Properties

Label 30.12.c.b.19.3
Level $30$
Weight $12$
Character 30.19
Analytic conductor $23.050$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [30,12,Mod(19,30)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("30.19"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 30.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.0502954168\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 350078x^{4} + 30638651521x^{2} + 173683668788100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.3
Root \(-451.888i\) of defining polynomial
Character \(\chi\) \(=\) 30.19
Dual form 30.12.c.b.19.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000i q^{2} -243.000i q^{3} -1024.00 q^{4} +(6755.14 - 1787.80i) q^{5} -7776.00 q^{6} -41527.6i q^{7} +32768.0i q^{8} -59049.0 q^{9} +(-57209.7 - 216164. i) q^{10} +839520. q^{11} +248832. i q^{12} -1.66178e6i q^{13} -1.32888e6 q^{14} +(-434436. - 1.64150e6i) q^{15} +1.04858e6 q^{16} -3.23669e6i q^{17} +1.88957e6i q^{18} -5.44307e6 q^{19} +(-6.91726e6 + 1.83071e6i) q^{20} -1.00912e7 q^{21} -2.68646e7i q^{22} +2.97481e7i q^{23} +7.96262e6 q^{24} +(4.24356e7 - 2.41537e7i) q^{25} -5.31769e7 q^{26} +1.43489e7i q^{27} +4.25243e7i q^{28} -1.55089e8 q^{29} +(-5.25279e7 + 1.39020e7i) q^{30} -2.76977e8 q^{31} -3.35544e7i q^{32} -2.04003e8i q^{33} -1.03574e8 q^{34} +(-7.42432e7 - 2.80525e8i) q^{35} +6.04662e7 q^{36} +4.58098e8i q^{37} +1.74178e8i q^{38} -4.03812e8 q^{39} +(5.85827e7 + 2.21352e8i) q^{40} +1.42131e8 q^{41} +3.22919e8i q^{42} -1.09829e9i q^{43} -8.59668e8 q^{44} +(-3.98884e8 + 1.05568e8i) q^{45} +9.51939e8 q^{46} -1.89330e9i q^{47} -2.54804e8i q^{48} +2.52786e8 q^{49} +(-7.72919e8 - 1.35794e9i) q^{50} -7.86516e8 q^{51} +1.70166e9i q^{52} +1.28322e9i q^{53} +4.59165e8 q^{54} +(5.67107e9 - 1.50090e9i) q^{55} +1.36078e9 q^{56} +1.32267e9i q^{57} +4.96286e9i q^{58} +5.01298e9 q^{59} +(4.44863e8 + 1.68089e9i) q^{60} +7.45699e9 q^{61} +8.86325e9i q^{62} +2.45216e9i q^{63} -1.07374e9 q^{64} +(-2.97093e9 - 1.12255e10i) q^{65} -6.52811e9 q^{66} -1.14069e9i q^{67} +3.31437e9i q^{68} +7.22879e9 q^{69} +(-8.97679e9 + 2.37578e9i) q^{70} +8.23753e9 q^{71} -1.93492e9i q^{72} +1.90626e10i q^{73} +1.46591e10 q^{74} +(-5.86935e9 - 1.03119e10i) q^{75} +5.57371e9 q^{76} -3.48632e10i q^{77} +1.29220e10i q^{78} -2.39605e10 q^{79} +(7.08328e9 - 1.87465e9i) q^{80} +3.48678e9 q^{81} -4.54818e9i q^{82} -6.55948e10i q^{83} +1.03334e10 q^{84} +(-5.78657e9 - 2.18643e10i) q^{85} -3.51452e10 q^{86} +3.76867e10i q^{87} +2.75094e10i q^{88} -3.18476e10 q^{89} +(3.37818e9 + 1.27643e10i) q^{90} -6.90096e10 q^{91} -3.04621e10i q^{92} +6.73053e10i q^{93} -6.05855e10 q^{94} +(-3.67687e10 + 9.73114e9i) q^{95} -8.15373e9 q^{96} -4.42047e10i q^{97} -8.08914e9i q^{98} -4.95728e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6144 q^{4} - 9926 q^{5} - 46656 q^{6} - 354294 q^{9} + 72576 q^{10} + 1753400 q^{11} - 4312576 q^{14} + 551124 q^{15} + 6291456 q^{16} - 4069824 q^{19} + 10164224 q^{20} - 32748624 q^{21} + 47775744 q^{24}+ \cdots - 103536516600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000i 0.707107i
\(3\) 243.000i 0.577350i
\(4\) −1024.00 −0.500000
\(5\) 6755.14 1787.80i 0.966717 0.255850i
\(6\) −7776.00 −0.408248
\(7\) 41527.6i 0.933894i −0.884285 0.466947i \(-0.845354\pi\)
0.884285 0.466947i \(-0.154646\pi\)
\(8\) 32768.0i 0.353553i
\(9\) −59049.0 −0.333333
\(10\) −57209.7 216164.i −0.180913 0.683572i
\(11\) 839520. 1.57171 0.785853 0.618414i \(-0.212224\pi\)
0.785853 + 0.618414i \(0.212224\pi\)
\(12\) 248832.i 0.288675i
\(13\) 1.66178e6i 1.24132i −0.784079 0.620661i \(-0.786864\pi\)
0.784079 0.620661i \(-0.213136\pi\)
\(14\) −1.32888e6 −0.660363
\(15\) −434436. 1.64150e6i −0.147715 0.558134i
\(16\) 1.04858e6 0.250000
\(17\) 3.23669e6i 0.552882i −0.961031 0.276441i \(-0.910845\pi\)
0.961031 0.276441i \(-0.0891550\pi\)
\(18\) 1.88957e6i 0.235702i
\(19\) −5.44307e6 −0.504312 −0.252156 0.967687i \(-0.581140\pi\)
−0.252156 + 0.967687i \(0.581140\pi\)
\(20\) −6.91726e6 + 1.83071e6i −0.483358 + 0.127925i
\(21\) −1.00912e7 −0.539184
\(22\) 2.68646e7i 1.11136i
\(23\) 2.97481e7i 0.963732i 0.876245 + 0.481866i \(0.160041\pi\)
−0.876245 + 0.481866i \(0.839959\pi\)
\(24\) 7.96262e6 0.204124
\(25\) 4.24356e7 2.41537e7i 0.869082 0.494668i
\(26\) −5.31769e7 −0.877747
\(27\) 1.43489e7i 0.192450i
\(28\) 4.25243e7i 0.466947i
\(29\) −1.55089e8 −1.40408 −0.702042 0.712136i \(-0.747728\pi\)
−0.702042 + 0.712136i \(0.747728\pi\)
\(30\) −5.25279e7 + 1.39020e7i −0.394660 + 0.104450i
\(31\) −2.76977e8 −1.73762 −0.868808 0.495150i \(-0.835113\pi\)
−0.868808 + 0.495150i \(0.835113\pi\)
\(32\) 3.35544e7i 0.176777i
\(33\) 2.04003e8i 0.907425i
\(34\) −1.03574e8 −0.390946
\(35\) −7.42432e7 2.80525e8i −0.238936 0.902811i
\(36\) 6.04662e7 0.166667
\(37\) 4.58098e8i 1.08605i 0.839718 + 0.543023i \(0.182720\pi\)
−0.839718 + 0.543023i \(0.817280\pi\)
\(38\) 1.74178e8i 0.356602i
\(39\) −4.03812e8 −0.716678
\(40\) 5.85827e7 + 2.21352e8i 0.0904565 + 0.341786i
\(41\) 1.42131e8 0.191592 0.0957958 0.995401i \(-0.469460\pi\)
0.0957958 + 0.995401i \(0.469460\pi\)
\(42\) 3.22919e8i 0.381261i
\(43\) 1.09829e9i 1.13930i −0.821886 0.569652i \(-0.807078\pi\)
0.821886 0.569652i \(-0.192922\pi\)
\(44\) −8.59668e8 −0.785853
\(45\) −3.98884e8 + 1.05568e8i −0.322239 + 0.0852832i
\(46\) 9.51939e8 0.681461
\(47\) 1.89330e9i 1.20415i −0.798440 0.602075i \(-0.794341\pi\)
0.798440 0.602075i \(-0.205659\pi\)
\(48\) 2.54804e8i 0.144338i
\(49\) 2.52786e8 0.127842
\(50\) −7.72919e8 1.35794e9i −0.349783 0.614534i
\(51\) −7.86516e8 −0.319206
\(52\) 1.70166e9i 0.620661i
\(53\) 1.28322e9i 0.421487i 0.977541 + 0.210743i \(0.0675884\pi\)
−0.977541 + 0.210743i \(0.932412\pi\)
\(54\) 4.59165e8 0.136083
\(55\) 5.67107e9 1.50090e9i 1.51939 0.402120i
\(56\) 1.36078e9 0.330181
\(57\) 1.32267e9i 0.291165i
\(58\) 4.96286e9i 0.992837i
\(59\) 5.01298e9 0.912872 0.456436 0.889756i \(-0.349126\pi\)
0.456436 + 0.889756i \(0.349126\pi\)
\(60\) 4.44863e8 + 1.68089e9i 0.0738574 + 0.279067i
\(61\) 7.45699e9 1.13045 0.565223 0.824938i \(-0.308790\pi\)
0.565223 + 0.824938i \(0.308790\pi\)
\(62\) 8.86325e9i 1.22868i
\(63\) 2.45216e9i 0.311298i
\(64\) −1.07374e9 −0.125000
\(65\) −2.97093e9 1.12255e10i −0.317592 1.20001i
\(66\) −6.52811e9 −0.641646
