.311089 0.179607i
\(537\) 0 0
\(538\) −0.425223 0.245503i −0.0183327 0.0105844i
\(539\) 0 0
\(540\) 0 0
\(541\) 22.7197 39.3516i 0.976795 1.69186i 0.302915 0.953018i \(-0.402040\pi\)
0.673880 0.738841i \(-0.264627\pi\)
\(542\) 14.0789 0.604741
\(543\) 0 0
\(544\) 6.17418i 0.264716i
\(545\) −16.3509 28.3206i −0.700395 1.21312i
\(546\) 0 0
\(547\) 15.1095 26.1705i 0.646037 1.11897i −0.338024 0.941138i \(-0.609758\pi\)
0.984061 0.177832i \(-0.0569082\pi\)
\(548\) −0.000558693 0 0.000322562i −2.38662e−5 0 1.37791e-5i
\(549\) 0 0
\(550\) 8.11481 + 14.0553i 0.346017 + 0.599319i
\(551\) 2.95118 + 5.11160i 0.125725 + 0.217761i
\(552\) 0 0
\(553\) 0 0
\(554\) 26.6043 15.3600i 1.13031 0.652585i
\(555\) 0 0
\(556\) 10.0837i 0.427644i
\(557\) 22.0154 12.7106i 0.932822 0.538565i 0.0451189 0.998982i \(-0.485633\pi\)
0.887703 + 0.460417i \(0.152300\pi\)
\(558\) 0 0
\(559\) 16.3585i 0.691892i
\(560\) 0 0
\(561\) 0 0
\(562\) −7.92455 −0.334277
\(563\) 1.44346 2.50015i 0.0608346 0.105369i −0.834004 0.551758i \(-0.813957\pi\)
0.894839 + 0.446390i \(0.147290\pi\)
\(564\) 0 0
\(565\) −5.29909 + 3.05943i −0.222934 + 0.128711i
\(566\) 11.5159 0.484048
\(567\) 0 0
\(568\) 0.466287 0.0195650
\(569\) 38.5945 22.2826i 1.61797 0.934134i 0.630523 0.776171i \(-0.282841\pi\)
0.987445 0.157963i \(-0.0504927\pi\)
\(570\) 0 0
\(571\) 3.26470 5.65462i 0.136623 0.236638i −0.789593 0.613631i \(-0.789708\pi\)
0.926216 + 0.376992i \(0.123042\pi\)
\(572\) 6.83042 0.285594
\(573\) 0 0
\(574\) 0 0
\(575\) 24.5251i 1.02277i
\(576\) 0 0
\(577\) −1.17720 + 0.679658i −0.0490076 + 0.0282945i −0.524304 0.851531i \(-0.675674\pi\)
0.475296 + 0.879826i \(0.342341\pi\)
\(578\) 21.1205i 0.878498i
\(579\) 0 0
\(580\) 18.2616 10.5434i 0.758273 0.437789i
\(581\) 0 0
\(582\) 0 0
\(583\) 8.77026 + 15.1905i 0.363227 + 0.629128i
\(584\) −2.10746 3.65022i −0.0872072 0.151047i
\(585\) 0 0
\(586\) 4.34636 + 2.50937i 0.179547 + 0.103661i
\(587\) −22.2025 + 38.4559i −0.916397 + 1.58725i −0.111555 + 0.993758i \(0.535583\pi\)
−0.804843 + 0.593488i \(0.797750\pi\)
\(588\) 0 0
\(589\) 0.460793 + 0.798117i 0.0189866 + 0.0328858i
\(590\) 32.5241i 1.33900i
\(591\) 0 0
\(592\) −7.33650 −0.301528
\(593\) −7.17564 + 12.4286i −0.294668 + 0.510380i −0.974908 0.222610i \(-0.928542\pi\)
0.680240 + 0.732990i \(0.261876\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −9.74064 5.62376i −0.398992 0.230358i
\(597\) 0 0
\(598\) −8.93882 5.16083i −0.365535 0.211042i
\(599\) 3.03349 + 1.75139i 0.123945 + 0.0715597i 0.560691 0.828025i \(-0.310536\pi\)
−0.436746 + 0.899585i \(0.643869\pi\)
\(600\) 0 0
\(601\) 15.1846 + 8.76685i 0.619394 + 0.357607i 0.776633 0.629953i \(-0.216926\pi\)
