Properties

Label 882.2.t.a.815.3
Level $882$
Weight $2$
Character 882.815
Analytic conductor $7.043$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(803,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.803"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 815.3
Root \(1.71298 + 0.256290i\) of defining polynomial
Character \(\chi\) \(=\) 882.815
Dual form 882.2.t.a.803.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.128499 + 1.72728i) q^{3} +(0.500000 + 0.866025i) q^{4} +3.61932 q^{5} +(0.752355 - 1.56012i) q^{6} -1.00000i q^{8} +(-2.96698 + 0.443907i) q^{9} +(-3.13442 - 1.80966i) q^{10} +2.00379i q^{11} +(-1.43162 + 0.974922i) q^{12} +(2.95206 + 1.70437i) q^{13} +(0.465079 + 6.25156i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-3.08709 + 5.34700i) q^{17} +(2.79143 + 1.09905i) q^{18} +(-0.877353 + 0.506540i) q^{19} +(1.80966 + 3.13442i) q^{20} +(1.00190 - 1.73534i) q^{22} -3.02799i q^{23} +(1.72728 - 0.128499i) q^{24} +8.09945 q^{25} +(-1.70437 - 2.95206i) q^{26} +(-1.14800 - 5.06775i) q^{27} +(5.04560 - 2.91308i) q^{29} +(2.72301 - 5.64655i) q^{30} +(-0.787812 + 0.454844i) q^{31} +(0.866025 - 0.500000i) q^{32} +(-3.46111 + 0.257486i) q^{33} +(5.34700 - 3.08709i) q^{34} +(-1.86792 - 2.34752i) q^{36} +(3.66825 + 6.35359i) q^{37} +1.01308 q^{38} +(-2.56459 + 5.31804i) q^{39} -3.61932i q^{40} +(-2.85045 + 4.93712i) q^{41} +(-2.39949 - 4.15605i) q^{43} +(-1.73534 + 1.00190i) q^{44} +(-10.7384 + 1.60664i) q^{45} +(-1.51400 + 2.62232i) q^{46} +(1.11511 - 1.93143i) q^{47} +(-1.56012 - 0.752355i) q^{48} +(-7.01433 - 4.04972i) q^{50} +(-9.63244 - 4.64518i) q^{51} +3.40874i q^{52} +(-7.58088 - 4.37683i) q^{53} +(-1.53967 + 4.96280i) q^{54} +7.25237i q^{55} +(-0.987674 - 1.45034i) q^{57} -5.82616 q^{58} +(-4.49313 - 7.78233i) q^{59} +(-5.18147 + 3.52855i) q^{60} +(12.7410 + 7.35603i) q^{61} +0.909687 q^{62} -1.00000 q^{64} +(10.6844 + 6.16866i) q^{65} +(3.12615 + 1.50757i) q^{66} +(4.15821 + 7.20222i) q^{67} -6.17418 q^{68} +(5.23019 - 0.389094i) q^{69} +0.466287i q^{71} +(0.443907 + 2.96698i) q^{72} +(3.65022 + 2.10746i) q^{73} -7.33650i q^{74} +(1.04077 + 13.9900i) q^{75} +(-0.877353 - 0.506540i) q^{76} +(4.88001 - 3.32326i) q^{78} +(-1.91267 + 3.31284i) q^{79} +(-1.80966 + 3.13442i) q^{80} +(8.60589 - 2.63412i) q^{81} +(4.93712 - 2.85045i) q^{82} +(-4.00481 - 6.93654i) q^{83} +(-11.1732 + 19.3525i) q^{85} +4.79899i q^{86} +(5.68005 + 8.34083i) q^{87} +2.00379 q^{88} +(-2.39324 - 4.14521i) q^{89} +(10.1031 + 3.97782i) q^{90} +(2.62232 - 1.51400i) q^{92} +(-0.886874 - 1.30232i) q^{93} +(-1.93143 + 1.11511i) q^{94} +(-3.17542 + 1.83333i) q^{95} +(0.974922 + 1.43162i) q^{96} +(-10.1835 + 5.87944i) q^{97} +(-0.889499 - 5.94521i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 6 q^{9} + 6 q^{13} - 18 q^{15} - 8 q^{16} - 18 q^{17} + 12 q^{18} + 6 q^{24} + 16 q^{25} + 12 q^{26} + 36 q^{27} + 6 q^{29} - 18 q^{30} - 6 q^{31} - 18 q^{33} - 2 q^{37} - 30 q^{39} - 6 q^{41}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0.128499 + 1.72728i 0.0741890 + 0.997244i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 3.61932 1.61861 0.809304 0.587391i \(-0.199845\pi\)
0.809304 + 0.587391i \(0.199845\pi\)
\(6\) 0.752355 1.56012i 0.307148 0.636915i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −2.96698 + 0.443907i −0.988992 + 0.147969i
\(10\) −3.13442 1.80966i −0.991190 0.572264i
\(11\) 2.00379i 0.604167i 0.953281 + 0.302083i \(0.0976821\pi\)
−0.953281 + 0.302083i \(0.902318\pi\)
\(12\) −1.43162 + 0.974922i −0.413272 + 0.281436i
\(13\) 2.95206 + 1.70437i 0.818754 + 0.472708i 0.849987 0.526804i \(-0.176610\pi\)
−0.0312328 + 0.999512i \(0.509943\pi\)
\(14\) 0 0
\(15\) 0.465079 + 6.25156i 0.120083 + 1.61415i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.08709 + 5.34700i −0.748730 + 1.29684i 0.199702 + 0.979857i \(0.436002\pi\)
−0.948432 + 0.316981i \(0.897331\pi\)
\(18\) 2.79143 + 1.09905i 0.657946 + 0.259049i
\(19\) −0.877353 + 0.506540i −0.201279 + 0.116208i −0.597252 0.802054i \(-0.703741\pi\)
0.395973 + 0.918262i \(0.370407\pi\)
\(20\) 1.80966 + 3.13442i 0.404652 + 0.700877i
\(21\) 0 0
\(22\) 1.00190 1.73534i 0.213605 0.369975i
\(23\) 3.02799i 0.631380i −0.948862 0.315690i \(-0.897764\pi\)
0.948862 0.315690i \(-0.102236\pi\)
\(24\) 1.72728 0.128499i 0.352579 0.0262298i
\(25\) 8.09945 1.61989
\(26\) −1.70437 2.95206i −0.334255 0.578946i
\(27\) −1.14800 5.06775i −0.220934 0.975289i
\(28\) 0 0
\(29\) 5.04560 2.91308i 0.936945 0.540945i 0.0479434 0.998850i \(-0.484733\pi\)
0.889001 + 0.457905i \(0.151400\pi\)
\(30\) 2.72301 5.64655i 0.497152 1.03091i
\(31\) −0.787812 + 0.454844i −0.141495 + 0.0816923i −0.569076 0.822285i \(-0.692699\pi\)
0.427581 + 0.903977i \(0.359366\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) −3.46111 + 0.257486i −0.602502 + 0.0448225i
\(34\) 5.34700 3.08709i 0.917003 0.529432i
\(35\) 0 0
\(36\) −1.86792 2.34752i −0.311320 0.391254i
\(37\) 3.66825 + 6.35359i 0.603056 + 1.04452i 0.992355 + 0.123413i \(0.0393839\pi\)
−0.389299 + 0.921111i \(0.627283\pi\)
\(38\) 1.01308 0.164343
\(39\) −2.56459 + 5.31804i −0.410663 + 0.851567i
\(40\) 3.61932i 0.572264i
\(41\) −2.85045 + 4.93712i −0.445165 + 0.771048i −0.998064 0.0622002i \(-0.980188\pi\)
0.552899 + 0.833248i \(0.313522\pi\)
\(42\) 0 0
\(43\) −2.39949 4.15605i −0.365919 0.633791i 0.623004 0.782219i \(-0.285912\pi\)
−0.988923 + 0.148428i \(0.952579\pi\)
\(44\) −1.73534 + 1.00190i −0.261612 + 0.151042i
\(45\) −10.7384 + 1.60664i −1.60079 + 0.239504i
\(46\) −1.51400 + 2.62232i −0.223227 + 0.386640i
\(47\) 1.11511 1.93143i 0.162655 0.281727i −0.773165 0.634205i \(-0.781327\pi\)
0.935820 + 0.352478i \(0.114661\pi\)
\(48\) −1.56012 0.752355i −0.225183 0.108593i
\(49\) 0 0
\(50\) −7.01433 4.04972i −0.991975 0.572717i
\(51\) −9.63244 4.64518i −1.34881 0.650455i
\(52\) 3.40874i 0.472708i
\(53\) −7.58088 4.37683i −1.04131 0.601203i −0.121109 0.992639i \(-0.538645\pi\)
−0.920205 + 0.391436i \(0.871978\pi\)
\(54\) −1.53967 + 4.96280i −0.209523 + 0.675352i
\(55\) 7.25237i 0.977909i
\(56\) 0 0
\(57\) −0.987674 1.45034i −0.130821 0.192103i
\(58\) −5.82616 −0.765012
\(59\) −4.49313 7.78233i −0.584956 1.01317i −0.994881 0.101054i \(-0.967778\pi\)
0.409925 0.912119i \(-0.365555\pi\)
\(60\) −5.18147 + 3.52855i −0.668925 + 0.455534i
\(61\) 12.7410 + 7.35603i 1.63132 + 0.941843i 0.983686 + 0.179892i \(0.0575747\pi\)
0.647634 + 0.761952i \(0.275759\pi\)
\(62\) 0.909687 0.115530
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 10.6844 + 6.16866i 1.32524 + 0.765128i
\(66\) 3.12615 + 1.50757i 0.384803 + 0.185569i
\(67\) 4.15821 + 7.20222i 0.508006 + 0.879892i 0.999957 + 0.00926908i \(0.00295048\pi\)
−0.491951 + 0.870623i \(0.663716\pi\)
\(68\) −6.17418 −0.748730
\(69\) 5.23019 0.389094i 0.629640 0.0468415i
\(70\) 0 0
\(71\) 0.466287i 0.0553381i 0.999617 + 0.0276691i \(0.00880846\pi\)
−0.999617 + 0.0276691i \(0.991192\pi\)
\(72\) 0.443907 + 2.96698i 0.0523149 + 0.349661i
\(73\) 3.65022 + 2.10746i 0.427226 + 0.246659i 0.698164 0.715938i \(-0.254000\pi\)
−0.270938 + 0.962597i \(0.587334\pi\)