\(67\) 1.14069e9i 0.103219i −0.998667 0.0516093i \(-0.983565\pi\)
0.998667 0.0516093i \(-0.0164351\pi\)
\(68\) 3.31437e9i 0.276441i
\(69\) 7.22879e9 0.556411
\(70\) −8.97679e9 + 2.37578e9i −0.638384 + 0.168954i
\(71\) 8.23753e9 0.541847 0.270923 0.962601i \(-0.412671\pi\)
0.270923 + 0.962601i \(0.412671\pi\)
\(72\) 1.93492e9i 0.117851i
\(73\) 1.90626e10i 1.07623i 0.842871 + 0.538116i \(0.180864\pi\)
−0.842871 + 0.538116i \(0.819136\pi\)
\(74\) 1.46591e10 0.767951
\(75\) −5.86935e9 1.03119e10i −0.285597 0.501765i
\(76\) 5.57371e9 0.252156
\(77\) 3.48632e10i 1.46781i
\(78\) 1.29220e10i 0.506768i
\(79\) −2.39605e10 −0.876085 −0.438042 0.898954i \(-0.644328\pi\)
−0.438042 + 0.898954i \(0.644328\pi\)
\(80\) 7.08328e9 1.87465e9i 0.241679 0.0639624i
\(81\) 3.48678e9 0.111111
\(82\) 4.54818e9i 0.135476i
\(83\) 6.55948e10i 1.82785i −0.405885 0.913924i \(-0.633037\pi\)
0.405885 0.913924i \(-0.366963\pi\)
\(84\) 1.03334e10 0.269592
\(85\) −5.78657e9 2.18643e10i −0.141455 0.534480i
\(86\) −3.51452e10 −0.805610
\(87\) 3.76867e10i 0.810648i
\(88\) 2.75094e10i 0.555682i
\(89\) −3.18476e10 −0.604549 −0.302274 0.953221i \(-0.597746\pi\)
−0.302274 + 0.953221i \(0.597746\pi\)
\(90\) 3.37818e9 + 1.27643e10i 0.0603043 + 0.227857i
\(91\) −6.90096e10 −1.15926
\(92\) 3.04621e10i 0.481866i
\(93\) 6.73053e10i 1.00321i
\(94\) −6.05855e10 −0.851462
\(95\) −3.67687e10 + 9.73114e9i −0.487527 + 0.129028i
\(96\) −8.15373e9 −0.102062
\(97\) 4.42047e10i 0.522665i −0.965249 0.261333i \(-0.915838\pi\)
0.965249 0.261333i \(-0.0841620\pi\)
\(98\) 8.08914e9i 0.0903980i
\(99\) −4.95728e10 −0.523902
\(100\) −4.34541e10 + 2.47334e10i −0.434541 + 0.247334i
\(101\) 1.88396e11 1.78362 0.891812 0.452407i \(-0.149435\pi\)
0.891812 + 0.452407i \(0.149435\pi\)
\(102\) 2.51685e10i 0.225713i
\(103\) 1.74933e11i 1.48685i 0.668820 + 0.743424i \(0.266800\pi\)
−0.668820 + 0.743424i \(0.733200\pi\)
\(104\) 5.44531e10 0.438874
\(105\) −6.81675e10 + 1.80411e10i −0.521238 + 0.137950i
\(106\) 4.10630e10 0.298036
\(107\) 1.75156e11i 1.20730i −0.797249 0.603650i \(-0.793712\pi\)
0.797249 0.603650i \(-0.206288\pi\)
\(108\) 1.46933e10i 0.0962250i
\(109\) −5.67974e10 −0.353576 −0.176788 0.984249i \(-0.556571\pi\)
−0.176788 + 0.984249i \(0.556571\pi\)
\(110\) −4.80287e10 1.81474e11i −0.284342 1.07437i
\(111\) 1.11318e11 0.627029
\(112\) 4.35448e10i 0.233473i
\(113\) 7.76853e10i 0.396650i 0.980136 + 0.198325i \(0.0635501\pi\)
−0.980136 + 0.198325i \(0.936450\pi\)
\(114\) 4.23253e10 0.205884
\(115\) 5.31838e10 + 2.00953e11i 0.246570 + 0.931655i
\(116\) 1.58811e11 0.702042
\(117\) 9.81263e10i 0.413774i
\(118\) 1.60415e11i 0.645498i
\(119\) −1.34412e11 −0.516333
\(120\) 5.37886e10 1.42356e10i 0.197330 0.0522251i
\(121\) 4.19482e11 1.47026
\(122\) 2.38624e11i 0.799346i
\(123\) 3.45377e10i 0.110615i
\(124\) 2.83624e11 0.868808
\(125\) 2.43477e11 2.39028e11i 0.713595 0.700558i
\(126\) 7.84692e10 0.220121
\(127\) 2.44393e11i 0.656401i 0.944608 + 0.328200i \(0.106442\pi\)
−0.944608 + 0.328200i \(0.893558\pi\)
\(128\) 3.43597e10i 0.0883883i
\(129\) −2.66884e11 −0.657778
\(130\) −3.59217e11 + 9.50698e10i −0.848533 + 0.224571i
\(131\) 3.21349e10 0.0727755 0.0363877 0.999338i \(-0.488415\pi\)
0.0363877 + 0.999338i \(0.488415\pi\)
\(132\) 2.08899e11i 0.453712i
\(133\) 2.26038e11i 0.470974i
\(134\) −3.65022e10 −0.0729866
\(135\) 2.56530e10 + 9.69288e10i 0.0492383 + 0.186045i
\(136\) 1.06060e11 0.195473
\(137\) 1.03419e12i 1.83079i 0.402557 + 0.915395i \(0.368122\pi\)
−0.402557 + 0.915395i \(0.631878\pi\)
\(138\) 2.31321e11i 0.393442i
\(139\) 6.51000e11 1.06414 0.532071 0.846700i \(-0.321414\pi\)
0.532071 + 0.846700i \(0.321414\pi\)
\(140\) 7.60250e10 + 2.87257e11i 0.119468 + 0.451405i
\(141\) −4.60071e11 −0.695216
\(142\) 2.63601e11i 0.383143i
\(143\) 1.39510e12i 1.95099i
\(144\) −6.19174e10 −0.0833333
\(145\) −1.04765e12 + 2.77269e11i −1.35735 + 0.359234i
\(146\) 6.10002e11 0.761011
\(147\) 6.14269e10i 0.0738097i
\(148\) 4.69092e11i 0.543023i
\(149\) −1.48776e12 −1.65962 −0.829808 0.558049i \(-0.811550\pi\)
−0.829808 + 0.558049i \(0.811550\pi\)
\(150\) −3.29980e11 + 1.87819e11i −0.354801 + 0.201947i
\(151\) 1.69992e12 1.76220 0.881100 0.472929i \(-0.156803\pi\)
0.881100 + 0.472929i \(0.156803\pi\)
\(152\) 1.78359e11i 0.178301i
\(153\) 1.91123e11i 0.184294i
\(154\) −1.11562e12 −1.03790
\(155\) −1.87101e12 + 4.95180e11i −1.67978 + 0.444568i
\(156\) 4.13503e11 0.358339
\(157\) 3.75740e11i 0.314369i −0.987569 0.157184i \(-0.949758\pi\)
0.987569 0.157184i \(-0.0502417\pi\)
\(158\) 7.66735e11i 0.619485i
\(159\) 3.11822e11 0.243345
\(160\) −5.99887e10 2.26665e11i −0.0452282 0.170893i
\(161\) 1.23537e12 0.900023
\(162\) 1.11577e11i 0.0785674i
\(163\) 1.19182e12i 0.811296i −0.914029 0.405648i \(-0.867046\pi\)
0.914029 0.405648i \(-0.132954\pi\)
\(164\) −1.45542e11 −0.0957958
\(165\) −3.64718e11 1.37807e12i −0.232164 0.877222i
\(166\) −2.09903e12 −1.29248
\(167\) 7.86209e11i 0.468379i 0.972191 + 0.234190i \(0.0752436\pi\)
−0.972191 + 0.234190i \(0.924756\pi\)
\(168\) 3.30669e11i 0.190630i
\(169\) −9.69345e11 −0.540880
\(170\) −6.99657e11 + 1.85170e11i −0.377934 + 0.100023i
\(171\) 3.21408e11 0.168104
\(172\) 1.12465e12i 0.569652i
\(173\) 2.61407e11i 0.128252i −0.997942 0.0641258i \(-0.979574\pi\)
0.997942 0.0641258i \(-0.0204259\pi\)
\(174\) 1.20597e12 0.573215
\(175\) −1.00305e12 1.76225e12i −0.461968 0.811630i
\(176\) 8.80300e11 0.392926
\(177\) 1.21815e12i 0.527047i
\(178\) 1.01912e12i 0.427481i
\(179\) −1.08084e12 −0.439614 −0.219807 0.975543i \(-0.570543\pi\)
−0.219807 + 0.975543i \(0.570543\pi\)
\(180\) 4.08457e11 1.08102e11i 0.161119 0.0426416i
\(181\) 3.87701e12 1.48342 0.741711 0.670720i \(-0.234015\pi\)
0.741711 + 0.670720i \(0.234015\pi\)
\(182\) 2.20831e12i 0.819723i
\(183\) 1.81205e12i 0.652663i
\(184\) −9.74786e11 −0.340731
\(185\) 8.18988e11 + 3.09451e12i 0.277865 + 1.04990i
\(186\) 2.15377e12 0.709378
\(187\) 2.71727e12i 0.868967i
\(188\) 1.93874e12i 0.602075i
\(189\) 5.95876e11 0.179728
\(190\) 3.11397e11 + 1.17660e12i 0.0912366 + 0.344733i
\(191\) 4.34227e12 1.23604 0.618021 0.786161i \(-0.287935\pi\)
0.618021 + 0.786161i \(0.287935\pi\)
\(192\) 2.60919e11i 0.0721688i
\(193\) 4.45221e11i 0.119677i −0.998208 0.0598384i \(-0.980941\pi\)
0.998208 0.0598384i \(-0.0190585\pi\)
\(194\) −1.41455e12 −0.369580
