Properties

Label 450.3.g.j.343.2
Level $450$
Weight $3$
Character 450.343
Analytic conductor $12.262$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,3,Mod(307,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.307"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 450.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2616118962\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.2
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 450.343
Dual form 450.3.g.j.307.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} -2.00000i q^{4} +(8.89898 - 8.89898i) q^{7} +(-2.00000 - 2.00000i) q^{8} -5.79796 q^{11} +(6.79796 + 6.79796i) q^{13} -17.7980i q^{14} -4.00000 q^{16} +(6.10102 - 6.10102i) q^{17} -6.20204i q^{19} +(-5.79796 + 5.79796i) q^{22} +(-18.6969 - 18.6969i) q^{23} +13.5959 q^{26} +(-17.7980 - 17.7980i) q^{28} -6.20204i q^{29} -0.404082 q^{31} +(-4.00000 + 4.00000i) q^{32} -12.2020i q^{34} +(27.0000 - 27.0000i) q^{37} +(-6.20204 - 6.20204i) q^{38} +1.79796 q^{41} +(-36.4949 - 36.4949i) q^{43} +11.5959i q^{44} -37.3939 q^{46} +(38.6969 - 38.6969i) q^{47} -109.384i q^{49} +(13.5959 - 13.5959i) q^{52} +(69.0908 + 69.0908i) q^{53} -35.5959 q^{56} +(-6.20204 - 6.20204i) q^{58} +20.0000i q^{59} -63.1918 q^{61} +(-0.404082 + 0.404082i) q^{62} +8.00000i q^{64} +(-40.0908 + 40.0908i) q^{67} +(-12.2020 - 12.2020i) q^{68} -25.7980 q^{71} +(56.7980 + 56.7980i) q^{73} -54.0000i q^{74} -12.4041 q^{76} +(-51.5959 + 51.5959i) q^{77} +139.373i q^{79} +(1.79796 - 1.79796i) q^{82} +(13.7071 + 13.7071i) q^{83} -72.9898 q^{86} +(11.5959 + 11.5959i) q^{88} +58.6061i q^{89} +120.990 q^{91} +(-37.3939 + 37.3939i) q^{92} -77.3939i q^{94} +(15.9898 - 15.9898i) q^{97} +(-109.384 - 109.384i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 16 q^{7} - 8 q^{8} + 16 q^{11} - 12 q^{13} - 16 q^{16} + 44 q^{17} + 16 q^{22} - 16 q^{23} - 24 q^{26} - 32 q^{28} - 80 q^{31} - 16 q^{32} + 108 q^{37} - 64 q^{38} - 32 q^{41} - 48 q^{43}+ \cdots - 124 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.500000 0.500000i
\(3\) 0 0
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) 8.89898 8.89898i 1.27128 1.27128i 0.325867 0.945416i \(-0.394344\pi\)
0.945416 0.325867i \(-0.105656\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 0 0
\(10\) 0 0
\(11\) −5.79796 −0.527087 −0.263544 0.964647i \(-0.584891\pi\)
−0.263544 + 0.964647i \(0.584891\pi\)
\(12\) 0 0
\(13\) 6.79796 + 6.79796i 0.522920 + 0.522920i 0.918452 0.395532i \(-0.129440\pi\)
−0.395532 + 0.918452i \(0.629440\pi\)
\(14\) 17.7980i 1.27128i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 6.10102 6.10102i 0.358884 0.358884i −0.504518 0.863401i \(-0.668330\pi\)
0.863401 + 0.504518i \(0.168330\pi\)
\(18\) 0 0
\(19\) 6.20204i 0.326423i −0.986591 0.163212i \(-0.947815\pi\)
0.986591 0.163212i \(-0.0521853\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −5.79796 + 5.79796i −0.263544 + 0.263544i
\(23\) −18.6969 18.6969i −0.812910 0.812910i 0.172159 0.985069i \(-0.444926\pi\)
−0.985069 + 0.172159i \(0.944926\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 13.5959 0.522920
\(27\) 0 0
\(28\) −17.7980 17.7980i −0.635641 0.635641i
\(29\) 6.20204i 0.213863i −0.994266 0.106932i \(-0.965897\pi\)
0.994266 0.106932i \(-0.0341026\pi\)
\(30\) 0 0
\(31\) −0.404082 −0.0130349 −0.00651745 0.999979i \(-0.502075\pi\)
−0.00651745 + 0.999979i \(0.502075\pi\)
\(32\) −4.00000 + 4.00000i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 12.2020i 0.358884i
\(35\) 0 0
\(36\) 0 0
\(37\) 27.0000 27.0000i 0.729730 0.729730i −0.240836 0.970566i \(-0.577422\pi\)
0.970566 + 0.240836i \(0.0774216\pi\)
\(38\) −6.20204 6.20204i −0.163212 0.163212i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.79796 0.0438527 0.0219263 0.999760i \(-0.493020\pi\)
0.0219263 + 0.999760i \(0.493020\pi\)
\(42\) 0 0
\(43\) −36.4949 36.4949i −0.848719 0.848719i 0.141255 0.989973i \(-0.454886\pi\)
−0.989973 + 0.141255i \(0.954886\pi\)
\(44\) 11.5959i 0.263544i
\(45\) 0 0
\(46\) −37.3939 −0.812910
\(47\) 38.6969 38.6969i 0.823339 0.823339i −0.163246 0.986585i \(-0.552197\pi\)
0.986585 + 0.163246i \(0.0521965\pi\)
\(48\) 0 0
\(49\) 109.384i 2.23232i
\(50\) 0 0
\(51\) 0 0
\(52\) 13.5959 13.5959i 0.261460 0.261460i
\(53\) 69.0908 + 69.0908i 1.30360 + 1.30360i 0.925947 + 0.377653i \(0.123269\pi\)
0.377653 + 0.925947i \(0.376731\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −35.5959 −0.635641
\(57\) 0 0
\(58\) −6.20204 6.20204i −0.106932 0.106932i
\(59\) 20.0000i 0.338983i 0.985532 + 0.169492i \(0.0542125\pi\)
−0.985532 + 0.169492i \(0.945787\pi\)
\(60\) 0 0
\(61\) −63.1918 −1.03593 −0.517966 0.855401i \(-0.673311\pi\)
−0.517966 + 0.855401i \(0.673311\pi\)
\(62\) −0.404082 + 0.404082i −0.00651745 + 0.00651745i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 0 0
\(67\) −40.0908 + 40.0908i −0.598370 + 0.598370i −0.939879 0.341508i \(-0.889062\pi\)
0.341508 + 0.939879i \(0.389062\pi\)
\(68\) −12.2020 12.2020i −0.179442 0.179442i
\(69\) 0 0
\(70\) 0 0
\(71\) −25.7980 −0.363352 −0.181676 0.983358i \(-0.558152\pi\)
−0.181676 + 0.983358i \(0.558152\pi\)
\(72\) 0 0
\(73\) 56.7980 + 56.7980i 0.778054 + 0.778054i 0.979500 0.201445i \(-0.0645639\pi\)
