Properties

Label 240.12.f.b.49.6
Level $240$
Weight $12$
Character 240.49
Analytic conductor $184.402$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,12,Mod(49,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.49"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 240.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(184.402363334\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 350078x^{4} + 30638651521x^{2} + 173683668788100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.6
Root \(451.888i\) of defining polynomial
Character \(\chi\) \(=\) 240.49
Dual form 240.12.f.b.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+243.000i q^{3} +(6755.14 - 1787.80i) q^{5} +41527.6i q^{7} -59049.0 q^{9} -839520. q^{11} -1.66178e6i q^{13} +(434436. + 1.64150e6i) q^{15} -3.23669e6i q^{17} +5.44307e6 q^{19} -1.00912e7 q^{21} -2.97481e7i q^{23} +(4.24356e7 - 2.41537e7i) q^{25} -1.43489e7i q^{27} -1.55089e8 q^{29} +2.76977e8 q^{31} -2.04003e8i q^{33} +(7.42432e7 + 2.80525e8i) q^{35} +4.58098e8i q^{37} +4.03812e8 q^{39} +1.42131e8 q^{41} +1.09829e9i q^{43} +(-3.98884e8 + 1.05568e8i) q^{45} +1.89330e9i q^{47} +2.52786e8 q^{49} +7.86516e8 q^{51} +1.28322e9i q^{53} +(-5.67107e9 + 1.50090e9i) q^{55} +1.32267e9i q^{57} -5.01298e9 q^{59} +7.45699e9 q^{61} -2.45216e9i q^{63} +(-2.97093e9 - 1.12255e10i) q^{65} +1.14069e9i q^{67} +7.22879e9 q^{69} -8.23753e9 q^{71} +1.90626e10i q^{73} +(5.86935e9 + 1.03119e10i) q^{75} -3.48632e10i q^{77} +2.39605e10 q^{79} +3.48678e9 q^{81} +6.55948e10i q^{83} +(-5.78657e9 - 2.18643e10i) q^{85} -3.76867e10i q^{87} -3.18476e10 q^{89} +6.90096e10 q^{91} +6.73053e10i q^{93} +(3.67687e10 - 9.73114e9i) q^{95} -4.42047e10i q^{97} +4.95728e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9926 q^{5} - 354294 q^{9} - 1753400 q^{11} - 551124 q^{15} + 4069824 q^{19} - 32748624 q^{21} + 169978326 q^{25} + 71715564 q^{29} + 122243352 q^{31} - 825571904 q^{35} - 153183312 q^{39} + 2006768564 q^{41}+ \cdots + 103536516600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 243.000i 0.577350i
\(4\) 0 0
\(5\) 6755.14 1787.80i 0.966717 0.255850i
\(6\) 0 0
\(7\) 41527.6i 0.933894i 0.884285 + 0.466947i \(0.154646\pi\)
−0.884285 + 0.466947i \(0.845354\pi\)
\(8\) 0 0
\(9\) −59049.0 −0.333333
\(10\) 0 0
\(11\) −839520. −1.57171 −0.785853 0.618414i \(-0.787776\pi\)
−0.785853 + 0.618414i \(0.787776\pi\)
\(12\) 0 0
\(13\) 1.66178e6i 1.24132i −0.784079 0.620661i \(-0.786864\pi\)
0.784079 0.620661i \(-0.213136\pi\)
\(14\) 0 0
\(15\) 434436. + 1.64150e6i 0.147715 + 0.558134i
\(16\) 0 0
\(17\) 3.23669e6i 0.552882i −0.961031 0.276441i \(-0.910845\pi\)
0.961031 0.276441i \(-0.0891550\pi\)
\(18\) 0 0
\(19\) 5.44307e6 0.504312 0.252156 0.967687i \(-0.418860\pi\)
0.252156 + 0.967687i \(0.418860\pi\)
\(20\) 0 0
\(21\) −1.00912e7 −0.539184
\(22\) 0 0
\(23\) 2.97481e7i 0.963732i −0.876245 0.481866i \(-0.839959\pi\)
0.876245 0.481866i \(-0.160041\pi\)
\(24\) 0 0
\(25\) 4.24356e7 2.41537e7i 0.869082 0.494668i
\(26\) 0 0
\(27\) 1.43489e7i 0.192450i
\(28\) 0 0
\(29\) −1.55089e8 −1.40408 −0.702042 0.712136i \(-0.747728\pi\)
−0.702042 + 0.712136i \(0.747728\pi\)
\(30\) 0 0
\(31\) 2.76977e8 1.73762 0.868808 0.495150i \(-0.164887\pi\)
0.868808 + 0.495150i \(0.164887\pi\)
\(32\) 0 0
\(33\) 2.04003e8i 0.907425i
\(34\) 0 0
\(35\) 7.42432e7 + 2.80525e8i 0.238936 + 0.902811i
\(36\) 0 0