\(195\) −2.72781e12 + 7.21936e11i −0.692824 + 0.183362i
\(196\) −2.58852e11 −0.0639210
\(197\) 1.92250e12i 0.461640i 0.972997 + 0.230820i \(0.0741408\pi\)
−0.972997 + 0.230820i \(0.925859\pi\)
\(198\) 1.58633e12i 0.370455i
\(199\) 2.52317e12 0.573131 0.286566 0.958061i \(-0.407486\pi\)
0.286566 + 0.958061i \(0.407486\pi\)
\(200\) 7.91469e11 + 1.39053e12i 0.174892 + 0.307267i
\(201\) −2.77189e11 −0.0595933
\(202\) 6.02866e12i 1.26121i
\(203\) 6.44048e12i 1.31126i
\(204\) 8.05392e11 0.159603
\(205\) 9.60112e11 2.54102e11i 0.185215 0.0490186i
\(206\) 5.59785e12 1.05136
\(207\) 1.75660e12i 0.321244i
\(208\) 1.74250e12i 0.310331i
\(209\) −4.56957e12 −0.792630
\(210\) 5.77315e11 + 2.18136e12i 0.0975454 + 0.368571i
\(211\) 7.60254e12 1.25143 0.625713 0.780053i \(-0.284808\pi\)
0.625713 + 0.780053i \(0.284808\pi\)
\(212\) 1.31402e12i 0.210743i
\(213\) 2.00172e12i 0.312835i
\(214\) −5.60501e12 −0.853690
\(215\) −1.96352e12 7.41909e12i −0.291491 1.10138i
\(216\) −4.70185e11 −0.0680414
\(217\) 1.15022e13i 1.62275i
\(218\) 1.81752e12i 0.250016i
\(219\) 4.63221e12 0.621363
\(220\) −5.80718e12 + 1.53692e12i −0.759697 + 0.201060i
\(221\) −5.37866e12 −0.686304
\(222\) 3.56217e12i 0.443377i
\(223\) 2.46671e12i 0.299531i 0.988722 + 0.149765i \(0.0478518\pi\)
−0.988722 + 0.149765i \(0.952148\pi\)
\(224\) −1.39343e12 −0.165091
\(225\) −2.50578e12 + 1.42625e12i −0.289694 + 0.164889i
\(226\) 2.48593e12 0.280474
\(227\) 1.11438e13i 1.22713i −0.789642 0.613567i \(-0.789734\pi\)
0.789642 0.613567i \(-0.210266\pi\)
\(228\) 1.35441e12i 0.145582i
\(229\) 1.12840e13 1.18404 0.592021 0.805923i \(-0.298330\pi\)
0.592021 + 0.805923i \(0.298330\pi\)
\(230\) 6.43048e12 1.70188e12i 0.658780 0.174352i
\(231\) −8.47177e12 −0.847438
\(232\) 5.08197e12i 0.496418i
\(233\) 3.66685e12i 0.349813i 0.984585 + 0.174906i \(0.0559623\pi\)
−0.984585 + 0.174906i \(0.944038\pi\)
\(234\) 3.14004e12 0.292582
\(235\) −3.38484e12 1.27895e13i −0.308081 1.16407i
\(236\) −5.13329e12 −0.456436
\(237\) 5.82239e12i 0.505808i
\(238\) 4.30118e12i 0.365102i
\(239\) −1.40189e13 −1.16285 −0.581427 0.813598i \(-0.697506\pi\)
−0.581427 + 0.813598i \(0.697506\pi\)
\(240\) −4.55539e11 1.72124e12i −0.0369287 0.139534i
\(241\) −1.19865e13 −0.949723 −0.474862 0.880060i \(-0.657502\pi\)
−0.474862 + 0.880060i \(0.657502\pi\)
\(242\) 1.34234e13i 1.03963i
\(243\) 8.47289e11i 0.0641500i
\(244\) −7.63596e12 −0.565223
\(245\) 1.70760e12 4.51931e11i 0.123587 0.0327083i
\(246\) −1.10521e12 −0.0782169
\(247\) 9.04517e12i 0.626014i
\(248\) 9.07597e12i 0.614340i
\(249\) −1.59395e13 −1.05531
\(250\) −7.64890e12 7.79125e12i −0.495369 0.504588i
\(251\) −4.71793e12 −0.298914 −0.149457 0.988768i \(-0.547753\pi\)
−0.149457 + 0.988768i \(0.547753\pi\)
\(252\) 2.51101e12i 0.155649i
\(253\) 2.49741e13i 1.51470i
\(254\) 7.82059e12 0.464146
\(255\) −5.31302e12 + 1.40614e12i −0.308582 + 0.0816688i
\(256\) 1.09951e12 0.0625000
\(257\) 2.26178e13i 1.25840i 0.777244 + 0.629199i \(0.216617\pi\)
−0.777244 + 0.629199i \(0.783383\pi\)
\(258\) 8.54029e12i 0.465119i
\(259\) 1.90237e13 1.01425
\(260\) 3.04223e12 + 1.14949e13i 0.158796 + 0.600003i
\(261\) 9.15787e12 0.468028
\(262\) 1.02832e12i 0.0514600i
\(263\) 2.63896e13i 1.29323i −0.762815 0.646617i \(-0.776183\pi\)
0.762815 0.646617i \(-0.223817\pi\)
\(264\) 6.68478e12 0.320823
\(265\) 2.29414e12 + 8.66832e12i 0.107837 + 0.407458i
\(266\) 7.23321e12 0.333029
\(267\) 7.73896e12i 0.349036i
\(268\) 1.16807e12i 0.0516093i
\(269\) −1.82859e13 −0.791550 −0.395775 0.918347i \(-0.629524\pi\)
−0.395775 + 0.918347i \(0.629524\pi\)
\(270\) 3.10172e12 8.20897e11i 0.131553 0.0348167i
\(271\) −2.37685e13 −0.987803 −0.493902 0.869518i \(-0.664430\pi\)
−0.493902 + 0.869518i \(0.664430\pi\)
\(272\) 3.39392e12i 0.138220i
\(273\) 1.67693e13i 0.669301i
\(274\) 3.30942e13 1.29456
\(275\) 3.56256e13 2.02775e13i 1.36594 0.777473i
\(276\) −7.40228e12 −0.278205
\(277\) 2.00012e13i 0.736914i 0.929645 + 0.368457i \(0.120114\pi\)
−0.929645 + 0.368457i \(0.879886\pi\)
\(278\) 2.08320e13i 0.752462i
\(279\) 1.63552e13 0.579205
\(280\) 9.19223e12 2.43280e12i 0.319192 0.0844768i
\(281\) 2.16062e13 0.735689 0.367845 0.929887i \(-0.380096\pi\)
0.367845 + 0.929887i \(0.380096\pi\)
\(282\) 1.47223e13i 0.491592i
\(283\) 4.22652e13i 1.38407i −0.721865 0.692034i \(-0.756715\pi\)
0.721865 0.692034i \(-0.243285\pi\)
\(284\) −8.43523e12 −0.270923
\(285\) 2.36467e12 + 8.93479e12i 0.0744944 + 0.281474i
\(286\) −4.46431e13 −1.37956
\(287\) 5.90234e12i 0.178926i
\(288\) 1.98136e12i 0.0589256i
\(289\) 2.37957e13 0.694322
\(290\) 8.87261e12 + 3.35248e13i 0.254017 + 0.959792i
\(291\) −1.07417e13 −0.301761
\(292\) 1.95201e13i 0.538116i
\(293\) 5.66640e13i 1.53298i −0.642259 0.766488i \(-0.722003\pi\)
0.642259 0.766488i \(-0.277997\pi\)
\(294\) −1.96566e12 −0.0521913
\(295\) 3.38634e13 8.96222e12i 0.882488 0.233558i
\(296\) −1.50109e13 −0.383975
\(297\) 1.20462e13i 0.302475i
\(298\) 4.76082e13i 1.17353i
\(299\) 4.94347e13 1.19630
\(300\) 6.01022e12 + 1.05593e13i 0.142798 + 0.250882i
\(301\) −4.56093e13 −1.06399
\(302\) 5.43975e13i 1.24606i
\(303\) 4.57801e13i 1.02978i
\(304\) −5.70747e12 −0.126078
\(305\) 5.03730e13 1.33316e13i 1.09282 0.289224i
\(306\) 6.11595e12 0.130315
\(307\) 1.99364e13i 0.417239i 0.977997 + 0.208619i \(0.0668970\pi\)
−0.977997 + 0.208619i \(0.933103\pi\)
\(308\) 3.57000e13i 0.733903i
\(309\) 4.25087e13 0.858433
\(310\) 1.58457e13 + 5.98725e13i 0.314357 + 1.18778i
\(311\) 1.05339e13 0.205309 0.102655 0.994717i \(-0.467266\pi\)
0.102655 + 0.994717i \(0.467266\pi\)
\(312\) 1.32321e13i 0.253384i
\(313\) 5.27355e13i 0.992224i 0.868259 + 0.496112i \(0.165239\pi\)
−0.868259 + 0.496112i \(0.834761\pi\)
\(314\) −1.20237e13 −0.222292
\(315\) 4.38399e12 + 1.65647e13i 0.0796455 + 0.300937i
\(316\) 2.45355e13 0.438042
\(317\) 6.68311e13i 1.17261i 0.810091 + 0.586304i \(0.199417\pi\)
−0.810091 + 0.586304i \(0.800583\pi\)
\(318\) 9.97832e12i 0.172071i
\(319\) −1.30201e14 −2.20681
\(320\) −7.25327e12 + 1.91964e12i −0.120840 + 0.0319812i
\(321\) −4.25630e13 −0.697035
\(322\) 3.95317e13i 0.636412i
\(323\) 1.76175e13i 0.278825i
\(324\) −3.57047e12 −0.0555556
\(325\) −4.01381e13 7.05186e13i −0.614042 1.07881i
\(326\) −3.81383e13 −0.573673
\(327\) 1.38018e13i 0.204137i
\(328\) 4.65734e12i 0.0677379i
