Properties

Label 30.3.f.a.7.1
Level $30$
Weight $3$
Character 30.7
Analytic conductor $0.817$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [30,3,Mod(7,30)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("30.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 30.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.817440793081\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 7.1
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 30.7
Dual form 30.3.f.a.13.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +(-1.22474 + 1.22474i) q^{3} +2.00000i q^{4} +(4.89898 - 1.00000i) q^{5} -2.44949 q^{6} +(-8.89898 - 8.89898i) q^{7} +(-2.00000 + 2.00000i) q^{8} -3.00000i q^{9} +(5.89898 + 3.89898i) q^{10} +5.79796 q^{11} +(-2.44949 - 2.44949i) q^{12} +(-6.79796 + 6.79796i) q^{13} -17.7980i q^{14} +(-4.77526 + 7.22474i) q^{15} -4.00000 q^{16} +(6.10102 + 6.10102i) q^{17} +(3.00000 - 3.00000i) q^{18} +6.20204i q^{19} +(2.00000 + 9.79796i) q^{20} +21.7980 q^{21} +(5.79796 + 5.79796i) q^{22} +(-18.6969 + 18.6969i) q^{23} -4.89898i q^{24} +(23.0000 - 9.79796i) q^{25} -13.5959 q^{26} +(3.67423 + 3.67423i) q^{27} +(17.7980 - 17.7980i) q^{28} -6.20204i q^{29} +(-12.0000 + 2.44949i) q^{30} -0.404082 q^{31} +(-4.00000 - 4.00000i) q^{32} +(-7.10102 + 7.10102i) q^{33} +12.2020i q^{34} +(-52.4949 - 34.6969i) q^{35} +6.00000 q^{36} +(-27.0000 - 27.0000i) q^{37} +(-6.20204 + 6.20204i) q^{38} -16.6515i q^{39} +(-7.79796 + 11.7980i) q^{40} -1.79796 q^{41} +(21.7980 + 21.7980i) q^{42} +(36.4949 - 36.4949i) q^{43} +11.5959i q^{44} +(-3.00000 - 14.6969i) q^{45} -37.3939 q^{46} +(38.6969 + 38.6969i) q^{47} +(4.89898 - 4.89898i) q^{48} +109.384i q^{49} +(32.7980 + 13.2020i) q^{50} -14.9444 q^{51} +(-13.5959 - 13.5959i) q^{52} +(69.0908 - 69.0908i) q^{53} +7.34847i q^{54} +(28.4041 - 5.79796i) q^{55} +35.5959 q^{56} +(-7.59592 - 7.59592i) q^{57} +(6.20204 - 6.20204i) q^{58} +20.0000i q^{59} +(-14.4495 - 9.55051i) q^{60} -63.1918 q^{61} +(-0.404082 - 0.404082i) q^{62} +(-26.6969 + 26.6969i) q^{63} -8.00000i q^{64} +(-26.5051 + 40.1010i) q^{65} -14.2020 q^{66} +(40.0908 + 40.0908i) q^{67} +(-12.2020 + 12.2020i) q^{68} -45.7980i q^{69} +(-17.7980 - 87.1918i) q^{70} +25.7980 q^{71} +(6.00000 + 6.00000i) q^{72} +(-56.7980 + 56.7980i) q^{73} -54.0000i q^{74} +(-16.1691 + 40.1691i) q^{75} -12.4041 q^{76} +(-51.5959 - 51.5959i) q^{77} +(16.6515 - 16.6515i) q^{78} -139.373i q^{79} +(-19.5959 + 4.00000i) q^{80} -9.00000 q^{81} +(-1.79796 - 1.79796i) q^{82} +(13.7071 - 13.7071i) q^{83} +43.5959i q^{84} +(35.9898 + 23.7878i) q^{85} +72.9898 q^{86} +(7.59592 + 7.59592i) q^{87} +(-11.5959 + 11.5959i) q^{88} +58.6061i q^{89} +(11.6969 - 17.6969i) q^{90} +120.990 q^{91} +(-37.3939 - 37.3939i) q^{92} +(0.494897 - 0.494897i) q^{93} +77.3939i q^{94} +(6.20204 + 30.3837i) q^{95} +9.79796 q^{96} +(-15.9898 - 15.9898i) q^{97} +(-109.384 + 109.384i) q^{98} -17.3939i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 16 q^{7} - 8 q^{8} + 4 q^{10} - 16 q^{11} + 12 q^{13} - 24 q^{15} - 16 q^{16} + 44 q^{17} + 12 q^{18} + 8 q^{20} + 48 q^{21} - 16 q^{22} - 16 q^{23} + 92 q^{25} + 24 q^{26} + 32 q^{28} - 48 q^{30}+ \cdots - 124 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) −1.22474 + 1.22474i −0.408248 + 0.408248i
\(4\) 2.00000i 0.500000i
\(5\) 4.89898 1.00000i 0.979796 0.200000i
\(6\) −2.44949 −0.408248
\(7\) −8.89898 8.89898i −1.27128 1.27128i −0.945416 0.325867i \(-0.894344\pi\)
−0.325867 0.945416i \(-0.605656\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 3.00000i 0.333333i
\(10\) 5.89898 + 3.89898i 0.589898 + 0.389898i
\(11\) 5.79796 0.527087 0.263544 0.964647i \(-0.415109\pi\)
0.263544 + 0.964647i \(0.415109\pi\)
\(12\) −2.44949 2.44949i −0.204124 0.204124i
\(13\) −6.79796 + 6.79796i −0.522920 + 0.522920i −0.918452 0.395532i \(-0.870560\pi\)
0.395532 + 0.918452i \(0.370560\pi\)
\(14\) 17.7980i 1.27128i
\(15\) −4.77526 + 7.22474i −0.318350 + 0.481650i
\(16\) −4.00000 −0.250000
\(17\) 6.10102 + 6.10102i 0.358884 + 0.358884i 0.863401 0.504518i \(-0.168330\pi\)
−0.504518 + 0.863401i \(0.668330\pi\)
\(18\) 3.00000 3.00000i 0.166667 0.166667i
\(19\) 6.20204i 0.326423i 0.986591 + 0.163212i \(0.0521853\pi\)
−0.986591 + 0.163212i \(0.947815\pi\)
\(20\) 2.00000 + 9.79796i 0.100000 + 0.489898i
\(21\) 21.7980 1.03800
\(22\) 5.79796 + 5.79796i 0.263544 + 0.263544i
\(23\) −18.6969 + 18.6969i −0.812910 + 0.812910i −0.985069 0.172159i \(-0.944926\pi\)
0.172159 + 0.985069i \(0.444926\pi\)
\(24\) 4.89898i 0.204124i
\(25\) 23.0000 9.79796i 0.920000 0.391918i
\(26\) −13.5959 −0.522920
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 17.7980 17.7980i 0.635641 0.635641i
\(29\) 6.20204i 0.213863i −0.994266 0.106932i \(-0.965897\pi\)
0.994266 0.106932i \(-0.0341026\pi\)
\(30\) −12.0000 + 2.44949i −0.400000 + 0.0816497i
\(31\) −0.404082 −0.0130349 −0.00651745 0.999979i \(-0.502075\pi\)
−0.00651745 + 0.999979i \(0.502075\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) −7.10102 + 7.10102i −0.215182 + 0.215182i
\(34\) 12.2020i 0.358884i
\(35\) −52.4949 34.6969i −1.49985 0.991341i
\(36\) 6.00000 0.166667
\(37\) −27.0000 27.0000i −0.729730 0.729730i 0.240836 0.970566i \(-0.422578\pi\)
−0.970566 + 0.240836i \(0.922578\pi\)
\(38\) −6.20204 + 6.20204i −0.163212 + 0.163212i
\(39\) 16.6515i 0.426962i
\(40\) −7.79796 + 11.7980i −0.194949 + 0.294949i
\(41\) −1.79796 −0.0438527 −0.0219263 0.999760i \(-0.506980\pi\)
−0.0219263 + 0.999760i \(0.506980\pi\)
\(42\) 21.7980 + 21.7980i 0.518999 + 0.518999i
\(43\) 36.4949 36.4949i 0.848719 0.848719i −0.141255 0.989973i \(-0.545114\pi\)
0.989973 + 0.141255i \(0.0451137\pi\)
\(44\) 11.5959i 0.263544i
\(45\) −3.00000 14.6969i −0.0666667 0.326599i
\(46\) −37.3939 −0.812910
\(47\) 38.6969 + 38.6969i 0.823339 + 0.823339i 0.986585 0.163246i \(-0.0521965\pi\)
−0.163246 + 0.986585i \(0.552197\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) 109.384i 2.23232i
\(50\) 32.7980 + 13.2020i 0.655959 + 0.264041i
\(51\) −14.9444 −0.293027
\(52\) −13.5959 13.5959i −0.261460 0.261460i
\(53\) 69.0908 69.0908i 1.30360 1.30360i 0.377653 0.925947i \(-0.376731\pi\)
0.925947 0.377653i \(-0.123269\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 28.4041 5.79796i 0.516438 0.105417i
\(56\) 35.5959 0.635641
\(57\) −7.59592 7.59592i −0.133262 0.133262i
\(58\) 6.20204 6.20204i 0.106932 0.106932i
\(59\) 20.0000i 0.338983i 0.985532 + 0.169492i \(0.0542125\pi\)
−0.985532 + 0.169492i \(0.945787\pi\)
\(60\) −14.4495 9.55051i −0.240825 0.159175i
\(61\) −63.1918 −1.03593 −0.517966 0.855401i \(-0.673311\pi\)
−0.517966 + 0.855401i \(0.673311\pi\)
\(62\) −0.404082 0.404082i −0.00651745 0.00651745i
\(63\) −26.6969 + 26.6969i −0.423761 + 0.423761i
\(64\) 8.00000i 0.125000i
\(65\) −26.5051 + 40.1010i −0.407771 + 0.616939i
\(66\) −14.2020 −0.215182
\(67\) 40.0908 + 40.0908i 0.598370 + 0.598370i 0.939879 0.341508i \(-0.110938\pi\)
−0.341508 + 0.939879i \(0.610938\pi\)
\(68\) −12.2020 + 12.2020i −0.179442 + 0.179442i
\(69\) 45.7980i 0.663739i