\(37\) 4.58098e8i 1.08605i 0.839718 + 0.543023i \(0.182720\pi\)
−0.839718 + 0.543023i \(0.817280\pi\)
\(38\) 0 0
\(39\) 4.03812e8 0.716678
\(40\) 0 0
\(41\) 1.42131e8 0.191592 0.0957958 0.995401i \(-0.469460\pi\)
0.0957958 + 0.995401i \(0.469460\pi\)
\(42\) 0 0
\(43\) 1.09829e9i 1.13930i 0.821886 + 0.569652i \(0.192922\pi\)
−0.821886 + 0.569652i \(0.807078\pi\)
\(44\) 0 0
\(45\) −3.98884e8 + 1.05568e8i −0.322239 + 0.0852832i
\(46\) 0 0
\(47\) 1.89330e9i 1.20415i 0.798440 + 0.602075i \(0.205659\pi\)
−0.798440 + 0.602075i \(0.794341\pi\)
\(48\) 0 0
\(49\) 2.52786e8 0.127842
\(50\) 0 0
\(51\) 7.86516e8 0.319206
\(52\) 0 0
\(53\) 1.28322e9i 0.421487i 0.977541 + 0.210743i \(0.0675884\pi\)
−0.977541 + 0.210743i \(0.932412\pi\)
\(54\) 0 0
\(55\) −5.67107e9 + 1.50090e9i −1.51939 + 0.402120i
\(56\) 0 0
\(57\) 1.32267e9i 0.291165i
\(58\) 0 0
\(59\) −5.01298e9 −0.912872 −0.456436 0.889756i \(-0.650874\pi\)
−0.456436 + 0.889756i \(0.650874\pi\)
\(60\) 0 0
\(61\) 7.45699e9 1.13045 0.565223 0.824938i \(-0.308790\pi\)
0.565223 + 0.824938i \(0.308790\pi\)
\(62\) 0 0
\(63\) 2.45216e9i 0.311298i
\(64\) 0 0
\(65\) −2.97093e9 1.12255e10i −0.317592 1.20001i
\(66\) 0 0
\(67\) 1.14069e9i 0.103219i 0.998667 + 0.0516093i \(0.0164351\pi\)
−0.998667 + 0.0516093i \(0.983565\pi\)
\(68\) 0 0
\(69\) 7.22879e9 0.556411
\(70\) 0 0
\(71\) −8.23753e9 −0.541847 −0.270923 0.962601i \(-0.587329\pi\)
−0.270923 + 0.962601i \(0.587329\pi\)
\(72\) 0 0
\(73\) 1.90626e10i 1.07623i 0.842871 + 0.538116i \(0.180864\pi\)
−0.842871 + 0.538116i \(0.819136\pi\)
\(74\) 0 0
\(75\) 5.86935e9 + 1.03119e10i 0.285597 + 0.501765i
\(76\) 0 0
\(77\) 3.48632e10i 1.46781i
\(78\) 0 0
\(79\) 2.39605e10 0.876085 0.438042 0.898954i \(-0.355672\pi\)
0.438042 + 0.898954i \(0.355672\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) 0 0
\(83\) 6.55948e10i 1.82785i 0.405885 + 0.913924i \(0.366963\pi\)
−0.405885 + 0.913924i \(0.633037\pi\)
\(84\) 0 0
\(85\) −5.78657e9 2.18643e10i −0.141455 0.534480i
\(86\) 0 0
\(87\) 3.76867e10i 0.810648i
\(88\) 0 0
\(89\) −3.18476e10 −0.604549 −0.302274 0.953221i \(-0.597746\pi\)
−0.302274 + 0.953221i \(0.597746\pi\)
\(90\) 0 0
\(91\) 6.90096e10 1.15926
\(92\) 0 0
\(93\) 6.73053e10i 1.00321i
\(94\) 0 0
\(95\) 3.67687e10 9.73114e9i 0.487527 0.129028i
\(96\) 0 0
\(97\) 4.42047e10i 0.522665i −0.965249 0.261333i \(-0.915838\pi\)
0.965249 0.261333i \(-0.0841620\pi\)
\(98\) 0 0
\(99\) 4.95728e10 0.523902
\(100\) 0 0
\(101\) 1.88396e11 1.78362 0.891812 0.452407i \(-0.149435\pi\)
0.891812 + 0.452407i \(0.149435\pi\)
\(102\) 0 0
\(103\) 1.74933e11i 1.48685i −0.668820 0.743424i \(-0.733200\pi\)
0.668820 0.743424i \(-0.266800\pi\)
\(104\) 0 0
\(105\) −6.81675e10 + 1.80411e10i −0.521238 + 0.137950i
\(106\) 0 0
\(107\) 1.75156e11i 1.20730i 0.797249 + 0.603650i \(0.206288\pi\)
−0.797249 + 0.603650i \(0.793712\pi\)
\(108\) 0 0
\(109\) −5.67974e10 −0.353576 −0.176788 0.984249i \(-0.556571\pi\)
−0.176788 + 0.984249i \(0.556571\pi\)
\(110\) 0 0
\(111\) −1.11318e11 −0.627029
\(112\) 0 0
\(113\) 7.76853e10i 0.396650i 0.980136 + 0.198325i \(0.0635501\pi\)
−0.980136 + 0.198325i \(0.936450\pi\)
\(114\) 0 0
\(115\) −5.31838e10 2.00953e11i −0.246570 0.931655i
\(116\) 0 0
\(117\) 9.81263e10i 0.413774i
\(118\) 0 0
\(119\) 1.34412e11 0.516333
\(120\) 0 0
\(121\) 4.19482e11 1.47026
\(122\) 0 0
\(123\) 3.45377e10i 0.110615i
\(124\) 0 0
\(125\) 2.43477e11 2.39028e11i 0.713595 0.700558i