\(329\) −7.86241e13 −1.12455
\(330\) −4.40983e13 + 1.16710e13i −0.620290 + 0.164165i
\(331\) 2.79590e13 0.386783 0.193392 0.981122i \(-0.438051\pi\)
0.193392 + 0.981122i \(0.438051\pi\)
\(332\) 6.71691e13i 0.913924i
\(333\) 2.70502e13i 0.362016i
\(334\) 2.51587e13 0.331194
\(335\) −2.03934e12 7.70555e12i −0.0264084 0.0997831i
\(336\) −1.05814e13 −0.134796
\(337\) 1.16982e14i 1.46606i −0.680194 0.733032i \(-0.738104\pi\)
0.680194 0.733032i \(-0.261896\pi\)
\(338\) 3.10190e13i 0.382460i
\(339\) 1.88775e13 0.229006
\(340\) 5.92545e12 + 2.23890e13i 0.0707273 + 0.267240i
\(341\) −2.32527e14 −2.73102
\(342\) 1.02851e13i 0.118867i
\(343\) 9.26112e13i 1.05328i
\(344\) 3.59887e13 0.402805
\(345\) 4.88315e13 1.29237e13i 0.537891 0.142357i
\(346\) −8.36501e12 −0.0906876
\(347\) 1.62553e12i 0.0173453i 0.999962 + 0.00867265i \(0.00276062\pi\)
−0.999962 + 0.00867265i \(0.997239\pi\)
\(348\) 3.85912e13i 0.405324i
\(349\) 1.40028e14 1.44769 0.723843 0.689965i \(-0.242374\pi\)
0.723843 + 0.689965i \(0.242374\pi\)
\(350\) −5.63920e13 + 3.20975e13i −0.573909 + 0.326660i
\(351\) 2.38447e13 0.238893
\(352\) 2.81696e13i 0.277841i
\(353\) 1.07894e13i 0.104770i −0.998627 0.0523850i \(-0.983318\pi\)
0.998627 0.0523850i \(-0.0166823\pi\)
\(354\) −3.89809e13 −0.372678
\(355\) 5.56457e13 1.47271e13i 0.523812 0.138631i
\(356\) 3.26119e13 0.302274
\(357\) 3.26621e13i 0.298105i
\(358\) 3.45870e13i 0.310854i
\(359\) 8.36216e13 0.740114 0.370057 0.929009i \(-0.379338\pi\)
0.370057 + 0.929009i \(0.379338\pi\)
\(360\) −3.45925e12 1.30706e13i −0.0301522 0.113929i
\(361\) −8.68632e13 −0.745669
\(362\) 1.24064e14i 1.04894i
\(363\) 1.01934e14i 0.848854i
\(364\) 7.06659e13 0.579632
\(365\) 3.40801e13 + 1.28770e14i 0.275353 + 1.04041i
\(366\) −5.79856e13 −0.461502
\(367\) 1.00049e13i 0.0784420i −0.999231 0.0392210i \(-0.987512\pi\)
0.999231 0.0392210i \(-0.0124876\pi\)
\(368\) 3.11931e13i 0.240933i
\(369\) −8.39267e12 −0.0638639
\(370\) 9.90244e13 2.62076e13i 0.742391 0.196480i
\(371\) 5.32890e13 0.393624
\(372\) 6.89206e13i 0.501606i
\(373\) 2.32365e14i 1.66637i 0.552993 + 0.833186i \(0.313486\pi\)
−0.552993 + 0.833186i \(0.686514\pi\)
\(374\) −8.69525e13 −0.614453
\(375\) −5.80839e13 5.91648e13i −0.404467 0.411994i
\(376\) 6.20395e13 0.425731
\(377\) 2.57724e14i 1.74292i
\(378\) 1.90680e13i 0.127087i
\(379\) −1.60902e14 −1.05693 −0.528465 0.848955i \(-0.677232\pi\)
−0.528465 + 0.848955i \(0.677232\pi\)
\(380\) 3.76511e13 9.96469e12i 0.243763 0.0645140i
\(381\) 5.93876e13 0.378973
\(382\) 1.38953e14i 0.874014i
\(383\) 3.41226e12i 0.0211568i −0.999944 0.0105784i \(-0.996633\pi\)
0.999944 0.0105784i \(-0.00336727\pi\)
\(384\) 8.34942e12 0.0510310
\(385\) −6.23286e13 2.35506e14i −0.375538 1.41895i
\(386\) −1.42471e13 −0.0846243
\(387\) 6.48528e13i 0.379768i
\(388\) 4.52656e13i 0.261333i
\(389\) 2.49915e14 1.42255 0.711277 0.702912i \(-0.248117\pi\)
0.711277 + 0.702912i \(0.248117\pi\)
\(390\) 2.31020e13 + 8.72898e13i 0.129656 + 0.489901i
\(391\) 9.62854e13 0.532830
\(392\) 8.28328e12i 0.0451990i
\(393\) 7.80879e12i 0.0420169i
\(394\) 6.15201e13 0.326428
\(395\) −1.61856e14 + 4.28366e13i −0.846926 + 0.224146i
\(396\) 5.07626e13 0.261951
\(397\) 2.50976e14i 1.27727i 0.769508 + 0.638637i \(0.220502\pi\)
−0.769508 + 0.638637i \(0.779498\pi\)
\(398\) 8.07414e13i 0.405265i
\(399\) 5.49272e13 0.271917
\(400\) 4.44970e13 2.53270e13i 0.217270 0.123667i
\(401\) 3.56396e14 1.71648 0.858240 0.513248i \(-0.171558\pi\)
0.858240 + 0.513248i \(0.171558\pi\)
\(402\) 8.87004e12i 0.0421388i
\(403\) 4.60273e14i 2.15694i
\(404\) −1.92917e14 −0.891812
\(405\) 2.35537e13 6.23369e12i 0.107413 0.0284277i
\(406\) 2.06096e14 0.927204
\(407\) 3.84582e14i 1.70695i
\(408\) 2.57726e13i 0.112857i
\(409\) 4.76849e13 0.206017 0.103008 0.994680i \(-0.467153\pi\)
0.103008 + 0.994680i \(0.467153\pi\)
\(410\) −8.13125e12 3.07236e13i −0.0346614 0.130967i
\(411\) 2.51309e14 1.05701
\(412\) 1.79131e14i 0.743424i
\(413\) 2.08177e14i 0.852525i
\(414\) −5.62111e13 −0.227154
\(415\) −1.17271e14 4.43102e14i −0.467654 1.76701i
\(416\) −5.57600e13 −0.219437
\(417\) 1.58193e14i 0.614382i
\(418\) 1.46226e14i 0.560474i
\(419\) −2.26851e14 −0.858150 −0.429075 0.903269i \(-0.641160\pi\)
−0.429075 + 0.903269i \(0.641160\pi\)
\(420\) 6.98035e13 1.84741e13i 0.260619 0.0689750i
\(421\) −1.36580e14 −0.503309 −0.251654 0.967817i \(-0.580975\pi\)
−0.251654 + 0.967817i \(0.580975\pi\)
\(422\) 2.43281e14i 0.884892i
\(423\) 1.11797e14i 0.401383i
\(424\) −4.20485e13 −0.149018
\(425\) −7.81781e13 1.37351e14i −0.273493 0.480500i
\(426\) −6.40551e13 −0.221208
\(427\) 3.09671e14i 1.05572i
\(428\) 1.79360e14i 0.603650i
\(429\) −3.39008e14 −1.12641
\(430\) −2.37411e14 + 6.28328e13i −0.778797 + 0.206115i
\(431\) 1.21003e13 0.0391896 0.0195948 0.999808i \(-0.493762\pi\)
0.0195948 + 0.999808i \(0.493762\pi\)
\(432\) 1.50459e13i 0.0481125i
\(433\) 3.05977e14i 0.966064i −0.875603 0.483032i \(-0.839536\pi\)
0.875603 0.483032i \(-0.160464\pi\)
\(434\) 3.68069e14 1.14746
\(435\) 6.73764e13 + 2.54579e14i 0.207404 + 0.783667i
\(436\) 5.81606e13 0.176788
\(437\) 1.61921e14i 0.486021i
\(438\) 1.48231e14i 0.439370i
\(439\) −3.68147e14 −1.07762 −0.538811 0.842427i \(-0.681126\pi\)
−0.538811 + 0.842427i \(0.681126\pi\)
\(440\) 4.91814e13 + 1.85830e14i 0.142171 + 0.537187i
\(441\) −1.49267e13 −0.0426140
\(442\) 1.72117e14i 0.485290i
\(443\) 1.38978e13i 0.0387012i −0.999813 0.0193506i \(-0.993840\pi\)
0.999813 0.0193506i \(-0.00615987\pi\)
\(444\) −1.13989e14 −0.313515
\(445\) −2.15135e14 + 5.69372e13i −0.584427 + 0.154674i
\(446\) 7.89347e13 0.211800
\(447\) 3.61525e14i 0.958179i
\(448\) 4.45899e13i 0.116737i
\(449\) −3.92376e13 −0.101472 −0.0507362 0.998712i \(-0.516157\pi\)
−0.0507362 + 0.998712i \(0.516157\pi\)
\(450\) 4.56401e13 + 8.01850e13i 0.116594 + 0.204845i
\(451\) 1.19321e14 0.301126
\(452\) 7.95497e13i 0.198325i
\(453\) 4.13081e14i 1.01741i
\(454\) −3.56602e14 −0.867715
\(455\) −4.66170e14 + 1.23376e14i −1.12068 + 0.296597i
\(456\) −4.33411e13 −0.102942
\(457\) 1.37201e14i 0.321973i −0.986957 0.160986i \(-0.948532\pi\)
0.986957 0.160986i \(-0.0514675\pi\)
\(458\) 3.61087e14i 0.837244i
\(459\) 4.64430e13 0.106402
\(460\) −5.44602e13 2.05775e14i −0.123285 0.465828i
\(461\) 2.48659e14 0.556223 0.278111 0.960549i \(-0.410292\pi\)