−0.157239 + 0.987561i \(0.550259\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −2.36189 + 4.09092i −0.0961041 + 0.166457i
\(605\) −25.2802 −1.02779
\(606\) 0 0
\(607\) 0.0872864i 0.00354285i −0.999998 0.00177142i \(-0.999436\pi\)
0.999998 0.00177142i \(-0.000563862\pi\)
\(608\) 0.506540 + 0.877353i 0.0205429 + 0.0355814i
\(609\) 0 0
\(610\) −26.6238 + 46.1138i −1.07797 + 1.86709i
\(611\) −6.58373 3.80112i −0.266349 0.153777i
\(612\) 0 0
\(613\) 12.5352 + 21.7116i 0.506292 + 0.876924i 0.999973 + 0.00728071i \(0.00231754\pi\)
−0.493681 + 0.869643i \(0.664349\pi\)
\(614\) −8.76545 15.1822i −0.353745 0.612704i
\(615\) 0 0
\(616\) 0 0
\(617\) 10.6365 6.14101i 0.428211 0.247228i −0.270373 0.962756i \(-0.587147\pi\)
0.698584 + 0.715528i \(0.253814\pi\)
\(618\) 0 0
\(619\) 20.3076i 0.816229i −0.912931 0.408115i \(-0.866186\pi\)
0.912931 0.408115i \(-0.133814\pi\)
\(620\) 2.85134 1.64622i 0.114513 0.0661139i
\(621\) 0 0
\(622\) 17.2952i 0.693474i
\(623\) 0 0
\(624\) 0 0
\(625\) 0.103794 0.00415176
\(626\) −4.49749 + 7.78988i −0.179756 + 0.311346i
\(627\) 0 0
\(628\) −2.65845 + 1.53486i −0.106084 + 0.0612475i
\(629\) 45.2969 1.80610
\(630\) 0 0
\(631\) −45.9665 −1.82990 −0.914950 0.403568i \(-0.867770\pi\)
−0.914950 + 0.403568i \(0.867770\pi\)
\(632\) −3.31284 + 1.91267i −0.131778 + 0.0760818i
\(633\) 0 0
\(634\) 3.36019 5.82002i 0.133450 0.231143i
\(635\) −64.8913 −2.57513
\(636\) 0 0
\(637\) 0 0
\(638\) 11.6744i 0.462195i
\(639\) 0 0
\(640\) 3.13442 1.80966i 0.123899 0.0715330i
\(641\) 31.6509i 1.25013i 0.780571 + 0.625067i \(0.214928\pi\)
−0.780571 + 0.625067i \(0.785072\pi\)
\(642\) 0 0
\(643\) −10.0106 + 5.77960i −0.394778 + 0.227925i −0.684228 0.729268i \(-0.739861\pi\)
0.289450 + 0.957193i \(0.406528\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −3.12747 5.41694i −0.123049 0.213127i
\(647\) 13.0365 + 22.5799i 0.512519 + 0.887708i 0.999895 + 0.0145160i \(0.00462076\pi\)
−0.487376 + 0.873192i \(0.662046\pi\)
\(648\) 0 0
\(649\) 15.5942 + 9.00332i 0.612126 + 0.353411i
\(650\) 13.8045 23.9100i 0.541456 0.937829i
\(651\) 0 0
\(652\) 1.43687 + 2.48873i 0.0562720 + 0.0974660i
\(653\) 18.9315i 0.740847i 0.928863 + 0.370424i \(0.120788\pi\)
−0.928863 + 0.370424i \(0.879212\pi\)
\(654\) 0 0
\(655\) −62.7276 −2.45097
\(656\) 2.85045 4.93712i 0.111291 0.192762i
\(657\) 0 0
\(658\) 0 0
\(659\) −23.3508 13.4816i −0.909618 0.525168i −0.0293098 0.999570i \(-0.509331\pi\)
−0.880308 + 0.474402i \(0.842664\pi\)
\(660\) 0 0
\(661\) −22.3201 12.8865i −0.868151 0.501227i −0.00141768 0.999999i \(-0.500451\pi\)
−0.866733 + 0.498772i \(0.833785\pi\)