\(126\) 0 0
\(127\) 2.44393e11i 0.656401i −0.944608 0.328200i \(-0.893558\pi\)
0.944608 0.328200i \(-0.106442\pi\)
\(128\) 0 0
\(129\) −2.66884e11 −0.657778
\(130\) 0 0
\(131\) −3.21349e10 −0.0727755 −0.0363877 0.999338i \(-0.511585\pi\)
−0.0363877 + 0.999338i \(0.511585\pi\)
\(132\) 0 0
\(133\) 2.26038e11i 0.470974i
\(134\) 0 0
\(135\) −2.56530e10 9.69288e10i −0.0492383 0.186045i
\(136\) 0 0
\(137\) 1.03419e12i 1.83079i 0.402557 + 0.915395i \(0.368122\pi\)
−0.402557 + 0.915395i \(0.631878\pi\)
\(138\) 0 0
\(139\) −6.51000e11 −1.06414 −0.532071 0.846700i \(-0.678586\pi\)
−0.532071 + 0.846700i \(0.678586\pi\)
\(140\) 0 0
\(141\) −4.60071e11 −0.695216
\(142\) 0 0
\(143\) 1.39510e12i 1.95099i
\(144\) 0 0
\(145\) −1.04765e12 + 2.77269e11i −1.35735 + 0.359234i
\(146\) 0 0
\(147\) 6.14269e10i 0.0738097i
\(148\) 0 0
\(149\) −1.48776e12 −1.65962 −0.829808 0.558049i \(-0.811550\pi\)
−0.829808 + 0.558049i \(0.811550\pi\)
\(150\) 0 0
\(151\) −1.69992e12 −1.76220 −0.881100 0.472929i \(-0.843197\pi\)
−0.881100 + 0.472929i \(0.843197\pi\)
\(152\) 0 0
\(153\) 1.91123e11i 0.184294i
\(154\) 0 0
\(155\) 1.87101e12 4.95180e11i 1.67978 0.444568i
\(156\) 0 0
\(157\) 3.75740e11i 0.314369i −0.987569 0.157184i \(-0.949758\pi\)
0.987569 0.157184i \(-0.0502417\pi\)
\(158\) 0 0
\(159\) −3.11822e11 −0.243345
\(160\) 0 0
\(161\) 1.23537e12 0.900023
\(162\) 0 0
\(163\) 1.19182e12i 0.811296i 0.914029 + 0.405648i \(0.132954\pi\)
−0.914029 + 0.405648i \(0.867046\pi\)
\(164\) 0 0
\(165\) −3.64718e11 1.37807e12i −0.232164 0.877222i
\(166\) 0 0
\(167\) 7.86209e11i 0.468379i −0.972191 0.234190i \(-0.924756\pi\)
0.972191 0.234190i \(-0.0752436\pi\)
\(168\) 0 0
\(169\) −9.69345e11 −0.540880
\(170\) 0 0
\(171\) −3.21408e11 −0.168104
\(172\) 0 0
\(173\) 2.61407e11i 0.128252i −0.997942 0.0641258i \(-0.979574\pi\)
0.997942 0.0641258i \(-0.0204259\pi\)
\(174\) 0 0
\(175\) 1.00305e12 + 1.76225e12i 0.461968 + 0.811630i
\(176\) 0 0
\(177\) 1.21815e12i 0.527047i
\(178\) 0 0
\(179\) 1.08084e12 0.439614 0.219807 0.975543i \(-0.429457\pi\)
0.219807 + 0.975543i \(0.429457\pi\)
\(180\) 0 0
\(181\) 3.87701e12 1.48342 0.741711 0.670720i \(-0.234015\pi\)
0.741711 + 0.670720i \(0.234015\pi\)
\(182\) 0 0
\(183\) 1.81205e12i 0.652663i
\(184\) 0 0
\(185\) 8.18988e11 + 3.09451e12i 0.277865 + 1.04990i
\(186\) 0 0
\(187\) 2.71727e12i 0.868967i
\(188\) 0 0
\(189\) 5.95876e11 0.179728
\(190\) 0 0
\(191\) −4.34227e12 −1.23604 −0.618021 0.786161i \(-0.712065\pi\)
−0.618021 + 0.786161i \(0.712065\pi\)
\(192\) 0 0
\(193\) 4.45221e11i 0.119677i −0.998208 0.0598384i \(-0.980941\pi\)
0.998208 0.0598384i \(-0.0190585\pi\)
\(194\) 0 0
\(195\) 2.72781e12 7.21936e11i 0.692824 0.183362i
\(196\) 0 0
\(197\) 1.92250e12i 0.461640i 0.972997 + 0.230820i \(0.0741408\pi\)
−0.972997 + 0.230820i \(0.925859\pi\)
\(198\) 0 0
\(199\) −2.52317e12 −0.573131 −0.286566 0.958061i \(-0.592514\pi\)
−0.286566 + 0.958061i \(0.592514\pi\)
\(200\) 0 0
\(201\) −2.77189e11 −0.0595933
\(202\) 0 0
\(203\) 6.44048e12i 1.31126i
\(204\) 0 0
\(205\) 9.60112e11 2.54102e11i 0.185215 0.0490186i
\(206\) 0 0
\(207\) 1.75660e12i 0.321244i
\(208\) 0 0
\(209\) −4.56957e12 −0.792630
\(210\) 0 0
\(211\) −7.60254e12 −1.25143 −0.625713 0.780053i \(-0.715192\pi\)
−0.625713 + 0.780053i \(0.715192\pi\)
\(212\) 0 0
\(213\) 2.00172e12i 0.312835i
\(214\) 0 0
\(215\) 1.96352e12 + 7.41909e12i 0.291491 + 1.10138i
\(216\) 0 0