\(70\) −17.7980 87.1918i −0.254257 1.24560i
\(71\) 25.7980 0.363352 0.181676 0.983358i \(-0.441848\pi\)
0.181676 + 0.983358i \(0.441848\pi\)
\(72\) 6.00000 + 6.00000i 0.0833333 + 0.0833333i
\(73\) −56.7980 + 56.7980i −0.778054 + 0.778054i −0.979500 0.201445i \(-0.935436\pi\)
0.201445 + 0.979500i \(0.435436\pi\)
\(74\) 54.0000i 0.729730i
\(75\) −16.1691 + 40.1691i −0.215588 + 0.535588i
\(76\) −12.4041 −0.163212
\(77\) −51.5959 51.5959i −0.670077 0.670077i
\(78\) 16.6515 16.6515i 0.213481 0.213481i
\(79\) 139.373i 1.76422i −0.471042 0.882111i \(-0.656122\pi\)
0.471042 0.882111i \(-0.343878\pi\)
\(80\) −19.5959 + 4.00000i −0.244949 + 0.0500000i
\(81\) −9.00000 −0.111111
\(82\) −1.79796 1.79796i −0.0219263 0.0219263i
\(83\) 13.7071 13.7071i 0.165146 0.165146i −0.619696 0.784842i \(-0.712744\pi\)
0.784842 + 0.619696i \(0.212744\pi\)
\(84\) 43.5959i 0.518999i
\(85\) 35.9898 + 23.7878i 0.423409 + 0.279856i
\(86\) 72.9898 0.848719
\(87\) 7.59592 + 7.59592i 0.0873094 + 0.0873094i
\(88\) −11.5959 + 11.5959i −0.131772 + 0.131772i
\(89\) 58.6061i 0.658496i 0.944244 + 0.329248i \(0.106795\pi\)
−0.944244 + 0.329248i \(0.893205\pi\)
\(90\) 11.6969 17.6969i 0.129966 0.196633i
\(91\) 120.990 1.32956
\(92\) −37.3939 37.3939i −0.406455 0.406455i
\(93\) 0.494897 0.494897i 0.00532148 0.00532148i
\(94\) 77.3939i 0.823339i
\(95\) 6.20204 + 30.3837i 0.0652846 + 0.319828i
\(96\) 9.79796 0.102062
\(97\) −15.9898 15.9898i −0.164843 0.164843i 0.619865 0.784708i \(-0.287187\pi\)
−0.784708 + 0.619865i \(0.787187\pi\)
\(98\) −109.384 + 109.384i −1.11616 + 1.11616i
\(99\) 17.3939i 0.175696i
\(100\) 19.5959 + 46.0000i 0.195959 + 0.460000i
\(101\) −128.384 −1.27113 −0.635563 0.772049i \(-0.719232\pi\)
−0.635563 + 0.772049i \(0.719232\pi\)
\(102\) −14.9444 14.9444i −0.146514 0.146514i
\(103\) −32.4949 + 32.4949i −0.315484 + 0.315484i −0.847030 0.531545i \(-0.821612\pi\)
0.531545 + 0.847030i \(0.321612\pi\)
\(104\) 27.1918i 0.261460i
\(105\) 106.788 21.7980i 1.01703 0.207600i
\(106\) 138.182 1.30360
\(107\) 24.8990 + 24.8990i 0.232701 + 0.232701i 0.813819 0.581118i \(-0.197385\pi\)
−0.581118 + 0.813819i \(0.697385\pi\)
\(108\) −7.34847 + 7.34847i −0.0680414 + 0.0680414i
\(109\) 130.000i 1.19266i −0.802739 0.596330i \(-0.796625\pi\)
0.802739 0.596330i \(-0.203375\pi\)
\(110\) 34.2020 + 22.6061i 0.310928 + 0.205510i
\(111\) 66.1362 0.595822
\(112\) 35.5959 + 35.5959i 0.317821 + 0.317821i
\(113\) 8.70714 8.70714i 0.0770544 0.0770544i −0.667529 0.744584i \(-0.732648\pi\)
0.744584 + 0.667529i \(0.232648\pi\)
\(114\) 15.1918i 0.133262i
\(115\) −72.8990 + 110.293i −0.633904 + 0.959068i
\(116\) 12.4041 0.106932
\(117\) 20.3939 + 20.3939i 0.174307 + 0.174307i
\(118\) −20.0000 + 20.0000i −0.169492 + 0.169492i
\(119\) 108.586i 0.912485i
\(120\) −4.89898 24.0000i −0.0408248 0.200000i
\(121\) −87.3837 −0.722179
\(122\) −63.1918 63.1918i −0.517966 0.517966i
\(123\) 2.20204 2.20204i 0.0179028 0.0179028i
\(124\) 0.808164i 0.00651745i
\(125\) 102.879 71.0000i 0.823029 0.568000i
\(126\) −53.3939 −0.423761
\(127\) −50.2929 50.2929i −0.396007 0.396007i 0.480815 0.876822i \(-0.340341\pi\)
−0.876822 + 0.480815i \(0.840341\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) 89.3939i 0.692976i
\(130\) −66.6061 + 13.5959i −0.512355 + 0.104584i
\(131\) −114.202 −0.871771 −0.435886 0.900002i \(-0.643565\pi\)
−0.435886 + 0.900002i \(0.643565\pi\)
\(132\) −14.2020 14.2020i −0.107591 0.107591i
\(133\) 55.1918 55.1918i 0.414976 0.414976i
\(134\) 80.1816i 0.598370i
\(135\) 21.6742 + 14.3258i 0.160550 + 0.106117i
\(136\) −24.4041 −0.179442
\(137\) 16.1010 + 16.1010i 0.117526 + 0.117526i 0.763424 0.645898i \(-0.223517\pi\)
−0.645898 + 0.763424i \(0.723517\pi\)
\(138\) 45.7980 45.7980i 0.331869 0.331869i
\(139\) 73.7980i 0.530921i −0.964122 0.265460i \(-0.914476\pi\)
0.964122 0.265460i \(-0.0855239\pi\)
\(140\) 69.3939 104.990i 0.495671 0.749927i
\(141\) −94.7878 −0.672254
\(142\) 25.7980 + 25.7980i 0.181676 + 0.181676i
\(143\) −39.4143 + 39.4143i −0.275624 + 0.275624i
\(144\) 12.0000i 0.0833333i
\(145\) −6.20204 30.3837i −0.0427727 0.209543i
\(146\) −113.596 −0.778054
\(147\) −133.967 133.967i −0.911341 0.911341i
\(148\) 54.0000 54.0000i 0.364865 0.364865i
\(149\) 270.767i 1.81723i 0.417634 + 0.908615i \(0.362859\pi\)
−0.417634 + 0.908615i \(0.637141\pi\)
\(150\) −56.3383 + 24.0000i −0.375588 + 0.160000i
\(151\) 21.6163 0.143154 0.0715772 0.997435i \(-0.477197\pi\)
0.0715772 + 0.997435i \(0.477197\pi\)
\(152\) −12.4041 12.4041i −0.0816058 0.0816058i
\(153\) 18.3031 18.3031i 0.119628 0.119628i
\(154\) 103.192i 0.670077i
\(155\) −1.97959 + 0.404082i −0.0127715 + 0.00260698i
\(156\) 33.3031 0.213481
\(157\) 123.000 + 123.000i 0.783439 + 0.783439i 0.980410 0.196970i \(-0.0631102\pi\)
−0.196970 + 0.980410i \(0.563110\pi\)
\(158\) 139.373 139.373i 0.882111 0.882111i
\(159\) 169.237i 1.06439i
\(160\) −23.5959 15.5959i −0.147474 0.0974745i
\(161\) 332.767 2.06688
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) −112.495 + 112.495i −0.690153 + 0.690153i −0.962265 0.272113i \(-0.912278\pi\)
0.272113 + 0.962265i \(0.412278\pi\)
\(164\) 3.59592i 0.0219263i
\(165\) −27.6867 + 41.8888i −0.167798 + 0.253871i
\(166\) 27.4143 0.165146
\(167\) 176.677 + 176.677i 1.05794 + 1.05794i 0.998215 + 0.0597286i \(0.0190235\pi\)
0.0597286 + 0.998215i \(0.480976\pi\)
\(168\) −43.5959 + 43.5959i −0.259500 + 0.259500i
\(169\) 76.5755i 0.453110i
\(170\) 12.2020 + 59.7775i 0.0717767 + 0.351633i
\(171\) 18.6061 0.108808
\(172\) 72.9898 + 72.9898i 0.424359 + 0.424359i
\(173\) 142.889 142.889i 0.825947 0.825947i −0.161007 0.986953i \(-0.551474\pi\)
0.986953 + 0.161007i \(0.0514741\pi\)
\(174\) 15.1918i 0.0873094i
\(175\) −291.868 117.485i −1.66782 0.671341i
\(176\) −23.1918 −0.131772
\(177\) −24.4949 24.4949i −0.138389 0.138389i
\(178\) −58.6061 + 58.6061i −0.329248 + 0.329248i
\(179\) 133.171i 0.743974i −0.928238 0.371987i \(-0.878677\pi\)
0.928238 0.371987i \(-0.121323\pi\)
\(180\) 29.3939 6.00000i 0.163299 0.0333333i
\(181\) 137.192 0.757966 0.378983 0.925404i \(-0.376274\pi\)
0.378983 + 0.925404i \(0.376274\pi\)
\(182\) 120.990 + 120.990i 0.664779 + 0.664779i
\(183\) 77.3939 77.3939i 0.422917 0.422917i
\(184\) 74.7878i 0.406455i
\(185\) −159.272 105.272i −0.860932 0.569040i
\(186\) 0.989795 0.00532148
\(187\) 35.3735 + 35.3735i 0.189163 + 0.189163i
\(188\) −77.3939 + 77.3939i −0.411670 + 0.411670i
\(189\) 65.3939i 0.345999i
\(190\) −24.1816 + 36.5857i −0.127272 + 0.192556i
\(191\) −266.606 −1.39584 −0.697922 0.716174i \(-0.745892\pi\)
−0.697922 + 0.716174i \(0.745892\pi\)
\(192\) 9.79796 + 9.79796i 0.0510310 + 0.0510310i
\(193\) 117.384 117.384i 0.608206 0.608206i −0.334271 0.942477i \(-0.608490\pi\)
0.942477 + 0.334271i \(0.108490\pi\)
\(194\) 31.9796i 0.164843i
\(195\) −16.6515 81.5755i −0.0853925 0.418336i
\(196\) −218.767 −1.11616
\(197\) −246.687 246.687i −1.25222 1.25222i −0.954724 0.297493i \(-0.903850\pi\)
−0.297493 0.954724i \(-0.596150\pi\)
\(198\) 17.3939 17.3939i 0.0878479 0.0878479i