\(74\) 7.33650i 0.852850i
\(75\) 1.04077 + 13.9900i 0.120178 + 1.61543i
\(76\) −0.877353 0.506540i −0.100639 0.0581041i
\(77\) 0 0
\(78\) 4.88001 3.32326i 0.552553 0.376285i
\(79\) −1.91267 + 3.31284i −0.215192 + 0.372723i −0.953332 0.301924i \(-0.902371\pi\)
0.738140 + 0.674648i \(0.235704\pi\)
\(80\) −1.80966 + 3.13442i −0.202326 + 0.350439i
\(81\) 8.60589 2.63412i 0.956210 0.292680i
\(82\) 4.93712 2.85045i 0.545213 0.314779i
\(83\) −4.00481 6.93654i −0.439585 0.761384i 0.558072 0.829792i \(-0.311541\pi\)
−0.997657 + 0.0684084i \(0.978208\pi\)
\(84\) 0 0
\(85\) −11.1732 + 19.3525i −1.21190 + 2.09907i
\(86\) 4.79899i 0.517488i
\(87\) 5.68005 + 8.34083i 0.608965 + 0.894230i
\(88\) 2.00379 0.213605
\(89\) −2.39324 4.14521i −0.253683 0.439391i 0.710854 0.703339i \(-0.248309\pi\)
−0.964537 + 0.263948i \(0.914975\pi\)
\(90\) 10.1031 + 3.97782i 1.06496 + 0.419299i
\(91\) 0 0
\(92\) 2.62232 1.51400i 0.273396 0.157845i
\(93\) −0.886874 1.30232i −0.0919646 0.135045i
\(94\) −1.93143 + 1.11511i −0.199211 + 0.115015i
\(95\) −3.17542 + 1.83333i −0.325791 + 0.188096i
\(96\) 0.974922 + 1.43162i 0.0995026 + 0.146114i
\(97\) −10.1835 + 5.87944i −1.03398 + 0.596967i −0.918121 0.396299i \(-0.870294\pi\)
−0.115856 + 0.993266i \(0.536961\pi\)
\(98\) 0 0
\(99\) −0.889499 5.94521i −0.0893980 0.597516i
\(100\) 4.04972 + 7.01433i 0.404972 + 0.701433i
\(101\) 12.8922 1.28282 0.641411 0.767197i \(-0.278349\pi\)
0.641411 + 0.767197i \(0.278349\pi\)
\(102\) 6.01935 + 8.83906i 0.596004 + 0.875198i
\(103\) 10.7588i 1.06010i 0.847968 + 0.530048i \(0.177826\pi\)
−0.847968 + 0.530048i \(0.822174\pi\)
\(104\) 1.70437 2.95206i 0.167127 0.289473i
\(105\) 0 0
\(106\) 4.37683 + 7.58088i 0.425115 + 0.736321i
\(107\) 2.28602 1.31983i 0.220998 0.127593i −0.385414 0.922744i \(-0.625942\pi\)
0.606412 + 0.795151i \(0.292608\pi\)
\(108\) 3.81480 3.52808i 0.367079 0.339489i
\(109\) 4.51768 7.82484i 0.432715 0.749484i −0.564391 0.825507i \(-0.690889\pi\)
0.997106 + 0.0760233i \(0.0242224\pi\)
\(110\) 3.62618 6.28073i 0.345743 0.598844i
\(111\) −10.5031 + 7.15251i −0.996905 + 0.678886i
\(112\) 0 0
\(113\) −1.46411 0.845306i −0.137732 0.0795197i 0.429551 0.903043i \(-0.358672\pi\)
−0.567283 + 0.823523i \(0.692005\pi\)
\(114\) 0.130180 + 1.74987i 0.0121925 + 0.163890i
\(115\) 10.9593i 1.02196i
\(116\) 5.04560 + 2.91308i 0.468472 + 0.270473i
\(117\) −9.51527 3.74639i −0.879687 0.346354i
\(118\) 8.98627i 0.827253i
\(119\) 0 0
\(120\) 6.25156 0.465079i 0.570687 0.0424557i
\(121\) 6.98481 0.634982
\(122\) −7.35603 12.7410i −0.665984 1.15352i
\(123\) −8.89405 4.28910i −0.801950 0.386735i
\(124\) −0.787812 0.454844i −0.0707476 0.0408462i
\(125\) 11.2179 1.00336
\(126\) 0 0
\(127\) 17.9292 1.59096 0.795478 0.605983i \(-0.207220\pi\)
0.795478 + 0.605983i \(0.207220\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 6.87031 4.67864i 0.604897 0.411931i
\(130\) −6.16866 10.6844i −0.541027 0.937087i
\(131\) −17.3313 −1.51425 −0.757123 0.653272i \(-0.773396\pi\)
−0.757123 + 0.653272i \(0.773396\pi\)
\(132\) −1.95354 2.86867i −0.170034 0.249685i
\(133\) 0 0
\(134\) 8.31641i 0.718429i
\(135\) −4.15499 18.3418i −0.357605 1.57861i
\(136\) 5.34700 + 3.08709i 0.458501 + 0.264716i
\(137\) 0 0.000645123i 0 5.51166e-5i −1.00000 2.75583e-5i \(-0.999991\pi\)
1.00000 2.75583e-5i \(-8.77208e-6\pi\)
\(138\) −4.72402 2.27813i −0.402135 0.193927i
\(139\) −8.73273 5.04185i −0.740701 0.427644i 0.0816233 0.996663i \(-0.473990\pi\)
−0.822324 + 0.569019i \(0.807323\pi\)
\(140\) 0 0
\(141\) 3.47940 + 1.67792i 0.293018 + 0.141306i
\(142\) 0.233144 0.403817i 0.0195650 0.0338875i
\(143\) −3.41521 + 5.91532i −0.285594 + 0.494664i
\(144\) 1.09905 2.79143i 0.0915878 0.232619i
\(145\) 18.2616 10.5434i 1.51655 0.875578i
\(146\) −2.10746 3.65022i −0.174414 0.302095i
\(147\) 0 0
\(148\) −3.66825 + 6.35359i −0.301528 + 0.522262i
\(149\) 11.2475i 0.921433i −0.887547 0.460716i \(-0.847593\pi\)
0.887547 0.460716i \(-0.152407\pi\)
\(150\) 6.09366 12.6361i 0.497545 1.03173i
\(151\) −4.72379 −0.384417 −0.192208 0.981354i \(-0.561565\pi\)
−0.192208 + 0.981354i \(0.561565\pi\)
\(152\) 0.506540 + 0.877353i 0.0410858 + 0.0711627i
\(153\) 6.78575 17.2348i 0.548596 1.39335i
\(154\) 0 0
\(155\) −2.85134 + 1.64622i −0.229025 + 0.132228i
\(156\) −5.88785 + 0.438020i −0.471405 + 0.0350697i
\(157\) −2.65845 + 1.53486i −0.212168 + 0.122495i −0.602318 0.798256i \(-0.705756\pi\)
0.390151 + 0.920751i \(0.372423\pi\)
\(158\) 3.31284 1.91267i 0.263555 0.152164i
\(159\) 6.58586 13.6567i 0.522292 1.08305i
\(160\) 3.13442 1.80966i 0.247798 0.143066i
\(161\) 0 0
\(162\) −8.76998 2.02173i −0.689035 0.158842i
\(163\) −1.43687 2.48873i −0.112544 0.194932i 0.804251 0.594289i \(-0.202567\pi\)
−0.916795 + 0.399357i \(0.869233\pi\)
\(164\) −5.70089 −0.445165
\(165\) −12.5268 + 0.931922i −0.975214 + 0.0725500i
\(166\) 8.00963i 0.621668i
\(167\) 0.730517 1.26529i 0.0565291 0.0979113i −0.836376 0.548156i \(-0.815330\pi\)
0.892905 + 0.450245i \(0.148663\pi\)
\(168\) 0 0
\(169\) −0.690233 1.19552i −0.0530948 0.0919630i
\(170\) 19.3525 11.1732i 1.48427 0.856942i
\(171\) 2.37823 1.89236i 0.181868 0.144712i
\(172\) 2.39949 4.15605i 0.182960 0.316896i
\(173\) 1.53541 2.65940i 0.116735 0.202191i −0.801737 0.597677i \(-0.796091\pi\)
0.918472 + 0.395486i \(0.129424\pi\)
\(174\) −0.748656 10.0634i −0.0567554 0.762904i
\(175\) 0 0
\(176\) −1.73534 1.00190i −0.130806 0.0755209i
\(177\) 12.8649 8.76091i 0.966984 0.658510i
\(178\) 4.78647i 0.358761i
\(179\) −16.7310 9.65966i −1.25054 0.721997i −0.279320 0.960198i \(-0.590109\pi\)
−0.971216 + 0.238201i \(0.923442\pi\)
\(180\) −6.76060 8.49643i −0.503906 0.633286i
\(181\) 7.89318i 0.586695i −0.956006 0.293348i \(-0.905231\pi\)
0.956006 0.293348i \(-0.0947693\pi\)
\(182\) 0 0
\(183\) −11.0687 + 22.9525i −0.818222 + 1.69670i
\(184\) −3.02799 −0.223227
\(185\) 13.2765 + 22.9957i 0.976111 + 1.69067i
\(186\) 0.116894 + 1.57128i 0.00857108 + 0.115212i
\(187\) −10.7143 6.18590i −0.783506 0.452358i
\(188\) 2.23022 0.162655
\(189\) 0 0
\(190\) 3.66666 0.266007
\(191\) 11.5218 + 6.65211i 0.833688 + 0.481330i 0.855114 0.518441i \(-0.173487\pi\)
−0.0214259 + 0.999770i \(0.506821\pi\)
\(192\) −0.128499 1.72728i −0.00927362 0.124656i
\(193\) −3.26786 5.66011i −0.235226 0.407423i 0.724112 0.689682i \(-0.242250\pi\)
−0.959338 + 0.282259i \(0.908916\pi\)
\(194\) 11.7589 0.844239
\(195\) −9.28205 + 19.2476i −0.664701 + 1.37835i
\(196\) 0 0
\(197\) 4.44250i 0.316515i −0.987398 0.158258i \(-0.949412\pi\)
0.987398 0.158258i \(-0.0505876\pi\)
\(198\) −2.20228 + 5.59345i −0.156509 + 0.397509i
\(199\) −9.96868 5.75542i −0.706661 0.407991i 0.103163 0.994665i \(-0.467104\pi\)
−0.809823 + 0.586674i \(0.800437\pi\)
\(200\) 8.09945i 0.572717i
\(201\) −11.9059 + 8.10786i −0.839779 + 0.571884i
\(202\) −11.1650 6.44610i −0.785565 0.453546i
\(203\) 0 0
\(204\) −0.793376 10.6645i −0.0555475 0.746666i
\(205\) −10.3167 + 17.8690i −0.720547 + 1.24802i
\(206\) 5.37940 9.31740i 0.374801 0.649174i
\(207\) 1.34415 + 8.98399i 0.0934247 + 0.624430i