\(217\) 1.15022e13i 1.62275i
\(218\) 0 0
\(219\) −4.63221e12 −0.621363
\(220\) 0 0
\(221\) −5.37866e12 −0.686304
\(222\) 0 0
\(223\) 2.46671e12i 0.299531i −0.988722 0.149765i \(-0.952148\pi\)
0.988722 0.149765i \(-0.0478518\pi\)
\(224\) 0 0
\(225\) −2.50578e12 + 1.42625e12i −0.289694 + 0.164889i
\(226\) 0 0
\(227\) 1.11438e13i 1.22713i 0.789642 + 0.613567i \(0.210266\pi\)
−0.789642 + 0.613567i \(0.789734\pi\)
\(228\) 0 0
\(229\) 1.12840e13 1.18404 0.592021 0.805923i \(-0.298330\pi\)
0.592021 + 0.805923i \(0.298330\pi\)
\(230\) 0 0
\(231\) 8.47177e12 0.847438
\(232\) 0 0
\(233\) 3.66685e12i 0.349813i 0.984585 + 0.174906i \(0.0559623\pi\)
−0.984585 + 0.174906i \(0.944038\pi\)
\(234\) 0 0
\(235\) 3.38484e12 + 1.27895e13i 0.308081 + 1.16407i
\(236\) 0 0
\(237\) 5.82239e12i 0.505808i
\(238\) 0 0
\(239\) 1.40189e13 1.16285 0.581427 0.813598i \(-0.302494\pi\)
0.581427 + 0.813598i \(0.302494\pi\)
\(240\) 0 0
\(241\) −1.19865e13 −0.949723 −0.474862 0.880060i \(-0.657502\pi\)
−0.474862 + 0.880060i \(0.657502\pi\)
\(242\) 0 0
\(243\) 8.47289e11i 0.0641500i
\(244\) 0 0
\(245\) 1.70760e12 4.51931e11i 0.123587 0.0327083i
\(246\) 0 0
\(247\) 9.04517e12i 0.626014i
\(248\) 0 0
\(249\) −1.59395e13 −1.05531
\(250\) 0 0
\(251\) 4.71793e12 0.298914 0.149457 0.988768i \(-0.452247\pi\)
0.149457 + 0.988768i \(0.452247\pi\)
\(252\) 0 0
\(253\) 2.49741e13i 1.51470i
\(254\) 0 0
\(255\) 5.31302e12 1.40614e12i 0.308582 0.0816688i
\(256\) 0 0
\(257\) 2.26178e13i 1.25840i 0.777244 + 0.629199i \(0.216617\pi\)
−0.777244 + 0.629199i \(0.783383\pi\)
\(258\) 0 0
\(259\) −1.90237e13 −1.01425
\(260\) 0 0
\(261\) 9.15787e12 0.468028
\(262\) 0 0
\(263\) 2.63896e13i 1.29323i 0.762815 + 0.646617i \(0.223817\pi\)
−0.762815 + 0.646617i \(0.776183\pi\)
\(264\) 0 0
\(265\) 2.29414e12 + 8.66832e12i 0.107837 + 0.407458i
\(266\) 0 0
\(267\) 7.73896e12i 0.349036i
\(268\) 0 0
\(269\) −1.82859e13 −0.791550 −0.395775 0.918347i \(-0.629524\pi\)
−0.395775 + 0.918347i \(0.629524\pi\)
\(270\) 0 0
\(271\) 2.37685e13 0.987803 0.493902 0.869518i \(-0.335570\pi\)
0.493902 + 0.869518i \(0.335570\pi\)
\(272\) 0 0
\(273\) 1.67693e13i 0.669301i
\(274\) 0 0
\(275\) −3.56256e13 + 2.02775e13i −1.36594 + 0.777473i
\(276\) 0 0
\(277\) 2.00012e13i 0.736914i 0.929645 + 0.368457i \(0.120114\pi\)
−0.929645 + 0.368457i \(0.879886\pi\)
\(278\) 0 0
\(279\) −1.63552e13 −0.579205
\(280\) 0 0
\(281\) 2.16062e13 0.735689 0.367845 0.929887i \(-0.380096\pi\)
0.367845 + 0.929887i \(0.380096\pi\)
\(282\) 0 0
\(283\) 4.22652e13i 1.38407i 0.721865 + 0.692034i \(0.243285\pi\)
−0.721865 + 0.692034i \(0.756715\pi\)
\(284\) 0 0
\(285\) 2.36467e12 + 8.93479e12i 0.0744944 + 0.281474i
\(286\) 0 0
\(287\) 5.90234e12i 0.178926i
\(288\) 0 0
\(289\) 2.37957e13 0.694322
\(290\) 0 0
\(291\) 1.07417e13 0.301761
\(292\) 0 0
\(293\) 5.66640e13i 1.53298i −0.642259 0.766488i \(-0.722003\pi\)
0.642259 0.766488i \(-0.277997\pi\)
\(294\) 0 0
\(295\) −3.38634e13 + 8.96222e12i −0.882488 + 0.233558i
\(296\) 0 0
\(297\) 1.20462e13i 0.302475i
\(298\) 0 0
\(299\) −4.94347e13 −1.19630
\(300\) 0 0
\(301\) −4.56093e13 −1.06399
\(302\) 0 0
\(303\) 4.57801e13i 1.02978i
\(304\) 0 0
\(305\) 5.03730e13 1.33316e13i 1.09282 0.289224i
\(306\) 0 0
\(307\) 1.99364e13i 0.417239i −0.977997 0.208619i \(-0.933103\pi\)
0.977997 0.208619i \(-0.0668970\pi\)
\(308\) 0 0
\(309\) 4.25087e13 0.858433
\(310\) 0 0