−0.201445 + 0.979500i \(0.564564\pi\)
\(74\) 54.0000i 0.729730i
\(75\) 0 0
\(76\) −12.4041 −0.163212
\(77\) −51.5959 + 51.5959i −0.670077 + 0.670077i
\(78\) 0 0
\(79\) 139.373i 1.76422i 0.471042 + 0.882111i \(0.343878\pi\)
−0.471042 + 0.882111i \(0.656122\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.79796 1.79796i 0.0219263 0.0219263i
\(83\) 13.7071 + 13.7071i 0.165146 + 0.165146i 0.784842 0.619696i \(-0.212744\pi\)
−0.619696 + 0.784842i \(0.712744\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −72.9898 −0.848719
\(87\) 0 0
\(88\) 11.5959 + 11.5959i 0.131772 + 0.131772i
\(89\) 58.6061i 0.658496i 0.944244 + 0.329248i \(0.106795\pi\)
−0.944244 + 0.329248i \(0.893205\pi\)
\(90\) 0 0
\(91\) 120.990 1.32956
\(92\) −37.3939 + 37.3939i −0.406455 + 0.406455i
\(93\) 0 0
\(94\) 77.3939i 0.823339i
\(95\) 0 0
\(96\) 0 0
\(97\) 15.9898 15.9898i 0.164843 0.164843i −0.619865 0.784708i \(-0.712813\pi\)
0.784708 + 0.619865i \(0.212813\pi\)
\(98\) −109.384 109.384i −1.11616 1.11616i
\(99\) 0 0
\(100\) 0 0
\(101\) 128.384 1.27113 0.635563 0.772049i \(-0.280768\pi\)
0.635563 + 0.772049i \(0.280768\pi\)
\(102\) 0 0
\(103\) 32.4949 + 32.4949i 0.315484 + 0.315484i 0.847030 0.531545i \(-0.178388\pi\)
−0.531545 + 0.847030i \(0.678388\pi\)
\(104\) 27.1918i 0.261460i
\(105\) 0 0
\(106\) 138.182 1.30360
\(107\) 24.8990 24.8990i 0.232701 0.232701i −0.581118 0.813819i \(-0.697385\pi\)
0.813819 + 0.581118i \(0.197385\pi\)
\(108\) 0 0
\(109\) 130.000i 1.19266i 0.802739 + 0.596330i \(0.203375\pi\)
−0.802739 + 0.596330i \(0.796625\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −35.5959 + 35.5959i −0.317821 + 0.317821i
\(113\) 8.70714 + 8.70714i 0.0770544 + 0.0770544i 0.744584 0.667529i \(-0.232648\pi\)
−0.667529 + 0.744584i \(0.732648\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −12.4041 −0.106932
\(117\) 0 0
\(118\) 20.0000 + 20.0000i 0.169492 + 0.169492i
\(119\) 108.586i 0.912485i
\(120\) 0 0
\(121\) −87.3837 −0.722179
\(122\) −63.1918 + 63.1918i −0.517966 + 0.517966i
\(123\) 0 0
\(124\) 0.808164i 0.00651745i
\(125\) 0 0
\(126\) 0 0
\(127\) 50.2929 50.2929i 0.396007 0.396007i −0.480815 0.876822i \(-0.659659\pi\)
0.876822 + 0.480815i \(0.159659\pi\)
\(128\) 8.00000 + 8.00000i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 0 0
\(131\) 114.202 0.871771 0.435886 0.900002i \(-0.356435\pi\)
0.435886 + 0.900002i \(0.356435\pi\)
\(132\) 0 0
\(133\) −55.1918 55.1918i −0.414976 0.414976i
\(134\) 80.1816i 0.598370i
\(135\) 0 0
\(136\) −24.4041 −0.179442
\(137\) 16.1010 16.1010i 0.117526 0.117526i −0.645898 0.763424i \(-0.723517\pi\)
0.763424 + 0.645898i \(0.223517\pi\)
\(138\) 0 0
\(139\) 73.7980i 0.530921i 0.964122 + 0.265460i \(0.0855239\pi\)
−0.964122 + 0.265460i \(0.914476\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −25.7980 + 25.7980i −0.181676 + 0.181676i
\(143\) −39.4143 39.4143i −0.275624 0.275624i
\(144\) 0 0
\(145\) 0 0
\(146\) 113.596 0.778054
\(147\) 0 0
\(148\) −54.0000 54.0000i −0.364865 0.364865i
\(149\) 270.767i 1.81723i 0.417634 + 0.908615i \(0.362859\pi\)
−0.417634 + 0.908615i \(0.637141\pi\)
\(150\) 0 0
\(151\) 21.6163 0.143154 0.0715772 0.997435i \(-0.477197\pi\)
0.0715772 + 0.997435i \(0.477197\pi\)
\(152\) −12.4041 + 12.4041i −0.0816058 + 0.0816058i
\(153\) 0 0
\(154\) 103.192i 0.670077i
\(155\) 0 0
\(156\) 0 0
\(157\) −123.000 + 123.000i −0.783439 + 0.783439i −0.980410 0.196970i \(-0.936890\pi\)
0.196970 + 0.980410i \(0.436890\pi\)
\(158\) 139.373 + 139.373i 0.882111 + 0.882111i
\(159\) 0 0
\(160\) 0 0
\(161\) −332.767 −2.06688
\(162\) 0 0
\(163\) 112.495 + 112.495i 0.690153 + 0.690153i 0.962265 0.272113i \(-0.0877223\pi\)
−0.272113 + 0.962265i \(0.587722\pi\)
\(164\) 3.59592i 0.0219263i
\(165\) 0 0
\(166\) 27.4143 0.165146
\(167\) 176.677 176.677i 1.05794 1.05794i 0.0597286 0.998215i \(-0.480976\pi\)
0.998215 0.0597286i \(-0.0190235\pi\)
\(168\) 0 0
\(169\) 76.5755i 0.453110i
\(170\) 0 0
\(171\) 0 0
\(172\) −72.9898 + 72.9898i −0.424359 + 0.424359i
\(173\) 142.889 + 142.889i 0.825947 + 0.825947i 0.986953 0.161007i \(-0.0514741\pi\)
−0.161007 + 0.986953i \(0.551474\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 23.1918 0.131772
\(177\) 0 0
\(178\) 58.6061 + 58.6061i 0.329248 + 0.329248i
\(179\) 133.171i 0.743974i −0.928238 0.371987i \(-0.878677\pi\)
0.928238 0.371987i \(-0.121323\pi\)
\(180\) 0 0
\(181\) 137.192 0.757966 0.378983 0.925404i \(-0.376274\pi\)
0.378983 + 0.925404i \(0.376274\pi\)
\(182\) 120.990 120.990i 0.664779 0.664779i
\(183\) 0 0
\(184\) 74.7878i 0.406455i
\(185\) 0 0
\(186\) 0 0
\(187\) −35.3735 + 35.3735i −0.189163 + 0.189163i
\(188\) −77.3939 77.3939i −0.411670 0.411670i
\(189\) 0 0
\(190\) 0 0
\(191\) 266.606 1.39584 0.697922 0.716174i \(-0.254108\pi\)
0.697922 + 0.716174i \(0.254108\pi\)
\(192\) 0 0
\(193\) −117.384 117.384i −0.608206 0.608206i 0.334271 0.942477i \(-0.391510\pi\)
−0.942477 + 0.334271i \(0.891510\pi\)
\(194\) 31.9796i 0.164843i
\(195\) 0 0
\(196\) −218.767 −1.11616
\(197\) −246.687 + 246.687i −1.25222 + 1.25222i −0.297493 + 0.954724i \(0.596150\pi\)
−0.954724 + 0.297493i \(0.903850\pi\)
\(198\) 0 0
\(199\) 154.565i 0.776710i −0.921510 0.388355i \(-0.873043\pi\)