\(662\) 16.2592 + 9.38725i 0.631931 + 0.364846i
\(663\) 0 0
\(664\) −6.93654 4.00481i −0.269190 0.155417i
\(665\) 0 0
\(666\) 0 0
\(667\) −8.82079 + 15.2780i −0.341542 + 0.591568i
\(668\) −1.46103 −0.0565291
\(669\) 0 0
\(670\) 30.0997i 1.16285i
\(671\) 14.7400 + 25.5304i 0.569030 + 0.985590i
\(672\) 0 0
\(673\) −12.9608 + 22.4487i −0.499601 + 0.865335i −1.00000 0.000460130i \(-0.999854\pi\)
0.500398 + 0.865795i \(0.333187\pi\)
\(674\) 4.19654 + 2.42287i 0.161645 + 0.0933256i
\(675\) 0 0
\(676\) 0.690233 + 1.19552i 0.0265474 + 0.0459815i
\(677\) 6.55382 + 11.3515i 0.251884 + 0.436275i 0.964044 0.265741i \(-0.0856166\pi\)
−0.712161 + 0.702016i \(0.752283\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −19.3525 + 11.1732i −0.742134 + 0.428471i
\(681\) 0 0
\(682\) 1.82283i 0.0697996i
\(683\) 25.6910 14.8327i 0.983038 0.567557i 0.0798523 0.996807i \(-0.474555\pi\)
0.903186 + 0.429249i \(0.141222\pi\)
\(684\) 0 0
\(685\) 0.00233490i 8.92121e-5i
\(686\) 0 0
\(687\) 0 0
\(688\) 4.79899 0.182960
\(689\) 14.9195 25.8413i 0.568387 0.984475i
\(690\) 0 0
\(691\) −40.9767 + 23.6579i −1.55883 + 0.899990i −0.561459 + 0.827504i \(0.689760\pi\)
−0.997369 + 0.0724857i \(0.976907\pi\)
\(692\) −3.07081 −0.116735
\(693\) 0 0
\(694\) 17.4712 0.663197
\(695\) 31.6065 18.2480i 1.19890 0.692187i
\(696\) 0 0
\(697\) −17.5992 + 30.4827i −0.666616 + 1.15461i
\(698\) 23.8258 0.901820
\(699\) 0 0
\(700\) 0 0
\(701\) 13.7742i 0.520244i 0.965576 + 0.260122i \(0.0837627\pi\)
−0.965576 + 0.260122i \(0.916237\pi\)
\(702\) 0 0
\(703\) −6.43670 + 3.71623i −0.242765 + 0.140160i
\(704\) 2.00379i 0.0755209i
\(705\) 0 0
\(706\) 8.69596 5.02061i 0.327277 0.188953i
\(707\) 0 0
\(708\) 0 0
\(709\) 21.9691 + 38.0517i 0.825069 + 1.42906i 0.901867 + 0.432014i \(0.142197\pi\)
−0.0767981 + 0.997047i \(0.524470\pi\)
\(710\) −0.843820 1.46154i −0.0316680 0.0548506i
\(711\) 0 0
\(712\) −4.14521 2.39324i −0.155348 0.0896903i
\(713\) −1.37726 + 2.38549i −0.0515789 + 0.0893373i
\(714\) 0 0
\(715\) −12.3607 21.4094i −0.462265 0.800667i
\(716\) 19.3193i 0.721997i
\(717\) 0 0
\(718\) −12.1651 −0.453997
\(719\) 14.7930 25.6223i 0.551687 0.955549i −0.446466 0.894800i \(-0.647318\pi\)
0.998153 0.0607489i \(-0.0193489\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15.5657 8.98683i −0.579294 0.334455i
\(723\) 0 0
\(724\) 6.83569 + 3.94659i 0.254046 + 0.146674i
\(725\) −40.8666 23.5943i −1.51775 0.876271i
\(726\) 0 0
\(727\) 10.1244 + 5.84534i 0.375494 + 0.216792i 0.675856 0.737034i \(-0.263774\pi\)
−0.300362 + 0.953825i \(0.597107\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −7.62756 + 13.2113i −0.282308 + 0.488973i