\(311\) −1.05339e13 −0.205309 −0.102655 0.994717i \(-0.532734\pi\)
−0.102655 + 0.994717i \(0.532734\pi\)
\(312\) 0 0
\(313\) 5.27355e13i 0.992224i 0.868259 + 0.496112i \(0.165239\pi\)
−0.868259 + 0.496112i \(0.834761\pi\)
\(314\) 0 0
\(315\) −4.38399e12 1.65647e13i −0.0796455 0.300937i
\(316\) 0 0
\(317\) 6.68311e13i 1.17261i 0.810091 + 0.586304i \(0.199417\pi\)
−0.810091 + 0.586304i \(0.800583\pi\)
\(318\) 0 0
\(319\) 1.30201e14 2.20681
\(320\) 0 0
\(321\) −4.25630e13 −0.697035
\(322\) 0 0
\(323\) 1.76175e13i 0.278825i
\(324\) 0 0
\(325\) −4.01381e13 7.05186e13i −0.614042 1.07881i
\(326\) 0 0
\(327\) 1.38018e13i 0.204137i
\(328\) 0 0
\(329\) −7.86241e13 −1.12455
\(330\) 0 0
\(331\) −2.79590e13 −0.386783 −0.193392 0.981122i \(-0.561949\pi\)
−0.193392 + 0.981122i \(0.561949\pi\)
\(332\) 0 0
\(333\) 2.70502e13i 0.362016i
\(334\) 0 0
\(335\) 2.03934e12 + 7.70555e12i 0.0264084 + 0.0997831i
\(336\) 0 0
\(337\) 1.16982e14i 1.46606i −0.680194 0.733032i \(-0.738104\pi\)
0.680194 0.733032i \(-0.261896\pi\)
\(338\) 0 0
\(339\) −1.88775e13 −0.229006
\(340\) 0 0
\(341\) −2.32527e14 −2.73102
\(342\) 0 0
\(343\) 9.26112e13i 1.05328i
\(344\) 0 0
\(345\) 4.88315e13 1.29237e13i 0.537891 0.142357i
\(346\) 0 0
\(347\) 1.62553e12i 0.0173453i −0.999962 0.00867265i \(-0.997239\pi\)
0.999962 0.00867265i \(-0.00276062\pi\)
\(348\) 0 0
\(349\) 1.40028e14 1.44769 0.723843 0.689965i \(-0.242374\pi\)
0.723843 + 0.689965i \(0.242374\pi\)
\(350\) 0 0
\(351\) −2.38447e13 −0.238893
\(352\) 0 0
\(353\) 1.07894e13i 0.104770i −0.998627 0.0523850i \(-0.983318\pi\)
0.998627 0.0523850i \(-0.0166823\pi\)
\(354\) 0 0
\(355\) −5.56457e13 + 1.47271e13i −0.523812 + 0.138631i
\(356\) 0 0
\(357\) 3.26621e13i 0.298105i
\(358\) 0 0
\(359\) −8.36216e13 −0.740114 −0.370057 0.929009i \(-0.620662\pi\)
−0.370057 + 0.929009i \(0.620662\pi\)
\(360\) 0 0
\(361\) −8.68632e13 −0.745669
\(362\) 0 0
\(363\) 1.01934e14i 0.848854i
\(364\) 0 0
\(365\) 3.40801e13 + 1.28770e14i 0.275353 + 1.04041i
\(366\) 0 0
\(367\) 1.00049e13i 0.0784420i 0.999231 + 0.0392210i \(0.0124876\pi\)
−0.999231 + 0.0392210i \(0.987512\pi\)
\(368\) 0 0
\(369\) −8.39267e12 −0.0638639
\(370\) 0 0
\(371\) −5.32890e13 −0.393624
\(372\) 0 0
\(373\) 2.32365e14i 1.66637i 0.552993 + 0.833186i \(0.313486\pi\)
−0.552993 + 0.833186i \(0.686514\pi\)
\(374\) 0 0
\(375\) 5.80839e13 + 5.91648e13i 0.404467 + 0.411994i
\(376\) 0 0
\(377\) 2.57724e14i 1.74292i
\(378\) 0 0
\(379\) 1.60902e14 1.05693 0.528465 0.848955i \(-0.322768\pi\)
0.528465 + 0.848955i \(0.322768\pi\)
\(380\) 0 0
\(381\) 5.93876e13 0.378973
\(382\) 0 0
\(383\) 3.41226e12i 0.0211568i 0.999944 + 0.0105784i \(0.00336727\pi\)
−0.999944 + 0.0105784i \(0.996633\pi\)
\(384\) 0 0
\(385\) −6.23286e13 2.35506e14i −0.375538 1.41895i
\(386\) 0 0
\(387\) 6.48528e13i 0.379768i
\(388\) 0 0
\(389\) 2.49915e14 1.42255 0.711277 0.702912i \(-0.248117\pi\)
0.711277 + 0.702912i \(0.248117\pi\)
\(390\) 0 0
\(391\) −9.62854e13 −0.532830
\(392\) 0 0
\(393\) 7.80879e12i 0.0420169i
\(394\) 0 0
\(395\) 1.61856e14 4.28366e13i 0.846926 0.224146i
\(396\) 0 0
\(397\) 2.50976e14i 1.27727i 0.769508 + 0.638637i \(0.220502\pi\)
−0.769508 + 0.638637i \(0.779498\pi\)
\(398\) 0 0
\(399\) −5.49272e13 −0.271917
\(400\) 0 0
\(401\) 3.56396e14 1.71648 0.858240 0.513248i \(-0.171558\pi\)
0.858240 + 0.513248i \(0.171558\pi\)
\(402\) 0 0
\(403\) 4.60273e14i 2.15694i
\(404\) 0 0
