| L(s) = 1 | + (1 + i)2-s + (−1.22 + 1.22i)3-s + 2i·4-s + (4.89 − i)5-s − 2.44·6-s + (−8.89 − 8.89i)7-s + (−2 + 2i)8-s − 2.99i·9-s + (5.89 + 3.89i)10-s + 5.79·11-s + (−2.44 − 2.44i)12-s + (−6.79 + 6.79i)13-s − 17.7i·14-s + (−4.77 + 7.22i)15-s − 4·16-s + (6.10 + 6.10i)17-s + ⋯ |
| L(s) = 1 | + (0.5 + 0.5i)2-s + (−0.408 + 0.408i)3-s + 0.5i·4-s + (0.979 − 0.200i)5-s − 0.408·6-s + (−1.27 − 1.27i)7-s + (−0.250 + 0.250i)8-s − 0.333i·9-s + (0.589 + 0.389i)10-s + 0.527·11-s + (−0.204 − 0.204i)12-s + (−0.522 + 0.522i)13-s − 1.27i·14-s + (−0.318 + 0.481i)15-s − 0.250·16-s + (0.358 + 0.358i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.728 - 0.685i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.728 - 0.685i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(1.05255 + 0.417314i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.05255 + 0.417314i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1 - i)T \) |
| 3 | \( 1 + (1.22 - 1.22i)T \) |
| 5 | \( 1 + (-4.89 + i)T \) |
| good | 7 | \( 1 + (8.89 + 8.89i)T + 49iT^{2} \) |
| 11 | \( 1 - 5.79T + 121T^{2} \) |
| 13 | \( 1 + (6.79 - 6.79i)T - 169iT^{2} \) |
| 17 | \( 1 + (-6.10 - 6.10i)T + 289iT^{2} \) |
| 19 | \( 1 - 6.20iT - 361T^{2} \) |
| 23 | \( 1 + (18.6 - 18.6i)T - 529iT^{2} \) |
| 29 | \( 1 + 6.20iT - 841T^{2} \) |
| 31 | \( 1 + 0.404T + 961T^{2} \) |
| 37 | \( 1 + (27 + 27i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 1.79T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-36.4 + 36.4i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-38.6 - 38.6i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-69.0 + 69.0i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 20iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 63.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-40.0 - 40.0i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 25.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + (56.7 - 56.7i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 139. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-13.7 + 13.7i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 58.6iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (15.9 + 15.9i)T + 9.40e3iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.82824346406776693310573806257, −16.02714855756204109280057578926, −14.34269931708502939750933208666, −13.46968007082859793744481544312, −12.27079893407829307417435633175, −10.37146705466737872868219592587, −9.394821779975947401099552855393, −7.04669331068887754683718107643, −5.85391794536876729071588751358, −3.95063285925117270929903707532,
2.65158771136712994184584443690, 5.53373706520711472499091565625, 6.54895168565730344583305656571, 9.187368065725560403528322552354, 10.28518989466324697775697227981, 12.03573357772855083898470178735, 12.75942140833946660143196755059, 13.96084791158615434346475167694, 15.32070452111438941116796674831, 16.70078131114902956295518357886