0.921510 0.388355i \(-0.126957\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 128.384 128.384i 0.635563 0.635563i
\(203\) −55.1918 55.1918i −0.271881 0.271881i
\(204\) 0 0
\(205\) 0 0
\(206\) 64.9898 0.315484
\(207\) 0 0
\(208\) −27.1918 27.1918i −0.130730 0.130730i
\(209\) 35.9592i 0.172053i
\(210\) 0 0
\(211\) 190.747 0.904014 0.452007 0.892014i \(-0.350708\pi\)
0.452007 + 0.892014i \(0.350708\pi\)
\(212\) 138.182 138.182i 0.651800 0.651800i
\(213\) 0 0
\(214\) 49.7980i 0.232701i
\(215\) 0 0
\(216\) 0 0
\(217\) −3.59592 + 3.59592i −0.0165711 + 0.0165711i
\(218\) 130.000 + 130.000i 0.596330 + 0.596330i
\(219\) 0 0
\(220\) 0 0
\(221\) 82.9490 0.375335
\(222\) 0 0
\(223\) 16.6765 + 16.6765i 0.0747826 + 0.0747826i 0.743509 0.668726i \(-0.233160\pi\)
−0.668726 + 0.743509i \(0.733160\pi\)
\(224\) 71.1918i 0.317821i
\(225\) 0 0
\(226\) 17.4143 0.0770544
\(227\) −42.0704 + 42.0704i −0.185332 + 0.185332i −0.793675 0.608342i \(-0.791835\pi\)
0.608342 + 0.793675i \(0.291835\pi\)
\(228\) 0 0
\(229\) 173.939i 0.759558i 0.925077 + 0.379779i \(0.124000\pi\)
−0.925077 + 0.379779i \(0.876000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −12.4041 + 12.4041i −0.0534659 + 0.0534659i
\(233\) −298.262 298.262i −1.28010 1.28010i −0.940612 0.339483i \(-0.889748\pi\)
−0.339483 0.940612i \(-0.610252\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 40.0000 0.169492
\(237\) 0 0
\(238\) −108.586 108.586i −0.456242 0.456242i
\(239\) 37.2122i 0.155700i −0.996965 0.0778499i \(-0.975195\pi\)
0.996965 0.0778499i \(-0.0248055\pi\)
\(240\) 0 0
\(241\) 165.939 0.688543 0.344271 0.938870i \(-0.388126\pi\)
0.344271 + 0.938870i \(0.388126\pi\)
\(242\) −87.3837 + 87.3837i −0.361090 + 0.361090i
\(243\) 0 0
\(244\) 126.384i 0.517966i
\(245\) 0 0
\(246\) 0 0
\(247\) 42.1612 42.1612i 0.170693 0.170693i
\(248\) 0.808164 + 0.808164i 0.00325873 + 0.00325873i
\(249\) 0 0
\(250\) 0 0
\(251\) −255.414 −1.01759 −0.508793 0.860889i \(-0.669908\pi\)
−0.508793 + 0.860889i \(0.669908\pi\)
\(252\) 0 0
\(253\) 108.404 + 108.404i 0.428475 + 0.428475i
\(254\) 100.586i 0.396007i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −270.485 + 270.485i −1.05247 + 1.05247i −0.0539246 + 0.998545i \(0.517173\pi\)
−0.998545 + 0.0539246i \(0.982827\pi\)
\(258\) 0 0
\(259\) 480.545i 1.85539i
\(260\) 0 0
\(261\) 0 0
\(262\) 114.202 114.202i 0.435886 0.435886i
\(263\) 1.30306 + 1.30306i 0.00495461 + 0.00495461i 0.709580 0.704625i \(-0.248885\pi\)
−0.704625 + 0.709580i \(0.748885\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −110.384 −0.414976
\(267\) 0 0
\(268\) 80.1816 + 80.1816i 0.299185 + 0.299185i
\(269\) 41.1510i 0.152978i −0.997070 0.0764889i \(-0.975629\pi\)
0.997070 0.0764889i \(-0.0243710\pi\)
\(270\) 0 0
\(271\) −484.727 −1.78866 −0.894329 0.447409i \(-0.852347\pi\)
−0.894329 + 0.447409i \(0.852347\pi\)
\(272\) −24.4041 + 24.4041i −0.0897209 + 0.0897209i
\(273\) 0 0
\(274\) 32.2020i 0.117526i
\(275\) 0 0
\(276\) 0 0
\(277\) −51.9898 + 51.9898i −0.187689 + 0.187689i −0.794696 0.607007i \(-0.792370\pi\)
0.607007 + 0.794696i \(0.292370\pi\)
\(278\) 73.7980 + 73.7980i 0.265460 + 0.265460i
\(279\) 0 0
\(280\) 0 0
\(281\) −242.524 −0.863076 −0.431538 0.902095i \(-0.642029\pi\)
−0.431538 + 0.902095i \(0.642029\pi\)
\(282\) 0 0
\(283\) −104.717 104.717i −0.370026 0.370026i 0.497461 0.867487i \(-0.334266\pi\)
−0.867487 + 0.497461i \(0.834266\pi\)
\(284\) 51.5959i 0.181676i
\(285\) 0 0
\(286\) −78.8286 −0.275624
\(287\) 16.0000 16.0000i 0.0557491 0.0557491i
\(288\) 0 0
\(289\) 214.555i 0.742405i
\(290\) 0 0
\(291\) 0 0
\(292\) 113.596 113.596i 0.389027 0.389027i
\(293\) −60.9092 60.9092i −0.207881 0.207881i 0.595485 0.803366i \(-0.296960\pi\)
−0.803366 + 0.595485i \(0.796960\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −108.000 −0.364865
\(297\) 0 0
\(298\) 270.767 + 270.767i 0.908615 + 0.908615i
\(299\) 254.202i 0.850174i
\(300\) 0 0
\(301\) −649.535 −2.15792
\(302\) 21.6163 21.6163i 0.0715772 0.0715772i
\(303\) 0 0
\(304\) 24.8082i 0.0816058i
\(305\) 0 0
\(306\) 0 0
\(307\) 201.303 201.303i 0.655710 0.655710i −0.298652 0.954362i \(-0.596537\pi\)
0.954362 + 0.298652i \(0.0965369\pi\)
\(308\) 103.192 + 103.192i 0.335038 + 0.335038i
\(309\) 0 0
\(310\) 0 0
\(311\) −559.737 −1.79980 −0.899898 0.436100i \(-0.856359\pi\)
−0.899898 + 0.436100i \(0.856359\pi\)
\(312\) 0 0
\(313\) 93.7673 + 93.7673i 0.299576 + 0.299576i 0.840848 0.541272i \(-0.182057\pi\)
−0.541272 + 0.840848i \(0.682057\pi\)
\(314\) 246.000i 0.783439i
\(315\) 0 0
\(316\) 278.747 0.882111
\(317\) 362.828 362.828i 1.14457 1.14457i 0.156962 0.987605i \(-0.449830\pi\)
0.987605 0.156962i \(-0.0501699\pi\)
\(318\) 0 0
\(319\) 35.9592i 0.112725i
\(320\) 0 0
\(321\) 0 0
\(322\) −332.767 + 332.767i −1.03344 + 1.03344i
\(323\) −37.8388 37.8388i −0.117148 0.117148i
\(324\) 0 0
\(325\) 0 0
\(326\) 224.990 0.690153
\(327\) 0 0
\(328\) −3.59592 3.59592i −0.0109632 0.0109632i
\(329\) 688.727i 2.09339i
\(330\) 0 0
\(331\) 14.0204 0.0423577 0.0211789 0.999776i \(-0.493258\pi\)
0.0211789 + 0.999776i \(0.493258\pi\)
\(332\) 27.4143 27.4143i 0.0825732 0.0825732i
\(333\) 0 0
\(334\) 353.353i 1.05794i
\(335\) 0 0
\(336\) 0 0
\(337\) 166.373 166.373i 0.493690 0.493690i −0.415777 0.909467i \(-0.636490\pi\)