\(208\) −2.95206 + 1.70437i −0.204688 + 0.118177i
\(209\) −1.01500 1.75804i −0.0702092 0.121606i
\(210\) 0 0
\(211\) 11.3005 19.5731i 0.777961 1.34747i −0.155155 0.987890i \(-0.549588\pi\)
0.933115 0.359577i \(-0.117079\pi\)
\(212\) 8.75365i 0.601203i
\(213\) −0.805408 + 0.0599175i −0.0551856 + 0.00410548i
\(214\) −2.63967 −0.180444
\(215\) −8.68453 15.0420i −0.592280 1.02586i
\(216\) −5.06775 + 1.14800i −0.344817 + 0.0781118i
\(217\) 0 0
\(218\) −7.82484 + 4.51768i −0.529965 + 0.305976i
\(219\) −3.17111 + 6.57576i −0.214284 + 0.444348i
\(220\) −6.28073 + 3.62618i −0.423447 + 0.244477i
\(221\) −18.2265 + 10.5231i −1.22605 + 0.707860i
\(222\) 12.6722 0.942733i 0.850500 0.0632721i
\(223\) 16.2994 9.41045i 1.09149 0.630170i 0.157515 0.987517i \(-0.449652\pi\)
0.933972 + 0.357346i \(0.116318\pi\)
\(224\) 0 0
\(225\) −24.0309 + 3.59540i −1.60206 + 0.239693i
\(226\) 0.845306 + 1.46411i 0.0562289 + 0.0973914i
\(227\) 14.6133 0.969919 0.484960 0.874537i \(-0.338834\pi\)
0.484960 + 0.874537i \(0.338834\pi\)
\(228\) 0.762196 1.58052i 0.0504777 0.104673i
\(229\) 2.37919i 0.157221i 0.996905 + 0.0786106i \(0.0250484\pi\)
−0.996905 + 0.0786106i \(0.974952\pi\)
\(230\) −5.47963 + 9.49100i −0.361316 + 0.625818i
\(231\) 0 0
\(232\) −2.91308 5.04560i −0.191253 0.331260i
\(233\) −9.03470 + 5.21619i −0.591883 + 0.341724i −0.765842 0.643029i \(-0.777677\pi\)
0.173959 + 0.984753i \(0.444344\pi\)
\(234\) 6.36727 + 8.00210i 0.416241 + 0.523114i
\(235\) 4.03593 6.99044i 0.263275 0.456006i
\(236\) 4.49313 7.78233i 0.292478 0.506587i
\(237\) −5.96796 2.87801i −0.387661 0.186947i
\(238\) 0 0
\(239\) 20.5971 + 11.8917i 1.33232 + 0.769213i 0.985654 0.168777i \(-0.0539818\pi\)
0.346662 + 0.937990i \(0.387315\pi\)
\(240\) −5.64655 2.72301i −0.364483 0.175770i
\(241\) 28.6487i 1.84542i −0.385489 0.922712i \(-0.625967\pi\)
0.385489 0.922712i \(-0.374033\pi\)
\(242\) −6.04902 3.49240i −0.388846 0.224500i
\(243\) 5.65571 + 14.5263i 0.362814 + 0.931862i
\(244\) 14.7121i 0.941843i
\(245\) 0 0
\(246\) 5.55793 + 8.16149i 0.354360 + 0.520358i
\(247\) −3.45333 −0.219730
\(248\) 0.454844 + 0.787812i 0.0288826 + 0.0500261i
\(249\) 11.4667 7.80876i 0.726673 0.494860i
\(250\) −9.71496 5.60894i −0.614428 0.354740i
\(251\) −11.0301 −0.696216 −0.348108 0.937454i \(-0.613176\pi\)
−0.348108 + 0.937454i \(0.613176\pi\)
\(252\) 0 0
\(253\) 6.06748 0.381459
\(254\) −15.5271 8.96458i −0.974257 0.562488i
\(255\) −34.8628 16.8124i −2.18320 1.05283i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 15.0978 0.941775 0.470888 0.882193i \(-0.343934\pi\)
0.470888 + 0.882193i \(0.343934\pi\)
\(258\) −8.28919 + 0.616665i −0.516062 + 0.0383919i
\(259\) 0 0
\(260\) 12.3373i 0.765128i
\(261\) −13.6770 + 10.8828i −0.846588 + 0.673629i
\(262\) 15.0094 + 8.66567i 0.927283 + 0.535367i
\(263\) 19.6385i 1.21096i −0.795859 0.605482i \(-0.792980\pi\)
0.795859 0.605482i \(-0.207020\pi\)
\(264\) 0.257486 + 3.46111i 0.0158472 + 0.213017i
\(265\) −27.4376 15.8411i −1.68548 0.973112i
\(266\) 0 0
\(267\) 6.85240 4.66644i 0.419360 0.285581i
\(268\) −4.15821 + 7.20222i −0.254003 + 0.439946i
\(269\) 0.245503 0.425223i 0.0149686 0.0259263i −0.858444 0.512907i \(-0.828569\pi\)
0.873413 + 0.486981i \(0.161902\pi\)
\(270\) −5.57257 + 17.9619i −0.339136 + 1.09313i
\(271\) 12.1927 7.03945i 0.740653 0.427616i −0.0816537 0.996661i \(-0.526020\pi\)
0.822307 + 0.569045i \(0.192687\pi\)
\(272\) −3.08709 5.34700i −0.187182 0.324209i
\(273\) 0 0
\(274\) −0.000322562 0 0.000558693i −1.94867e−5 0 3.37519e-5i
\(275\) 16.2296i 0.978683i
\(276\) 2.95206 + 4.33493i 0.177693 + 0.260932i
\(277\) 30.7200 1.84579 0.922894 0.385054i \(-0.125817\pi\)
0.922894 + 0.385054i \(0.125817\pi\)
\(278\) 5.04185 + 8.73273i 0.302390 + 0.523755i
\(279\) 2.13551 1.69923i 0.127850 0.101730i
\(280\) 0 0
\(281\) 6.86286 3.96227i 0.409404 0.236369i −0.281130 0.959670i \(-0.590709\pi\)
0.690534 + 0.723300i \(0.257376\pi\)
\(282\) −2.17429 3.19282i −0.129477 0.190130i
\(283\) 9.97303 5.75793i 0.592835 0.342273i −0.173383 0.984855i \(-0.555470\pi\)
0.766218 + 0.642581i \(0.222136\pi\)
\(284\) −0.403817 + 0.233144i −0.0239621 + 0.0138345i
\(285\) −3.57471 5.24925i −0.211747 0.310939i
\(286\) 5.91532 3.41521i 0.349780 0.201946i
\(287\) 0 0
\(288\) −2.34752 + 1.86792i −0.138329 + 0.110068i
\(289\) −10.5603 18.2909i −0.621192 1.07594i
\(290\) −21.0867 −1.23825
\(291\) −11.4640 16.8342i −0.672031 0.986839i
\(292\) 4.21492i 0.246659i
\(293\) −2.50937 + 4.34636i −0.146599 + 0.253917i −0.929968 0.367639i \(-0.880166\pi\)
0.783369 + 0.621557i \(0.213499\pi\)
\(294\) 0 0
\(295\) −16.2621 28.1667i −0.946814 1.63993i
\(296\) 6.35359 3.66825i 0.369295 0.213213i
\(297\) 10.1547 2.30037i 0.589237 0.133481i
\(298\) −5.62376 + 9.74064i −0.325776 + 0.564260i
\(299\) 5.16083 8.93882i 0.298458 0.516945i
\(300\) −11.5953 + 7.89633i −0.669455 + 0.455895i
\(301\) 0 0
\(302\) 4.09092 + 2.36189i 0.235406 + 0.135912i
\(303\) 1.65664 + 22.2684i 0.0951712 + 1.27929i
\(304\) 1.01308i 0.0581041i
\(305\) 46.1138 + 26.6238i 2.64047 + 1.52447i
\(306\) −14.4940 + 11.5329i −0.828569 + 0.659292i
\(307\) 17.5309i 1.00054i 0.865869 + 0.500271i \(0.166766\pi\)
−0.865869 + 0.500271i \(0.833234\pi\)
\(308\) 0 0
\(309\) −18.5834 + 1.38250i −1.05717 + 0.0786474i
\(310\) 3.29245 0.186998
\(311\) −8.64759 14.9781i −0.490360 0.849328i 0.509579 0.860424i \(-0.329801\pi\)
−0.999938 + 0.0110959i \(0.996468\pi\)
\(312\) 5.31804 + 2.56459i 0.301074 + 0.145191i
\(313\) −7.78988 4.49749i −0.440310 0.254213i 0.263419 0.964681i \(-0.415150\pi\)
−0.703729 + 0.710468i \(0.748483\pi\)
\(314\) 3.06972 0.173234
\(315\) 0 0
\(316\) −3.82533 −0.215192
\(317\) −5.82002 3.36019i −0.326885 0.188727i 0.327572 0.944826i \(-0.393770\pi\)
−0.654457 + 0.756099i \(0.727103\pi\)
\(318\) −12.5319 + 8.53413i −0.702753 + 0.478570i
\(319\) 5.83721 + 10.1103i 0.326821 + 0.566071i
\(320\) −3.61932 −0.202326
\(321\) 2.57347 + 3.77899i 0.143637 + 0.210923i
\(322\) 0 0
\(323\) 6.25494i 0.348034i
\(324\) 6.58416 + 6.13586i 0.365787 + 0.340881i
\(325\) 23.9100 + 13.8045i 1.32629 + 0.765734i
\(326\) 2.87373i 0.159161i
\(327\) 14.0962 + 6.79780i 0.779521 + 0.375919i
\(328\) 4.93712 + 2.85045i 0.272607 + 0.157390i
\(329\) 0 0
\(330\) 11.3145 + 5.45636i 0.622844 + 0.300363i
\(331\) 9.38725 16.2592i 0.515970 0.893686i −0.483858 0.875146i \(-0.660765\pi\)
0.999828 0.0185396i \(-0.00590167\pi\)
\(332\) 4.00481 6.93654i 0.219793 0.380692i
\(333\) −13.7040 17.2226i −0.750975 0.943792i
\(334\) −1.26529 + 0.730517i −0.0692338 + 0.0399721i
\(335\) 15.0499 + 26.0671i 0.822262 + 1.42420i
\(336\) 0 0
\(337\) 2.42287 4.19654i 0.131982 0.228600i −0.792458 0.609926i \(-0.791199\pi\)
0.924441 + 0.381326i \(0.124532\pi\)
\(338\) 1.38047i 0.0750874i
\(339\) 1.27194 2.63755i 0.0690824 0.143252i
\(340\) −22.3463 −1.21190
\(341\) −0.911413 1.57861i −0.0493558 0.0854868i
\(342\) −3.00578 + 0.449713i −0.162534 + 0.0243177i
\(343\) 0 0
\(344\) −4.15605 + 2.39949i −0.224079 + 0.129372i
\(345\) 18.9297 1.40826i 1.01914 0.0758179i
\(346\) −2.65940 + 1.53541i −0.142970 + 0.0825440i