\(405\) 2.35537e13 6.23369e12i 0.107413 0.0284277i
\(406\) 0 0
\(407\) 3.84582e14i 1.70695i
\(408\) 0 0
\(409\) 4.76849e13 0.206017 0.103008 0.994680i \(-0.467153\pi\)
0.103008 + 0.994680i \(0.467153\pi\)
\(410\) 0 0
\(411\) −2.51309e14 −1.05701
\(412\) 0 0
\(413\) 2.08177e14i 0.852525i
\(414\) 0 0
\(415\) 1.17271e14 + 4.43102e14i 0.467654 + 1.76701i
\(416\) 0 0
\(417\) 1.58193e14i 0.614382i
\(418\) 0 0
\(419\) 2.26851e14 0.858150 0.429075 0.903269i \(-0.358840\pi\)
0.429075 + 0.903269i \(0.358840\pi\)
\(420\) 0 0
\(421\) −1.36580e14 −0.503309 −0.251654 0.967817i \(-0.580975\pi\)
−0.251654 + 0.967817i \(0.580975\pi\)
\(422\) 0 0
\(423\) 1.11797e14i 0.401383i
\(424\) 0 0
\(425\) −7.81781e13 1.37351e14i −0.273493 0.480500i
\(426\) 0 0
\(427\) 3.09671e14i 1.05572i
\(428\) 0 0
\(429\) −3.39008e14 −1.12641
\(430\) 0 0
\(431\) −1.21003e13 −0.0391896 −0.0195948 0.999808i \(-0.506238\pi\)
−0.0195948 + 0.999808i \(0.506238\pi\)
\(432\) 0 0
\(433\) 3.05977e14i 0.966064i −0.875603 0.483032i \(-0.839536\pi\)
0.875603 0.483032i \(-0.160464\pi\)
\(434\) 0 0
\(435\) −6.73764e13 2.54579e14i −0.207404 0.783667i
\(436\) 0 0
\(437\) 1.61921e14i 0.486021i
\(438\) 0 0
\(439\) 3.68147e14 1.07762 0.538811 0.842427i \(-0.318874\pi\)
0.538811 + 0.842427i \(0.318874\pi\)
\(440\) 0 0
\(441\) −1.49267e13 −0.0426140
\(442\) 0 0
\(443\) 1.38978e13i 0.0387012i 0.999813 + 0.0193506i \(0.00615987\pi\)
−0.999813 + 0.0193506i \(0.993840\pi\)
\(444\) 0 0
\(445\) −2.15135e14 + 5.69372e13i −0.584427 + 0.154674i
\(446\) 0 0
\(447\) 3.61525e14i 0.958179i
\(448\) 0 0
\(449\) −3.92376e13 −0.101472 −0.0507362 0.998712i \(-0.516157\pi\)
−0.0507362 + 0.998712i \(0.516157\pi\)
\(450\) 0 0
\(451\) −1.19321e14 −0.301126
\(452\) 0 0
\(453\) 4.13081e14i 1.01741i
\(454\) 0 0
\(455\) 4.66170e14 1.23376e14i 1.12068 0.296597i
\(456\) 0 0
\(457\) 1.37201e14i 0.321973i −0.986957 0.160986i \(-0.948532\pi\)
0.986957 0.160986i \(-0.0514675\pi\)
\(458\) 0 0
\(459\) −4.64430e13 −0.106402
\(460\) 0 0
\(461\) 2.48659e14 0.556223 0.278111 0.960549i \(-0.410292\pi\)
0.278111 + 0.960549i \(0.410292\pi\)
\(462\) 0 0
\(463\) 6.31268e14i 1.37885i −0.724355 0.689427i \(-0.757862\pi\)
0.724355 0.689427i \(-0.242138\pi\)
\(464\) 0 0
\(465\) 1.20329e14 + 4.54657e14i 0.256672 + 0.969822i
\(466\) 0 0
\(467\) 8.60246e14i 1.79217i 0.443880 + 0.896086i \(0.353602\pi\)
−0.443880 + 0.896086i \(0.646398\pi\)
\(468\) 0 0
\(469\) −4.73703e13 −0.0963952
\(470\) 0 0
\(471\) 9.13048e13 0.181501
\(472\) 0 0
\(473\) 9.22035e14i 1.79065i
\(474\) 0 0
\(475\) 2.30980e14 1.31470e14i 0.438288 0.249467i
\(476\) 0 0
\(477\) 7.57728e13i 0.140496i
\(478\) 0 0
\(479\) −5.71890e14 −1.03626 −0.518129 0.855303i \(-0.673371\pi\)
−0.518129 + 0.855303i \(0.673371\pi\)
\(480\) 0 0
\(481\) 7.61256e14 1.34813
\(482\) 0 0
\(483\) 3.00194e14i 0.519629i
\(484\) 0 0
\(485\) −7.90293e13 2.98609e14i −0.133724 0.505269i
\(486\) 0 0
\(487\) 7.95200e14i 1.31543i −0.753268 0.657714i \(-0.771524\pi\)
0.753268 0.657714i \(-0.228476\pi\)
\(488\) 0 0
\(489\) −2.89612e14 −0.468402
\(490\) 0 0
\(491\) 5.04124e13 0.0797240 0.0398620 0.999205i \(-0.487308\pi\)
0.0398620 + 0.999205i \(0.487308\pi\)
\(492\) 0 0
\(493\) 5.01976e14i 0.776292i
\(494\) 0 0
\(495\) 3.34871e14 8.86264e13i 0.506465 0.134040i
\(496\) 0 0
\(497\) 3.42085e14i 0.506027i
\(498\) 0 0
\(499\) −2.91835e14 −0.422264 −0.211132 0.977458i \(-0.567715\pi\)
−0.211132 + 0.977458i \(0.567715\pi\)