\(731\) −29.6298 −1.09590
\(732\) 0 0
\(733\) 33.0733i 1.22159i 0.791789 + 0.610795i \(0.209150\pi\)
−0.791789 + 0.610795i \(0.790850\pi\)
\(734\) 1.81531 + 3.14420i 0.0670042 + 0.116055i
\(735\) 0 0
\(736\) −1.51400 + 2.62232i −0.0558067 + 0.0966600i
\(737\) 14.4318 + 8.33219i 0.531601 + 0.306920i
\(738\) 0 0
\(739\) −21.7528 37.6770i −0.800190 1.38597i −0.919491 0.393111i \(-0.871399\pi\)
0.119301 0.992858i \(-0.461935\pi\)
\(740\) 13.2765 + 22.9957i 0.488056 + 0.845337i
\(741\) 0 0
\(742\) 0 0
\(743\) −18.0206 + 10.4042i −0.661112 + 0.381693i −0.792701 0.609611i \(-0.791326\pi\)
0.131589 + 0.991304i \(0.457992\pi\)
\(744\) 0 0
\(745\) 40.7083i 1.49144i
\(746\) 4.75648 2.74616i 0.174147 0.100544i
\(747\) 0 0
\(748\) 12.3718i 0.452358i
\(749\) 0 0
\(750\) 0 0
\(751\) −39.8984 −1.45591 −0.727957 0.685623i \(-0.759530\pi\)
−0.727957 + 0.685623i \(0.759530\pi\)
\(752\) −1.11511 + 1.93143i −0.0406638 + 0.0704318i
\(753\) 0 0
\(754\) −17.1992 + 9.92994i −0.626357 + 0.361627i
\(755\) 17.0969 0.622219
\(756\) 0 0
\(757\) 7.45545 0.270973 0.135486 0.990779i \(-0.456740\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(758\) −13.5065 + 7.79800i −0.490579 + 0.283236i
\(759\) 0 0
\(760\) 1.83333 3.17542i 0.0665018 0.115185i
\(761\) −8.64924 −0.313535 −0.156767 0.987636i \(-0.550107\pi\)
−0.156767 + 0.987636i \(0.550107\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 13.3042i 0.481330i
\(765\) 0 0
\(766\) 8.16720 4.71534i 0.295093 0.170372i
\(767\) 30.6319i 1.10605i
\(768\) 0 0
\(769\) 20.4818 11.8252i 0.738592 0.426426i −0.0829652 0.996552i \(-0.526439\pi\)
0.821557 + 0.570126i \(0.193106\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.26786 + 5.66011i 0.117613 + 0.203712i
\(773\) −23.2849 40.3307i −0.837501 1.45059i −0.891978 0.452079i \(-0.850683\pi\)
0.0544774 0.998515i \(-0.482651\pi\)
\(774\) 0 0
\(775\) −6.38084 3.68398i −0.229207 0.132333i
\(776\) −5.87944 + 10.1835i −0.211060 + 0.365566i
\(777\) 0 0
\(778\) −3.21089 5.56142i −0.115116 0.199387i
\(779\) 5.77546i 0.206927i
\(780\) 0 0
\(781\) −0.934344 −0.0334335
\(782\) 9.34769 16.1907i 0.334273 0.578977i
\(783\) 0 0
\(784\) 0 0
\(785\) 9.62178 + 5.55513i 0.343416 + 0.198271i
\(786\) 0 0
\(787\) 21.1657 + 12.2200i 0.754474 + 0.435596i 0.827308 0.561748i \(-0.189871\pi\)
−0.0728341 + 0.997344i \(0.523204\pi\)
\(788\) −3.84732 2.22125i −0.137055 0.0791288i
\(789\) 0 0
\(790\) 11.9902 + 6.92255i 0.426592 + 0.246293i
\(791\) 0 0
\(792\) 0 0
\(793\) 25.0748 43.4309i 0.890433 1.54228i
\(794\) −6.92531 −0.245770
\(795\) 0 0
\(796\) 11.5108i 0.407991i
\(797\) 24.9202 + 43.1631i 0.882719 + 1.52891i 0.848306 + 0.529506i \(0.177623\pi\)