\(347\) −15.1305 + 8.73559i −0.812247 + 0.468951i −0.847736 0.530419i \(-0.822035\pi\)
0.0354887 + 0.999370i \(0.488701\pi\)
\(348\) −4.38334 + 9.08948i −0.234972 + 0.487247i
\(349\) 20.6338 11.9129i 1.10450 0.637683i 0.167101 0.985940i \(-0.446560\pi\)
0.937399 + 0.348257i \(0.113226\pi\)
\(350\) 0 0
\(351\) 5.24835 16.9169i 0.280136 0.902958i
\(352\) 1.00190 + 1.73534i 0.0534013 + 0.0924938i
\(353\) −10.0412 −0.534441 −0.267220 0.963635i \(-0.586105\pi\)
−0.267220 + 0.963635i \(0.586105\pi\)
\(354\) −15.5218 + 1.15473i −0.824973 + 0.0613730i
\(355\) 1.68764i 0.0895707i
\(356\) 2.39324 4.14521i 0.126841 0.219696i
\(357\) 0 0
\(358\) 9.65966 + 16.7310i 0.510529 + 0.884262i
\(359\) 10.5353 6.08254i 0.556030 0.321024i −0.195521 0.980700i \(-0.562640\pi\)
0.751550 + 0.659676i \(0.229306\pi\)
\(360\) 1.60664 + 10.7384i 0.0846774 + 0.565965i
\(361\) −8.98683 + 15.5657i −0.472991 + 0.819245i
\(362\) −3.94659 + 6.83569i −0.207428 + 0.359276i
\(363\) 0.897541 + 12.0647i 0.0471087 + 0.633233i
\(364\) 0 0
\(365\) 13.2113 + 7.62756i 0.691512 + 0.399245i
\(366\) 21.0620 14.3431i 1.10093 0.749727i
\(367\) 3.63061i 0.189516i −0.995500 0.0947582i \(-0.969792\pi\)
0.995500 0.0947582i \(-0.0302078\pi\)
\(368\) 2.62232 + 1.51400i 0.136698 + 0.0789225i
\(369\) 6.26558 15.9136i 0.326173 0.828431i
\(370\) 26.5531i 1.38043i
\(371\) 0 0
\(372\) 0.684408 1.41922i 0.0354849 0.0735830i
\(373\) 5.49231 0.284381 0.142191 0.989839i \(-0.454585\pi\)
0.142191 + 0.989839i \(0.454585\pi\)
\(374\) 6.18590 + 10.7143i 0.319865 + 0.554023i
\(375\) 1.44149 + 19.3764i 0.0744380 + 1.00059i
\(376\) −1.93143 1.11511i −0.0996057 0.0575074i
\(377\) 19.8599 1.02284
\(378\) 0 0
\(379\) −15.5960 −0.801112 −0.400556 0.916272i \(-0.631183\pi\)
−0.400556 + 0.916272i \(0.631183\pi\)
\(380\) −3.17542 1.83333i −0.162896 0.0940478i
\(381\) 2.30388 + 30.9686i 0.118031 + 1.58657i
\(382\) −6.65211 11.5218i −0.340352 0.589506i
\(383\) −9.43067 −0.481885 −0.240942 0.970539i \(-0.577456\pi\)
−0.240942 + 0.970539i \(0.577456\pi\)
\(384\) −0.752355 + 1.56012i −0.0383935 + 0.0796143i
\(385\) 0 0
\(386\) 6.53573i 0.332660i
\(387\) 8.96414 + 11.2657i 0.455673 + 0.572670i
\(388\) −10.1835 5.87944i −0.516989 0.298483i
\(389\) 6.42177i 0.325597i −0.986659 0.162798i \(-0.947948\pi\)
0.986659 0.162798i \(-0.0520520\pi\)
\(390\) 17.6623 12.0279i 0.894366 0.609058i
\(391\) 16.1907 + 9.34769i 0.818798 + 0.472733i
\(392\) 0 0
\(393\) −2.22706 29.9360i −0.112340 1.51007i
\(394\) −2.22125 + 3.84732i −0.111905 + 0.193825i
\(395\) −6.92255 + 11.9902i −0.348311 + 0.603293i
\(396\) 4.70395 3.74293i 0.236383 0.188090i
\(397\) −5.99750 + 3.46266i −0.301006 + 0.173786i −0.642895 0.765955i \(-0.722267\pi\)
0.341889 + 0.939740i \(0.388933\pi\)
\(398\) 5.75542 + 9.96868i 0.288493 + 0.499685i
\(399\) 0 0
\(400\) −4.04972 + 7.01433i −0.202486 + 0.350716i
\(401\) 10.5869i 0.528682i −0.964429 0.264341i \(-0.914846\pi\)
0.964429 0.264341i \(-0.0851545\pi\)
\(402\) 14.3648 1.06865i 0.716449 0.0532995i
\(403\) −3.10089 −0.154466
\(404\) 6.44610 + 11.1650i 0.320705 + 0.555478i
\(405\) 31.1474 9.53372i 1.54773 0.473735i
\(406\) 0 0
\(407\) −12.7313 + 7.35042i −0.631067 + 0.364347i
\(408\) −4.64518 + 9.63244i −0.229971 + 0.476877i
\(409\) −7.72792 + 4.46172i −0.382121 + 0.220618i −0.678741 0.734378i \(-0.737474\pi\)
0.296620 + 0.954996i \(0.404141\pi\)
\(410\) 17.8690 10.3167i 0.882486 0.509504i
\(411\) 0.00111431 8.28977e-5i 5.49647e−5 4.08904e-6i
\(412\) −9.31740 + 5.37940i −0.459035 + 0.265024i
\(413\) 0 0
\(414\) 3.32793 8.45243i 0.163559 0.415414i
\(415\) −14.4947 25.1055i −0.711516 1.23238i
\(416\) 3.40874 0.167127
\(417\) 7.58652 15.7317i 0.371513 0.770386i
\(418\) 2.03000i 0.0992908i
\(419\) 17.1924 29.7781i 0.839903 1.45475i −0.0500724 0.998746i \(-0.515945\pi\)
0.889975 0.456009i \(-0.150721\pi\)
\(420\) 0 0
\(421\) −17.7840 30.8028i −0.866739 1.50124i −0.865310 0.501237i \(-0.832879\pi\)
−0.00142877 0.999999i \(-0.500455\pi\)
\(422\) −19.5731 + 11.3005i −0.952803 + 0.550101i
\(423\) −2.45113 + 6.22550i −0.119178 + 0.302694i
\(424\) −4.37683 + 7.58088i −0.212557 + 0.368160i
\(425\) −25.0037 + 43.3077i −1.21286 + 2.10073i
\(426\) 0.727462 + 0.350814i 0.0352457 + 0.0169970i
\(427\) 0 0
\(428\) 2.28602 + 1.31983i 0.110499 + 0.0637965i
\(429\) −10.6563 5.13891i −0.514489 0.248109i
\(430\) 17.3691i 0.837610i
\(431\) 26.7338 + 15.4348i 1.28772 + 0.743466i 0.978247 0.207442i \(-0.0665138\pi\)
0.309474 + 0.950908i \(0.399847\pi\)
\(432\) 4.96280 + 1.53967i 0.238773 + 0.0740776i
\(433\) 23.2463i 1.11715i 0.829455 + 0.558574i \(0.188651\pi\)
−0.829455 + 0.558574i \(0.811349\pi\)
\(434\) 0 0
\(435\) 20.5579 + 30.1881i 0.985676 + 1.44741i
\(436\) 9.03535 0.432715
\(437\) 1.53380 + 2.65662i 0.0733716 + 0.127083i
\(438\) 6.03414 4.10922i 0.288323 0.196346i
\(439\) −19.2887 11.1364i −0.920601 0.531509i −0.0367744 0.999324i \(-0.511708\pi\)
−0.883827 + 0.467814i \(0.845042\pi\)
\(440\) 7.25237 0.345743
\(441\) 0 0
\(442\) 21.0462 1.00107
\(443\) 15.5756 + 8.99259i 0.740020 + 0.427251i 0.822077 0.569377i \(-0.192815\pi\)
−0.0820566 + 0.996628i \(0.526149\pi\)
\(444\) −11.4458 5.51965i −0.543193 0.261951i
\(445\) −8.66188 15.0028i −0.410612 0.711202i
\(446\) −18.8209 −0.891195
\(447\) 19.4276 1.44530i 0.918894 0.0683601i
\(448\) 0 0
\(449\) 9.44363i 0.445673i 0.974856 + 0.222836i \(0.0715315\pi\)
−0.974856 + 0.222836i \(0.928468\pi\)
\(450\) 22.6090 + 8.90172i 1.06580 + 0.419631i
\(451\) −9.89297 5.71171i −0.465842 0.268954i
\(452\) 1.69061i 0.0795197i
\(453\) −0.607002 8.15930i −0.0285195 0.383357i
\(454\) −12.6555 7.30665i −0.593952 0.342918i
\(455\) 0 0
\(456\) −1.45034 + 0.987674i −0.0679185 + 0.0462521i
\(457\) 0.922251 1.59739i 0.0431411 0.0747225i −0.843649 0.536896i \(-0.819597\pi\)
0.886790 + 0.462173i \(0.152930\pi\)
\(458\) 1.18959 2.06044i 0.0555861 0.0962779i
\(459\) 30.6412 + 9.50623i 1.43021 + 0.443713i
\(460\) 9.49100 5.47963i 0.442520 0.255489i
\(461\) −18.1869 31.5007i −0.847050 1.46713i −0.883829 0.467810i \(-0.845043\pi\)
0.0367790 0.999323i \(-0.488290\pi\)
\(462\) 0 0
\(463\) −15.9830 + 27.6834i −0.742794 + 1.28656i 0.208425 + 0.978038i \(0.433166\pi\)
−0.951219 + 0.308518i \(0.900167\pi\)
\(464\) 5.82616i 0.270473i
\(465\) −3.20988 4.71352i −0.148855 0.218584i
\(466\) 10.4324 0.483271
\(467\) 12.2206 + 21.1666i 0.565500 + 0.979475i 0.997003 + 0.0773632i \(0.0246501\pi\)
−0.431503 + 0.902112i \(0.642017\pi\)
\(468\) −1.51317 10.1137i −0.0699461 0.467504i
\(469\) 0 0
\(470\) −6.99044 + 4.03593i −0.322445 + 0.186164i
\(471\) −2.99273 4.39466i −0.137898 0.202495i
\(472\) −7.78233 + 4.49313i −0.358211 + 0.206813i
\(473\) 8.32786 4.80809i 0.382916 0.221076i
\(474\) 3.72940 + 5.47641i 0.171297 + 0.251540i
\(475\) −7.10607 + 4.10269i −0.326049 + 0.188245i
\(476\) 0 0
\(477\) 24.4352 + 9.62073i 1.11881 + 0.440503i
\(478\) −11.8917 20.5971i −0.543916 0.942090i
\(479\) −10.9606 −0.500805 −0.250402 0.968142i \(-0.580563\pi\)
−0.250402 + 0.968142i \(0.580563\pi\)
\(480\) 3.52855 + 5.18147i 0.161056 + 0.236501i
\(481\) 25.0082i 1.14028i