0.909467 + 0.415777i \(0.136490\pi\)
\(338\) −76.5755 76.5755i −0.226555 0.226555i
\(339\) 0 0
\(340\) 0 0
\(341\) 2.34285 0.00687053
\(342\) 0 0
\(343\) −537.353 537.353i −1.56663 1.56663i
\(344\) 145.980i 0.424359i
\(345\) 0 0
\(346\) 285.778 0.825947
\(347\) 163.505 163.505i 0.471196 0.471196i −0.431105 0.902302i \(-0.641876\pi\)
0.902302 + 0.431105i \(0.141876\pi\)
\(348\) 0 0
\(349\) 280.000i 0.802292i −0.916014 0.401146i \(-0.868612\pi\)
0.916014 0.401146i \(-0.131388\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 23.1918 23.1918i 0.0658859 0.0658859i
\(353\) 261.495 + 261.495i 0.740779 + 0.740779i 0.972728 0.231949i \(-0.0745103\pi\)
−0.231949 + 0.972728i \(0.574510\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 117.212 0.329248
\(357\) 0 0
\(358\) −133.171 133.171i −0.371987 0.371987i
\(359\) 425.090i 1.18409i 0.805903 + 0.592047i \(0.201680\pi\)
−0.805903 + 0.592047i \(0.798320\pi\)
\(360\) 0 0
\(361\) 322.535 0.893448
\(362\) 137.192 137.192i 0.378983 0.378983i
\(363\) 0 0
\(364\) 241.980i 0.664779i
\(365\) 0 0
\(366\) 0 0
\(367\) 316.495 316.495i 0.862384 0.862384i −0.129231 0.991615i \(-0.541251\pi\)
0.991615 + 0.129231i \(0.0412508\pi\)
\(368\) 74.7878 + 74.7878i 0.203228 + 0.203228i
\(369\) 0 0
\(370\) 0 0
\(371\) 1229.68 3.31449
\(372\) 0 0
\(373\) −210.939 210.939i −0.565519 0.565519i 0.365351 0.930870i \(-0.380949\pi\)
−0.930870 + 0.365351i \(0.880949\pi\)
\(374\) 70.7469i 0.189163i
\(375\) 0 0
\(376\) −154.788 −0.411670
\(377\) 42.1612 42.1612i 0.111833 0.111833i
\(378\) 0 0
\(379\) 344.182i 0.908131i −0.890968 0.454065i \(-0.849973\pi\)
0.890968 0.454065i \(-0.150027\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 266.606 266.606i 0.697922 0.697922i
\(383\) −409.707 409.707i −1.06973 1.06973i −0.997379 0.0723523i \(-0.976949\pi\)
−0.0723523 0.997379i \(-0.523051\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −234.767 −0.608206
\(387\) 0 0
\(388\) −31.9796 31.9796i −0.0824216 0.0824216i
\(389\) 301.151i 0.774167i −0.922045 0.387084i \(-0.873482\pi\)
0.922045 0.387084i \(-0.126518\pi\)
\(390\) 0 0
\(391\) −228.141 −0.583480
\(392\) −218.767 + 218.767i −0.558080 + 0.558080i
\(393\) 0 0
\(394\) 493.373i 1.25222i
\(395\) 0 0
\(396\) 0 0
\(397\) −479.343 + 479.343i −1.20741 + 1.20741i −0.235551 + 0.971862i \(0.575689\pi\)
−0.971862 + 0.235551i \(0.924311\pi\)
\(398\) −154.565 154.565i −0.388355 0.388355i
\(399\) 0 0
\(400\) 0 0
\(401\) −101.233 −0.252451 −0.126225 0.992002i \(-0.540286\pi\)
−0.126225 + 0.992002i \(0.540286\pi\)
\(402\) 0 0
\(403\) −2.74693 2.74693i −0.00681621 0.00681621i
\(404\) 256.767i 0.635563i
\(405\) 0 0
\(406\) −110.384 −0.271881
\(407\) −156.545 + 156.545i −0.384631 + 0.384631i
\(408\) 0 0
\(409\) 257.110i 0.628631i −0.949319 0.314316i \(-0.898225\pi\)
0.949319 0.314316i \(-0.101775\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 64.9898 64.9898i 0.157742 0.157742i
\(413\) 177.980 + 177.980i 0.430943 + 0.430943i
\(414\) 0 0
\(415\) 0 0
\(416\) −54.3837 −0.130730
\(417\) 0 0
\(418\) 35.9592 + 35.9592i 0.0860267 + 0.0860267i
\(419\) 375.959i 0.897277i 0.893713 + 0.448639i \(0.148091\pi\)
−0.893713 + 0.448639i \(0.851909\pi\)
\(420\) 0 0
\(421\) 158.829 0.377265 0.188633 0.982048i \(-0.439595\pi\)
0.188633 + 0.982048i \(0.439595\pi\)
\(422\) 190.747 190.747i 0.452007 0.452007i
\(423\) 0 0
\(424\) 276.363i 0.651800i
\(425\) 0 0
\(426\) 0 0
\(427\) −562.343 + 562.343i −1.31696 + 1.31696i
\(428\) −49.7980 49.7980i −0.116350 0.116350i
\(429\) 0 0
\(430\) 0 0
\(431\) 152.182 0.353090 0.176545 0.984293i \(-0.443508\pi\)
0.176545 + 0.984293i \(0.443508\pi\)
\(432\) 0 0
\(433\) 254.918 + 254.918i 0.588726 + 0.588726i 0.937286 0.348560i \(-0.113329\pi\)
−0.348560 + 0.937286i \(0.613329\pi\)
\(434\) 7.19184i 0.0165711i
\(435\) 0 0
\(436\) 260.000 0.596330
\(437\) −115.959 + 115.959i −0.265353 + 0.265353i
\(438\) 0 0
\(439\) 299.373i 0.681944i 0.940073 + 0.340972i \(0.110756\pi\)
−0.940073 + 0.340972i \(0.889244\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 82.9490 82.9490i 0.187667 0.187667i
\(443\) 144.717 + 144.717i 0.326676 + 0.326676i 0.851321 0.524645i \(-0.175802\pi\)
−0.524645 + 0.851321i \(0.675802\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 33.3531 0.0747826
\(447\) 0 0
\(448\) 71.1918 + 71.1918i 0.158910 + 0.158910i
\(449\) 846.727i 1.88581i 0.333069 + 0.942903i \(0.391916\pi\)
−0.333069 + 0.942903i \(0.608084\pi\)
\(450\) 0 0
\(451\) −10.4245 −0.0231142
\(452\) 17.4143 17.4143i 0.0385272 0.0385272i
\(453\) 0 0
\(454\) 84.1408i 0.185332i
\(455\) 0 0
\(456\) 0 0
\(457\) 38.3939 38.3939i 0.0840129 0.0840129i −0.663852 0.747864i \(-0.731079\pi\)
0.747864 + 0.663852i \(0.231079\pi\)
\(458\) 173.939 + 173.939i 0.379779 + 0.379779i
\(459\) 0 0
\(460\) 0 0
\(461\) −78.7265 −0.170773 −0.0853867 0.996348i \(-0.527213\pi\)
−0.0853867 + 0.996348i \(0.527213\pi\)
\(462\) 0 0
\(463\) 461.485 + 461.485i 0.996727 + 0.996727i 0.999995 0.00326746i \(-0.00104007\pi\)
−0.00326746 + 0.999995i \(0.501040\pi\)
\(464\) 24.8082i 0.0534659i
\(465\) 0 0
\(466\) −596.524 −1.28010
\(467\) 17.3031 17.3031i 0.0370515 0.0370515i −0.688338 0.725390i \(-0.741660\pi\)
0.725390 + 0.688338i \(0.241660\pi\)