\(199\) 154.565i 0.776710i 0.921510 + 0.388355i \(0.126957\pi\)
−0.921510 + 0.388355i \(0.873043\pi\)
\(200\) −26.4041 + 65.5959i −0.132020 + 0.327980i
\(201\) −98.2020 −0.488567
\(202\) −128.384 128.384i −0.635563 0.635563i
\(203\) −55.1918 + 55.1918i −0.271881 + 0.271881i
\(204\) 29.8888i 0.146514i
\(205\) −8.80816 + 1.79796i −0.0429667 + 0.00877053i
\(206\) −64.9898 −0.315484
\(207\) 56.0908 + 56.0908i 0.270970 + 0.270970i
\(208\) 27.1918 27.1918i 0.130730 0.130730i
\(209\) 35.9592i 0.172053i
\(210\) 128.586 + 84.9898i 0.612313 + 0.404713i
\(211\) 190.747 0.904014 0.452007 0.892014i \(-0.350708\pi\)
0.452007 + 0.892014i \(0.350708\pi\)
\(212\) 138.182 + 138.182i 0.651800 + 0.651800i
\(213\) −31.5959 + 31.5959i −0.148338 + 0.148338i
\(214\) 49.7980i 0.232701i
\(215\) 142.293 215.283i 0.661827 1.00131i
\(216\) −14.6969 −0.0680414
\(217\) 3.59592 + 3.59592i 0.0165711 + 0.0165711i
\(218\) 130.000 130.000i 0.596330 0.596330i
\(219\) 139.126i 0.635279i
\(220\) 11.5959 + 56.8082i 0.0527087 + 0.258219i
\(221\) −82.9490 −0.375335
\(222\) 66.1362 + 66.1362i 0.297911 + 0.297911i
\(223\) −16.6765 + 16.6765i −0.0747826 + 0.0747826i −0.743509 0.668726i \(-0.766840\pi\)
0.668726 + 0.743509i \(0.266840\pi\)
\(224\) 71.1918i 0.317821i
\(225\) −29.3939 69.0000i −0.130639 0.306667i
\(226\) 17.4143 0.0770544
\(227\) −42.0704 42.0704i −0.185332 0.185332i 0.608342 0.793675i \(-0.291835\pi\)
−0.793675 + 0.608342i \(0.791835\pi\)
\(228\) 15.1918 15.1918i 0.0666309 0.0666309i
\(229\) 173.939i 0.759558i −0.925077 0.379779i \(-0.876000\pi\)
0.925077 0.379779i \(-0.124000\pi\)
\(230\) −183.192 + 37.3939i −0.796486 + 0.162582i
\(231\) 126.384 0.547115
\(232\) 12.4041 + 12.4041i 0.0534659 + 0.0534659i
\(233\) −298.262 + 298.262i −1.28010 + 1.28010i −0.339483 + 0.940612i \(0.610252\pi\)
−0.940612 + 0.339483i \(0.889748\pi\)
\(234\) 40.7878i 0.174307i
\(235\) 228.272 + 150.879i 0.971372 + 0.642036i
\(236\) −40.0000 −0.169492
\(237\) 170.697 + 170.697i 0.720240 + 0.720240i
\(238\) 108.586 108.586i 0.456242 0.456242i
\(239\) 37.2122i 0.155700i −0.996965 0.0778499i \(-0.975195\pi\)
0.996965 0.0778499i \(-0.0248055\pi\)
\(240\) 19.1010 28.8990i 0.0795876 0.120412i
\(241\) 165.939 0.688543 0.344271 0.938870i \(-0.388126\pi\)
0.344271 + 0.938870i \(0.388126\pi\)
\(242\) −87.3837 87.3837i −0.361090 0.361090i
\(243\) 11.0227 11.0227i 0.0453609 0.0453609i
\(244\) 126.384i 0.517966i
\(245\) 109.384 + 535.868i 0.446464 + 2.18722i
\(246\) 4.40408 0.0179028
\(247\) −42.1612 42.1612i −0.170693 0.170693i
\(248\) 0.808164 0.808164i 0.00325873 0.00325873i
\(249\) 33.5755i 0.134841i
\(250\) 173.879 + 31.8786i 0.695514 + 0.127514i
\(251\) 255.414 1.01759 0.508793 0.860889i \(-0.330092\pi\)
0.508793 + 0.860889i \(0.330092\pi\)
\(252\) −53.3939 53.3939i −0.211880 0.211880i
\(253\) −108.404 + 108.404i −0.428475 + 0.428475i
\(254\) 100.586i 0.396007i
\(255\) −73.2122 + 14.9444i −0.287107 + 0.0586054i
\(256\) 16.0000 0.0625000
\(257\) −270.485 270.485i −1.05247 1.05247i −0.998545 0.0539246i \(-0.982827\pi\)
−0.0539246 0.998545i \(-0.517173\pi\)
\(258\) −89.3939 + 89.3939i −0.346488 + 0.346488i
\(259\) 480.545i 1.85539i
\(260\) −80.2020 53.0102i −0.308469 0.203885i
\(261\) −18.6061 −0.0712878
\(262\) −114.202 114.202i −0.435886 0.435886i
\(263\) 1.30306 1.30306i 0.00495461 0.00495461i −0.704625 0.709580i \(-0.748885\pi\)
0.709580 + 0.704625i \(0.248885\pi\)
\(264\) 28.4041i 0.107591i
\(265\) 269.384 407.565i 1.01654 1.53798i
\(266\) 110.384 0.414976
\(267\) −71.7775 71.7775i −0.268830 0.268830i
\(268\) −80.1816 + 80.1816i −0.299185 + 0.299185i
\(269\) 41.1510i 0.152978i −0.997070 0.0764889i \(-0.975629\pi\)
0.997070 0.0764889i \(-0.0243710\pi\)
\(270\) 7.34847 + 36.0000i 0.0272166 + 0.133333i
\(271\) −484.727 −1.78866 −0.894329 0.447409i \(-0.852347\pi\)
−0.894329 + 0.447409i \(0.852347\pi\)
\(272\) −24.4041 24.4041i −0.0897209 0.0897209i
\(273\) −148.182 + 148.182i −0.542790 + 0.542790i
\(274\) 32.2020i 0.117526i
\(275\) 133.353 56.8082i 0.484920 0.206575i
\(276\) 91.5959 0.331869
\(277\) 51.9898 + 51.9898i 0.187689 + 0.187689i 0.794696 0.607007i \(-0.207630\pi\)
−0.607007 + 0.794696i \(0.707630\pi\)
\(278\) 73.7980 73.7980i 0.265460 0.265460i
\(279\) 1.21225i 0.00434497i
\(280\) 174.384 35.5959i 0.622799 0.127128i
\(281\) 242.524 0.863076 0.431538 0.902095i \(-0.357971\pi\)
0.431538 + 0.902095i \(0.357971\pi\)
\(282\) −94.7878 94.7878i −0.336127 0.336127i
\(283\) 104.717 104.717i 0.370026 0.370026i −0.497461 0.867487i \(-0.665734\pi\)
0.867487 + 0.497461i \(0.165734\pi\)
\(284\) 51.5959i 0.181676i
\(285\) −44.8082 29.6163i −0.157222 0.103917i
\(286\) −78.8286 −0.275624
\(287\) 16.0000 + 16.0000i 0.0557491 + 0.0557491i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) 214.555i 0.742405i
\(290\) 24.1816 36.5857i 0.0833849 0.126158i
\(291\) 39.1668 0.134594
\(292\) −113.596 113.596i −0.389027 0.389027i
\(293\) −60.9092 + 60.9092i −0.207881 + 0.207881i −0.803366 0.595485i \(-0.796960\pi\)
0.595485 + 0.803366i \(0.296960\pi\)
\(294\) 267.934i 0.911341i
\(295\) 20.0000 + 97.9796i 0.0677966 + 0.332134i
\(296\) 108.000 0.364865
\(297\) 21.3031 + 21.3031i 0.0717275 + 0.0717275i
\(298\) −270.767 + 270.767i −0.908615 + 0.908615i
\(299\) 254.202i 0.850174i
\(300\) −80.3383 32.3383i −0.267794 0.107794i
\(301\) −649.535 −2.15792
\(302\) 21.6163 + 21.6163i 0.0715772 + 0.0715772i
\(303\) 157.237 157.237i 0.518935 0.518935i
\(304\) 24.8082i 0.0816058i
\(305\) −309.576 + 63.1918i −1.01500 + 0.207186i
\(306\) 36.6061 0.119628
\(307\) −201.303 201.303i −0.655710 0.655710i 0.298652 0.954362i \(-0.403463\pi\)
−0.954362 + 0.298652i \(0.903463\pi\)
\(308\) 103.192 103.192i 0.335038 0.335038i
\(309\) 79.5959i 0.257592i
\(310\) −2.38367 1.57551i −0.00768926 0.00508228i
\(311\) 559.737 1.79980 0.899898 0.436100i \(-0.143641\pi\)
0.899898 + 0.436100i \(0.143641\pi\)
\(312\) 33.3031 + 33.3031i 0.106741 + 0.106741i
\(313\) −93.7673 + 93.7673i −0.299576 + 0.299576i −0.840848 0.541272i \(-0.817943\pi\)
0.541272 + 0.840848i \(0.317943\pi\)
\(314\) 246.000i 0.783439i
\(315\) −104.091 + 157.485i −0.330447 + 0.499951i
\(316\) 278.747 0.882111
\(317\) 362.828 + 362.828i 1.14457 + 1.14457i 0.987605 + 0.156962i \(0.0501699\pi\)
0.156962 + 0.987605i \(0.449830\pi\)
\(318\) −169.237 + 169.237i −0.532193 + 0.532193i
\(319\) 35.9592i 0.112725i
\(320\) −8.00000 39.1918i −0.0250000 0.122474i
\(321\) −60.9898 −0.189999
\(322\) 332.767 + 332.767i 1.03344 + 1.03344i
\(323\) −37.8388 + 37.8388i −0.117148 + 0.117148i
\(324\) 18.0000i 0.0555556i
\(325\) −89.7469 + 222.959i −0.276144 + 0.686028i
\(326\) −224.990 −0.690153
\(327\) 159.217 + 159.217i 0.486902 + 0.486902i
\(328\) 3.59592 3.59592i 0.0109632 0.0109632i
\(329\) 688.727i 2.09339i
\(330\) −69.5755 + 14.2020i −0.210835 + 0.0430365i
\(331\) 14.0204 0.0423577 0.0211789 0.999776i \(-0.493258\pi\)
0.0211789 + 0.999776i \(0.493258\pi\)
\(332\) 27.4143 + 27.4143i 0.0825732 + 0.0825732i
\(333\) −81.0000 + 81.0000i −0.243243 + 0.243243i
\(334\) 353.353i 1.05794i