\(482\) −14.3243 + 24.8105i −0.652456 + 1.13009i
\(483\) 0 0
\(484\) 3.49240 + 6.04902i 0.158746 + 0.274955i
\(485\) −36.8573 + 21.2796i −1.67360 + 0.966255i
\(486\) 2.36515 15.4080i 0.107286 0.698920i
\(487\) −16.8087 + 29.1136i −0.761677 + 1.31926i 0.180309 + 0.983610i \(0.442290\pi\)
−0.941986 + 0.335653i \(0.891043\pi\)
\(488\) 7.35603 12.7410i 0.332992 0.576759i
\(489\) 4.11408 2.80167i 0.186045 0.126696i
\(490\) 0 0
\(491\) −19.6893 11.3676i −0.888568 0.513015i −0.0150939 0.999886i \(-0.504805\pi\)
−0.873474 + 0.486871i \(0.838138\pi\)
\(492\) −0.732559 9.84702i −0.0330263 0.443938i
\(493\) 35.9718i 1.62009i
\(494\) 2.99067 + 1.72667i 0.134557 + 0.0776863i
\(495\) −3.21938 21.5176i −0.144700 0.967144i
\(496\) 0.909687i 0.0408462i
\(497\) 0 0
\(498\) −13.8348 + 1.02923i −0.619954 + 0.0461209i
\(499\) 19.5235 0.873992 0.436996 0.899463i \(-0.356042\pi\)
0.436996 + 0.899463i \(0.356042\pi\)
\(500\) 5.60894 + 9.71496i 0.250839 + 0.434466i
\(501\) 2.27938 + 1.09922i 0.101835 + 0.0491094i
\(502\) 9.55238 + 5.51507i 0.426343 + 0.246149i
\(503\) −13.6867 −0.610262 −0.305131 0.952310i \(-0.598700\pi\)
−0.305131 + 0.952310i \(0.598700\pi\)
\(504\) 0 0
\(505\) 46.6609 2.07638
\(506\) −5.25459 3.03374i −0.233595 0.134866i
\(507\) 1.97630 1.34585i 0.0877705 0.0597712i
\(508\) 8.96458 + 15.5271i 0.397739 + 0.688904i
\(509\) 2.29166 0.101576 0.0507881 0.998709i \(-0.483827\pi\)
0.0507881 + 0.998709i \(0.483827\pi\)
\(510\) 21.7859 + 31.9914i 0.964697 + 1.41660i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 3.57422 + 3.86470i 0.157806 + 0.170630i
\(514\) −13.0751 7.54890i −0.576717 0.332968i
\(515\) 38.9395i 1.71588i
\(516\) 7.48698 + 3.61054i 0.329596 + 0.158945i
\(517\) 3.87018 + 2.23445i 0.170210 + 0.0982710i
\(518\) 0 0
\(519\) 4.79082 + 2.31034i 0.210294 + 0.101413i
\(520\) 6.16866 10.6844i 0.270514 0.468543i
\(521\) 8.54102 14.7935i 0.374189 0.648114i −0.616017 0.787733i \(-0.711255\pi\)
0.990205 + 0.139619i \(0.0445879\pi\)
\(522\) 17.2861 2.58627i 0.756591 0.113198i
\(523\) −35.7462 + 20.6381i −1.56307 + 0.902440i −0.566128 + 0.824317i \(0.691559\pi\)
−0.996944 + 0.0781229i \(0.975107\pi\)
\(524\) −8.66567 15.0094i −0.378562 0.655688i
\(525\) 0 0
\(526\) −9.81926 + 17.0075i −0.428140 + 0.741561i
\(527\) 5.61657i 0.244662i
\(528\) 1.50757 3.12615i 0.0656084 0.136048i
\(529\) 13.8313 0.601359
\(530\) 15.8411 + 27.4376i 0.688094 + 1.19181i
\(531\) 16.7857 + 21.0955i 0.728435 + 0.915465i
\(532\) 0 0
\(533\) −16.8294 + 9.71644i −0.728961 + 0.420866i
\(534\) −8.26757 + 0.615057i −0.357773 + 0.0266161i
\(535\) 8.27382 4.77689i 0.357708 0.206523i
\(536\) 7.20222 4.15821i 0.311089 0.179607i
\(537\) 14.5350 30.1404i 0.627231 1.30065i
\(538\) −0.425223 + 0.245503i −0.0183327 + 0.0105844i
\(539\) 0 0
\(540\) 13.8070 12.7692i 0.594157 0.549500i
\(541\) 22.7197 + 39.3516i 0.976795 + 1.69186i 0.673880 + 0.738841i \(0.264627\pi\)
0.302915 + 0.953018i \(0.402040\pi\)
\(542\) −14.0789 −0.604741
\(543\) 13.6337 1.01427i 0.585078 0.0435263i
\(544\) 6.17418i 0.264716i
\(545\) 16.3509 28.3206i 0.700395 1.21312i
\(546\) 0 0
\(547\) 15.1095 + 26.1705i 0.646037 + 1.11897i 0.984061 + 0.177832i \(0.0569082\pi\)
−0.338024 + 0.941138i \(0.609758\pi\)
\(548\) 0.000558693 0 0.000322562i 2.38662e−5 0 1.37791e-5i
\(549\) −41.0677 16.1693i −1.75273 0.690091i
\(550\) 8.11481 14.0553i 0.346017 0.599319i
\(551\) −2.95118 + 5.11160i −0.125725 + 0.217761i
\(552\) −0.389094 5.23019i −0.0165610 0.222612i
\(553\) 0 0
\(554\) −26.6043 15.3600i −1.13031 0.652585i
\(555\) −38.0139 + 25.8872i −1.61360 + 1.09885i
\(556\) 10.0837i 0.427644i
\(557\) −22.0154 12.7106i −0.932822 0.538565i −0.0451189 0.998982i \(-0.514367\pi\)
−0.887703 + 0.460417i \(0.847700\pi\)
\(558\) −2.69902 + 0.403817i −0.114259 + 0.0170949i
\(559\) 16.3585i 0.691892i
\(560\) 0 0
\(561\) 9.30799 19.3014i 0.392983 0.814907i
\(562\) −7.92455 −0.334277
\(563\) −1.44346 2.50015i −0.0608346 0.105369i 0.834004 0.551758i \(-0.186043\pi\)
−0.894839 + 0.446390i \(0.852710\pi\)
\(564\) 0.286581 + 3.85221i 0.0120672 + 0.162207i
\(565\) −5.29909 3.05943i −0.222934 0.128711i
\(566\) −11.5159 −0.484048
\(567\) 0 0
\(568\) 0.466287 0.0195650
\(569\) −38.5945 22.2826i −1.61797 0.934134i −0.987445 0.157963i \(-0.949507\pi\)
−0.630523 0.776171i \(-0.717159\pi\)
\(570\) 0.471162 + 6.33333i 0.0197348 + 0.265274i
\(571\) 3.26470 + 5.65462i 0.136623 + 0.236638i 0.926216 0.376992i \(-0.123042\pi\)
−0.789593 + 0.613631i \(0.789708\pi\)
\(572\) −6.83042 −0.285594
\(573\) −10.0095 + 20.7561i −0.418153 + 0.867100i
\(574\) 0 0
\(575\) 24.5251i 1.02277i
\(576\) 2.96698 0.443907i 0.123624 0.0184961i
\(577\) −1.17720 0.679658i −0.0490076 0.0282945i 0.475296 0.879826i \(-0.342341\pi\)
−0.524304 + 0.851531i \(0.675674\pi\)
\(578\) 21.1205i 0.878498i
\(579\) 9.35666 6.37183i 0.388850 0.264804i
\(580\) 18.2616 + 10.5434i 0.758273 + 0.437789i
\(581\) 0 0
\(582\) 1.51101 + 20.3109i 0.0626332 + 0.841912i
\(583\) 8.77026 15.1905i 0.363227 0.629128i
\(584\) 2.10746 3.65022i 0.0872072 0.151047i
\(585\) −34.4388 13.5594i −1.42387 0.560611i
\(586\) 4.34636 2.50937i 0.179547 0.103661i
\(587\) 22.2025 + 38.4559i 0.916397 + 1.58725i 0.804843 + 0.593488i \(0.202250\pi\)
0.111555 + 0.993758i \(0.464417\pi\)
\(588\) 0 0
\(589\) 0.460793 0.798117i 0.0189866 0.0328858i
\(590\) 32.5241i 1.33900i
\(591\) 7.67343 0.570857i 0.315643 0.0234819i
\(592\) −7.33650 −0.301528
\(593\) 7.17564 + 12.4286i 0.294668 + 0.510380i 0.974908 0.222610i \(-0.0714576\pi\)
−0.680240 + 0.732990i \(0.738124\pi\)
\(594\) −9.94444 3.08519i −0.408025 0.126587i
\(595\) 0 0
\(596\) 9.74064 5.62376i 0.398992 0.230358i
\(597\) 8.66024 17.9582i 0.354440 0.734982i
\(598\) −8.93882 + 5.16083i −0.365535 + 0.211042i
\(599\) −3.03349 + 1.75139i −0.123945 + 0.0715597i −0.560691 0.828025i \(-0.689464\pi\)
0.436746 + 0.899585i \(0.356131\pi\)
\(600\) 13.9900 1.04077i 0.571139 0.0424893i
\(601\) 15.1846 8.76685i 0.619394 0.357607i −0.157239 0.987561i \(-0.550259\pi\)
0.776633 + 0.629953i \(0.216926\pi\)
\(602\) 0 0
\(603\) −15.5344 19.5230i −0.632610 0.795037i
\(604\) −2.36189 4.09092i −0.0961041 0.166457i
\(605\) 25.2802 1.02779
\(606\) 9.69952 20.1133i 0.394016 0.817048i
\(607\) 0.0872864i 0.00354285i 0.999998 + 0.00177142i \(0.000563862\pi\)
−0.999998 + 0.00177142i \(0.999436\pi\)
\(608\) −0.506540 + 0.877353i −0.0205429 + 0.0355814i
\(609\) 0 0
\(610\) −26.6238 46.1138i −1.07797 1.86709i
\(611\) 6.58373 3.80112i 0.266349 0.153777i
\(612\) 18.3186 2.74076i 0.740488 0.110789i
\(613\) 12.5352 21.7116i 0.506292 0.876924i −0.493681 0.869643i \(-0.664349\pi\)
0.999973 0.00728071i \(-0.00231754\pi\)
\(614\) 8.76545 15.1822i 0.353745 0.612704i
\(615\) −32.1904 15.5236i −1.29804 0.625972i
\(616\) 0 0
\(617\) −10.6365 6.14101i −0.428211 0.247228i 0.270373 0.962756i \(-0.412853\pi\)
−0.698584 + 0.715528i \(0.746186\pi\)
\(618\) 16.7850 + 8.09444i 0.675191 + 0.325606i
\(619\) 20.3076i 0.816229i 0.912931 + 0.408115i \(0.133814\pi\)
−0.912931 + 0.408115i \(0.866186\pi\)
\(620\) −2.85134 1.64622i −0.114513 0.0661139i