\(468\) 0 0
\(469\) 713.535i 1.52140i
\(470\) 0 0
\(471\) 0 0
\(472\) 40.0000 40.0000i 0.0847458 0.0847458i
\(473\) 211.596 + 211.596i 0.447349 + 0.447349i
\(474\) 0 0
\(475\) 0 0
\(476\) −217.171 −0.456242
\(477\) 0 0
\(478\) −37.2122 37.2122i −0.0778499 0.0778499i
\(479\) 776.727i 1.62156i −0.585352 0.810779i \(-0.699044\pi\)
0.585352 0.810779i \(-0.300956\pi\)
\(480\) 0 0
\(481\) 367.090 0.763180
\(482\) 165.939 165.939i 0.344271 0.344271i
\(483\) 0 0
\(484\) 174.767i 0.361090i
\(485\) 0 0
\(486\) 0 0
\(487\) 439.423 439.423i 0.902307 0.902307i −0.0933285 0.995635i \(-0.529751\pi\)
0.995635 + 0.0933285i \(0.0297507\pi\)
\(488\) 126.384 + 126.384i 0.258983 + 0.258983i
\(489\) 0 0
\(490\) 0 0
\(491\) −246.080 −0.501180 −0.250590 0.968093i \(-0.580625\pi\)
−0.250590 + 0.968093i \(0.580625\pi\)
\(492\) 0 0
\(493\) −37.8388 37.8388i −0.0767521 0.0767521i
\(494\) 84.3224i 0.170693i
\(495\) 0 0
\(496\) 1.61633 0.00325873
\(497\) −229.576 + 229.576i −0.461923 + 0.461923i
\(498\) 0 0
\(499\) 597.839i 1.19807i 0.800721 + 0.599037i \(0.204450\pi\)
−0.800721 + 0.599037i \(0.795550\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −255.414 + 255.414i −0.508793 + 0.508793i
\(503\) −516.817 516.817i −1.02747 1.02747i −0.999612 0.0278580i \(-0.991131\pi\)
−0.0278580 0.999612i \(-0.508869\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 216.808 0.428475
\(507\) 0 0
\(508\) −100.586 100.586i −0.198003 0.198003i
\(509\) 452.059i 0.888132i −0.895994 0.444066i \(-0.853536\pi\)
0.895994 0.444066i \(-0.146464\pi\)
\(510\) 0 0
\(511\) 1010.89 1.97825
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 540.969i 1.05247i
\(515\) 0 0
\(516\) 0 0
\(517\) −224.363 + 224.363i −0.433971 + 0.433971i
\(518\) −480.545 480.545i −0.927693 0.927693i
\(519\) 0 0
\(520\) 0 0
\(521\) −779.494 −1.49615 −0.748075 0.663614i \(-0.769022\pi\)
−0.748075 + 0.663614i \(0.769022\pi\)
\(522\) 0 0
\(523\) −179.283 179.283i −0.342797 0.342797i 0.514621 0.857418i \(-0.327933\pi\)
−0.857418 + 0.514621i \(0.827933\pi\)
\(524\) 228.404i 0.435886i
\(525\) 0 0
\(526\) 2.60612 0.00495461
\(527\) −2.46531 + 2.46531i −0.00467801 + 0.00467801i
\(528\) 0 0
\(529\) 170.151i 0.321647i
\(530\) 0 0
\(531\) 0 0
\(532\) −110.384 + 110.384i −0.207488 + 0.207488i
\(533\) 12.2225 + 12.2225i 0.0229314 + 0.0229314i
\(534\) 0 0
\(535\) 0 0
\(536\) 160.363 0.299185
\(537\) 0 0
\(538\) −41.1510 41.1510i −0.0764889 0.0764889i
\(539\) 634.202i 1.17663i
\(540\) 0 0
\(541\) −385.110 −0.711849 −0.355924 0.934515i \(-0.615834\pi\)
−0.355924 + 0.934515i \(0.615834\pi\)
\(542\) −484.727 + 484.727i −0.894329 + 0.894329i
\(543\) 0 0
\(544\) 48.8082i 0.0897209i
\(545\) 0 0
\(546\) 0 0
\(547\) 504.372 504.372i 0.922070 0.922070i −0.0751053 0.997176i \(-0.523929\pi\)
0.997176 + 0.0751053i \(0.0239293\pi\)
\(548\) −32.2020 32.2020i −0.0587628 0.0587628i
\(549\) 0 0
\(550\) 0 0
\(551\) −38.4653 −0.0698100
\(552\) 0 0
\(553\) 1240.28 + 1240.28i 2.24282 + 2.24282i
\(554\) 103.980i 0.187689i
\(555\) 0 0
\(556\) 147.596 0.265460
\(557\) −130.101 + 130.101i −0.233575 + 0.233575i −0.814183 0.580608i \(-0.802815\pi\)
0.580608 + 0.814183i \(0.302815\pi\)
\(558\) 0 0
\(559\) 496.182i 0.887624i
\(560\) 0 0
\(561\) 0 0
\(562\) −242.524 + 242.524i −0.431538 + 0.431538i
\(563\) 666.879 + 666.879i 1.18451 + 1.18451i 0.978563 + 0.205946i \(0.0660270\pi\)
0.205946 + 0.978563i \(0.433973\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −209.435 −0.370026
\(567\) 0 0
\(568\) 51.5959 + 51.5959i 0.0908379 + 0.0908379i
\(569\) 987.494i 1.73549i 0.497010 + 0.867745i \(0.334431\pi\)
−0.497010 + 0.867745i \(0.665569\pi\)
\(570\) 0 0
\(571\) 452.767 0.792938 0.396469 0.918048i \(-0.370236\pi\)
0.396469 + 0.918048i \(0.370236\pi\)
\(572\) −78.8286 + 78.8286i −0.137812 + 0.137812i
\(573\) 0 0
\(574\) 32.0000i 0.0557491i
\(575\) 0 0
\(576\) 0 0
\(577\) −463.000 + 463.000i −0.802426 + 0.802426i −0.983474 0.181048i \(-0.942051\pi\)
0.181048 + 0.983474i \(0.442051\pi\)
\(578\) 214.555 + 214.555i 0.371203 + 0.371203i
\(579\) 0 0
\(580\) 0 0
\(581\) 243.959 0.419895
\(582\) 0 0
\(583\) −400.586 400.586i −0.687111 0.687111i
\(584\) 227.192i 0.389027i
\(585\) 0 0
\(586\) −121.818 −0.207881
\(587\) 375.909 375.909i 0.640390 0.640390i −0.310261 0.950651i \(-0.600416\pi\)
0.950651 + 0.310261i \(0.100416\pi\)
\(588\) 0 0
\(589\) 2.50613i 0.00425490i
\(590\) 0 0
\(591\) 0 0
\(592\) −108.000 + 108.000i −0.182432 + 0.182432i
\(593\) −398.646 398.646i −0.672253 0.672253i 0.285982 0.958235i \(-0.407680\pi\)
−0.958235 + 0.285982i \(0.907680\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 541.535 0.908615
\(597\) 0 0
\(598\) −254.202 254.202i −0.425087 0.425087i
\(599\) 509.131i 0.849968i 0.905201 + 0.424984i \(0.139720\pi\)
−0.905201 + 0.424984i \(0.860280\pi\)
\(600\) 0 0
\(601\) −390.302 −0.649421 −0.324711 0.945813i \(-0.605267\pi\)
−0.324711 + 0.945813i \(0.605267\pi\)
\(602\) −649.535 + 649.535i −1.07896 + 1.07896i
\(603\) 0 0
\(604\) 43.2327i 0.0715772i
\(605\) 0 0
\(606\) 0 0
\(607\) −494.030 + 494.030i −0.813887 + 0.813887i −0.985214 0.171327i \(-0.945195\pi\)
0.171327 + 0.985214i \(0.445195\pi\)
\(608\) 24.8082 + 24.8082i 0.0408029 + 0.0408029i
\(609\) 0 0
\(610\) 0 0