0.0344128 + 0.999408i \(0.489044\pi\)
\(798\) 0 0
\(799\) 6.88489 11.9250i 0.243570 0.421875i
\(800\) −7.01433 4.04972i −0.247994 0.143179i
\(801\) 0 0
\(802\) −5.29343 9.16848i −0.186917 0.323750i
\(803\) 4.22291 + 7.31430i 0.149023 + 0.258116i
\(804\) 0 0
\(805\) 0 0
\(806\) −2.68545 + 1.55045i −0.0945910 + 0.0546121i
\(807\) 0 0
\(808\) 12.8922i 0.453546i
\(809\) −10.6735 + 6.16237i −0.375262 + 0.216657i −0.675755 0.737127i \(-0.736182\pi\)
0.300493 + 0.953784i \(0.402849\pi\)
\(810\) 0 0
\(811\) 24.8017i 0.870906i −0.900212 0.435453i \(-0.856588\pi\)
0.900212 0.435453i \(-0.143412\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 14.7008 0.515264
\(815\) 5.20047 9.00748i 0.182165 0.315518i
\(816\) 0 0
\(817\) 4.21041 2.43088i 0.147304 0.0850457i
\(818\) −8.92343 −0.312000
\(819\) 0 0
\(820\) −20.6333 −0.720547
\(821\) −31.3573 + 18.1041i −1.09438 + 0.631839i −0.934738 0.355336i \(-0.884366\pi\)
−0.159639 + 0.987175i \(0.551033\pi\)
\(822\) 0 0
\(823\) 9.54093 16.5254i 0.332576 0.576038i −0.650440 0.759557i \(-0.725416\pi\)
0.983016 + 0.183519i \(0.0587489\pi\)
\(824\) −10.7588 −0.374801
\(825\) 0 0
\(826\) 0 0
\(827\) 31.9013i 1.10932i 0.832079 + 0.554658i \(0.187151\pi\)
−0.832079 + 0.554658i \(0.812849\pi\)
\(828\) 0 0
\(829\) −13.0645 + 7.54278i −0.453748 + 0.261971i −0.709412 0.704794i \(-0.751039\pi\)
0.255664 + 0.966766i \(0.417706\pi\)
\(830\) 28.9894i 1.00624i
\(831\) 0 0
\(832\) −2.95206 + 1.70437i −0.102344 + 0.0590885i
\(833\) 0 0
\(834\) 0 0
\(835\) 2.64397 + 4.57950i 0.0914985 + 0.158480i
\(836\) −1.01500 1.75804i −0.0351046 0.0608029i
\(837\) 0 0
\(838\) −29.7781 17.1924i −1.02867 0.593901i
\(839\) 8.19860 14.2004i 0.283047 0.490252i −0.689087 0.724679i \(-0.741988\pi\)
0.972134 + 0.234427i \(0.0753214\pi\)
\(840\) 0 0
\(841\) 2.47206 + 4.28173i 0.0852434 + 0.147646i
\(842\) 35.5680i 1.22575i
\(843\) 0 0
\(844\) 22.6011 0.777961
\(845\) 2.49817 4.32696i 0.0859397 0.148852i
\(846\) 0 0
\(847\) 0 0
\(848\) −7.58088 4.37683i −0.260329 0.150301i
\(849\) 0 0
\(850\) 43.3077 + 25.0037i 1.48544 + 0.857621i
\(851\) −19.2386 11.1074i −0.659492 0.380758i
\(852\) 0 0
\(853\) 16.5936 + 9.58030i 0.568153 + 0.328023i 0.756411 0.654096i \(-0.226951\pi\)
−0.188258 + 0.982120i \(0.560284\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.31983 + 2.28602i −0.0451110 + 0.0781345i
\(857\) 16.1145 0.550460 0.275230 0.961378i \(-0.411246\pi\)
0.275230 + 0.961378i \(0.411246\pi\)
\(858\) 0 0
\(859\) 12.1048i 0.413009i −0.978446 0.206505i \(-0.933791\pi\)
0.978446 0.206505i \(-0.0662089\pi\)
\(860\) −8.68453 15.0420i −0.296140 0.512929i