\(335\) 236.495 + 156.313i 0.705955 + 0.466607i
\(336\) −87.1918 −0.259500
\(337\) −166.373 166.373i −0.493690 0.493690i 0.415777 0.909467i \(-0.363510\pi\)
−0.909467 + 0.415777i \(0.863510\pi\)
\(338\) −76.5755 + 76.5755i −0.226555 + 0.226555i
\(339\) 21.3281i 0.0629146i
\(340\) −47.5755 + 71.9796i −0.139928 + 0.211705i
\(341\) −2.34285 −0.00687053
\(342\) 18.6061 + 18.6061i 0.0544039 + 0.0544039i
\(343\) 537.353 537.353i 1.56663 1.56663i
\(344\) 145.980i 0.424359i
\(345\) −45.7980 224.363i −0.132748 0.650328i
\(346\) 285.778 0.825947
\(347\) 163.505 + 163.505i 0.471196 + 0.471196i 0.902302 0.431105i \(-0.141876\pi\)
−0.431105 + 0.902302i \(0.641876\pi\)
\(348\) −15.1918 + 15.1918i −0.0436547 + 0.0436547i
\(349\) 280.000i 0.802292i 0.916014 + 0.401146i \(0.131388\pi\)
−0.916014 + 0.401146i \(0.868612\pi\)
\(350\) −174.384 409.353i −0.498239 1.16958i
\(351\) −49.9546 −0.142321
\(352\) −23.1918 23.1918i −0.0658859 0.0658859i
\(353\) 261.495 261.495i 0.740779 0.740779i −0.231949 0.972728i \(-0.574510\pi\)
0.972728 + 0.231949i \(0.0745103\pi\)
\(354\) 48.9898i 0.138389i
\(355\) 126.384 25.7980i 0.356010 0.0726703i
\(356\) −117.212 −0.329248
\(357\) 132.990 + 132.990i 0.372520 + 0.372520i
\(358\) 133.171 133.171i 0.371987 0.371987i
\(359\) 425.090i 1.18409i 0.805903 + 0.592047i \(0.201680\pi\)
−0.805903 + 0.592047i \(0.798320\pi\)
\(360\) 35.3939 + 23.3939i 0.0983163 + 0.0649830i
\(361\) 322.535 0.893448
\(362\) 137.192 + 137.192i 0.378983 + 0.378983i
\(363\) 107.023 107.023i 0.294828 0.294828i
\(364\) 241.980i 0.664779i
\(365\) −221.454 + 335.050i −0.606723 + 0.917945i
\(366\) 154.788 0.422917
\(367\) −316.495 316.495i −0.862384 0.862384i 0.129231 0.991615i \(-0.458749\pi\)
−0.991615 + 0.129231i \(0.958749\pi\)
\(368\) 74.7878 74.7878i 0.203228 0.203228i
\(369\) 5.39388i 0.0146176i
\(370\) −54.0000 264.545i −0.145946 0.714986i
\(371\) −1229.68 −3.31449
\(372\) 0.989795 + 0.989795i 0.00266074 + 0.00266074i
\(373\) 210.939 210.939i 0.565519 0.565519i −0.365351 0.930870i \(-0.619051\pi\)
0.930870 + 0.365351i \(0.119051\pi\)
\(374\) 70.7469i 0.189163i
\(375\) −39.0431 + 212.957i −0.104115 + 0.567885i
\(376\) −154.788 −0.411670
\(377\) 42.1612 + 42.1612i 0.111833 + 0.111833i
\(378\) 65.3939 65.3939i 0.173000 0.173000i
\(379\) 344.182i 0.908131i 0.890968 + 0.454065i \(0.150027\pi\)
−0.890968 + 0.454065i \(0.849973\pi\)
\(380\) −60.7673 + 12.4041i −0.159914 + 0.0326423i
\(381\) 123.192 0.323338
\(382\) −266.606 266.606i −0.697922 0.697922i
\(383\) −409.707 + 409.707i −1.06973 + 1.06973i −0.0723523 + 0.997379i \(0.523051\pi\)
−0.997379 + 0.0723523i \(0.976949\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −304.363 201.171i −0.790554 0.522523i
\(386\) 234.767 0.608206
\(387\) −109.485 109.485i −0.282906 0.282906i
\(388\) 31.9796 31.9796i 0.0824216 0.0824216i
\(389\) 301.151i 0.774167i −0.922045 0.387084i \(-0.873482\pi\)
0.922045 0.387084i \(-0.126518\pi\)
\(390\) 64.9240 98.2270i 0.166472 0.251864i
\(391\) −228.141 −0.583480
\(392\) −218.767 218.767i −0.558080 0.558080i
\(393\) 139.868 139.868i 0.355899 0.355899i
\(394\) 493.373i 1.25222i
\(395\) −139.373 682.788i −0.352844 1.72858i
\(396\) 34.7878 0.0878479
\(397\) 479.343 + 479.343i 1.20741 + 1.20741i 0.971862 + 0.235551i \(0.0756894\pi\)
0.235551 + 0.971862i \(0.424311\pi\)
\(398\) −154.565 + 154.565i −0.388355 + 0.388355i
\(399\) 135.192i 0.338827i
\(400\) −92.0000 + 39.1918i −0.230000 + 0.0979796i
\(401\) 101.233 0.252451 0.126225 0.992002i \(-0.459714\pi\)
0.126225 + 0.992002i \(0.459714\pi\)
\(402\) −98.2020 98.2020i −0.244284 0.244284i
\(403\) 2.74693 2.74693i 0.00681621 0.00681621i
\(404\) 256.767i 0.635563i
\(405\) −44.0908 + 9.00000i −0.108866 + 0.0222222i
\(406\) −110.384 −0.271881
\(407\) −156.545 156.545i −0.384631 0.384631i
\(408\) 29.8888 29.8888i 0.0732568 0.0732568i
\(409\) 257.110i 0.628631i 0.949319 + 0.314316i \(0.101775\pi\)
−0.949319 + 0.314316i \(0.898225\pi\)
\(410\) −10.6061 7.01021i −0.0258686 0.0170981i
\(411\) −39.4393 −0.0959593
\(412\) −64.9898 64.9898i −0.157742 0.157742i
\(413\) 177.980 177.980i 0.430943 0.430943i
\(414\) 112.182i 0.270970i
\(415\) 53.4439 80.8582i 0.128780 0.194839i
\(416\) 54.3837 0.130730
\(417\) 90.3837 + 90.3837i 0.216747 + 0.216747i
\(418\) −35.9592 + 35.9592i −0.0860267 + 0.0860267i
\(419\) 375.959i 0.897277i 0.893713 + 0.448639i \(0.148091\pi\)
−0.893713 + 0.448639i \(0.851909\pi\)
\(420\) 43.5959 + 213.576i 0.103800 + 0.508513i
\(421\) 158.829 0.377265 0.188633 0.982048i \(-0.439595\pi\)
0.188633 + 0.982048i \(0.439595\pi\)
\(422\) 190.747 + 190.747i 0.452007 + 0.452007i
\(423\) 116.091 116.091i 0.274446 0.274446i
\(424\) 276.363i 0.651800i
\(425\) 200.101 + 80.5459i 0.470826 + 0.189520i
\(426\) −63.1918 −0.148338
\(427\) 562.343 + 562.343i 1.31696 + 1.31696i
\(428\) −49.7980 + 49.7980i −0.116350 + 0.116350i
\(429\) 96.5449i 0.225046i
\(430\) 357.576 72.9898i 0.831571 0.169744i
\(431\) −152.182 −0.353090 −0.176545 0.984293i \(-0.556492\pi\)
−0.176545 + 0.984293i \(0.556492\pi\)
\(432\) −14.6969 14.6969i −0.0340207 0.0340207i
\(433\) −254.918 + 254.918i −0.588726 + 0.588726i −0.937286 0.348560i \(-0.886671\pi\)
0.348560 + 0.937286i \(0.386671\pi\)
\(434\) 7.19184i 0.0165711i
\(435\) 44.8082 + 29.6163i 0.103007 + 0.0680835i
\(436\) 260.000 0.596330
\(437\) −115.959 115.959i −0.265353 0.265353i
\(438\) 139.126 139.126i 0.317639 0.317639i
\(439\) 299.373i 0.681944i −0.940073 0.340972i \(-0.889244\pi\)
0.940073 0.340972i \(-0.110756\pi\)
\(440\) −45.2122 + 68.4041i −0.102755 + 0.155464i
\(441\) 328.151 0.744107
\(442\) −82.9490 82.9490i −0.187667 0.187667i
\(443\) 144.717 144.717i 0.326676 0.326676i −0.524645 0.851321i \(-0.675802\pi\)
0.851321 + 0.524645i \(0.175802\pi\)
\(444\) 132.272i 0.297911i
\(445\) 58.6061 + 287.110i 0.131699 + 0.645191i
\(446\) −33.3531 −0.0747826
\(447\) −331.621 331.621i −0.741881 0.741881i
\(448\) −71.1918 + 71.1918i −0.158910 + 0.158910i
\(449\) 846.727i 1.88581i 0.333069 + 0.942903i \(0.391916\pi\)
−0.333069 + 0.942903i \(0.608084\pi\)
\(450\) 39.6061 98.3939i 0.0880136 0.218653i
\(451\) −10.4245 −0.0231142
\(452\) 17.4143 + 17.4143i 0.0385272 + 0.0385272i
\(453\) −26.4745 + 26.4745i −0.0584426 + 0.0584426i
\(454\) 84.1408i 0.185332i
\(455\) 592.727 120.990i 1.30270 0.265912i
\(456\) 30.3837 0.0666309
\(457\) −38.3939 38.3939i −0.0840129 0.0840129i 0.663852 0.747864i \(-0.268921\pi\)
−0.747864 + 0.663852i \(0.768921\pi\)
\(458\) 173.939 173.939i 0.379779 0.379779i
\(459\) 44.8332i 0.0976757i
\(460\) −220.586 145.798i −0.479534 0.316952i
\(461\) 78.7265 0.170773 0.0853867 0.996348i \(-0.472787\pi\)
0.0853867 + 0.996348i \(0.472787\pi\)
\(462\) 126.384 + 126.384i 0.273558 + 0.273558i
\(463\) −461.485 + 461.485i −0.996727 + 0.996727i −0.999995 0.00326746i \(-0.998960\pi\)
0.00326746 + 0.999995i \(0.498960\pi\)
\(464\) 24.8082i 0.0534659i
\(465\) 1.92959 2.91939i 0.00414967 0.00627826i
\(466\) −596.524 −1.28010
\(467\) 17.3031 + 17.3031i 0.0370515 + 0.0370515i 0.725390 0.688338i \(-0.241660\pi\)