\(611\) 526.120 0.861081
\(612\) 0 0
\(613\) −74.1102 74.1102i −0.120898 0.120898i 0.644069 0.764967i \(-0.277245\pi\)
−0.764967 + 0.644069i \(0.777245\pi\)
\(614\) 402.606i 0.655710i
\(615\) 0 0
\(616\) 206.384 0.335038
\(617\) −398.221 + 398.221i −0.645416 + 0.645416i −0.951882 0.306466i \(-0.900853\pi\)
0.306466 + 0.951882i \(0.400853\pi\)
\(618\) 0 0
\(619\) 838.120i 1.35399i 0.735987 + 0.676995i \(0.236718\pi\)
−0.735987 + 0.676995i \(0.763282\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −559.737 + 559.737i −0.899898 + 0.899898i
\(623\) 521.535 + 521.535i 0.837134 + 0.837134i
\(624\) 0 0
\(625\) 0 0
\(626\) 187.535 0.299576
\(627\) 0 0
\(628\) 246.000 + 246.000i 0.391720 + 0.391720i
\(629\) 329.455i 0.523776i
\(630\) 0 0
\(631\) 149.980 0.237686 0.118843 0.992913i \(-0.462082\pi\)
0.118843 + 0.992913i \(0.462082\pi\)
\(632\) 278.747 278.747i 0.441055 0.441055i
\(633\) 0 0
\(634\) 725.655i 1.14457i
\(635\) 0 0
\(636\) 0 0
\(637\) 743.586 743.586i 1.16732 1.16732i
\(638\) 35.9592 + 35.9592i 0.0563624 + 0.0563624i
\(639\) 0 0
\(640\) 0 0
\(641\) 378.243 0.590082 0.295041 0.955485i \(-0.404667\pi\)
0.295041 + 0.955485i \(0.404667\pi\)
\(642\) 0 0
\(643\) 285.526 + 285.526i 0.444052 + 0.444052i 0.893371 0.449319i \(-0.148333\pi\)
−0.449319 + 0.893371i \(0.648333\pi\)
\(644\) 665.535i 1.03344i
\(645\) 0 0
\(646\) −75.6776 −0.117148
\(647\) −360.677 + 360.677i −0.557460 + 0.557460i −0.928583 0.371124i \(-0.878973\pi\)
0.371124 + 0.928583i \(0.378973\pi\)
\(648\) 0 0
\(649\) 115.959i 0.178674i
\(650\) 0 0
\(651\) 0 0
\(652\) 224.990 224.990i 0.345076 0.345076i
\(653\) 547.838 + 547.838i 0.838955 + 0.838955i 0.988721 0.149766i \(-0.0478521\pi\)
−0.149766 + 0.988721i \(0.547852\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −7.19184 −0.0109632
\(657\) 0 0
\(658\) −688.727 688.727i −1.04670 1.04670i
\(659\) 25.5755i 0.0388096i 0.999812 + 0.0194048i \(0.00617712\pi\)
−0.999812 + 0.0194048i \(0.993823\pi\)
\(660\) 0 0
\(661\) −824.727 −1.24770 −0.623848 0.781546i \(-0.714431\pi\)
−0.623848 + 0.781546i \(0.714431\pi\)
\(662\) 14.0204 14.0204i 0.0211789 0.0211789i
\(663\) 0 0
\(664\) 54.8286i 0.0825732i
\(665\) 0 0
\(666\) 0 0
\(667\) −115.959 + 115.959i −0.173852 + 0.173852i
\(668\) −353.353 353.353i −0.528972 0.528972i
\(669\) 0 0
\(670\) 0 0
\(671\) 366.384 0.546026
\(672\) 0 0
\(673\) −902.857 902.857i −1.34154 1.34154i −0.894527 0.447014i \(-0.852487\pi\)
−0.447014 0.894527i \(-0.647513\pi\)
\(674\) 332.747i 0.493690i
\(675\) 0 0
\(676\) −153.151 −0.226555
\(677\) 688.160 688.160i 1.01648 1.01648i 0.0166229 0.999862i \(-0.494709\pi\)
0.999862 0.0166229i \(-0.00529149\pi\)
\(678\) 0 0
\(679\) 284.586i 0.419125i
\(680\) 0 0
\(681\) 0 0
\(682\) 2.34285 2.34285i 0.00343527 0.00343527i
\(683\) 1.92959 + 1.92959i 0.00282518 + 0.00282518i 0.708518 0.705693i \(-0.249364\pi\)
−0.705693 + 0.708518i \(0.749364\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1074.71 −1.56663
\(687\) 0 0
\(688\) 145.980 + 145.980i 0.212180 + 0.212180i
\(689\) 939.353i 1.36336i
\(690\) 0 0
\(691\) −162.706 −0.235465 −0.117732 0.993045i \(-0.537562\pi\)
−0.117732 + 0.993045i \(0.537562\pi\)
\(692\) 285.778 285.778i 0.412973 0.412973i
\(693\) 0 0
\(694\) 327.010i 0.471196i
\(695\) 0 0
\(696\) 0 0
\(697\) 10.9694 10.9694i 0.0157380 0.0157380i
\(698\) −280.000 280.000i −0.401146 0.401146i
\(699\) 0 0
\(700\) 0 0
\(701\) −260.222 −0.371216 −0.185608 0.982624i \(-0.559425\pi\)
−0.185608 + 0.982624i \(0.559425\pi\)
\(702\) 0 0
\(703\) −167.455 167.455i −0.238201 0.238201i
\(704\) 46.3837i 0.0658859i
\(705\) 0 0
\(706\) 522.990 0.740779
\(707\) 1142.48 1142.48i 1.61596 1.61596i
\(708\) 0 0
\(709\) 151.637i 0.213874i −0.994266 0.106937i \(-0.965896\pi\)
0.994266 0.106937i \(-0.0341043\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 117.212 117.212i 0.164624 0.164624i
\(713\) 7.55510 + 7.55510i 0.0105962 + 0.0105962i
\(714\) 0 0
\(715\) 0 0
\(716\) −266.343 −0.371987
\(717\) 0 0
\(718\) 425.090 + 425.090i 0.592047 + 0.592047i
\(719\) 1281.82i 1.78278i −0.453241 0.891388i \(-0.649732\pi\)
0.453241 0.891388i \(-0.350268\pi\)
\(720\) 0 0
\(721\) 578.343 0.802140
\(722\) 322.535 322.535i 0.446724 0.446724i
\(723\) 0 0
\(724\) 274.384i 0.378983i
\(725\) 0 0
\(726\) 0 0
\(727\) −638.352 + 638.352i −0.878063 + 0.878063i −0.993334 0.115271i \(-0.963226\pi\)
0.115271 + 0.993334i \(0.463226\pi\)
\(728\) −241.980 241.980i −0.332390 0.332390i
\(729\) 0 0
\(730\) 0 0
\(731\) −445.312 −0.609182
\(732\) 0 0
\(733\) −400.414 400.414i −0.546268 0.546268i 0.379091 0.925359i \(-0.376237\pi\)
−0.925359 + 0.379091i \(0.876237\pi\)
\(734\) 632.990i 0.862384i
\(735\) 0 0
\(736\) 149.576 0.203228
\(737\) 232.445 232.445i 0.315393 0.315393i
\(738\) 0 0
\(739\) 382.647i 0.517790i −0.965905 0.258895i \(-0.916642\pi\)
0.965905 0.258895i \(-0.0833584\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1229.68 1229.68i 1.65724 1.65724i
\(743\) 135.383 + 135.383i 0.182211 + 0.182211i 0.792319 0.610108i \(-0.208874\pi\)
−0.610108 + 0.792319i \(0.708874\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −421.878 −0.565519
\(747\) 0 0
\(748\) 70.7469 + 70.7469i 0.0945815 + 0.0945815i
\(749\) 443.151i 0.591657i