\(861\) 0 0
\(862\) −15.4348 + 26.7338i −0.525710 + 0.910556i
\(863\) 32.2728 + 18.6327i 1.09858 + 0.634265i 0.935848 0.352405i \(-0.114636\pi\)
0.162732 + 0.986670i \(0.447969\pi\)
\(864\) 0 0
\(865\) 5.55712 + 9.62522i 0.188948 + 0.327267i
\(866\) −11.6232 20.1319i −0.394971 0.684110i
\(867\) 0 0
\(868\) 0 0
\(869\) 6.63824 3.83259i 0.225187 0.130012i
\(870\) 0 0
\(871\) 28.3485i 0.960553i
\(872\) 7.82484 4.51768i 0.264983 0.152988i
\(873\) 0 0
\(874\) 3.06760i 0.103763i
\(875\) 0 0
\(876\) 0 0
\(877\) −9.70948 −0.327866 −0.163933 0.986471i \(-0.552418\pi\)
−0.163933 + 0.986471i \(0.552418\pi\)
\(878\) −11.1364 + 19.2887i −0.375834 + 0.650963i
\(879\) 0 0
\(880\) −6.28073 + 3.62618i −0.211723 + 0.122239i
\(881\) 2.63241 0.0886881 0.0443440 0.999016i \(-0.485880\pi\)
0.0443440 + 0.999016i \(0.485880\pi\)
\(882\) 0 0
\(883\) −36.3181 −1.22220 −0.611101 0.791553i \(-0.709273\pi\)
−0.611101 + 0.791553i \(0.709273\pi\)
\(884\) 18.2265 10.5231i 0.613025 0.353930i
\(885\) 0 0
\(886\) −8.99259 + 15.5756i −0.302112 + 0.523273i
\(887\) −16.3642 −0.549455 −0.274728 0.961522i \(-0.588588\pi\)
−0.274728 + 0.961522i \(0.588588\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 17.3238i 0.580694i
\(891\) 0 0
\(892\) 16.2994 9.41045i 0.545744 0.315085i
\(893\) 2.25939i 0.0756076i
\(894\) 0 0
\(895\) −60.5549 + 34.9614i −2.02413 + 1.16863i
\(896\) 0 0
\(897\) 0 0
\(898\) 4.72182 + 8.17843i 0.157569 + 0.272918i
\(899\) 2.64999 + 4.58992i 0.0883822 + 0.153082i
\(900\) 0 0
\(901\) 46.8058 + 27.0233i 1.55933 + 0.900277i
\(902\) −5.71171 + 9.89297i −0.190179 + 0.329400i
\(903\) 0 0
\(904\) −0.845306 1.46411i −0.0281145 0.0486957i
\(905\) 28.5679i 0.949629i
\(906\) 0 0
\(907\) 10.8333 0.359714 0.179857 0.983693i \(-0.442436\pi\)
0.179857 + 0.983693i \(0.442436\pi\)
\(908\) −7.30665 + 12.6555i −0.242480 + 0.419987i
\(909\) 0 0
\(910\) 0 0
\(911\) −36.8512 21.2760i −1.22093 0.704907i −0.255817 0.966725i \(-0.582345\pi\)
−0.965117 + 0.261818i \(0.915678\pi\)
\(912\) 0 0
\(913\) 13.8994 + 8.02482i 0.460003 + 0.265583i
\(914\) 1.59739 + 0.922251i 0.0528368 + 0.0305053i
\(915\) 0 0
\(916\) −2.06044 1.18959i −0.0680788 0.0393053i
\(917\) 0 0
\(918\) 0 0
\(919\) −12.9697 + 22.4641i −0.427829 + 0.741022i −0.996680 0.0814187i \(-0.974055\pi\)
0.568851 + 0.822441i \(0.307388\pi\)
\(920\) 10.9593 0.361316
\(921\) 0 0
\(922\) 36.3739i 1.19791i
\(923\) 0.794727 + 1.37651i 0.0261588 + 0.0453083i
\(924\) 0 0
\(925\) 29.7108 51.4606i 0.976884 1.69201i
\(926\) −27.6834 15.9830i −0.909733 0.525234i
\(927\) 0 0
\(928\) 2.91308 + 5.04560i 0.0956265 + 0.165630i