−0.688338 + 0.725390i \(0.741660\pi\)
\(468\) −40.7878 + 40.7878i −0.0871533 + 0.0871533i
\(469\) 713.535i 1.52140i
\(470\) 77.3939 + 379.151i 0.164668 + 0.806704i
\(471\) −301.287 −0.639676
\(472\) −40.0000 40.0000i −0.0847458 0.0847458i
\(473\) 211.596 211.596i 0.447349 0.447349i
\(474\) 341.394i 0.720240i
\(475\) 60.7673 + 142.647i 0.127931 + 0.300309i
\(476\) 217.171 0.456242
\(477\) −207.272 207.272i −0.434533 0.434533i
\(478\) 37.2122 37.2122i 0.0778499 0.0778499i
\(479\) 776.727i 1.62156i −0.585352 0.810779i \(-0.699044\pi\)
0.585352 0.810779i \(-0.300956\pi\)
\(480\) 48.0000 9.79796i 0.100000 0.0204124i
\(481\) 367.090 0.763180
\(482\) 165.939 + 165.939i 0.344271 + 0.344271i
\(483\) −407.555 + 407.555i −0.843799 + 0.843799i
\(484\) 174.767i 0.361090i
\(485\) −94.3235 62.3439i −0.194481 0.128544i
\(486\) 22.0454 0.0453609
\(487\) −439.423 439.423i −0.902307 0.902307i 0.0933285 0.995635i \(-0.470249\pi\)
−0.995635 + 0.0933285i \(0.970249\pi\)
\(488\) 126.384 126.384i 0.258983 0.258983i
\(489\) 275.555i 0.563507i
\(490\) −426.485 + 645.252i −0.870377 + 1.31684i
\(491\) 246.080 0.501180 0.250590 0.968093i \(-0.419375\pi\)
0.250590 + 0.968093i \(0.419375\pi\)
\(492\) 4.40408 + 4.40408i 0.00895139 + 0.00895139i
\(493\) 37.8388 37.8388i 0.0767521 0.0767521i
\(494\) 84.3224i 0.170693i
\(495\) −17.3939 85.2122i −0.0351391 0.172146i
\(496\) 1.61633 0.00325873
\(497\) −229.576 229.576i −0.461923 0.461923i
\(498\) −33.5755 + 33.5755i −0.0674207 + 0.0674207i
\(499\) 597.839i 1.19807i −0.800721 0.599037i \(-0.795550\pi\)
0.800721 0.599037i \(-0.204450\pi\)
\(500\) 142.000 + 205.757i 0.284000 + 0.411514i
\(501\) −432.767 −0.863807
\(502\) 255.414 + 255.414i 0.508793 + 0.508793i
\(503\) −516.817 + 516.817i −1.02747 + 1.02747i −0.0278580 + 0.999612i \(0.508869\pi\)
−0.999612 + 0.0278580i \(0.991131\pi\)
\(504\) 106.788i 0.211880i
\(505\) −628.949 + 128.384i −1.24544 + 0.254225i
\(506\) −216.808 −0.428475
\(507\) −93.7855 93.7855i −0.184981 0.184981i
\(508\) 100.586 100.586i 0.198003 0.198003i
\(509\) 452.059i 0.888132i −0.895994 0.444066i \(-0.853536\pi\)
0.895994 0.444066i \(-0.146464\pi\)
\(510\) −88.1566 58.2679i −0.172856 0.114251i
\(511\) 1010.89 1.97825
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −22.7878 + 22.7878i −0.0444206 + 0.0444206i
\(514\) 540.969i 1.05247i
\(515\) −126.697 + 191.687i −0.246013 + 0.372207i
\(516\) −178.788 −0.346488
\(517\) 224.363 + 224.363i 0.433971 + 0.433971i
\(518\) −480.545 + 480.545i −0.927693 + 0.927693i
\(519\) 350.005i 0.674383i
\(520\) −27.1918 133.212i −0.0522920 0.256177i
\(521\) 779.494 1.49615 0.748075 0.663614i \(-0.230978\pi\)
0.748075 + 0.663614i \(0.230978\pi\)
\(522\) −18.6061 18.6061i −0.0356439 0.0356439i
\(523\) 179.283 179.283i 0.342797 0.342797i −0.514621 0.857418i \(-0.672067\pi\)
0.857418 + 0.514621i \(0.172067\pi\)
\(524\) 228.404i 0.435886i
\(525\) 501.353 213.576i 0.954958 0.406810i
\(526\) 2.60612 0.00495461
\(527\) −2.46531 2.46531i −0.00467801 0.00467801i
\(528\) 28.4041 28.4041i 0.0537956 0.0537956i
\(529\) 170.151i 0.321647i
\(530\) 676.949 138.182i 1.27726 0.260720i
\(531\) 60.0000 0.112994
\(532\) 110.384 + 110.384i 0.207488 + 0.207488i
\(533\) 12.2225 12.2225i 0.0229314 0.0229314i
\(534\) 143.555i 0.268830i
\(535\) 146.879 + 97.0806i 0.274539 + 0.181459i
\(536\) −160.363 −0.299185
\(537\) 163.101 + 163.101i 0.303726 + 0.303726i
\(538\) 41.1510 41.1510i 0.0764889 0.0764889i
\(539\) 634.202i 1.17663i
\(540\) −28.6515 + 43.3485i −0.0530584 + 0.0802749i
\(541\) −385.110 −0.711849 −0.355924 0.934515i \(-0.615834\pi\)
−0.355924 + 0.934515i \(0.615834\pi\)
\(542\) −484.727 484.727i −0.894329 0.894329i
\(543\) −168.025 + 168.025i −0.309438 + 0.309438i
\(544\) 48.8082i 0.0897209i
\(545\) −130.000 636.867i −0.238532 1.16856i
\(546\) −296.363 −0.542790
\(547\) −504.372 504.372i −0.922070 0.922070i 0.0751053 0.997176i \(-0.476071\pi\)
−0.997176 + 0.0751053i \(0.976071\pi\)
\(548\) −32.2020 + 32.2020i −0.0587628 + 0.0587628i
\(549\) 189.576i 0.345311i
\(550\) 190.161 + 76.5449i 0.345748 + 0.139173i
\(551\) 38.4653 0.0698100
\(552\) 91.5959 + 91.5959i 0.165935 + 0.165935i
\(553\) −1240.28 + 1240.28i −2.24282 + 2.24282i
\(554\) 103.980i 0.187689i
\(555\) 324.000 66.1362i 0.583784 0.119164i
\(556\) 147.596 0.265460
\(557\) −130.101 130.101i −0.233575 0.233575i 0.580608 0.814183i \(-0.302815\pi\)
−0.814183 + 0.580608i \(0.802815\pi\)
\(558\) −1.21225 + 1.21225i −0.00217248 + 0.00217248i
\(559\) 496.182i 0.887624i
\(560\) 209.980 + 138.788i 0.374964 + 0.247835i
\(561\) −86.6469 −0.154451
\(562\) 242.524 + 242.524i 0.431538 + 0.431538i
\(563\) 666.879 666.879i 1.18451 1.18451i 0.205946 0.978563i \(-0.433973\pi\)
0.978563 0.205946i \(-0.0660270\pi\)
\(564\) 189.576i 0.336127i
\(565\) 33.9490 51.3633i 0.0600867 0.0909084i
\(566\) 209.435 0.370026
\(567\) 80.0908 + 80.0908i 0.141254 + 0.141254i
\(568\) −51.5959 + 51.5959i −0.0908379 + 0.0908379i
\(569\) 987.494i 1.73549i 0.497010 + 0.867745i \(0.334431\pi\)
−0.497010 + 0.867745i \(0.665569\pi\)
\(570\) −15.1918 74.4245i −0.0266523 0.130569i
\(571\) 452.767 0.792938 0.396469 0.918048i \(-0.370236\pi\)
0.396469 + 0.918048i \(0.370236\pi\)
\(572\) −78.8286 78.8286i −0.137812 0.137812i
\(573\) 326.524 326.524i 0.569851 0.569851i
\(574\) 32.0000i 0.0557491i
\(575\) −246.838 + 613.221i −0.429283 + 1.06647i
\(576\) −24.0000 −0.0416667
\(577\) 463.000 + 463.000i 0.802426 + 0.802426i 0.983474 0.181048i \(-0.0579489\pi\)
−0.181048 + 0.983474i \(0.557949\pi\)
\(578\) 214.555 214.555i 0.371203 0.371203i
\(579\) 287.530i 0.496598i
\(580\) 60.7673 12.4041i 0.104771 0.0213863i
\(581\) −243.959 −0.419895
\(582\) 39.1668 + 39.1668i 0.0672970 + 0.0672970i
\(583\) 400.586 400.586i 0.687111 0.687111i
\(584\) 227.192i 0.389027i
\(585\) 120.303 + 79.5153i 0.205646 + 0.135924i
\(586\) −121.818 −0.207881
\(587\) 375.909 + 375.909i 0.640390 + 0.640390i 0.950651 0.310261i \(-0.100416\pi\)
−0.310261 + 0.950651i \(0.600416\pi\)
\(588\) 267.934 267.934i 0.455670 0.455670i
\(589\) 2.50613i 0.00425490i
\(590\) −77.9796 + 117.980i −0.132169 + 0.199965i
\(591\) 604.257 1.02243
\(592\) 108.000 + 108.000i 0.182432 + 0.182432i
\(593\) −398.646 + 398.646i −0.672253 + 0.672253i −0.958235 0.285982i \(-0.907680\pi\)
0.285982 + 0.958235i \(0.407680\pi\)
\(594\) 42.6061i 0.0717275i
\(595\) −108.586 531.959i −0.182497 0.894049i
\(596\) −541.535 −0.908615
\(597\) −189.303 189.303i −0.317091 0.317091i
\(598\) 254.202 254.202i 0.425087 0.425087i
\(599\) 509.131i 0.849968i 0.905201 + 0.424984i \(0.139720\pi\)
−0.905201 + 0.424984i \(0.860280\pi\)
\(600\) −48.0000 112.677i −0.0800000 0.187794i
\(601\) −390.302 −0.649421 −0.324711 0.945813i \(-0.605267\pi\)
−0.324711 + 0.945813i \(0.605267\pi\)
\(602\) −649.535 649.535i −1.07896 1.07896i
\(603\) 120.272 120.272i 0.199457 0.199457i
\(604\) 43.2327i 0.0715772i
\(605\) −428.091 + 87.3837i −0.707588 + 0.144436i
\(606\) 314.474 0.518935
\(607\) 494.030 + 494.030i 0.813887 + 0.813887i 0.985214 0.171327i \(-0.0548054\pi\)
