Properties

Label 30.3.f
Level $30$
Weight $3$
Character orbit 30.f
Rep. character $\chi_{30}(7,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $4$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 30.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(30, [\chi])\).

Total New Old
Modular forms 32 4 28
Cusp forms 16 4 12
Eisenstein series 16 0 16

Trace form

\( 4 q + 4 q^{2} - 16 q^{7} - 8 q^{8} + O(q^{10}) \) \( 4 q + 4 q^{2} - 16 q^{7} - 8 q^{8} + 4 q^{10} - 16 q^{11} + 12 q^{13} - 24 q^{15} - 16 q^{16} + 44 q^{17} + 12 q^{18} + 8 q^{20} + 48 q^{21} - 16 q^{22} - 16 q^{23} + 92 q^{25} + 24 q^{26} + 32 q^{28} - 48 q^{30} - 80 q^{31} - 16 q^{32} - 48 q^{33} - 112 q^{35} + 24 q^{36} - 108 q^{37} - 64 q^{38} + 8 q^{40} + 32 q^{41} + 48 q^{42} + 48 q^{43} - 12 q^{45} - 32 q^{46} + 96 q^{47} + 92 q^{50} + 48 q^{51} + 24 q^{52} + 100 q^{53} + 192 q^{55} + 64 q^{56} + 48 q^{57} + 64 q^{58} - 48 q^{60} - 96 q^{61} - 80 q^{62} - 48 q^{63} - 204 q^{65} - 96 q^{66} - 16 q^{67} - 88 q^{68} - 32 q^{70} + 64 q^{71} + 24 q^{72} - 188 q^{73} + 48 q^{75} - 128 q^{76} - 128 q^{77} + 96 q^{78} - 36 q^{81} + 32 q^{82} + 192 q^{83} - 52 q^{85} + 96 q^{86} - 48 q^{87} + 32 q^{88} - 12 q^{90} + 288 q^{91} - 32 q^{92} - 96 q^{93} + 64 q^{95} + 132 q^{97} - 124 q^{98} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(30, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
30.3.f.a 30.f 5.c $4$ $0.817$ \(\Q(i, \sqrt{6})\) None 30.3.f.a \(4\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{2})q^{2}+\beta _{1}q^{3}-2\beta _{2}q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(30, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(30, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)