\(929\) 23.4456 + 40.6089i 0.769224 + 1.33234i 0.937984 + 0.346678i \(0.112690\pi\)
−0.168760 + 0.985657i \(0.553976\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 9.03470 5.21619i 0.295942 0.170862i
\(933\) 0 0
\(934\) 24.4411i 0.799738i
\(935\) 38.7784 22.3887i 1.26819 0.732189i
\(936\) 0 0
\(937\) 0.209357i 0.00683939i −0.999994 0.00341969i \(-0.998911\pi\)
0.999994 0.00341969i \(-0.00108852\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 8.07186 0.263275
\(941\) −0.388565 + 0.673014i −0.0126669 + 0.0219396i −0.872289 0.488990i \(-0.837365\pi\)
0.859622 + 0.510930i \(0.170699\pi\)
\(942\) 0 0
\(943\) 14.9496 8.63113i 0.486825 0.281068i
\(944\) −8.98627 −0.292478
\(945\) 0 0
\(946\) −9.61619 −0.312649
\(947\) −43.1233 + 24.8972i −1.40132 + 0.809052i −0.994528 0.104470i \(-0.966686\pi\)
−0.406791 + 0.913521i \(0.633352\pi\)
\(948\) 0 0
\(949\) 7.18378 12.4427i 0.233196 0.403906i
\(950\) −8.20539 −0.266218
\(951\) 0 0
\(952\) 0 0
\(953\) 41.4104i 1.34141i 0.741722 + 0.670707i \(0.234009\pi\)
−0.741722 + 0.670707i \(0.765991\pi\)
\(954\) 0 0
\(955\) 41.7010 24.0761i 1.34941 0.779084i
\(956\) 23.7835i 0.769213i
\(957\) 0 0
\(958\) 9.49220 5.48032i 0.306679 0.177061i
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0862 26.1301i −0.486653 0.842907i
\(962\) −12.5041 21.6578i −0.403149 0.698274i
\(963\) 0 0
\(964\) 24.8105 + 14.3243i 0.799092 + 0.461356i
\(965\) 11.8274 20.4857i 0.380739 0.659459i
\(966\) 0 0
\(967\) 22.8028 + 39.4956i 0.733289 + 1.27009i 0.955470 + 0.295088i \(0.0953491\pi\)
−0.222181 + 0.975005i \(0.571318\pi\)
\(968\) 6.98481i 0.224500i
\(969\) 0 0
\(970\) 42.5591 1.36649
\(971\) 4.36733 7.56444i 0.140154 0.242754i −0.787400 0.616442i \(-0.788573\pi\)
0.927555 + 0.373688i \(0.121907\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −29.1136 16.8087i −0.932860 0.538587i
\(975\) 0 0
\(976\) −12.7410 7.35603i −0.407830 0.235461i
\(977\) 12.9058 + 7.45114i 0.412892 + 0.238383i 0.692031 0.721867i \(-0.256716\pi\)
−0.279140 + 0.960250i \(0.590049\pi\)
\(978\) 0 0
\(979\) 8.30615 + 4.79556i 0.265466 + 0.153267i
\(980\) 0 0
\(981\) 0 0
\(982\) 11.3676 19.6893i 0.362756 0.628312i
\(983\) −3.06917 −0.0978912 −0.0489456 0.998801i \(-0.515586\pi\)
−0.0489456 + 0.998801i \(0.515586\pi\)
\(984\) 0 0
\(985\) 16.0788i 0.512314i
\(986\) −17.9859 31.1525i −0.572787 0.992096i
\(987\) 0 0
\(988\) −1.72667 + 2.99067i −0.0549325 + 0.0951460i
\(989\) 12.5845 + 7.26565i 0.400163 + 0.231034i
\(990\) 0 0
\(991\) 27.9075 + 48.3372i 0.886510 + 1.53548i 0.843973 + 0.536386i \(0.180211\pi\)
0.0425375 + 0.999095i \(0.486456\pi\)
\(992\) 0.454844 + 0.787812i 0.0144413 + 0.0250131i
\(993\) 0 0
\(994\) 0 0