−0.171327 + 0.985214i \(0.554805\pi\)
\(608\) 24.8082 24.8082i 0.0408029 0.0408029i
\(609\) 135.192i 0.221990i
\(610\) −372.767 246.384i −0.611094 0.403908i
\(611\) −526.120 −0.861081
\(612\) 36.6061 + 36.6061i 0.0598139 + 0.0598139i
\(613\) 74.1102 74.1102i 0.120898 0.120898i −0.644069 0.764967i \(-0.722755\pi\)
0.764967 + 0.644069i \(0.222755\pi\)
\(614\) 402.606i 0.655710i
\(615\) 8.58571 12.9898i 0.0139605 0.0211216i
\(616\) 206.384 0.335038
\(617\) −398.221 398.221i −0.645416 0.645416i 0.306466 0.951882i \(-0.400853\pi\)
−0.951882 + 0.306466i \(0.900853\pi\)
\(618\) 79.5959 79.5959i 0.128796 0.128796i
\(619\) 838.120i 1.35399i −0.735987 0.676995i \(-0.763282\pi\)
0.735987 0.676995i \(-0.236718\pi\)
\(620\) −0.808164 3.95918i −0.00130349 0.00638577i
\(621\) −137.394 −0.221246
\(622\) 559.737 + 559.737i 0.899898 + 0.899898i
\(623\) 521.535 521.535i 0.837134 0.837134i
\(624\) 66.6061i 0.106741i
\(625\) 433.000 450.706i 0.692800 0.721130i
\(626\) −187.535 −0.299576
\(627\) −44.0408 44.0408i −0.0702405 0.0702405i
\(628\) −246.000 + 246.000i −0.391720 + 0.391720i
\(629\) 329.455i 0.523776i
\(630\) −261.576 + 53.3939i −0.415199 + 0.0847522i
\(631\) 149.980 0.237686 0.118843 0.992913i \(-0.462082\pi\)
0.118843 + 0.992913i \(0.462082\pi\)
\(632\) 278.747 + 278.747i 0.441055 + 0.441055i
\(633\) −233.616 + 233.616i −0.369062 + 0.369062i
\(634\) 725.655i 1.14457i
\(635\) −296.677 196.091i −0.467207 0.308804i
\(636\) −338.474 −0.532193
\(637\) −743.586 743.586i −1.16732 1.16732i
\(638\) 35.9592 35.9592i 0.0563624 0.0563624i
\(639\) 77.3939i 0.121117i
\(640\) 31.1918 47.1918i 0.0487372 0.0737372i
\(641\) −378.243 −0.590082 −0.295041 0.955485i \(-0.595333\pi\)
−0.295041 + 0.955485i \(0.595333\pi\)
\(642\) −60.9898 60.9898i −0.0949997 0.0949997i
\(643\) −285.526 + 285.526i −0.444052 + 0.444052i −0.893371 0.449319i \(-0.851667\pi\)
0.449319 + 0.893371i \(0.351667\pi\)
\(644\) 665.535i 1.03344i
\(645\) 89.3939 + 437.939i 0.138595 + 0.678975i
\(646\) −75.6776 −0.117148
\(647\) −360.677 360.677i −0.557460 0.557460i 0.371124 0.928583i \(-0.378973\pi\)
−0.928583 + 0.371124i \(0.878973\pi\)
\(648\) 18.0000 18.0000i 0.0277778 0.0277778i
\(649\) 115.959i 0.178674i
\(650\) −312.706 + 133.212i −0.481086 + 0.204942i
\(651\) −8.80816 −0.0135302
\(652\) −224.990 224.990i −0.345076 0.345076i
\(653\) 547.838 547.838i 0.838955 0.838955i −0.149766 0.988721i \(-0.547852\pi\)
0.988721 + 0.149766i \(0.0478521\pi\)
\(654\) 318.434i 0.486902i
\(655\) −559.473 + 114.202i −0.854158 + 0.174354i
\(656\) 7.19184 0.0109632
\(657\) 170.394 + 170.394i 0.259351 + 0.259351i
\(658\) 688.727 688.727i 1.04670 1.04670i
\(659\) 25.5755i 0.0388096i 0.999812 + 0.0194048i \(0.00617712\pi\)
−0.999812 + 0.0194048i \(0.993823\pi\)
\(660\) −83.7775 55.3735i −0.126936 0.0838992i
\(661\) −824.727 −1.24770 −0.623848 0.781546i \(-0.714431\pi\)
−0.623848 + 0.781546i \(0.714431\pi\)
\(662\) 14.0204 + 14.0204i 0.0211789 + 0.0211789i
\(663\) 101.591 101.591i 0.153230 0.153230i
\(664\) 54.8286i 0.0825732i
\(665\) 215.192 325.576i 0.323597 0.489587i
\(666\) −162.000 −0.243243
\(667\) 115.959 + 115.959i 0.173852 + 0.173852i
\(668\) −353.353 + 353.353i −0.528972 + 0.528972i
\(669\) 40.8490i 0.0610598i
\(670\) 80.1816 + 392.808i 0.119674 + 0.586281i
\(671\) −366.384 −0.546026
\(672\) −87.1918 87.1918i −0.129750 0.129750i
\(673\) 902.857 902.857i 1.34154 1.34154i 0.447014 0.894527i \(-0.352487\pi\)
0.894527 0.447014i \(-0.147513\pi\)
\(674\) 332.747i 0.493690i
\(675\) 120.507 + 48.5074i 0.178529 + 0.0718628i
\(676\) −153.151 −0.226555
\(677\) 688.160 + 688.160i 1.01648 + 1.01648i 0.999862 + 0.0166229i \(0.00529149\pi\)
0.0166229 + 0.999862i \(0.494709\pi\)
\(678\) −21.3281 + 21.3281i −0.0314573 + 0.0314573i
\(679\) 284.586i 0.419125i
\(680\) −119.555 + 24.4041i −0.175816 + 0.0358884i
\(681\) 103.051 0.151323
\(682\) −2.34285 2.34285i −0.00343527 0.00343527i
\(683\) 1.92959 1.92959i 0.00282518 0.00282518i −0.705693 0.708518i \(-0.749364\pi\)
0.708518 + 0.705693i \(0.249364\pi\)
\(684\) 37.2122i 0.0544039i
\(685\) 94.9796 + 62.7775i 0.138656 + 0.0916461i
\(686\) 1074.71 1.56663
\(687\) 213.031 + 213.031i 0.310088 + 0.310088i
\(688\) −145.980 + 145.980i −0.212180 + 0.212180i
\(689\) 939.353i 1.36336i
\(690\) 178.565 270.161i 0.258790 0.391538i
\(691\) −162.706 −0.235465 −0.117732 0.993045i \(-0.537562\pi\)
−0.117732 + 0.993045i \(0.537562\pi\)
\(692\) 285.778 + 285.778i 0.412973 + 0.412973i
\(693\) −154.788 + 154.788i −0.223359 + 0.223359i
\(694\) 327.010i 0.471196i
\(695\) −73.7980 361.535i −0.106184 0.520194i
\(696\) −30.3837 −0.0436547
\(697\) −10.9694 10.9694i −0.0157380 0.0157380i
\(698\) −280.000 + 280.000i −0.401146 + 0.401146i
\(699\) 730.590i 1.04519i
\(700\) 234.969 583.737i 0.335671 0.833910i
\(701\) 260.222 0.371216 0.185608 0.982624i \(-0.440575\pi\)
0.185608 + 0.982624i \(0.440575\pi\)
\(702\) −49.9546 49.9546i −0.0711604 0.0711604i
\(703\) 167.455 167.455i 0.238201 0.238201i
\(704\) 46.3837i 0.0658859i
\(705\) −464.363 + 94.7878i −0.658671 + 0.134451i
\(706\) 522.990 0.740779
\(707\) 1142.48 + 1142.48i 1.61596 + 1.61596i
\(708\) 48.9898 48.9898i 0.0691946 0.0691946i
\(709\) 151.637i 0.213874i 0.994266 + 0.106937i \(0.0341043\pi\)
−0.994266 + 0.106937i \(0.965896\pi\)
\(710\) 152.182 + 100.586i 0.214340 + 0.141670i
\(711\) −418.120 −0.588074
\(712\) −117.212 117.212i −0.164624 0.164624i
\(713\) 7.55510 7.55510i 0.0105962 0.0105962i
\(714\) 265.980i 0.372520i
\(715\) −153.675 + 232.504i −0.214931 + 0.325181i
\(716\) 266.343 0.371987
\(717\) 45.5755 + 45.5755i 0.0635642 + 0.0635642i
\(718\) −425.090 + 425.090i −0.592047 + 0.592047i
\(719\) 1281.82i 1.78278i −0.453241 0.891388i \(-0.649732\pi\)
0.453241 0.891388i \(-0.350268\pi\)
\(720\) 12.0000 + 58.7878i 0.0166667 + 0.0816497i
\(721\) 578.343 0.802140
\(722\) 322.535 + 322.535i 0.446724 + 0.446724i
\(723\) −203.233 + 203.233i −0.281096 + 0.281096i
\(724\) 274.384i 0.378983i
\(725\) −60.7673 142.647i −0.0838170 0.196754i
\(726\) 214.045 0.294828
\(727\) 638.352 + 638.352i 0.878063 + 0.878063i 0.993334 0.115271i \(-0.0367736\pi\)
−0.115271 + 0.993334i \(0.536774\pi\)
\(728\) −241.980 + 241.980i −0.332390 + 0.332390i
\(729\) 27.0000i 0.0370370i
\(730\) −556.504 + 113.596i −0.762334 + 0.155611i
\(731\) 445.312 0.609182
\(732\) 154.788 + 154.788i 0.211459 + 0.211459i
\(733\) 400.414 400.414i 0.546268 0.546268i −0.379091 0.925359i \(-0.623763\pi\)
0.925359 + 0.379091i \(0.123763\pi\)
\(734\) 632.990i 0.862384i
\(735\) −790.269 522.335i −1.07520 0.710660i
\(736\) 149.576 0.203228
\(737\) 232.445 + 232.445i 0.315393 + 0.315393i
\(738\) −5.39388 + 5.39388i −0.00730878 + 0.00730878i
\(739\) 382.647i 0.517790i 0.965905 + 0.258895i \(0.0833584\pi\)
−0.965905 + 0.258895i \(0.916642\pi\)
\(740\) 210.545 318.545i 0.284520 0.430466i
\(741\) 103.273 0.139370
\(742\) −1229.68 1229.68i −1.65724 1.65724i
\(743\) 135.383 135.383i 0.182211 0.182211i −0.610108 0.792319i \(-0.708874\pi\)
0.792319 + 0.610108i \(0.208874\pi\)