\(500\) 0 0
\(501\) 1.91049e14 0.270419
\(502\) 0 0
\(503\) 7.29427e14i 1.01008i 0.863095 + 0.505042i \(0.168523\pi\)
−0.863095 + 0.505042i \(0.831477\pi\)
\(504\) 0 0
\(505\) 1.27264e15 3.36814e14i 1.72426 0.456339i
\(506\) 0 0
\(507\) 2.35551e14i 0.312277i
\(508\) 0 0
\(509\) 3.75076e14 0.486600 0.243300 0.969951i \(-0.421770\pi\)
0.243300 + 0.969951i \(0.421770\pi\)
\(510\) 0 0
\(511\) −7.91623e14 −1.00509
\(512\) 0 0
\(513\) 7.81021e13i 0.0970549i
\(514\) 0 0
\(515\) −3.12746e14 1.18170e15i −0.380410 1.43736i
\(516\) 0 0
\(517\) 1.58946e15i 1.89257i
\(518\) 0 0
\(519\) 6.35218e13 0.0740461
\(520\) 0 0
\(521\) −1.27745e15 −1.45793 −0.728967 0.684549i \(-0.759999\pi\)
−0.728967 + 0.684549i \(0.759999\pi\)
\(522\) 0 0
\(523\) 1.16147e15i 1.29792i −0.760824 0.648959i \(-0.775205\pi\)
0.760824 0.648959i \(-0.224795\pi\)
\(524\) 0 0
\(525\) −4.28227e14 + 2.43740e14i −0.468595 + 0.266717i
\(526\) 0 0
\(527\) 8.96487e14i 0.960696i
\(528\) 0 0
\(529\) 6.78604e13 0.0712213
\(530\) 0 0
\(531\) 2.96011e14 0.304291
\(532\) 0 0
\(533\) 2.36190e14i 0.237827i
\(534\) 0 0
\(535\) 3.13145e14 + 1.18321e15i 0.308887 + 1.16712i
\(536\) 0 0
\(537\) 2.62645e14i 0.253811i
\(538\) 0 0
\(539\) −2.12219e14 −0.200930
\(540\) 0 0
\(541\) 1.14931e15 1.06623 0.533115 0.846043i \(-0.321021\pi\)
0.533115 + 0.846043i \(0.321021\pi\)
\(542\) 0 0
\(543\) 9.42113e14i 0.856454i
\(544\) 0 0
\(545\) −3.83675e14 + 1.01543e14i −0.341808 + 0.0904623i
\(546\) 0 0
\(547\) 5.91724e13i 0.0516641i −0.999666 0.0258321i \(-0.991776\pi\)
0.999666 0.0258321i \(-0.00822352\pi\)
\(548\) 0 0
\(549\) −4.40328e14 −0.376815
\(550\) 0 0
\(551\) −8.44162e14 −0.708096
\(552\) 0 0
\(553\) 9.95020e14i 0.818170i
\(554\) 0 0
\(555\) −7.51966e14 + 1.99014e14i −0.606160 + 0.160425i
\(556\) 0 0
\(557\) 8.98701e14i 0.710251i 0.934819 + 0.355125i \(0.115562\pi\)
−0.934819 + 0.355125i \(0.884438\pi\)
\(558\) 0 0
\(559\) 1.82511e15 1.41424
\(560\) 0 0
\(561\) −6.60296e14 −0.501699
\(562\) 0 0
\(563\) 1.00499e15i 0.748799i −0.927268 0.374399i \(-0.877849\pi\)
0.927268 0.374399i \(-0.122151\pi\)
\(564\) 0 0
\(565\) 1.38886e14 + 5.24775e14i 0.101483 + 0.383448i
\(566\) 0 0
\(567\) 1.44798e14i 0.103766i
\(568\) 0 0
\(569\) −2.14457e15 −1.50738 −0.753691 0.657228i \(-0.771729\pi\)
−0.753691 + 0.657228i \(0.771729\pi\)
\(570\) 0 0
\(571\) 1.36068e15 0.938119 0.469060 0.883167i \(-0.344593\pi\)
0.469060 + 0.883167i \(0.344593\pi\)
\(572\) 0 0
\(573\) 1.05517e15i 0.713629i
\(574\) 0 0
\(575\) −7.18527e14 1.26238e15i −0.476727 0.837562i
\(576\) 0 0
\(577\) 9.41505e14i 0.612852i −0.951894 0.306426i \(-0.900867\pi\)
0.951894 0.306426i \(-0.0991332\pi\)
\(578\) 0 0
\(579\) 1.08189e14 0.0690955
\(580\) 0 0
\(581\) −2.72400e15 −1.70702
\(582\) 0 0
\(583\) 1.07729e15i 0.662453i
\(584\) 0 0
\(585\) 1.75431e14 + 6.62857e14i 0.105864 + 0.400002i
\(586\) 0 0
\(587\) 7.11947e14i 0.421636i 0.977525 + 0.210818i \(0.0676128\pi\)
−0.977525 + 0.210818i \(0.932387\pi\)
\(588\) 0 0
\(589\) 1.50760e15 0.876300
\(590\) 0 0
\(591\) −4.67169e14 −0.266528
\(592\) 0 0
\(593\) 2.44357e15i 1.36844i 0.729278 + 0.684218i \(0.239856\pi\)
−0.729278 + 0.684218i \(0.760144\pi\)
\(594\) 0 0
\(595\) 9.07972e14 2.40302e14i 0.499148 0.132104i
\(596\) 0 0
\(597\) 6.13130e14i 0.330898i
\(598\) 0 0
\(599\) −6.81013e14 −0.360835 −0.180417 0.983590i \(-0.557745\pi\)
−0.180417 + 0.983590i \(0.557745\pi\)