\(995\) 36.0798 20.8307i 1.14381 0.660377i
\(996\) 0 0
\(997\) 6.12692i 0.194042i 0.995282 + 0.0970208i \(0.0309313\pi\)
−0.995282 + 0.0970208i \(0.969069\pi\)
\(998\) 16.9079 9.76175i 0.535209 0.309003i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.t.b.1979.5 16
3.2 odd 2 882.2.t.a.803.3 16
7.2 even 3 2646.2.m.b.1763.4 16
7.3 odd 6 2646.2.l.a.521.5 16
7.4 even 3 378.2.l.a.143.8 16
7.5 odd 6 2646.2.m.a.1763.1 16
7.6 odd 2 378.2.t.a.89.8 16
9.4 even 3 882.2.l.b.509.8 16
9.5 odd 6 2646.2.l.a.1097.1 16
21.2 odd 6 882.2.m.b.587.7 16
21.5 even 6 882.2.m.a.587.6 16
21.11 odd 6 126.2.l.a.101.1 yes 16
21.17 even 6 882.2.l.b.227.4 16
21.20 even 2 126.2.t.a.47.2 yes 16
28.11 odd 6 3024.2.ca.c.2033.7 16
28.27 even 2 3024.2.df.c.1601.7 16
63.4 even 3 126.2.t.a.59.2 yes 16
63.5 even 6 2646.2.m.b.881.4 16
63.11 odd 6 1134.2.k.a.647.1 16
63.13 odd 6 126.2.l.a.5.5 16
63.20 even 6 1134.2.k.b.971.8 16
63.23 odd 6 2646.2.m.a.881.1 16
63.25 even 3 1134.2.k.b.647.8 16
63.31 odd 6 882.2.t.a.815.3 16
63.32 odd 6 378.2.t.a.17.8 16
63.34 odd 6 1134.2.k.a.971.1 16
63.40 odd 6 882.2.m.b.293.7 16
63.41 even 6 378.2.l.a.341.4 16
63.58 even 3 882.2.m.a.293.6 16
63.59 even 6 inner 2646.2.t.b.2285.5 16
84.11 even 6 1008.2.ca.c.353.8 16
84.83 odd 2 1008.2.df.c.929.5 16
252.67 odd 6 1008.2.df.c.689.5 16
252.95 even 6 3024.2.df.c.17.7 16
252.139 even 6 1008.2.ca.c.257.8 16
252.167 odd 6 3024.2.ca.c.2609.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.5 16 63.13 odd 6
126.2.l.a.101.1 yes 16 21.11 odd 6
126.2.t.a.47.2 yes 16 21.20 even 2
126.2.t.a.59.2 yes 16 63.4 even 3
378.2.l.a.143.8 16 7.4 even 3
378.2.l.a.341.4 16 63.41 even 6
378.2.t.a.17.8 16 63.32 odd 6
378.2.t.a.89.8 16 7.6 odd 2
882.2.l.b.227.4 16 21.17 even 6
882.2.l.b.509.8 16 9.4 even 3
882.2.m.a.293.6 16 63.58 even 3
882.2.m.a.587.6 16 21.5 even 6
882.2.m.b.293.7 16 63.40 odd 6
882.2.m.b.587.7 16 21.2 odd 6
882.2.t.a.803.3 16 3.2 odd 2
882.2.t.a.815.3 16 63.31 odd 6
1008.2.ca.c.257.8 16 252.139 even 6
1008.2.ca.c.353.8 16 84.11 even 6
1008.2.df.c.689.5 16 252.67 odd 6
1008.2.df.c.929.5 16 84.83 odd 2
1134.2.k.a.647.1 16 63.11 odd 6
1134.2.k.a.971.1 16 63.34 odd 6
1134.2.k.b.647.8 16 63.25 even 3
1134.2.k.b.971.8 16 63.20 even 6
2646.2.l.a.521.5 16 7.3 odd 6
2646.2.l.a.1097.1 16 9.5 odd 6
2646.2.m.a.881.1 16 63.23 odd 6
2646.2.m.a.1763.1 16 7.5 odd 6
2646.2.m.b.881.4 16 63.5 even 6
2646.2.m.b.1763.4 16 7.2 even 3
2646.2.t.b.1979.5 16 1.1 even 1 trivial
2646.2.t.b.2285.5 16 63.59 even 6 inner
3024.2.ca.c.2033.7 16 28.11 odd 6
3024.2.ca.c.2609.7 16 252.167 odd 6
3024.2.df.c.17.7 16 252.95 even 6
3024.2.df.c.1601.7 16 28.27 even 2