\(744\) 1.97959i 0.00266074i
\(745\) 270.767 + 1326.48i 0.363446 + 1.78051i
\(746\) 421.878 0.565519
\(747\) −41.1214 41.1214i −0.0550488 0.0550488i
\(748\) −70.7469 + 70.7469i −0.0945815 + 0.0945815i
\(749\) 443.151i 0.591657i
\(750\) −252.000 + 173.914i −0.336000 + 0.231885i
\(751\) −571.273 −0.760684 −0.380342 0.924846i \(-0.624194\pi\)
−0.380342 + 0.924846i \(0.624194\pi\)
\(752\) −154.788 154.788i −0.205835 0.205835i
\(753\) −312.817 + 312.817i −0.415428 + 0.415428i
\(754\) 84.3224i 0.111833i
\(755\) 105.898 21.6163i 0.140262 0.0286309i
\(756\) 130.788 0.173000
\(757\) −917.908 917.908i −1.21256 1.21256i −0.970182 0.242379i \(-0.922072\pi\)
−0.242379 0.970182i \(-0.577928\pi\)
\(758\) −344.182 + 344.182i −0.454065 + 0.454065i
\(759\) 265.535i 0.349848i
\(760\) −73.1714 48.3633i −0.0962782 0.0636359i
\(761\) −616.261 −0.809804 −0.404902 0.914360i \(-0.632694\pi\)
−0.404902 + 0.914360i \(0.632694\pi\)
\(762\) 123.192 + 123.192i 0.161669 + 0.161669i
\(763\) −1156.87 + 1156.87i −1.51621 + 1.51621i
\(764\) 533.212i 0.697922i
\(765\) 71.3633 107.969i 0.0932853 0.141136i
\(766\) −819.414 −1.06973
\(767\) −135.959 135.959i −0.177261 0.177261i
\(768\) −19.5959 + 19.5959i −0.0255155 + 0.0255155i
\(769\) 154.424i 0.200812i 0.994947 + 0.100406i \(0.0320142\pi\)
−0.994947 + 0.100406i \(0.967986\pi\)
\(770\) −103.192 505.535i −0.134015 0.656539i
\(771\) 662.549 0.859338
\(772\) 234.767 + 234.767i 0.304103 + 0.304103i
\(773\) −184.323 + 184.323i −0.238452 + 0.238452i −0.816209 0.577757i \(-0.803928\pi\)
0.577757 + 0.816209i \(0.303928\pi\)
\(774\) 218.969i 0.282906i
\(775\) −9.29389 + 3.95918i −0.0119921 + 0.00510862i
\(776\) 63.9592 0.0824216
\(777\) −588.545 588.545i −0.757458 0.757458i
\(778\) 301.151 301.151i 0.387084 0.387084i
\(779\) 11.1510i 0.0143145i
\(780\) 163.151 33.3031i 0.209168 0.0426962i
\(781\) 149.576 0.191518
\(782\) −228.141 228.141i −0.291740 0.291740i
\(783\) 22.7878 22.7878i 0.0291031 0.0291031i
\(784\) 437.535i 0.558080i
\(785\) 725.574 + 479.574i 0.924299 + 0.610923i
\(786\) 279.737 0.355899
\(787\) −784.858 784.858i −0.997278 0.997278i 0.00271783 0.999996i \(-0.499135\pi\)
−0.999996 + 0.00271783i \(0.999135\pi\)
\(788\) 493.373 493.373i 0.626108 0.626108i
\(789\) 3.19184i 0.00404542i
\(790\) 543.414 822.161i 0.687866 1.04071i
\(791\) −154.969 −0.195916
\(792\) 34.7878 + 34.7878i 0.0439239 + 0.0439239i
\(793\) 429.576 429.576i 0.541709 0.541709i
\(794\) 958.686i 1.20741i
\(795\) 169.237 + 829.090i 0.212877 + 1.04288i
\(796\) −309.131 −0.388355
\(797\) −485.191 485.191i −0.608771 0.608771i 0.333854 0.942625i \(-0.391651\pi\)
−0.942625 + 0.333854i \(0.891651\pi\)
\(798\) −135.192 + 135.192i −0.169413 + 0.169413i
\(799\) 472.182i 0.590966i
\(800\) −131.192 52.8082i −0.163990 0.0660102i
\(801\) 175.818 0.219499
\(802\) 101.233 + 101.233i 0.126225 + 0.126225i
\(803\) −329.312 + 329.312i −0.410102 + 0.410102i
\(804\) 196.404i 0.244284i
\(805\) 1630.22 332.767i 2.02512 0.413376i
\(806\) 5.49387 0.00681621
\(807\) 50.3995 + 50.3995i 0.0624529 + 0.0624529i
\(808\) 256.767 256.767i 0.317781 0.317781i
\(809\) 397.839i 0.491766i −0.969300 0.245883i \(-0.920922\pi\)
0.969300 0.245883i \(-0.0790779\pi\)
\(810\) −53.0908 35.0908i −0.0655442 0.0433220i
\(811\) −1005.49 −1.23982 −0.619910 0.784673i \(-0.712831\pi\)
−0.619910 + 0.784673i \(0.712831\pi\)
\(812\) −110.384 110.384i −0.135940 0.135940i
\(813\) 593.666 593.666i 0.730217 0.730217i
\(814\) 313.090i 0.384631i
\(815\) −438.615 + 663.605i −0.538178 + 0.814239i
\(816\) 59.7775 0.0732568
\(817\) 226.343 + 226.343i 0.277041 + 0.277041i
\(818\) −257.110 + 257.110i −0.314316 + 0.314316i
\(819\) 362.969i 0.443186i
\(820\) −3.59592 17.6163i −0.00438527 0.0214833i
\(821\) −101.312 −0.123401 −0.0617005 0.998095i \(-0.519652\pi\)
−0.0617005 + 0.998095i \(0.519652\pi\)
\(822\) −39.4393 39.4393i −0.0479797 0.0479797i
\(823\) 68.2724 68.2724i 0.0829556 0.0829556i −0.664411 0.747367i \(-0.731318\pi\)
0.747367 + 0.664411i \(0.231318\pi\)
\(824\) 129.980i 0.157742i
\(825\) −93.7480 + 232.899i −0.113634 + 0.282302i
\(826\) 355.959 0.430943
\(827\) −363.464 363.464i −0.439497 0.439497i 0.452345 0.891843i \(-0.350587\pi\)
−0.891843 + 0.452345i \(0.850587\pi\)
\(828\) −112.182 + 112.182i −0.135485 + 0.135485i
\(829\) 891.535i 1.07543i 0.843125 + 0.537717i \(0.180713\pi\)
−0.843125 + 0.537717i \(0.819287\pi\)
\(830\) 134.302 27.4143i 0.161810 0.0330293i
\(831\) −127.348 −0.153247
\(832\) 54.3837 + 54.3837i 0.0653650 + 0.0653650i
\(833\) −667.352 + 667.352i −0.801143 + 0.801143i
\(834\) 180.767i 0.216747i
\(835\) 1042.21 + 688.858i 1.24816 + 0.824980i
\(836\) −71.9184 −0.0860267
\(837\) −1.48469 1.48469i −0.00177383 0.00177383i
\(838\) −375.959 + 375.959i −0.448639 + 0.448639i
\(839\) 705.090i 0.840393i −0.907433 0.420197i \(-0.861961\pi\)
0.907433 0.420197i \(-0.138039\pi\)
\(840\) −169.980 + 257.171i −0.202357 + 0.306156i
\(841\) 802.535 0.954262
\(842\) 158.829 + 158.829i 0.188633 + 0.188633i
\(843\) −297.031 + 297.031i −0.352349 + 0.352349i
\(844\) 381.494i 0.452007i
\(845\) 76.5755 + 375.142i 0.0906219 + 0.443955i
\(846\) 232.182 0.274446
\(847\) 777.626 + 777.626i 0.918094 + 0.918094i
\(848\) −276.363 + 276.363i −0.325900 + 0.325900i
\(849\) 256.504i 0.302125i
\(850\) 119.555 + 280.647i 0.140653 + 0.330173i
\(851\) 1009.63 1.18641
\(852\) −63.1918 63.1918i −0.0741688 0.0741688i
\(853\) 450.555 450.555i 0.528201 0.528201i −0.391835 0.920036i \(-0.628160\pi\)
0.920036 + 0.391835i \(0.128160\pi\)
\(854\) 1124.69i 1.31696i
\(855\) 91.1510 18.6061i 0.106609 0.0217615i
\(856\) −99.5959 −0.116350
\(857\) 63.5561 + 63.5561i 0.0741612 + 0.0741612i 0.743214 0.669053i \(-0.233300\pi\)
−0.669053 + 0.743214i \(0.733300\pi\)
\(858\) 96.5449 96.5449i 0.112523 0.112523i
\(859\) 1467.53i 1.70842i −0.519928 0.854210i \(-0.674041\pi\)
0.519928 0.854210i \(-0.325959\pi\)
\(860\) 430.565 + 284.586i 0.500657 + 0.330914i
\(861\) −39.1918 −0.0455190
\(862\) −152.182 152.182i −0.176545 0.176545i
\(863\) −294.797 + 294.797i −0.341596 + 0.341596i −0.856967 0.515371i \(-0.827654\pi\)
0.515371 + 0.856967i \(0.327654\pi\)
\(864\) 29.3939i 0.0340207i
\(865\) 557.120 842.898i 0.644070 0.974448i
\(866\) −509.837 −0.588726
\(867\) 262.775 + 262.775i 0.303086 + 0.303086i
\(868\) −7.19184 + 7.19184i −0.00828553 + 0.00828553i
\(869\) 808.082i 0.929898i
\(870\) 15.1918 + 74.4245i 0.0174619 + 0.0855454i
\(871\) −545.071 −0.625800
\(872\) 260.000 + 260.000i 0.298165 + 0.298165i
\(873\) −47.9694 + 47.9694i −0.0549477 + 0.0549477i
\(874\) 231.918i 0.265353i
\(875\) −1547.34 283.687i −1.76839 0.324213i
\(876\) 278.252 0.317639
\(877\) 113.102 + 113.102i 0.128965 + 0.128965i 0.768643 0.639678i \(-0.220932\pi\)
−0.639678 + 0.768643i \(0.720932\pi\)
\(878\) 299.373 299.373i 0.340972 0.340972i
\(879\) 149.196i 0.169734i
\(880\) −113.616 + 23.1918i −0.129109 + 0.0263544i
\(881\) −1370.44 −1.55555 −0.777777 0.628540i \(-0.783653\pi\)
−0.777777 + 0.628540i \(0.783653\pi\)
\(882\) 328.151 + 328.151i 0.372053 + 0.372053i