0.278111 + 0.960549i \(0.410292\pi\)
\(462\) 2.71097e14i 0.599229i
\(463\) 6.31268e14i 1.37885i 0.724355 + 0.689427i \(0.242138\pi\)
−0.724355 + 0.689427i \(0.757862\pi\)
\(464\) −1.62623e14 −0.351021
\(465\) 1.20329e14 + 4.54657e14i 0.256672 + 0.969822i
\(466\) 1.17339e14 0.247355
\(467\) 8.60246e14i 1.79217i −0.443880 0.896086i \(-0.646398\pi\)
0.443880 0.896086i \(-0.353602\pi\)
\(468\) 1.00481e14i 0.206887i
\(469\) −4.73703e13 −0.0963952
\(470\) −4.09263e14 + 1.08315e14i −0.823123 + 0.217846i
\(471\) −9.13048e13 −0.181501
\(472\) 1.64265e14i 0.322749i
\(473\) 9.22035e14i 1.79065i
\(474\) 1.86317e14 0.357660
\(475\) −2.30980e14 + 1.31470e14i −0.438288 + 0.249467i
\(476\) 1.37638e14 0.258166
\(477\) 7.57728e13i 0.140496i
\(478\) 4.48605e14i 0.822263i
\(479\) 5.71890e14 1.03626 0.518129 0.855303i \(-0.326629\pi\)
0.518129 + 0.855303i \(0.326629\pi\)
\(480\) −5.50795e13 + 1.45773e13i −0.0986651 + 0.0261125i
\(481\) 7.61256e14 1.34813
\(482\) 3.83567e14i 0.671556i
\(483\) 3.00194e14i 0.519629i
\(484\) −4.29550e14 −0.735129
\(485\) −7.90293e13 2.98609e14i −0.133724 0.505269i
\(486\) −2.71132e13 −0.0453609
\(487\) 7.95200e14i 1.31543i 0.753268 + 0.657714i \(0.228476\pi\)
−0.753268 + 0.657714i \(0.771524\pi\)
\(488\) 2.44351e14i 0.399673i
\(489\) −2.89612e14 −0.468402
\(490\) −1.44618e13 5.46432e13i −0.0231283 0.0873893i
\(491\) −5.04124e13 −0.0797240 −0.0398620 0.999205i \(-0.512692\pi\)
−0.0398620 + 0.999205i \(0.512692\pi\)
\(492\) 3.53666e13i 0.0553077i
\(493\) 5.01976e14i 0.776292i
\(494\) 2.89446e14 0.442658
\(495\) −3.34871e14 + 8.86264e13i −0.506465 + 0.134040i
\(496\) −2.90431e14 −0.434404
\(497\) 3.42085e14i 0.506027i
\(498\) 5.10065e14i 0.746216i
\(499\) 2.91835e14 0.422264 0.211132 0.977458i \(-0.432285\pi\)
0.211132 + 0.977458i \(0.432285\pi\)
\(500\) −2.49320e14 + 2.44765e14i −0.356798 + 0.350279i
\(501\) 1.91049e14 0.270419
\(502\) 1.50974e14i 0.211364i
\(503\) 7.29427e14i 1.01008i −0.863095 0.505042i \(-0.831477\pi\)
0.863095 0.505042i \(-0.168523\pi\)
\(504\) −8.03525e13 −0.110060
\(505\) 1.27264e15 3.36814e14i 1.72426 0.456339i
\(506\) 7.99172e14 1.07106
\(507\) 2.35551e14i 0.312277i
\(508\) 2.50259e14i 0.328200i
\(509\) 3.75076e14 0.486600 0.243300 0.969951i \(-0.421770\pi\)
0.243300 + 0.969951i \(0.421770\pi\)
\(510\) 4.49964e13 + 1.70017e14i 0.0577486 + 0.218201i
\(511\) 7.91623e14 1.00509
\(512\) 3.51844e13i 0.0441942i
\(513\) 7.81021e13i 0.0970549i
\(514\) 7.23769e14 0.889822
\(515\) 3.12746e14 + 1.18170e15i 0.380410 + 1.43736i
\(516\) 2.73289e14 0.328889
\(517\) 1.58946e15i 1.89257i
\(518\) 6.08758e14i 0.717185i
\(519\) −6.35218e13 −0.0740461
\(520\) 3.67838e14 9.73515e13i 0.424266 0.112286i
\(521\) −1.27745e15 −1.45793 −0.728967 0.684549i \(-0.759999\pi\)
−0.728967 + 0.684549i \(0.759999\pi\)
\(522\) 2.93052e14i 0.330946i
\(523\) 1.16147e15i 1.29792i 0.760824 + 0.648959i \(0.224795\pi\)
−0.760824 + 0.648959i \(0.775205\pi\)
\(524\) −3.29062e13 −0.0363877
\(525\) −4.28227e14 + 2.43740e14i −0.468595 + 0.266717i
\(526\) −8.44469e14 −0.914454
\(527\) 8.96487e14i 0.960696i
\(528\) 2.13913e14i 0.226856i
\(529\) 6.78604e13 0.0712213
\(530\) 2.77386e14 7.34126e13i 0.288116 0.0762524i
\(531\) −2.96011e14 −0.304291
\(532\) 2.31463e14i 0.235487i
\(533\) 2.36190e14i 0.237827i
\(534\) 2.47647e14 0.246806
\(535\) −3.13145e14 1.18321e15i −0.308887 1.16712i
\(536\) 3.73783e13 0.0364933
\(537\) 2.62645e14i 0.253811i
\(538\) 5.85149e14i 0.559711i
\(539\) 2.12219e14 0.200930
\(540\) −2.62687e13 9.92551e13i −0.0246191 0.0930223i
\(541\) 1.14931e15 1.06623 0.533115 0.846043i \(-0.321021\pi\)
0.533115 + 0.846043i \(0.321021\pi\)
\(542\) 7.60592e14i 0.698482i
\(543\) 9.42113e14i 0.856454i
\(544\) −1.08605e14 −0.0977366
\(545\) −3.83675e14 + 1.01543e14i −0.341808 + 0.0904623i
\(546\) 5.36619e14 0.473267
\(547\) 5.91724e13i 0.0516641i 0.999666 + 0.0258321i \(0.00822352\pi\)
−0.999666 + 0.0258321i \(0.991776\pi\)
\(548\) 1.05901e15i 0.915395i
\(549\) −4.40328e14 −0.376815
\(550\) −6.48881e14 1.14002e15i −0.549756 0.965866i
\(551\) 8.44162e14 0.708096
\(552\) 2.36873e14i 0.196721i
\(553\) 9.95020e14i 0.818170i
\(554\) 6.40037e14 0.521077
\(555\) 7.51966e14 1.99014e14i 0.606160 0.160425i
\(556\) −6.66624e14 −0.532071
\(557\) 8.98701e14i 0.710251i 0.934819 + 0.355125i \(0.115562\pi\)
−0.934819 + 0.355125i \(0.884438\pi\)
\(558\) 5.23366e14i 0.409560i
\(559\) −1.82511e15 −1.41424
\(560\) −7.78496e13 2.94151e14i −0.0597341 0.225703i
\(561\) −6.60296e14 −0.501699
\(562\) 6.91400e14i 0.520211i
\(563\) 1.00499e15i 0.748799i 0.927268 + 0.374399i \(0.122151\pi\)
−0.927268 + 0.374399i \(0.877849\pi\)
\(564\) 4.71113e14 0.347608
\(565\) 1.38886e14 + 5.24775e14i 0.101483 + 0.383448i
\(566\) −1.35249e15 −0.978684
\(567\) 1.44798e14i 0.103766i
\(568\) 2.69928e14i 0.191572i
\(569\) −2.14457e15 −1.50738 −0.753691 0.657228i \(-0.771729\pi\)
−0.753691 + 0.657228i \(0.771729\pi\)
\(570\) 2.85913e14 7.56694e13i 0.199032 0.0526755i
\(571\) −1.36068e15 −0.938119 −0.469060 0.883167i \(-0.655407\pi\)
−0.469060 + 0.883167i \(0.655407\pi\)
\(572\) 1.42858e15i 0.975496i
\(573\) 1.05517e15i 0.713629i
\(574\) −1.88875e14 −0.126520
\(575\) 7.18527e14 + 1.26238e15i 0.476727 + 0.837562i
\(576\) 6.34034e13 0.0416667
\(577\) 9.41505e14i 0.612852i −0.951894 0.306426i \(-0.900867\pi\)
0.951894 0.306426i \(-0.0991332\pi\)
\(578\) 7.61463e14i 0.490960i
\(579\) −1.08189e14 −0.0690955
\(580\) 1.07279e15 2.83924e14i 0.678675 0.179617i
\(581\) −2.72400e15 −1.70702
\(582\) 3.43736e14i 0.213377i
\(583\) 1.07729e15i 0.662453i
\(584\) −6.24642e14 −0.380505
\(585\) 1.75431e14 + 6.62857e14i 0.105864 + 0.400002i
\(586\) −1.81325e15 −1.08398
\(587\) 7.11947e14i 0.421636i −0.977525 0.210818i \(-0.932387\pi\)
0.977525 0.210818i \(-0.0676128\pi\)
\(588\) 6.29011e13i 0.0369048i
\(589\) 1.50760e15 0.876300
\(590\) −2.86791e14 1.08363e15i −0.165150 0.624013i
\(591\) 4.67169e14 0.266528
\(592\) 4.80350e14i 0.271512i
\(593\) 2.44357e15i 1.36844i 0.729278 + 0.684218i \(0.239856\pi\)
−0.729278 + 0.684218i \(0.760144\pi\)
\(594\) 3.85478e14 0.213882
\(595\) −9.07972e14 + 2.40302e14i −0.499148 + 0.132104i
\(596\) 1.52346e15 0.829808
\(597\) 6.13130e14i 0.330898i
\(598\) 1.58191e15i 0.845913i
\(599\) 6.81013e14 0.360835 0.180417 0.983590i \(-0.442255\pi\)
