Defining parameters
Level: | \( N \) | = | \( 30 = 2 \cdot 3 \cdot 5 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 3 \) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(30))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 12 | 52 |
Cusp forms | 32 | 12 | 20 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(30))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
30.3.b | \(\chi_{30}(29, \cdot)\) | 30.3.b.a | 4 | 1 |
30.3.d | \(\chi_{30}(11, \cdot)\) | 30.3.d.a | 4 | 1 |
30.3.f | \(\chi_{30}(7, \cdot)\) | 30.3.f.a | 4 | 2 |
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(30))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(30)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)