\(621\) −15.3451 + 3.47615i −0.615778 + 0.139493i
\(622\) 17.2952i 0.693474i
\(623\) 0 0
\(624\) −3.32326 4.88001i −0.133037 0.195357i
\(625\) 0.103794 0.00415176
\(626\) 4.49749 + 7.78988i 0.179756 + 0.311346i
\(627\) 2.90619 1.97910i 0.116062 0.0790375i
\(628\) −2.65845 1.53486i −0.106084 0.0612475i
\(629\) −45.2969 −1.80610
\(630\) 0 0
\(631\) −45.9665 −1.82990 −0.914950 0.403568i \(-0.867770\pi\)
−0.914950 + 0.403568i \(0.867770\pi\)
\(632\) 3.31284 + 1.91267i 0.131778 + 0.0760818i
\(633\) 35.2603 + 17.0040i 1.40147 + 0.675850i
\(634\) 3.36019 + 5.82002i 0.133450 + 0.231143i
\(635\) 64.8913 2.57513
\(636\) 15.1200 1.12484i 0.599546 0.0446026i
\(637\) 0 0
\(638\) 11.6744i 0.462195i
\(639\) −0.206988 1.38346i −0.00818833 0.0547290i
\(640\) 3.13442 + 1.80966i 0.123899 + 0.0715330i
\(641\) 31.6509i 1.25013i 0.780571 + 0.625067i \(0.214928\pi\)
−0.780571 + 0.625067i \(0.785072\pi\)
\(642\) −0.339195 4.55944i −0.0133869 0.179947i
\(643\) −10.0106 5.77960i −0.394778 0.227925i 0.289450 0.957193i \(-0.406528\pi\)
−0.684228 + 0.729268i \(0.739861\pi\)
\(644\) 0 0
\(645\) 24.8658 16.9335i 0.979091 0.666755i
\(646\) −3.12747 + 5.41694i −0.123049 + 0.213127i
\(647\) −13.0365 + 22.5799i −0.512519 + 0.887708i 0.487376 + 0.873192i \(0.337954\pi\)
−0.999895 + 0.0145160i \(0.995379\pi\)
\(648\) −2.63412 8.60589i −0.103478 0.338071i
\(649\) 15.5942 9.00332i 0.612126 0.353411i
\(650\) −13.8045 23.9100i −0.541456 0.937829i
\(651\) 0 0
\(652\) 1.43687 2.48873i 0.0562720 0.0974660i
\(653\) 18.9315i 0.740847i 0.928863 + 0.370424i \(0.120788\pi\)
−0.928863 + 0.370424i \(0.879212\pi\)
\(654\) −8.80877 12.9352i −0.344450 0.505805i
\(655\) −62.7276 −2.45097
\(656\) −2.85045 4.93712i −0.111291 0.192762i
\(657\) −11.7656 4.63242i −0.459021 0.180728i
\(658\) 0 0
\(659\) 23.3508 13.4816i 0.909618 0.525168i 0.0293098 0.999570i \(-0.490669\pi\)
0.880308 + 0.474402i \(0.157336\pi\)
\(660\) −7.07049 10.3826i −0.275219 0.404142i
\(661\) −22.3201 + 12.8865i −0.868151 + 0.501227i −0.866733 0.498772i \(-0.833785\pi\)
−0.00141768 + 0.999999i \(0.500451\pi\)
\(662\) −16.2592 + 9.38725i −0.631931 + 0.364846i
\(663\) −20.5184 30.1301i −0.796869 1.17016i
\(664\) −6.93654 + 4.00481i −0.269190 + 0.155417i
\(665\) 0 0
\(666\) 3.25672 + 21.7672i 0.126195 + 0.843462i
\(667\) −8.82079 15.2780i −0.341542 0.591568i
\(668\) 1.46103 0.0565291
\(669\) 18.3489 + 26.9443i 0.709410 + 1.04173i
\(670\) 30.0997i 1.16285i
\(671\) −14.7400 + 25.5304i −0.569030 + 0.985590i
\(672\) 0 0
\(673\) −12.9608 22.4487i −0.499601 0.865335i 0.500398 0.865795i \(-0.333187\pi\)
−1.00000 0.000460130i \(0.999854\pi\)
\(674\) −4.19654 + 2.42287i −0.161645 + 0.0933256i
\(675\) −9.29820 41.0460i −0.357888 1.57986i
\(676\) 0.690233 1.19552i 0.0265474 0.0459815i
\(677\) −6.55382 + 11.3515i −0.251884 + 0.436275i −0.964044 0.265741i \(-0.914383\pi\)
0.712161 + 0.702016i \(0.247717\pi\)
\(678\) −2.42031 + 1.64822i −0.0929514 + 0.0632993i
\(679\) 0 0
\(680\) 19.3525 + 11.1732i 0.742134 + 0.428471i
\(681\) 1.87780 + 25.2412i 0.0719573 + 0.967246i
\(682\) 1.82283i 0.0697996i
\(683\) −25.6910 14.8327i −0.983038 0.567557i −0.0798523 0.996807i \(-0.525445\pi\)
−0.903186 + 0.429249i \(0.858778\pi\)
\(684\) 2.82794 + 1.11343i 0.108129 + 0.0425730i
\(685\) 0.00233490i 8.92121e-5i
\(686\) 0 0
\(687\) −4.10952 + 0.305723i −0.156788 + 0.0116641i
\(688\) 4.79899 0.182960
\(689\) −14.9195 25.8413i −0.568387 0.984475i
\(690\) −17.0977 8.24526i −0.650899 0.313892i
\(691\) −40.9767 23.6579i −1.55883 0.899990i −0.997369 0.0724857i \(-0.976907\pi\)
−0.561459 0.827504i \(-0.689760\pi\)
\(692\) 3.07081 0.116735
\(693\) 0 0
\(694\) 17.4712 0.663197
\(695\) −31.6065 18.2480i −1.19890 0.692187i
\(696\) 8.34083 5.68005i 0.316158 0.215302i
\(697\) −17.5992 30.4827i −0.666616 1.15461i
\(698\) −23.8258 −0.901820
\(699\) −10.1708 14.9352i −0.384693 0.564900i
\(700\) 0 0
\(701\) 13.7742i 0.520244i 0.965576 + 0.260122i \(0.0837627\pi\)
−0.965576 + 0.260122i \(0.916237\pi\)
\(702\) −13.0037 + 12.0263i −0.490792 + 0.453904i
\(703\) −6.43670 3.71623i −0.242765 0.140160i
\(704\) 2.00379i 0.0755209i
\(705\) 12.5930 + 6.07291i 0.474281 + 0.228719i
\(706\) 8.69596 + 5.02061i 0.327277 + 0.188953i
\(707\) 0 0
\(708\) 14.0196 + 6.76087i 0.526889 + 0.254089i
\(709\) 21.9691 38.0517i 0.825069 1.42906i −0.0767981 0.997047i \(-0.524470\pi\)
0.901867 0.432014i \(-0.142197\pi\)
\(710\) 0.843820 1.46154i 0.0316680 0.0548506i
\(711\) 4.20425 10.6782i 0.157672 0.400462i
\(712\) −4.14521 + 2.39324i −0.155348 + 0.0896903i
\(713\) 1.37726 + 2.38549i 0.0515789 + 0.0893373i
\(714\) 0 0
\(715\) −12.3607 + 21.4094i −0.462265 + 0.800667i
\(716\) 19.3193i 0.721997i
\(717\) −17.8936 + 37.1050i −0.668250 + 1.38571i
\(718\) −12.1651 −0.453997
\(719\) −14.7930 25.6223i −0.551687 0.955549i −0.998153 0.0607489i \(-0.980651\pi\)
0.446466 0.894800i \(-0.352682\pi\)
\(720\) 3.97782 10.1031i 0.148245 0.376519i
\(721\) 0 0
\(722\) 15.5657 8.98683i 0.579294 0.334455i
\(723\) 49.4843 3.68133i 1.84034 0.136910i
\(724\) 6.83569 3.94659i 0.254046 0.146674i
\(725\) 40.8666 23.5943i 1.51775 0.876271i
\(726\) 5.25506 10.8971i 0.195033 0.404430i
\(727\) 10.1244 5.84534i 0.375494 0.216792i −0.300362 0.953825i \(-0.597107\pi\)
0.675856 + 0.737034i \(0.263774\pi\)
\(728\) 0 0
\(729\) −24.3642 + 11.6356i −0.902377 + 0.430948i
\(730\) −7.62756 13.2113i −0.282308 0.488973i
\(731\) 29.6298 1.09590
\(732\) −25.4118 + 1.89049i −0.939248 + 0.0698744i
\(733\) 33.0733i 1.22159i −0.791789 0.610795i \(-0.790850\pi\)
0.791789 0.610795i \(-0.209150\pi\)
\(734\) −1.81531 + 3.14420i −0.0670042 + 0.116055i
\(735\) 0 0
\(736\) −1.51400 2.62232i −0.0558067 0.0966600i
\(737\) −14.4318 + 8.33219i −0.531601 + 0.306920i
\(738\) −13.3830 + 10.6488i −0.492634 + 0.391989i
\(739\) −21.7528 + 37.6770i −0.800190 + 1.38597i 0.119301 + 0.992858i \(0.461935\pi\)
−0.919491 + 0.393111i \(0.871399\pi\)
\(740\) −13.2765 + 22.9957i −0.488056 + 0.845337i
\(741\) −0.443750 5.96486i −0.0163016 0.219125i
\(742\) 0 0
\(743\) 18.0206 + 10.4042i 0.661112 + 0.381693i 0.792701 0.609611i \(-0.208674\pi\)
−0.131589 + 0.991304i \(0.542008\pi\)
\(744\) −1.30232 + 0.886874i −0.0477455 + 0.0325144i
\(745\) 40.7083i 1.49144i
\(746\) −4.75648 2.74616i −0.174147 0.100544i
\(747\) 14.9614 + 18.8028i 0.547408 + 0.687958i
\(748\) 12.3718i 0.452358i
\(749\) 0 0
\(750\) 8.43983 17.5012i 0.308179 0.639053i
\(751\) −39.8984 −1.45591 −0.727957 0.685623i \(-0.759530\pi\)
−0.727957 + 0.685623i \(0.759530\pi\)
\(752\) 1.11511 + 1.93143i 0.0406638 + 0.0704318i
\(753\) −1.41736 19.0521i −0.0516515 0.694297i
\(754\) −17.1992 9.92994i −0.626357 0.361627i
\(755\) −17.0969 −0.622219
\(756\) 0 0
\(757\) 7.45545 0.270973 0.135486 0.990779i \(-0.456740\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(758\) 13.5065 + 7.79800i 0.490579 + 0.283236i
\(759\) 0.779665 + 10.4802i 0.0283001 + 0.380408i
\(760\) 1.83333 + 3.17542i 0.0665018 + 0.115185i
\(761\) 8.64924 0.313535 0.156767 0.987636i \(-0.449893\pi\)
0.156767 + 0.987636i \(0.449893\pi\)
\(762\) 13.4891 27.9716i 0.488658 1.01330i
\(763\) 0 0