\(883\) 175.587 175.587i 0.198852 0.198852i −0.600655 0.799508i \(-0.705094\pi\)
0.799508 + 0.600655i \(0.205094\pi\)
\(884\) 165.898i 0.187667i
\(885\) −144.495 95.5051i −0.163271 0.107915i
\(886\) 289.435 0.326676
\(887\) −512.313 512.313i −0.577580 0.577580i 0.356656 0.934236i \(-0.383917\pi\)
−0.934236 + 0.356656i \(0.883917\pi\)
\(888\) −132.272 + 132.272i −0.148955 + 0.148955i
\(889\) 895.110i 1.00687i
\(890\) −228.504 + 345.716i −0.256746 + 0.388445i
\(891\) −52.1816 −0.0585652
\(892\) −33.3531 33.3531i −0.0373913 0.0373913i
\(893\) −240.000 + 240.000i −0.268757 + 0.268757i
\(894\) 663.242i 0.741881i
\(895\) −133.171 652.404i −0.148795 0.728943i
\(896\) −142.384 −0.158910
\(897\) 311.333 + 311.333i 0.347082 + 0.347082i
\(898\) −846.727 + 846.727i −0.942903 + 0.942903i
\(899\) 2.50613i 0.00278769i
\(900\) 138.000 58.7878i 0.153333 0.0653197i
\(901\) 843.049 0.935681
\(902\) −10.4245 10.4245i −0.0115571 0.0115571i
\(903\) 795.514 795.514i 0.880968 0.880968i
\(904\) 34.8286i 0.0385272i
\(905\) 672.100 137.192i 0.742652 0.151593i
\(906\) −52.9490 −0.0584426
\(907\) −922.697 922.697i −1.01731 1.01731i −0.999848 0.0174589i \(-0.994442\pi\)
−0.0174589 0.999848i \(-0.505558\pi\)
\(908\) 84.1408 84.1408i 0.0926661 0.0926661i
\(909\) 385.151i 0.423708i
\(910\) 713.716 + 471.737i 0.784304 + 0.518392i
\(911\) 1338.97 1.46978 0.734890 0.678186i \(-0.237234\pi\)
0.734890 + 0.678186i \(0.237234\pi\)
\(912\) 30.3837 + 30.3837i 0.0333154 + 0.0333154i
\(913\) 79.4735 79.4735i 0.0870465 0.0870465i
\(914\) 76.7878i 0.0840129i
\(915\) 301.757 456.545i 0.329789 0.498956i
\(916\) 347.878 0.379779
\(917\) 1016.28 + 1016.28i 1.10827 + 1.10827i
\(918\) −44.8332 + 44.8332i −0.0488379 + 0.0488379i
\(919\) 1371.57i 1.49246i 0.665687 + 0.746231i \(0.268139\pi\)
−0.665687 + 0.746231i \(0.731861\pi\)
\(920\) −74.7878 366.384i −0.0812910 0.398243i
\(921\) 493.090 0.535385
\(922\) 78.7265 + 78.7265i 0.0853867 + 0.0853867i
\(923\) −175.373 + 175.373i −0.190004 + 0.190004i
\(924\) 252.767i 0.273558i
\(925\) −885.545 356.455i −0.957346 0.385357i
\(926\) −922.969 −0.996727
\(927\) 97.4847 + 97.4847i 0.105161 + 0.105161i
\(928\) −24.8082 + 24.8082i −0.0267329 + 0.0267329i
\(929\) 218.645i 0.235355i 0.993052 + 0.117678i \(0.0375449\pi\)
−0.993052 + 0.117678i \(0.962455\pi\)
\(930\) 4.84898 0.989795i 0.00521396 0.00106430i
\(931\) −678.402 −0.728681
\(932\) −596.524 596.524i −0.640048 0.640048i
\(933\) −685.535 + 685.535i −0.734764 + 0.734764i
\(934\) 34.6061i 0.0370515i
\(935\) 208.667 + 137.920i 0.223174 + 0.147508i
\(936\) −81.5755 −0.0871533
\(937\) −1127.38 1127.38i −1.20318 1.20318i −0.973193 0.229992i \(-0.926130\pi\)
−0.229992 0.973193i \(-0.573870\pi\)
\(938\) 713.535 713.535i 0.760698 0.760698i
\(939\) 229.682i 0.244603i
\(940\) −301.757 + 456.545i −0.321018 + 0.485686i
\(941\) −588.384 −0.625275 −0.312637 0.949873i \(-0.601212\pi\)
−0.312637 + 0.949873i \(0.601212\pi\)
\(942\) −301.287 301.287i −0.319838 0.319838i
\(943\) 33.6163 33.6163i 0.0356483 0.0356483i
\(944\) 80.0000i 0.0847458i
\(945\) −65.3939 320.363i −0.0691999 0.339009i
\(946\) 423.192 0.447349
\(947\) −926.879 926.879i −0.978752 0.978752i 0.0210265 0.999779i \(-0.493307\pi\)
−0.999779 + 0.0210265i \(0.993307\pi\)
\(948\) −341.394 + 341.394i −0.360120 + 0.360120i
\(949\) 772.220i 0.813720i
\(950\) −81.8796 + 203.414i −0.0861891 + 0.214120i
\(951\) −888.742 −0.934535
\(952\) 217.171 + 217.171i 0.228121 + 0.228121i
\(953\) 1271.29 1271.29i 1.33399 1.33399i 0.432220 0.901768i \(-0.357730\pi\)
0.901768 0.432220i \(-0.142270\pi\)
\(954\) 414.545i 0.434533i
\(955\) −1306.10 + 266.606i −1.36764 + 0.279169i
\(956\) 74.4245 0.0778499
\(957\) 44.0408 + 44.0408i 0.0460197 + 0.0460197i
\(958\) 776.727 776.727i 0.810779 0.810779i
\(959\) 286.565i 0.298817i
\(960\) 57.7980 + 38.2020i 0.0602062 + 0.0397938i
\(961\) −960.837 −0.999830
\(962\) 367.090 + 367.090i 0.381590 + 0.381590i
\(963\) 74.6969 74.6969i 0.0775669 0.0775669i
\(964\) 331.878i 0.344271i
\(965\) 457.677 692.444i 0.474276 0.717558i
\(966\) −815.110 −0.843799
\(967\) 753.121 + 753.121i 0.778823 + 0.778823i 0.979631 0.200808i \(-0.0643567\pi\)
−0.200808 + 0.979631i \(0.564357\pi\)
\(968\) 174.767 174.767i 0.180545 0.180545i
\(969\) 92.6857i 0.0956509i
\(970\) −31.9796 156.667i −0.0329686 0.161513i
\(971\) 1803.86 1.85773 0.928865 0.370419i \(-0.120786\pi\)
0.928865 + 0.370419i \(0.120786\pi\)
\(972\) 22.0454 + 22.0454i 0.0226805 + 0.0226805i
\(973\) −656.727 + 656.727i −0.674950 + 0.674950i
\(974\) 878.847i 0.902307i
\(975\) −163.151 382.985i −0.167334 0.392805i
\(976\) 252.767 0.258983
\(977\) 223.838 + 223.838i 0.229107 + 0.229107i 0.812320 0.583212i \(-0.198204\pi\)
−0.583212 + 0.812320i \(0.698204\pi\)
\(978\) 275.555 275.555i 0.281754 0.281754i
\(979\) 339.796i 0.347085i
\(980\) −1071.74 + 218.767i −1.09361 + 0.223232i
\(981\) −390.000 −0.397554
\(982\) 246.080 + 246.080i 0.250590 + 0.250590i
\(983\) −976.536 + 976.536i −0.993424 + 0.993424i −0.999979 0.00655459i \(-0.997914\pi\)
0.00655459 + 0.999979i \(0.497914\pi\)
\(984\) 8.80816i 0.00895139i
\(985\) −1455.20 961.827i −1.47736 0.976474i
\(986\) 75.6776 0.0767521
\(987\) 843.514 + 843.514i 0.854624 + 0.854624i
\(988\) 84.3224 84.3224i 0.0853466 0.0853466i
\(989\) 1364.69i 1.37986i
\(990\) 67.8184 102.606i 0.0685034 0.103643i
\(991\) 1331.03 1.34312 0.671558 0.740952i \(-0.265625\pi\)
0.671558 + 0.740952i \(0.265625\pi\)
\(992\) 1.61633 + 1.61633i 0.00162936 + 0.00162936i
\(993\) −17.1714 + 17.1714i −0.0172925 + 0.0172925i
\(994\) 459.151i 0.461923i
\(995\) 154.565 + 757.212i 0.155342 + 0.761017i
\(996\) −67.1510 −0.0674207
\(997\) 852.616 + 852.616i 0.855182 + 0.855182i 0.990766 0.135584i \(-0.0432911\pi\)
−0.135584 + 0.990766i \(0.543291\pi\)
\(998\) 597.839 597.839i 0.599037 0.599037i
\(999\) 198.409i 0.198607i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.3.f.a.7.1 4
3.2 odd 2 90.3.g.d.37.1 4
4.3 odd 2 240.3.bg.b.97.2 4
5.2 odd 4 150.3.f.b.43.2 4
5.3 odd 4 inner 30.3.f.a.13.1 yes 4
5.4 even 2 150.3.f.b.7.2 4
8.3 odd 2 960.3.bg.g.577.1 4
8.5 even 2 960.3.bg.e.577.2 4
12.11 even 2 720.3.bh.i.577.1 4
15.2 even 4 450.3.g.j.343.2 4
15.8 even 4 90.3.g.d.73.1 4
15.14 odd 2 450.3.g.j.307.2 4
20.3 even 4 240.3.bg.b.193.2 4
20.7 even 4 1200.3.bg.d.193.1 4
20.19 odd 2 1200.3.bg.d.1057.1 4
40.3 even 4 960.3.bg.g.193.1 4
40.13 odd 4 960.3.bg.e.193.2 4
60.23 odd 4 720.3.bh.i.433.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.3.f.a.7.1 4 1.1 even 1 trivial
30.3.f.a.13.1 yes 4 5.3 odd 4 inner
90.3.g.d.37.1 4 3.2 odd 2
90.3.g.d.73.1 4 15.8 even 4
150.3.f.b.7.2 4 5.4 even 2
150.3.f.b.43.2 4 5.2 odd 4
240.3.bg.b.97.2 4 4.3 odd 2
240.3.bg.b.193.2 4 20.3 even 4
450.3.g.j.307.2 4 15.14 odd 2
450.3.g.j.343.2 4 15.2 even 4
720.3.bh.i.433.1 4 60.23 odd 4
720.3.bh.i.577.1 4 12.11 even 2
960.3.bg.e.193.2 4 40.13 odd 4
960.3.bg.e.577.2 4 8.5 even 2
960.3.bg.g.193.1 4 40.3 even 4
960.3.bg.g.577.1 4 8.3 odd 2
1200.3.bg.d.193.1 4 20.7 even 4
1200.3.bg.d.1057.1 4 20.19 odd 2