\(750\) 0 0
\(751\) −571.273 −0.760684 −0.380342 0.924846i \(-0.624194\pi\)
−0.380342 + 0.924846i \(0.624194\pi\)
\(752\) −154.788 + 154.788i −0.205835 + 0.205835i
\(753\) 0 0
\(754\) 84.3224i 0.111833i
\(755\) 0 0
\(756\) 0 0
\(757\) 917.908 917.908i 1.21256 1.21256i 0.242379 0.970182i \(-0.422072\pi\)
0.970182 0.242379i \(-0.0779276\pi\)
\(758\) −344.182 344.182i −0.454065 0.454065i
\(759\) 0 0
\(760\) 0 0
\(761\) 616.261 0.809804 0.404902 0.914360i \(-0.367306\pi\)
0.404902 + 0.914360i \(0.367306\pi\)
\(762\) 0 0
\(763\) 1156.87 + 1156.87i 1.51621 + 1.51621i
\(764\) 533.212i 0.697922i
\(765\) 0 0
\(766\) −819.414 −1.06973
\(767\) −135.959 + 135.959i −0.177261 + 0.177261i
\(768\) 0 0
\(769\) 154.424i 0.200812i −0.994947 0.100406i \(-0.967986\pi\)
0.994947 0.100406i \(-0.0320142\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −234.767 + 234.767i −0.304103 + 0.304103i
\(773\) −184.323 184.323i −0.238452 0.238452i 0.577757 0.816209i \(-0.303928\pi\)
−0.816209 + 0.577757i \(0.803928\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −63.9592 −0.0824216
\(777\) 0 0
\(778\) −301.151 301.151i −0.387084 0.387084i
\(779\) 11.1510i 0.0143145i
\(780\) 0 0
\(781\) 149.576 0.191518
\(782\) −228.141 + 228.141i −0.291740 + 0.291740i
\(783\) 0 0
\(784\) 437.535i 0.558080i
\(785\) 0 0
\(786\) 0 0
\(787\) 784.858 784.858i 0.997278 0.997278i −0.00271783 0.999996i \(-0.500865\pi\)
0.999996 + 0.00271783i \(0.000865114\pi\)
\(788\) 493.373 + 493.373i 0.626108 + 0.626108i
\(789\) 0 0
\(790\) 0 0
\(791\) 154.969 0.195916
\(792\) 0 0
\(793\) −429.576 429.576i −0.541709 0.541709i
\(794\) 958.686i 1.20741i
\(795\) 0 0
\(796\) −309.131 −0.388355
\(797\) −485.191 + 485.191i −0.608771 + 0.608771i −0.942625 0.333854i \(-0.891651\pi\)
0.333854 + 0.942625i \(0.391651\pi\)
\(798\) 0 0
\(799\) 472.182i 0.590966i
\(800\) 0 0
\(801\) 0 0
\(802\) −101.233 + 101.233i −0.126225 + 0.126225i
\(803\) −329.312 329.312i −0.410102 0.410102i
\(804\) 0 0
\(805\) 0 0
\(806\) −5.49387 −0.00681621
\(807\) 0 0
\(808\) −256.767 256.767i −0.317781 0.317781i
\(809\) 397.839i 0.491766i −0.969300 0.245883i \(-0.920922\pi\)
0.969300 0.245883i \(-0.0790779\pi\)
\(810\) 0 0
\(811\) −1005.49 −1.23982 −0.619910 0.784673i \(-0.712831\pi\)
−0.619910 + 0.784673i \(0.712831\pi\)
\(812\) −110.384 + 110.384i −0.135940 + 0.135940i
\(813\) 0 0
\(814\) 313.090i 0.384631i
\(815\) 0 0
\(816\) 0 0
\(817\) −226.343 + 226.343i −0.277041 + 0.277041i
\(818\) −257.110 257.110i −0.314316 0.314316i
\(819\) 0 0
\(820\) 0 0
\(821\) 101.312 0.123401 0.0617005 0.998095i \(-0.480348\pi\)
0.0617005 + 0.998095i \(0.480348\pi\)
\(822\) 0 0
\(823\) −68.2724 68.2724i −0.0829556 0.0829556i 0.664411 0.747367i \(-0.268682\pi\)
−0.747367 + 0.664411i \(0.768682\pi\)
\(824\) 129.980i 0.157742i
\(825\) 0 0
\(826\) 355.959 0.430943
\(827\) −363.464 + 363.464i −0.439497 + 0.439497i −0.891843 0.452345i \(-0.850587\pi\)
0.452345 + 0.891843i \(0.350587\pi\)
\(828\) 0 0
\(829\) 891.535i 1.07543i −0.843125 0.537717i \(-0.819287\pi\)
0.843125 0.537717i \(-0.180713\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −54.3837 + 54.3837i −0.0653650 + 0.0653650i
\(833\) −667.352 667.352i −0.801143 0.801143i
\(834\) 0 0
\(835\) 0 0
\(836\) 71.9184 0.0860267
\(837\) 0 0
\(838\) 375.959 + 375.959i 0.448639 + 0.448639i
\(839\) 705.090i 0.840393i −0.907433 0.420197i \(-0.861961\pi\)
0.907433 0.420197i \(-0.138039\pi\)
\(840\) 0 0
\(841\) 802.535 0.954262
\(842\) 158.829 158.829i 0.188633 0.188633i
\(843\) 0 0
\(844\) 381.494i 0.452007i
\(845\) 0 0
\(846\) 0 0
\(847\) −777.626 + 777.626i −0.918094 + 0.918094i
\(848\) −276.363 276.363i −0.325900 0.325900i
\(849\) 0 0
\(850\) 0 0
\(851\) −1009.63 −1.18641
\(852\) 0 0
\(853\) −450.555 450.555i −0.528201 0.528201i 0.391835 0.920036i \(-0.371840\pi\)
−0.920036 + 0.391835i \(0.871840\pi\)
\(854\) 1124.69i 1.31696i
\(855\) 0 0
\(856\) −99.5959 −0.116350
\(857\) 63.5561 63.5561i 0.0741612 0.0741612i −0.669053 0.743214i \(-0.733300\pi\)
0.743214 + 0.669053i \(0.233300\pi\)
\(858\) 0 0
\(859\) 1467.53i 1.70842i 0.519928 + 0.854210i \(0.325959\pi\)
−0.519928 + 0.854210i \(0.674041\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 152.182 152.182i 0.176545 0.176545i
\(863\) −294.797 294.797i −0.341596 0.341596i 0.515371 0.856967i \(-0.327654\pi\)
−0.856967 + 0.515371i \(0.827654\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 509.837 0.588726
\(867\) 0 0
\(868\) 7.19184 + 7.19184i 0.00828553 + 0.00828553i
\(869\) 808.082i 0.929898i
\(870\) 0 0
\(871\) −545.071 −0.625800
\(872\) 260.000 260.000i 0.298165 0.298165i
\(873\) 0 0
\(874\) 231.918i 0.265353i
\(875\) 0 0
\(876\) 0 0
\(877\) −113.102 + 113.102i −0.128965 + 0.128965i −0.768643 0.639678i \(-0.779068\pi\)
0.639678 + 0.768643i \(0.279068\pi\)
\(878\) 299.373 + 299.373i 0.340972 + 0.340972i
\(879\) 0 0
\(880\) 0 0
\(881\) 1370.44 1.55555 0.777777 0.628540i \(-0.216347\pi\)
0.777777 + 0.628540i \(0.216347\pi\)
\(882\) 0 0
\(883\) −175.587 175.587i −0.198852 0.198852i 0.600655 0.799508i \(-0.294906\pi\)
−0.799508 + 0.600655i \(0.794906\pi\)
\(884\) 165.898i 0.187667i
\(885\) 0 0
\(886\) 289.435 0.326676
\(887\) −512.313 + 512.313i −0.577580 + 0.577580i −0.934236 0.356656i \(-0.883917\pi\)