0.180417 + 0.983590i \(0.442255\pi\)
\(600\) 3.37899e14 1.92327e14i 0.177401 0.100974i
\(601\) −1.35124e15 −0.702947 −0.351474 0.936198i \(-0.614319\pi\)
−0.351474 + 0.936198i \(0.614319\pi\)
\(602\) 1.45950e15i 0.752354i
\(603\) 6.73569e13i 0.0344062i
\(604\) −1.74072e15 −0.881100
\(605\) 2.83366e15 7.49951e14i 1.42132 0.376165i
\(606\) −1.46496e15 −0.728161
\(607\) 2.98246e15i 1.46905i −0.678582 0.734524i \(-0.737405\pi\)
0.678582 0.734524i \(-0.262595\pi\)
\(608\) 1.82639e14i 0.0891506i
\(609\) 1.56504e15 0.757059
\(610\) −4.26612e14 1.61194e15i −0.204512 0.772741i
\(611\) −3.14624e15 −1.49474
\(612\) 1.95710e14i 0.0921470i
\(613\) 2.62361e15i 1.22424i 0.790766 + 0.612119i \(0.209683\pi\)
−0.790766 + 0.612119i \(0.790317\pi\)
\(614\) 6.37964e14 0.295032
\(615\) −6.17467e13 2.33307e14i −0.0283009 0.106934i
\(616\) 1.14240e15 0.518948
\(617\) 1.36222e15i 0.613310i −0.951821 0.306655i \(-0.900790\pi\)
0.951821 0.306655i \(-0.0992098\pi\)
\(618\) 1.36028e15i 0.607003i
\(619\) 4.10602e15 1.81603 0.908013 0.418942i \(-0.137599\pi\)
0.908013 + 0.418942i \(0.137599\pi\)
\(620\) 1.91592e15 5.07064e14i 0.839891 0.222284i
\(621\) −4.26853e14 −0.185470
\(622\) 3.37086e14i 0.145176i
\(623\) 1.32255e15i 0.564585i
\(624\) −4.23428e14 −0.179169
\(625\) 1.21738e15 2.04996e15i 0.510607 0.859814i
\(626\) 1.68754e15 0.701608
\(627\) 1.11040e15i 0.457625i
\(628\) 3.84757e14i 0.157184i
\(629\) 1.48272e15 0.600455
\(630\) 5.30070e14 1.40288e14i 0.212795 0.0563178i
\(631\) −3.07651e15 −1.22433 −0.612163 0.790731i \(-0.709700\pi\)
−0.612163 + 0.790731i \(0.709700\pi\)
\(632\) 7.85136e14i 0.309743i
\(633\) 1.84742e15i 0.722511i
\(634\) 2.13859e15 0.829159
\(635\) 4.36928e14 + 1.65091e15i 0.167940 + 0.634554i
\(636\) −3.19306e14 −0.121673
\(637\) 4.20073e14i 0.158693i
\(638\) 4.16642e15i 1.56045i
\(639\) −4.86418e14 −0.180616
\(640\) 6.14285e13 + 2.32105e14i 0.0226141 + 0.0854465i
\(641\) −2.43456e14 −0.0888590 −0.0444295 0.999013i \(-0.514147\pi\)
−0.0444295 + 0.999013i \(0.514147\pi\)
\(642\) 1.36202e15i 0.492878i
\(643\) 6.07705e14i 0.218038i −0.994040 0.109019i \(-0.965229\pi\)
0.994040 0.109019i \(-0.0347710\pi\)
\(644\) −1.26502e15 −0.450012
\(645\) −1.80284e15 + 4.77136e14i −0.635885 + 0.168292i
\(646\) 5.63761e14 0.197159
\(647\) 3.75432e14i 0.130184i −0.997879 0.0650919i \(-0.979266\pi\)
0.997879 0.0650919i \(-0.0207341\pi\)
\(648\) 1.14255e14i 0.0392837i
\(649\) 4.20849e15 1.43477
\(650\) −2.25660e15 + 1.28442e15i −0.762834 + 0.434194i
\(651\) 2.79503e15 0.936894
\(652\) 1.22042e15i 0.405648i
\(653\) 2.76536e15i 0.911442i −0.890123 0.455721i \(-0.849382\pi\)
0.890123 0.455721i \(-0.150618\pi\)
\(654\) 4.41657e14 0.144347
\(655\) 2.17076e14 5.74509e13i 0.0703533 0.0186196i
\(656\) 1.49035e14 0.0478979
\(657\) 1.12563e15i 0.358744i
\(658\) 2.51597e15i 0.795176i
\(659\) −3.26634e15 −1.02374 −0.511872 0.859062i \(-0.671048\pi\)
−0.511872 + 0.859062i \(0.671048\pi\)
\(660\) 3.73471e14 + 1.41114e15i 0.116082 + 0.438611i
\(661\) 1.72112e15 0.530521 0.265260 0.964177i \(-0.414542\pi\)
0.265260 + 0.964177i \(0.414542\pi\)
\(662\) 8.94688e14i 0.273497i
\(663\) 1.30701e15i 0.396238i
\(664\) 2.14941e15 0.646242
\(665\) 4.04111e14 + 1.52692e15i 0.120498 + 0.455298i
\(666\) −8.65606e14 −0.255984
\(667\) 4.61361e15i 1.35316i
\(668\) 8.05078e14i 0.234190i
\(669\) 5.99410e14 0.172934
\(670\) −2.46578e14 + 6.52588e13i −0.0705573 + 0.0186736i
\(671\) 6.26029e15 1.77673
\(672\) 3.38605e14i 0.0953152i
\(673\) 4.18650e15i 1.16888i 0.811438 + 0.584438i \(0.198685\pi\)
−0.811438 + 0.584438i \(0.801315\pi\)
\(674\) −3.74341e15 −1.03666
\(675\) 3.46579e14 + 6.08905e14i 0.0951989 + 0.167255i
\(676\) 9.92609e14 0.270440
\(677\) 4.21054e15i 1.13789i 0.822376 + 0.568945i \(0.192648\pi\)
−0.822376 + 0.568945i \(0.807352\pi\)
\(678\) 6.04081e14i 0.161932i
\(679\) −1.83571e15 −0.488114
\(680\) 7.16449e14 1.89614e14i 0.188967 0.0500117i
\(681\) −2.70795e15 −0.708486
\(682\) 7.44087e15i 1.93112i
\(683\) 6.85825e15i 1.76563i −0.469722 0.882814i \(-0.655646\pi\)
0.469722 0.882814i \(-0.344354\pi\)
\(684\) −3.29122e14 −0.0840520
\(685\) 1.84893e15 + 6.98612e15i 0.468407 + 1.76986i
\(686\) −2.96356e15 −0.744785
\(687\) 2.74201e15i 0.683607i
\(688\) 1.15164e15i 0.284826i
\(689\) 2.13243e15 0.523201
\(690\) −4.13557e14 1.56261e15i −0.100662 0.380347i
\(691\) −7.01392e15 −1.69368 −0.846841 0.531847i \(-0.821498\pi\)
−0.846841 + 0.531847i \(0.821498\pi\)
\(692\) 2.67680e14i 0.0641258i
\(693\) 2.05864e15i 0.489269i
\(694\) 5.20168e13 0.0122650
\(695\) 4.39759e15 1.16386e15i 1.02872 0.272260i
\(696\) −1.23492e15 −0.286607
\(697\) 4.60033e14i 0.105927i
\(698\) 4.48089e15i 1.02367i
\(699\) 8.91045e14 0.201965
\(700\) 1.02712e15 + 1.80454e15i 0.230984 + 0.405815i
\(701\) −3.59916e15 −0.803067 −0.401533 0.915844i \(-0.631523\pi\)
−0.401533 + 0.915844i \(0.631523\pi\)
\(702\) 7.63030e14i 0.168923i
\(703\) 2.49346e15i 0.547706i
\(704\) −9.01428e14 −0.196463
\(705\) −3.10784e15 + 8.22517e14i −0.672077 + 0.177871i
\(706\) −3.45261e14 −0.0740836
\(707\) 7.82361e15i 1.66571i
\(708\) 1.24739e15i 0.263523i
\(709\) −9.13743e15 −1.91544 −0.957722 0.287695i \(-0.907111\pi\)
−0.957722 + 0.287695i \(0.907111\pi\)
\(710\) −4.71267e14 1.78066e15i −0.0980271 0.370391i
\(711\) 1.41484e15 0.292028
\(712\) 1.04358e15i 0.213740i
\(713\) 8.23952e15i 1.67459i
\(714\) 1.04519e15 0.210792
\(715\) −2.49416e15 9.42406e15i −0.499161 1.88606i
\(716\) 1.10678e15 0.219807
\(717\) 3.40659e15i 0.671375i
\(718\) 2.67589e15i 0.523340i
\(719\) 4.61453e15 0.895609 0.447805 0.894131i \(-0.352206\pi\)
0.447805 + 0.894131i \(0.352206\pi\)
\(720\) −4.18260e14 + 1.10696e14i −0.0805597 + 0.0213208i
\(721\) 7.26454e15 1.38856
\(722\) 2.77962e15i 0.527268i
\(723\) 2.91271e15i 0.548323i
\(724\) −3.97006e15 −0.741711
\(725\) −6.58131e15 + 3.74598e15i −1.22026 + 0.694555i
\(726\) −3.26189e15 −0.600231
\(727\) 4.47421e15i 0.817104i 0.912735 + 0.408552i \(0.133966\pi\)
−0.912735 + 0.408552i \(0.866034\pi\)
\(728\) 2.26131e15i 0.409861i
\(729\) −2.05891e14 −0.0370370
\(730\) 4.12065e15 1.09056e15i 0.735682 0.194704i
\(731\) −3.55482e15 −0.629901
\(732\) 1.85554e15i 0.326332i
\(733\) 4.68168e15i 0.817203i −0.912713 0.408601i \(-0.866017\pi\)
0.912713 0.408601i \(-0.133983\pi\)
\(734\) −3.20156e14 −0.0554669