\(764\) 13.3042i 0.481330i
\(765\) 24.5598 62.3782i 0.887961 2.25529i
\(766\) 8.16720 + 4.71534i 0.295093 + 0.170372i
\(767\) 30.6319i 1.10605i
\(768\) 1.43162 0.974922i 0.0516590 0.0351795i
\(769\) 20.4818 + 11.8252i 0.738592 + 0.426426i 0.821557 0.570126i \(-0.193106\pi\)
−0.0829652 + 0.996552i \(0.526439\pi\)
\(770\) 0 0
\(771\) 1.94005 + 26.0781i 0.0698693 + 0.939180i
\(772\) 3.26786 5.66011i 0.117613 0.203712i
\(773\) 23.2849 40.3307i 0.837501 1.45059i −0.0544774 0.998515i \(-0.517349\pi\)
0.891978 0.452079i \(-0.149317\pi\)
\(774\) −2.13030 14.2385i −0.0765722 0.511792i
\(775\) −6.38084 + 3.68398i −0.229207 + 0.132333i
\(776\) 5.87944 + 10.1835i 0.211060 + 0.365566i
\(777\) 0 0
\(778\) −3.21089 + 5.56142i −0.115116 + 0.199387i
\(779\) 5.77546i 0.206927i
\(780\) −21.3100 + 1.58533i −0.763020 + 0.0567641i
\(781\) −0.934344 −0.0334335
\(782\) −9.34769 16.1907i −0.334273 0.578977i
\(783\) −20.5551 22.2256i −0.734580 0.794279i
\(784\) 0 0
\(785\) −9.62178 + 5.55513i −0.343416 + 0.198271i
\(786\) −13.0393 + 27.0389i −0.465098 + 0.964446i
\(787\) 21.1657 12.2200i 0.754474 0.435596i −0.0728341 0.997344i \(-0.523204\pi\)
0.827308 + 0.561748i \(0.189871\pi\)
\(788\) 3.84732 2.22125i 0.137055 0.0791288i
\(789\) 33.9212 2.52353i 1.20763 0.0898401i
\(790\) 11.9902 6.92255i 0.426592 0.246293i
\(791\) 0 0
\(792\) −5.94521 + 0.889499i −0.211254 + 0.0316070i
\(793\) 25.0748 + 43.4309i 0.890433 + 1.54228i
\(794\) 6.92531 0.245770
\(795\) 23.8363 49.4279i 0.845386 1.75303i
\(796\) 11.5108i 0.407991i
\(797\) −24.9202 + 43.1631i −0.882719 + 1.52891i −0.0344128 + 0.999408i \(0.510956\pi\)
−0.848306 + 0.529506i \(0.822377\pi\)
\(798\) 0 0
\(799\) 6.88489 + 11.9250i 0.243570 + 0.421875i
\(800\) 7.01433 4.04972i 0.247994 0.143179i
\(801\) 8.94076 + 11.2364i 0.315906 + 0.397017i
\(802\) −5.29343 + 9.16848i −0.186917 + 0.323750i
\(803\) −4.22291 + 7.31430i −0.149023 + 0.258116i
\(804\) −12.9746 6.25690i −0.457578 0.220664i
\(805\) 0 0
\(806\) 2.68545 + 1.55045i 0.0945910 + 0.0546121i
\(807\) 0.766025 + 0.369410i 0.0269654 + 0.0130039i
\(808\) 12.8922i 0.453546i
\(809\) 10.6735 + 6.16237i 0.375262 + 0.216657i 0.675755 0.737127i \(-0.263818\pi\)
−0.300493 + 0.953784i \(0.597151\pi\)
\(810\) −31.7413 7.31728i −1.11528 0.257103i
\(811\) 24.8017i 0.870906i 0.900212 + 0.435453i \(0.143412\pi\)
−0.900212 + 0.435453i \(0.856588\pi\)
\(812\) 0 0
\(813\) 13.7258 + 20.1556i 0.481386 + 0.706888i
\(814\) 14.7008 0.515264
\(815\) −5.20047 9.00748i −0.182165 0.315518i
\(816\) 8.83906 6.01935i 0.309429 0.210719i
\(817\) 4.21041 + 2.43088i 0.147304 + 0.0850457i
\(818\) 8.92343 0.312000
\(819\) 0 0
\(820\) −20.6333 −0.720547
\(821\) 31.3573 + 18.1041i 1.09438 + 0.631839i 0.934738 0.355336i \(-0.115634\pi\)
0.159639 + 0.987175i \(0.448967\pi\)
\(822\) −0.00100647 0.000485362i −3.51046e−5 1.69289e-5i
\(823\) 9.54093 + 16.5254i 0.332576 + 0.576038i 0.983016 0.183519i \(-0.0587489\pi\)
−0.650440 + 0.759557i \(0.725416\pi\)
\(824\) 10.7588 0.374801
\(825\) −28.0331 + 2.08549i −0.975986 + 0.0726075i
\(826\) 0 0
\(827\) 31.9013i 1.10932i 0.832079 + 0.554658i \(0.187151\pi\)
−0.832079 + 0.554658i \(0.812849\pi\)
\(828\) −7.10829 + 5.65606i −0.247030 + 0.196562i
\(829\) −13.0645 7.54278i −0.453748 0.261971i 0.255664 0.966766i \(-0.417706\pi\)
−0.709412 + 0.704794i \(0.751039\pi\)
\(830\) 28.9894i 1.00624i
\(831\) 3.94750 + 53.0620i 0.136937 + 1.84070i
\(832\) −2.95206 1.70437i −0.102344 0.0590885i
\(833\) 0 0
\(834\) −14.4360 + 9.83082i −0.499877 + 0.340413i
\(835\) 2.64397 4.57950i 0.0914985 0.158480i
\(836\) 1.01500 1.75804i 0.0351046 0.0608029i
\(837\) 3.20945 + 3.47027i 0.110935 + 0.119950i
\(838\) −29.7781 + 17.1924i −1.02867 + 0.593901i
\(839\) −8.19860 14.2004i −0.283047 0.490252i 0.689087 0.724679i \(-0.258012\pi\)
−0.972134 + 0.234427i \(0.924679\pi\)
\(840\) 0 0
\(841\) 2.47206 4.28173i 0.0852434 0.147646i
\(842\) 35.5680i 1.22575i
\(843\) 7.72582 + 11.3449i 0.266091 + 0.390740i
\(844\) 22.6011 0.777961
\(845\) −2.49817 4.32696i −0.0859397 0.148852i
\(846\) 5.23549 4.16587i 0.180000 0.143226i
\(847\) 0 0
\(848\) 7.58088 4.37683i 0.260329 0.150301i
\(849\) 11.2271 + 16.4863i 0.385312 + 0.565808i
\(850\) 43.3077 25.0037i 1.48544 0.857621i
\(851\) 19.2386 11.1074i 0.659492 0.380758i
\(852\) −0.454594 0.667545i −0.0155741 0.0228697i
\(853\) 16.5936 9.58030i 0.568153 0.328023i −0.188258 0.982120i \(-0.560284\pi\)
0.756411 + 0.654096i \(0.226951\pi\)
\(854\) 0 0
\(855\) 8.60756 6.84903i 0.294372 0.234232i
\(856\) −1.31983 2.28602i −0.0451110 0.0781345i
\(857\) −16.1145 −0.550460 −0.275230 0.961378i \(-0.588754\pi\)
−0.275230 + 0.961378i \(0.588754\pi\)
\(858\) 6.65913 + 9.77855i 0.227339 + 0.333834i
\(859\) 12.1048i 0.413009i 0.978446 + 0.206505i \(0.0662089\pi\)
−0.978446 + 0.206505i \(0.933791\pi\)
\(860\) 8.68453 15.0420i 0.296140 0.512929i
\(861\) 0 0
\(862\) −15.4348 26.7338i −0.525710 0.910556i
\(863\) −32.2728 + 18.6327i −1.09858 + 0.634265i −0.935848 0.352405i \(-0.885364\pi\)
−0.162732 + 0.986670i \(0.552031\pi\)
\(864\) −3.52808 3.81480i −0.120028 0.129782i
\(865\) 5.55712 9.62522i 0.188948 0.327267i
\(866\) 11.6232 20.1319i 0.394971 0.684110i
\(867\) 30.2365 20.5909i 1.02689 0.699303i
\(868\) 0 0
\(869\) −6.63824 3.83259i −0.225187 0.130012i
\(870\) −2.70962 36.4226i −0.0918648 1.23484i
\(871\) 28.3485i 0.960553i
\(872\) −7.82484 4.51768i −0.264983 0.152988i
\(873\) 27.6043 21.9647i 0.934262 0.743392i
\(874\) 3.06760i 0.103763i
\(875\) 0 0
\(876\) −7.28033 + 0.541613i −0.245980 + 0.0182994i
\(877\) −9.70948 −0.327866 −0.163933 0.986471i \(-0.552418\pi\)
−0.163933 + 0.986471i \(0.552418\pi\)
\(878\) 11.1364 + 19.2887i 0.375834 + 0.650963i
\(879\) −7.82983 3.77588i −0.264094 0.127357i
\(880\) −6.28073 3.62618i −0.211723 0.122239i
\(881\) −2.63241 −0.0886881 −0.0443440 0.999016i \(-0.514120\pi\)
−0.0443440 + 0.999016i \(0.514120\pi\)
\(882\) 0 0
\(883\) −36.3181 −1.22220 −0.611101 0.791553i \(-0.709273\pi\)
−0.611101 + 0.791553i \(0.709273\pi\)
\(884\) −18.2265 10.5231i −0.613025 0.353930i
\(885\) 46.5621 31.7085i 1.56517 1.06587i
\(886\) −8.99259 15.5756i −0.302112 0.523273i
\(887\) 16.3642 0.549455 0.274728 0.961522i \(-0.411412\pi\)
0.274728 + 0.961522i \(0.411412\pi\)
\(888\) 7.15251 + 10.5031i 0.240023 + 0.352459i
\(889\) 0 0
\(890\) 17.3238i 0.580694i
\(891\) 5.27824 + 17.2444i 0.176828 + 0.577711i
\(892\) 16.2994 + 9.41045i 0.545744 + 0.315085i
\(893\) 2.25939i 0.0756076i
\(894\) −17.5474 8.46213i −0.586874 0.283016i
\(895\) −60.5549 34.9614i −2.02413 1.16863i
\(896\) 0 0
\(897\) 16.1030 + 7.76555i 0.537663 + 0.259284i
\(898\) 4.72182 8.17843i 0.157569 0.272918i
\(899\) −2.64999 + 4.58992i −0.0883822 + 0.153082i
\(900\) −15.1291 19.0136i −0.504305 0.633788i
\(901\) 46.8058 27.0233i 1.55933 0.900277i
\(902\) 5.71171 + 9.89297i 0.190179 + 0.329400i
\(903\) 0 0
\(904\) −0.845306 + 1.46411i −0.0281145 + 0.0486957i
\(905\) 28.5679i 0.949629i
\(906\) −3.55397 + 7.36966i −0.118073 + 0.244840i
\(907\) 10.8333 0.359714 0.179857 0.983693i \(-0.442436\pi\)
0.179857 + 0.983693i \(0.442436\pi\)