0.356656 + 0.934236i \(0.383917\pi\)
\(888\) 0 0
\(889\) 895.110i 1.00687i
\(890\) 0 0
\(891\) 0 0
\(892\) 33.3531 33.3531i 0.0373913 0.0373913i
\(893\) −240.000 240.000i −0.268757 0.268757i
\(894\) 0 0
\(895\) 0 0
\(896\) 142.384 0.158910
\(897\) 0 0
\(898\) 846.727 + 846.727i 0.942903 + 0.942903i
\(899\) 2.50613i 0.00278769i
\(900\) 0 0
\(901\) 843.049 0.935681
\(902\) −10.4245 + 10.4245i −0.0115571 + 0.0115571i
\(903\) 0 0
\(904\) 34.8286i 0.0385272i
\(905\) 0 0
\(906\) 0 0
\(907\) 922.697 922.697i 1.01731 1.01731i 0.0174589 0.999848i \(-0.494442\pi\)
0.999848 0.0174589i \(-0.00555761\pi\)
\(908\) 84.1408 + 84.1408i 0.0926661 + 0.0926661i
\(909\) 0 0
\(910\) 0 0
\(911\) −1338.97 −1.46978 −0.734890 0.678186i \(-0.762766\pi\)
−0.734890 + 0.678186i \(0.762766\pi\)
\(912\) 0 0
\(913\) −79.4735 79.4735i −0.0870465 0.0870465i
\(914\) 76.7878i 0.0840129i
\(915\) 0 0
\(916\) 347.878 0.379779
\(917\) 1016.28 1016.28i 1.10827 1.10827i
\(918\) 0 0
\(919\) 1371.57i 1.49246i −0.665687 0.746231i \(-0.731861\pi\)
0.665687 0.746231i \(-0.268139\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −78.7265 + 78.7265i −0.0853867 + 0.0853867i
\(923\) −175.373 175.373i −0.190004 0.190004i
\(924\) 0 0
\(925\) 0 0
\(926\) 922.969 0.996727
\(927\) 0 0
\(928\) 24.8082 + 24.8082i 0.0267329 + 0.0267329i
\(929\) 218.645i 0.235355i 0.993052 + 0.117678i \(0.0375449\pi\)
−0.993052 + 0.117678i \(0.962455\pi\)
\(930\) 0 0
\(931\) −678.402 −0.728681
\(932\) −596.524 + 596.524i −0.640048 + 0.640048i
\(933\) 0 0
\(934\) 34.6061i 0.0370515i
\(935\) 0 0
\(936\) 0 0
\(937\) 1127.38 1127.38i 1.20318 1.20318i 0.229992 0.973193i \(-0.426130\pi\)
0.973193 0.229992i \(-0.0738699\pi\)
\(938\) 713.535 + 713.535i 0.760698 + 0.760698i
\(939\) 0 0
\(940\) 0 0
\(941\) 588.384 0.625275 0.312637 0.949873i \(-0.398788\pi\)
0.312637 + 0.949873i \(0.398788\pi\)
\(942\) 0 0
\(943\) −33.6163 33.6163i −0.0356483 0.0356483i
\(944\) 80.0000i 0.0847458i
\(945\) 0 0
\(946\) 423.192 0.447349
\(947\) −926.879 + 926.879i −0.978752 + 0.978752i −0.999779 0.0210265i \(-0.993307\pi\)
0.0210265 + 0.999779i \(0.493307\pi\)
\(948\) 0 0
\(949\) 772.220i 0.813720i
\(950\) 0 0
\(951\) 0 0
\(952\) −217.171 + 217.171i −0.228121 + 0.228121i
\(953\) 1271.29 + 1271.29i 1.33399 + 1.33399i 0.901768 + 0.432220i \(0.142270\pi\)
0.432220 + 0.901768i \(0.357730\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −74.4245 −0.0778499
\(957\) 0 0
\(958\) −776.727 776.727i −0.810779 0.810779i
\(959\) 286.565i 0.298817i
\(960\) 0 0
\(961\) −960.837 −0.999830
\(962\) 367.090 367.090i 0.381590 0.381590i
\(963\) 0 0
\(964\) 331.878i 0.344271i
\(965\) 0 0
\(966\) 0 0
\(967\) −753.121 + 753.121i −0.778823 + 0.778823i −0.979631 0.200808i \(-0.935643\pi\)
0.200808 + 0.979631i \(0.435643\pi\)
\(968\) 174.767 + 174.767i 0.180545 + 0.180545i
\(969\) 0 0
\(970\) 0 0
\(971\) −1803.86 −1.85773 −0.928865 0.370419i \(-0.879214\pi\)
−0.928865 + 0.370419i \(0.879214\pi\)
\(972\) 0 0
\(973\) 656.727 + 656.727i 0.674950 + 0.674950i
\(974\) 878.847i 0.902307i
\(975\) 0 0
\(976\) 252.767 0.258983
\(977\) 223.838 223.838i 0.229107 0.229107i −0.583212 0.812320i \(-0.698204\pi\)
0.812320 + 0.583212i \(0.198204\pi\)
\(978\) 0 0
\(979\) 339.796i 0.347085i
\(980\) 0 0
\(981\) 0 0
\(982\) −246.080 + 246.080i −0.250590 + 0.250590i
\(983\) −976.536 976.536i −0.993424 0.993424i 0.00655459 0.999979i \(-0.497914\pi\)
−0.999979 + 0.00655459i \(0.997914\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −75.6776 −0.0767521
\(987\) 0 0
\(988\) −84.3224 84.3224i −0.0853466 0.0853466i
\(989\) 1364.69i 1.37986i
\(990\) 0 0
\(991\) 1331.03 1.34312 0.671558 0.740952i \(-0.265625\pi\)
0.671558 + 0.740952i \(0.265625\pi\)
\(992\) 1.61633 1.61633i 0.00162936 0.00162936i
\(993\) 0 0
\(994\) 459.151i 0.461923i
\(995\) 0 0
\(996\) 0 0
\(997\) −852.616 + 852.616i −0.855182 + 0.855182i −0.990766 0.135584i \(-0.956709\pi\)
0.135584 + 0.990766i \(0.456709\pi\)
\(998\) 597.839 + 597.839i 0.599037 + 0.599037i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.3.g.j.343.2 4
3.2 odd 2 150.3.f.b.43.2 4
5.2 odd 4 inner 450.3.g.j.307.2 4
5.3 odd 4 90.3.g.d.37.1 4
5.4 even 2 90.3.g.d.73.1 4
12.11 even 2 1200.3.bg.d.193.1 4
15.2 even 4 150.3.f.b.7.2 4
15.8 even 4 30.3.f.a.7.1 4
15.14 odd 2 30.3.f.a.13.1 yes 4
20.3 even 4 720.3.bh.i.577.1 4
20.19 odd 2 720.3.bh.i.433.1 4
60.23 odd 4 240.3.bg.b.97.2 4
60.47 odd 4 1200.3.bg.d.1057.1 4
60.59 even 2 240.3.bg.b.193.2 4
120.29 odd 2 960.3.bg.e.193.2 4
120.53 even 4 960.3.bg.e.577.2 4
120.59 even 2 960.3.bg.g.193.1 4
120.83 odd 4 960.3.bg.g.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.3.f.a.7.1 4 15.8 even 4
30.3.f.a.13.1 yes 4 15.14 odd 2
90.3.g.d.37.1 4 5.3 odd 4
90.3.g.d.73.1 4 5.4 even 2
150.3.f.b.7.2 4 15.2 even 4
150.3.f.b.43.2 4 3.2 odd 2
240.3.bg.b.97.2 4 60.23 odd 4
240.3.bg.b.193.2 4 60.59 even 2
450.3.g.j.307.2 4 5.2 odd 4 inner
450.3.g.j.343.2 4 1.1 even 1 trivial
720.3.bh.i.433.1 4 20.19 odd 2
720.3.bh.i.577.1 4 20.3 even 4
960.3.bg.e.193.2 4 120.29 odd 2
960.3.bg.e.577.2 4 120.53 even 4
960.3.bg.g.193.1 4 120.59 even 2
960.3.bg.g.577.1 4 120.83 odd 4
1200.3.bg.d.193.1 4 12.11 even 2
1200.3.bg.d.1057.1 4 60.47 odd 4