\(735\) −1.09819e14 4.14947e14i −0.0188842 0.0713530i
\(736\) 9.98181e14 0.170365
\(737\) 9.57636e14i 0.162229i
\(738\) 2.68565e14i 0.0451586i
\(739\) −5.58278e15 −0.931764 −0.465882 0.884847i \(-0.654263\pi\)
−0.465882 + 0.884847i \(0.654263\pi\)
\(740\) −8.38644e14 3.16878e15i −0.138932 0.524950i
\(741\) 2.19798e15 0.361429
\(742\) 1.70525e15i 0.278334i
\(743\) 5.84984e15i 0.947776i 0.880585 + 0.473888i \(0.157150\pi\)
−0.880585 + 0.473888i \(0.842850\pi\)
\(744\) −2.20546e15 −0.354689
\(745\) −1.00500e16 + 2.65982e15i −1.60438 + 0.424612i
\(746\) 7.43568e15 1.17830
\(747\) 3.87331e15i 0.609283i
\(748\) 2.78248e15i 0.434484i
\(749\) −7.27383e15 −1.12749
\(750\) −1.89327e15 + 1.85868e15i −0.291324 + 0.286002i
\(751\) 6.23385e15 0.952218 0.476109 0.879386i \(-0.342047\pi\)
0.476109 + 0.879386i \(0.342047\pi\)
\(752\) 1.98527e15i 0.301037i
\(753\) 1.14646e15i 0.172578i
\(754\) 8.24716e15 1.23243
\(755\) 1.14832e16 3.03912e15i 1.70355 0.450858i
\(756\) −6.10177e14 −0.0898640
\(757\) 1.20579e16i 1.76297i 0.472210 + 0.881486i \(0.343457\pi\)
−0.472210 + 0.881486i \(0.656543\pi\)
\(758\) 5.14887e15i 0.747362i
\(759\) 6.06871e15 0.874514
\(760\) −3.18870e14 1.20484e15i −0.0456183 0.172367i
\(761\) 5.06900e15 0.719957 0.359979 0.932961i \(-0.382784\pi\)
0.359979 + 0.932961i \(0.382784\pi\)
\(762\) 1.90040e15i 0.267975i
\(763\) 2.35866e15i 0.330203i
\(764\) −4.44649e15 −0.618021
\(765\) 3.41691e14 + 1.29106e15i 0.0471515 + 0.178160i
\(766\) −1.09192e14 −0.0149601
\(767\) 8.33045e15i 1.13317i
\(768\) 2.67181e14i 0.0360844i
\(769\) −1.35439e15 −0.181614 −0.0908072 0.995868i \(-0.528945\pi\)
−0.0908072 + 0.995868i \(0.528945\pi\)
\(770\) −7.53619e15 + 1.99452e15i −1.00335 + 0.265545i
\(771\) 5.49612e15 0.726537
\(772\) 4.55906e14i 0.0598384i
\(773\) 8.61815e15i 1.12312i 0.827435 + 0.561561i \(0.189799\pi\)
−0.827435 + 0.561561i \(0.810201\pi\)
\(774\) 2.07529e15 0.268537
\(775\) −1.17537e16 + 6.69001e15i −1.51013 + 0.859543i
\(776\) 1.44850e15 0.184790
\(777\) 4.62276e15i 0.585579i
\(778\) 7.99727e15i 1.00590i
\(779\) −7.73627e14 −0.0966219
\(780\) 2.79327e15 7.39263e14i 0.346412 0.0916808i
\(781\) 6.91557e15 0.851623
\(782\) 3.08113e15i 0.376767i
\(783\) 2.22536e15i 0.270216i
\(784\) 2.65065e14 0.0319605
\(785\) −6.71749e14 2.53817e15i −0.0804311 0.303905i
\(786\) −2.49881e14 −0.0297105
\(787\) 4.95922e15i 0.585534i 0.956184 + 0.292767i \(0.0945761\pi\)
−0.956184 + 0.292767i \(0.905424\pi\)
\(788\) 1.96864e15i 0.230820i
\(789\) −6.41268e15 −0.746649
\(790\) 1.37077e15 + 5.17940e15i 0.158495 + 0.598867i
\(791\) 3.22608e15 0.370429
\(792\) 1.62440e15i 0.185227i
\(793\) 1.23919e16i 1.40325i
\(794\) 8.03123e15 0.903170
\(795\) 2.10640e15 5.57477e14i 0.235246 0.0622598i
\(796\) −2.58372e15 −0.286566
\(797\) 1.48779e16i 1.63878i 0.573235 + 0.819391i \(0.305688\pi\)
−0.573235 + 0.819391i \(0.694312\pi\)
\(798\) 1.75767e15i 0.192274i
\(799\) −6.12802e15 −0.665752
\(800\) −8.10464e14 1.42390e15i −0.0874458 0.153633i
\(801\) 1.88057e15 0.201516
\(802\) 1.14047e16i 1.21374i
\(803\) 1.60034e16i 1.69152i
\(804\) 2.83841e14 0.0297966
\(805\) 8.34507e15 2.20859e15i 0.870067 0.230271i
\(806\) 1.47287e16 1.52519
\(807\) 4.44347e15i 0.457002i
\(808\) 6.17335e15i 0.630606i
\(809\) 1.18817e16 1.20549 0.602744 0.797935i \(-0.294074\pi\)
0.602744 + 0.797935i \(0.294074\pi\)
\(810\) −1.99478e14 7.53719e14i −0.0201014 0.0759524i
\(811\) −7.07941e14 −0.0708569 −0.0354284 0.999372i \(-0.511280\pi\)
−0.0354284 + 0.999372i \(0.511280\pi\)
\(812\) 6.59506e15i 0.655632i
\(813\) 5.77574e15i 0.570309i
\(814\) 1.23066e16 1.20699
\(815\) −2.13074e15 8.05091e15i −0.207570 0.784293i
\(816\) −8.24722e14 −0.0798016
\(817\) 5.97806e15i 0.574565i
\(818\) 1.52592e15i 0.145676i
\(819\) 4.07495e15 0.386421
\(820\) −9.83155e14 + 2.60200e14i −0.0926074 + 0.0245093i
\(821\) 4.20085e15 0.393052 0.196526 0.980499i \(-0.437034\pi\)
0.196526 + 0.980499i \(0.437034\pi\)
\(822\) 8.04189e15i 0.747417i
\(823\) 1.76608e16i 1.63046i −0.579135 0.815232i \(-0.696609\pi\)
0.579135 0.815232i \(-0.303391\pi\)
\(824\) −5.73220e15 −0.525680
\(825\) −4.92744e15 8.65701e15i −0.448874 0.788626i
\(826\) −6.66166e15 −0.602826
\(827\) 7.42500e15i 0.667446i 0.942671 + 0.333723i \(0.108305\pi\)
−0.942671 + 0.333723i \(0.891695\pi\)
\(828\) 1.79875e15i 0.160622i
\(829\) 1.02610e16 0.910208 0.455104 0.890438i \(-0.349602\pi\)
0.455104 + 0.890438i \(0.349602\pi\)
\(830\) −1.41793e16 + 3.75266e15i −1.24947 + 0.330682i
\(831\) 4.86028e15 0.425457
\(832\) 1.78432e15i 0.155165i
\(833\) 8.18189e14i 0.0706816i
\(834\) −5.06217e15 −0.434434
\(835\) 1.40559e15 + 5.31095e15i 0.119835 + 0.452790i
\(836\) 4.67924e15 0.396315
\(837\) 3.97431e15i 0.334404i
\(838\) 7.25923e15i 0.606804i
\(839\) −5.46116e15 −0.453518 −0.226759 0.973951i \(-0.572813\pi\)
−0.226759 + 0.973951i \(0.572813\pi\)
\(840\) −5.91171e14 2.23371e15i −0.0487727 0.184285i
\(841\) 1.18522e16 0.971449
\(842\) 4.37055e15i 0.355893i
\(843\) 5.25032e15i 0.424750i
\(844\) −7.78500e15 −0.625713
\(845\) −6.54806e15 + 1.73300e15i −0.522878 + 0.138384i
\(846\) 3.57751e15 0.283821
\(847\) 1.74201e16i 1.37307i
\(848\) 1.34555e15i 0.105372i
\(849\) −1.02704e16 −0.799092
\(850\) −4.39523e15 + 2.50170e15i −0.339764 + 0.193389i
\(851\) −1.36275e16 −1.04666
\(852\) 2.04976e15i 0.156418i
\(853\) 1.38989e16i 1.05380i 0.849926 + 0.526902i \(0.176647\pi\)
−0.849926 + 0.526902i \(0.823353\pi\)
\(854\) −9.90947e15 −0.746504
\(855\) 2.17115e15 5.74614e14i 0.162509 0.0430093i
\(856\) 5.73953e15 0.426845
\(857\) 1.35605e16i 1.00203i −0.865437 0.501017i \(-0.832959\pi\)
0.865437 0.501017i \(-0.167041\pi\)
\(858\) 1.08483e16i 0.796490i
\(859\) −4.45328e15 −0.324876 −0.162438 0.986719i \(-0.551936\pi\)
−0.162438 + 0.986719i \(0.551936\pi\)
\(860\) 2.01065e15 + 7.59715e15i 0.145745 + 0.550692i
\(861\) −1.43427e15 −0.103303
\(862\) 3.87209e14i 0.0277112i
\(863\) 1.15395e16i 0.820593i 0.911952 + 0.410297i \(0.134575\pi\)
−0.911952 + 0.410297i \(0.865425\pi\)
\(864\) 4.81469e14 0.0340207
\(865\) −4.67344e14 1.76584e15i −0.0328131 0.123983i
\(866\) −9.79127e15 −0.683110
\(867\) 5.78236e15i 0.400867i
\(868\) 1.17782e16i 0.811374i
\(869\) −2.01153e16 −1.37695
\(870\) 8.14652e15 2.15604e15i 0.554136 0.146657i
\(871\) −1.89558e15 −0.128128
\(872\) 1.86114e15i 0.125008i