\(908\) 7.30665 + 12.6555i 0.242480 + 0.419987i
\(909\) −38.2509 + 5.72294i −1.26870 + 0.189818i
\(910\) 0 0
\(911\) 36.8512 21.2760i 1.22093 0.704907i 0.255817 0.966725i \(-0.417655\pi\)
0.965117 + 0.261818i \(0.0843221\pi\)
\(912\) 1.74987 0.130180i 0.0579440 0.00431069i
\(913\) 13.8994 8.02482i 0.460003 0.265583i
\(914\) −1.59739 + 0.922251i −0.0528368 + 0.0305053i
\(915\) −40.0611 + 83.0724i −1.32438 + 2.74629i
\(916\) −2.06044 + 1.18959i −0.0680788 + 0.0393053i
\(917\) 0 0
\(918\) −21.7830 23.5533i −0.718946 0.777373i
\(919\) −12.9697 22.4641i −0.427829 0.741022i 0.568851 0.822441i \(-0.307388\pi\)
−0.996680 + 0.0814187i \(0.974055\pi\)
\(920\) −10.9593 −0.361316
\(921\) −30.2807 + 2.25271i −0.997785 + 0.0742292i
\(922\) 36.3739i 1.19791i
\(923\) −0.794727 + 1.37651i −0.0261588 + 0.0453083i
\(924\) 0 0
\(925\) 29.7108 + 51.4606i 0.976884 + 1.69201i
\(926\) 27.6834 15.9830i 0.909733 0.525234i
\(927\) −4.77591 31.9211i −0.156861 1.04843i
\(928\) 2.91308 5.04560i 0.0956265 0.165630i
\(929\) −23.4456 + 40.6089i −0.769224 + 1.33234i 0.168760 + 0.985657i \(0.446024\pi\)
−0.937984 + 0.346678i \(0.887310\pi\)
\(930\) 0.423076 + 5.68697i 0.0138732 + 0.186483i
\(931\) 0 0
\(932\) −9.03470 5.21619i −0.295942 0.170862i
\(933\) 24.7601 16.8615i 0.810608 0.552019i
\(934\) 24.4411i 0.799738i
\(935\) −38.7784 22.3887i −1.26819 0.732189i
\(936\) −3.74639 + 9.51527i −0.122455 + 0.311016i
\(937\) 0.209357i 0.00683939i 0.999994 + 0.00341969i \(0.00108852\pi\)
−0.999994 + 0.00341969i \(0.998911\pi\)
\(938\) 0 0
\(939\) 6.76742 14.0332i 0.220846 0.457956i
\(940\) 8.07186 0.263275
\(941\) 0.388565 + 0.673014i 0.0126669 + 0.0219396i 0.872289 0.488990i \(-0.162635\pi\)
−0.859622 + 0.510930i \(0.829301\pi\)
\(942\) 0.394456 + 5.30225i 0.0128521 + 0.172757i
\(943\) 14.9496 + 8.63113i 0.486825 + 0.281068i
\(944\) 8.98627 0.292478
\(945\) 0 0
\(946\) −9.61619 −0.312649
\(947\) 43.1233 + 24.8972i 1.40132 + 0.809052i 0.994528 0.104470i \(-0.0333145\pi\)
0.406791 + 0.913521i \(0.366648\pi\)
\(948\) −0.491552 6.60741i −0.0159649 0.214599i
\(949\) 7.18378 + 12.4427i 0.233196 + 0.403906i
\(950\) 8.20539 0.266218
\(951\) 5.05612 10.4846i 0.163956 0.339986i
\(952\) 0 0
\(953\) 41.4104i 1.34141i 0.741722 + 0.670707i \(0.234009\pi\)
−0.741722 + 0.670707i \(0.765991\pi\)
\(954\) −16.3511 20.5494i −0.529388 0.665311i
\(955\) 41.7010 + 24.0761i 1.34941 + 0.779084i
\(956\) 23.7835i 0.769213i
\(957\) −16.7133 + 11.3817i −0.540264 + 0.367917i
\(958\) 9.49220 + 5.48032i 0.306679 + 0.177061i
\(959\) 0 0
\(960\) −0.465079 6.25156i −0.0150103 0.201768i
\(961\) −15.0862 + 26.1301i −0.486653 + 0.842907i
\(962\) 12.5041 21.6578i 0.403149 0.698274i
\(963\) −6.19668 + 4.93069i −0.199685 + 0.158889i
\(964\) 24.8105 14.3243i 0.799092 0.461356i
\(965\) −11.8274 20.4857i −0.380739 0.659459i
\(966\) 0 0
\(967\) 22.8028 39.4956i 0.733289 1.27009i −0.222181 0.975005i \(-0.571318\pi\)
0.955470 0.295088i \(-0.0953491\pi\)
\(968\) 6.98481i 0.224500i
\(969\) 10.8040 0.803754i 0.347075 0.0258203i
\(970\) 42.5591 1.36649
\(971\) −4.36733 7.56444i −0.140154 0.242754i 0.787400 0.616442i \(-0.211427\pi\)
−0.927555 + 0.373688i \(0.878093\pi\)
\(972\) −9.75228 + 12.1611i −0.312804 + 0.390068i
\(973\) 0 0
\(974\) 29.1136 16.8087i 0.932860 0.538587i
\(975\) −20.7717 + 43.0731i −0.665228 + 1.37944i
\(976\) −12.7410 + 7.35603i −0.407830 + 0.235461i
\(977\) −12.9058 + 7.45114i −0.412892 + 0.238383i −0.692031 0.721867i \(-0.743284\pi\)
0.279140 + 0.960250i \(0.409951\pi\)
\(978\) −4.96373 + 0.369272i −0.158723 + 0.0118080i
\(979\) 8.30615 4.79556i 0.265466 0.153267i
\(980\) 0 0
\(981\) −9.93033 + 25.2216i −0.317051 + 0.805262i
\(982\) 11.3676 + 19.6893i 0.362756 + 0.628312i
\(983\) 3.06917 0.0978912 0.0489456 0.998801i \(-0.484414\pi\)
0.0489456 + 0.998801i \(0.484414\pi\)
\(984\) −4.28910 + 8.89405i −0.136731 + 0.283532i
\(985\) 16.0788i 0.512314i
\(986\) 17.9859 31.1525i 0.572787 0.992096i
\(987\) 0 0
\(988\) −1.72667 2.99067i −0.0549325 0.0951460i
\(989\) −12.5845 + 7.26565i −0.400163 + 0.231034i
\(990\) −7.97074 + 20.2445i −0.253327 + 0.643412i
\(991\) 27.9075 48.3372i 0.886510 1.53548i 0.0425375 0.999095i \(-0.486456\pi\)
0.843973 0.536386i \(-0.180211\pi\)
\(992\) −0.454844 + 0.787812i −0.0144413 + 0.0250131i
\(993\) 29.2904 + 14.1251i 0.929502 + 0.448246i
\(994\) 0 0
\(995\) −36.0798 20.8307i −1.14381 0.660377i
\(996\) 12.4959 + 6.02608i 0.395949 + 0.190944i
\(997\) 6.12692i 0.194042i −0.995282 0.0970208i \(-0.969069\pi\)
0.995282 0.0970208i \(-0.0309313\pi\)
\(998\) −16.9079 9.76175i −0.535209 0.309003i
\(999\) 27.9872 25.8837i 0.885477 0.818924i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.t.a.815.3 16
3.2 odd 2 2646.2.t.b.2285.5 16
7.2 even 3 126.2.l.a.5.5 16
7.3 odd 6 882.2.m.a.293.6 16
7.4 even 3 882.2.m.b.293.7 16
7.5 odd 6 882.2.l.b.509.8 16
7.6 odd 2 126.2.t.a.59.2 yes 16
9.2 odd 6 882.2.l.b.227.4 16
9.7 even 3 2646.2.l.a.521.5 16
21.2 odd 6 378.2.l.a.341.4 16
21.5 even 6 2646.2.l.a.1097.1 16
21.11 odd 6 2646.2.m.b.881.4 16
21.17 even 6 2646.2.m.a.881.1 16
21.20 even 2 378.2.t.a.17.8 16
28.23 odd 6 1008.2.ca.c.257.8 16
28.27 even 2 1008.2.df.c.689.5 16
63.2 odd 6 126.2.t.a.47.2 yes 16
63.11 odd 6 882.2.m.a.587.6 16
63.13 odd 6 1134.2.k.b.647.8 16
63.16 even 3 378.2.t.a.89.8 16
63.20 even 6 126.2.l.a.101.1 yes 16
63.23 odd 6 1134.2.k.b.971.8 16
63.25 even 3 2646.2.m.a.1763.1 16
63.34 odd 6 378.2.l.a.143.8 16
63.38 even 6 882.2.m.b.587.7 16
63.41 even 6 1134.2.k.a.647.1 16
63.47 even 6 inner 882.2.t.a.803.3 16
63.52 odd 6 2646.2.m.b.1763.4 16
63.58 even 3 1134.2.k.a.971.1 16
63.61 odd 6 2646.2.t.b.1979.5 16
84.23 even 6 3024.2.ca.c.2609.7 16
84.83 odd 2 3024.2.df.c.17.7 16
252.79 odd 6 3024.2.df.c.1601.7 16
252.83 odd 6 1008.2.ca.c.353.8 16
252.191 even 6 1008.2.df.c.929.5 16
252.223 even 6 3024.2.ca.c.2033.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.5 16 7.2 even 3
126.2.l.a.101.1 yes 16 63.20 even 6
126.2.t.a.47.2 yes 16 63.2 odd 6
126.2.t.a.59.2 yes 16 7.6 odd 2
378.2.l.a.143.8 16 63.34 odd 6
378.2.l.a.341.4 16 21.2 odd 6
378.2.t.a.17.8 16 21.20 even 2
378.2.t.a.89.8 16 63.16 even 3
882.2.l.b.227.4 16 9.2 odd 6
882.2.l.b.509.8 16 7.5 odd 6
882.2.m.a.293.6 16 7.3 odd 6
882.2.m.a.587.6 16 63.11 odd 6
882.2.m.b.293.7 16 7.4 even 3
882.2.m.b.587.7 16 63.38 even 6
882.2.t.a.803.3 16 63.47 even 6 inner
882.2.t.a.815.3 16 1.1 even 1 trivial
1008.2.ca.c.257.8 16 28.23 odd 6
1008.2.ca.c.353.8 16 252.83 odd 6
1008.2.df.c.689.5 16 28.27 even 2
1008.2.df.c.929.5 16 252.191 even 6
1134.2.k.a.647.1 16 63.41 even 6
1134.2.k.a.971.1 16 63.58 even 3
1134.2.k.b.647.8 16 63.13 odd 6
1134.2.k.b.971.8 16 63.23 odd 6
2646.2.l.a.521.5 16 9.7 even 3
2646.2.l.a.1097.1 16 21.5 even 6
2646.2.m.a.881.1 16 21.17 even 6
2646.2.m.a.1763.1 16 63.25 even 3
2646.2.m.b.881.4 16 21.11 odd 6
2646.2.m.b.1763.4 16 63.52 odd 6
2646.2.t.b.1979.5 16 63.61 odd 6
2646.2.t.b.2285.5 16 3.2 odd 2
3024.2.ca.c.2033.7 16 252.223 even 6
3024.2.ca.c.2609.7 16 84.23 even 6
3024.2.df.c.17.7 16 84.83 odd 2
3024.2.df.c.1601.7 16 252.79 odd 6