\(873\) 2.61024e15i 0.174222i
\(874\) −5.18147e15 −0.343669
\(875\) −9.92627e15 1.01110e16i −0.654247 0.666422i
\(876\) −4.74338e15 −0.310681
\(877\) 1.61714e16i 1.05257i −0.850308 0.526285i \(-0.823584\pi\)
0.850308 0.526285i \(-0.176416\pi\)
\(878\) 1.17807e16i 0.761994i
\(879\) −1.37693e16 −0.885064
\(880\) 5.94655e15 1.57380e15i 0.379848 0.100530i
\(881\) −2.06661e16 −1.31187 −0.655936 0.754817i \(-0.727726\pi\)
−0.655936 + 0.754817i \(0.727726\pi\)
\(882\) 4.77656e14i 0.0301327i
\(883\) 2.69113e15i 0.168714i −0.996436 0.0843569i \(-0.973116\pi\)
0.996436 0.0843569i \(-0.0268836\pi\)
\(884\) 5.50775e15 0.343152
\(885\) −2.17782e15 8.22880e15i −0.134845 0.509505i
\(886\) −4.44728e14 −0.0273659
\(887\) 2.20727e16i 1.34982i 0.737900 + 0.674911i \(0.235818\pi\)
−0.737900 + 0.674911i \(0.764182\pi\)
\(888\) 3.64766e15i 0.221688i
\(889\) 1.01491e16 0.613009
\(890\) 1.82199e15 + 6.88431e15i 0.109371 + 0.413253i
\(891\) 2.92722e15 0.174634
\(892\) 2.52591e15i 0.149765i
\(893\) 1.03053e16i 0.607267i
\(894\) 1.15688e16 0.677535
\(895\) −7.30125e15 + 1.93234e15i −0.424982 + 0.112475i
\(896\) 1.42688e15 0.0825453
\(897\) 1.20126e16i 0.690685i
\(898\) 1.25560e15i 0.0717518i
\(899\) 4.29561e16 2.43976
\(900\) 2.56592e15 1.46048e15i 0.144847 0.0824447i
\(901\) 4.15339e15 0.233032
\(902\) 3.81829e15i 0.212928i
\(903\) 1.10831e16i 0.614295i
\(904\) −2.54559e15 −0.140237
\(905\) 2.61897e16 6.93133e15i 1.43405 0.379533i
\(906\) −1.32186e16 −0.719416
\(907\) 2.50362e16i 1.35434i 0.735827 + 0.677170i \(0.236794\pi\)
−0.735827 + 0.677170i \(0.763206\pi\)
\(908\) 1.14113e16i 0.613567i
\(909\) −1.11246e16 −0.594541
\(910\) 3.94802e15 + 1.49174e16i 0.209726 + 0.792440i
\(911\) −1.34918e16 −0.712393 −0.356196 0.934411i \(-0.615927\pi\)
−0.356196 + 0.934411i \(0.615927\pi\)
\(912\) 1.38692e15i 0.0727912i
\(913\) 5.50682e16i 2.87284i
\(914\) −4.39044e15 −0.227669
\(915\) −3.23959e15 1.22406e16i −0.166984 0.630940i
\(916\) −1.15548e16 −0.592021
\(917\) 1.33449e15i 0.0679646i
\(918\) 1.48618e15i 0.0752377i
\(919\) −1.86406e16 −0.938048 −0.469024 0.883185i \(-0.655394\pi\)
−0.469024 + 0.883185i \(0.655394\pi\)
\(920\) −6.58481e15 + 1.74273e15i −0.329390 + 0.0871758i
\(921\) 4.84454e15 0.240893
\(922\) 7.95708e15i 0.393309i
\(923\) 1.36889e16i 0.672606i
\(924\) 8.67509e15 0.423719
\(925\) 1.10648e16 + 1.94397e16i 0.537233 + 0.943864i
\(926\) 2.02006e16 0.974997
\(927\) 1.03296e16i 0.495616i
\(928\) 5.20393e15i 0.248209i
\(929\) −1.26618e16 −0.600358 −0.300179 0.953883i \(-0.597046\pi\)
−0.300179 + 0.953883i \(0.597046\pi\)
\(930\) 1.45490e16 3.85052e15i 0.685768 0.181494i
\(931\) −1.37593e15 −0.0644723
\(932\) 3.75486e15i 0.174906i
\(933\) 2.55975e15i 0.118535i
\(934\) −2.75279e16 −1.26726
\(935\) −4.85794e15 1.83555e16i −0.222325 0.840045i
\(936\) −3.21540e15 −0.146291
\(937\) 3.98788e16i 1.80374i 0.432006 + 0.901871i \(0.357806\pi\)
−0.432006 + 0.901871i \(0.642194\pi\)
\(938\) 1.51585e15i 0.0681617i
\(939\) 1.28147e16 0.572861
\(940\) 3.46608e15 + 1.30964e16i 0.154041 + 0.582036i
\(941\) −2.35800e16 −1.04184 −0.520920 0.853606i \(-0.674411\pi\)
−0.520920 + 0.853606i \(0.674411\pi\)
\(942\) 2.92175e15i 0.128340i
\(943\) 4.22812e15i 0.184643i
\(944\) 5.25649e15 0.228218
\(945\) 4.02522e15 1.06531e15i 0.173746 0.0459833i
\(946\) −2.95051e16 −1.26618
\(947\) 2.50128e16i 1.06718i 0.845743 + 0.533591i \(0.179158\pi\)
−0.845743 + 0.533591i \(0.820842\pi\)
\(948\) 5.96213e15i 0.252904i
\(949\) 3.16778e16 1.33595
\(950\) 4.20705e15 + 7.39137e15i 0.176400 + 0.309917i
\(951\) 1.62400e16 0.677005
\(952\) 4.40441e15i 0.182551i
\(953\) 3.78726e16i 1.56068i −0.625355 0.780340i \(-0.715046\pi\)
0.625355 0.780340i \(-0.284954\pi\)
\(954\) −2.42473e15 −0.0993453
\(955\) 2.93326e16 7.76313e15i 1.19490 0.316241i
\(956\) 1.43554e16 0.581427
\(957\) 3.16387e16i 1.27410i
\(958\) 1.83005e16i 0.732744i
\(959\) 4.29476e16 1.70976
\(960\) 4.66472e14 + 1.76255e15i 0.0184644 + 0.0697668i
\(961\) 5.13075e16 2.01931
\(962\) 2.43602e16i 0.953274i
\(963\) 1.03428e16i 0.402433i
\(964\) 1.22741e16 0.474862
\(965\) −7.95967e14 3.00753e15i −0.0306193 0.115694i
\(966\) −9.60621e15 −0.367433
\(967\) 1.01035e16i 0.384262i −0.981369 0.192131i \(-0.938460\pi\)
0.981369 0.192131i \(-0.0615398\pi\)
\(968\) 1.37456e16i 0.519815i
\(969\) 4.28106e15 0.160980
\(970\) −9.55548e15 + 2.52894e15i −0.357279 + 0.0945570i
\(971\) −1.09869e16 −0.408478 −0.204239 0.978921i \(-0.565472\pi\)
−0.204239 + 0.978921i \(0.565472\pi\)
\(972\) 8.67624e14i 0.0320750i
\(973\) 2.70344e16i 0.993795i
\(974\) 2.54464e16 0.930148
\(975\) −1.71360e16 + 9.75356e15i −0.622852 + 0.354518i
\(976\) 7.81922e15 0.282611
\(977\) 2.52822e16i 0.908644i −0.890837 0.454322i \(-0.849881\pi\)
0.890837 0.454322i \(-0.150119\pi\)
\(978\) 9.26760e15i 0.331210i
\(979\) −2.67367e16 −0.950173
\(980\) −1.74858e15 + 4.62777e14i −0.0617935 + 0.0163542i
\(981\) 3.35383e15 0.117859
\(982\) 1.61320e15i 0.0563734i
\(983\) 4.29168e16i 1.49136i 0.666304 + 0.745680i \(0.267875\pi\)
−0.666304 + 0.745680i \(0.732125\pi\)
\(984\) 1.13173e15 0.0391085
\(985\) 3.43706e15 + 1.29868e16i 0.118110 + 0.446275i
\(986\) 1.60632e16 0.548921
\(987\) 1.91056e16i 0.649258i
\(988\) 9.26226e15i 0.313007i
\(989\) 3.26720e16 1.09798
\(990\) 2.83605e15 + 1.07159e16i 0.0947807 + 0.358125i
\(991\) −5.20325e16 −1.72930 −0.864648 0.502377i \(-0.832459\pi\)
−0.864648 + 0.502377i \(0.832459\pi\)
\(992\) 9.29379e15i 0.307170i
\(993\) 6.79404e15i 0.223309i
\(994\) −1.09467e16 −0.357815
\(995\) 1.70443e16 4.51093e15i 0.554056 0.146635i
\(996\) 1.63221e16 0.527654
\(997\) 5.42887e16i 1.74537i 0.488288 + 0.872683i \(0.337622\pi\)
−0.488288 + 0.872683i \(0.662378\pi\)
\(998\) 9.33872e15i 0.298586i
\(999\) −6.57320e15 −0.209010
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.12.c.b.19.3 6
3.2 odd 2 90.12.c.c.19.4 6
4.3 odd 2 240.12.f.b.49.6 6
5.2 odd 4 150.12.a.u.1.2 3
5.3 odd 4 150.12.a.t.1.2 3
5.4 even 2 inner 30.12.c.b.19.6 yes 6
15.14 odd 2 90.12.c.c.19.1 6
20.19 odd 2 240.12.f.b.49.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.12.c.b.19.3 6 1.1 even 1 trivial
30.12.c.b.19.6 yes 6 5.4 even 2 inner
90.12.c.c.19.1 6 15.14 odd 2
90.12.c.c.19.4 6 3.2 odd 2
150.12.a.t.1.2 3 5.3 odd 4
150.12.a.u.1.2 3 5.2 odd 4
240.12.f.b.49.3 6 20.19 odd 2
240.12.f.b.49.6 6 4.3 odd 2