\(600\) 0 0
\(601\) −1.35124e15 −0.702947 −0.351474 0.936198i \(-0.614319\pi\)
−0.351474 + 0.936198i \(0.614319\pi\)
\(602\) 0 0
\(603\) 6.73569e13i 0.0344062i
\(604\) 0 0
\(605\) 2.83366e15 7.49951e14i 1.42132 0.376165i
\(606\) 0 0
\(607\) 2.98246e15i 1.46905i 0.678582 + 0.734524i \(0.262595\pi\)
−0.678582 + 0.734524i \(0.737405\pi\)
\(608\) 0 0
\(609\) 1.56504e15 0.757059
\(610\) 0 0
\(611\) 3.14624e15 1.49474
\(612\) 0 0
\(613\) 2.62361e15i 1.22424i 0.790766 + 0.612119i \(0.209683\pi\)
−0.790766 + 0.612119i \(0.790317\pi\)
\(614\) 0 0
\(615\) 6.17467e13 + 2.33307e14i 0.0283009 + 0.106934i
\(616\) 0 0
\(617\) 1.36222e15i 0.613310i −0.951821 0.306655i \(-0.900790\pi\)
0.951821 0.306655i \(-0.0992098\pi\)
\(618\) 0 0
\(619\) −4.10602e15 −1.81603 −0.908013 0.418942i \(-0.862401\pi\)
−0.908013 + 0.418942i \(0.862401\pi\)
\(620\) 0 0
\(621\) −4.26853e14 −0.185470
\(622\) 0 0
\(623\) 1.32255e15i 0.564585i
\(624\) 0 0
\(625\) 1.21738e15 2.04996e15i 0.510607 0.859814i
\(626\) 0 0
\(627\) 1.11040e15i 0.457625i
\(628\) 0 0
\(629\) 1.48272e15 0.600455
\(630\) 0 0
\(631\) 3.07651e15 1.22433 0.612163 0.790731i \(-0.290300\pi\)
0.612163 + 0.790731i \(0.290300\pi\)
\(632\) 0 0
\(633\) 1.84742e15i 0.722511i
\(634\) 0 0
\(635\) −4.36928e14 1.65091e15i −0.167940 0.634554i
\(636\) 0 0
\(637\) 4.20073e14i 0.158693i
\(638\) 0 0
\(639\) 4.86418e14 0.180616
\(640\) 0 0
\(641\) −2.43456e14 −0.0888590 −0.0444295 0.999013i \(-0.514147\pi\)
−0.0444295 + 0.999013i \(0.514147\pi\)
\(642\) 0 0
\(643\) 6.07705e14i 0.218038i 0.994040 + 0.109019i \(0.0347710\pi\)
−0.994040 + 0.109019i \(0.965229\pi\)
\(644\) 0 0
\(645\) −1.80284e15 + 4.77136e14i −0.635885 + 0.168292i
\(646\) 0 0
\(647\) 3.75432e14i 0.130184i 0.997879 + 0.0650919i \(0.0207341\pi\)
−0.997879 + 0.0650919i \(0.979266\pi\)
\(648\) 0 0
\(649\) 4.20849e15 1.43477
\(650\) 0 0
\(651\) −2.79503e15 −0.936894
\(652\) 0 0
\(653\) 2.76536e15i 0.911442i −0.890123 0.455721i \(-0.849382\pi\)
0.890123 0.455721i \(-0.150618\pi\)
\(654\) 0 0
\(655\) −2.17076e14 + 5.74509e13i −0.0703533 + 0.0186196i
\(656\) 0 0
\(657\) 1.12563e15i 0.358744i
\(658\) 0 0
\(659\) 3.26634e15 1.02374 0.511872 0.859062i \(-0.328952\pi\)
0.511872 + 0.859062i \(0.328952\pi\)
\(660\) 0 0
\(661\) 1.72112e15 0.530521 0.265260 0.964177i \(-0.414542\pi\)
0.265260 + 0.964177i \(0.414542\pi\)
\(662\) 0 0
\(663\) 1.30701e15i 0.396238i
\(664\) 0 0
\(665\) 4.04111e14 + 1.52692e15i 0.120498 + 0.455298i
\(666\) 0 0
\(667\) 4.61361e15i 1.35316i
\(668\) 0 0
\(669\) 5.99410e14 0.172934
\(670\) 0 0
\(671\) −6.26029e15 −1.77673
\(672\) 0 0
\(673\) 4.18650e15i 1.16888i 0.811438 + 0.584438i \(0.198685\pi\)
−0.811438 + 0.584438i \(0.801315\pi\)
\(674\) 0 0
\(675\) −3.46579e14 6.08905e14i −0.0951989 0.167255i
\(676\) 0 0
\(677\) 4.21054e15i 1.13789i 0.822376 + 0.568945i \(0.192648\pi\)
−0.822376 + 0.568945i \(0.807352\pi\)
\(678\) 0 0
\(679\) 1.83571e15 0.488114
\(680\) 0 0
\(681\) −2.70795e15 −0.708486
\(682\) 0 0
\(683\) 6.85825e15i 1.76563i 0.469722 + 0.882814i \(0.344354\pi\)
−0.469722 + 0.882814i \(0.655646\pi\)
\(684\) 0 0
\(685\) 1.84893e15 + 6.98612e15i 0.468407 + 1.76986i
\(686\) 0 0
\(687\) 2.74201e15i 0.683607i
\(688\) 0 0
\(689\) 2.13243e15 0.523201
\(690\) 0 0
\(691\) 7.01392e15 1.69368 0.846841 0.531847i \(-0.178502\pi\)
0.846841 + 0.531847i \(0.178502\pi\)
\(692\) 0 0
\(693\) 2.05864e15i 0.489269i
\(694\) 0 0
\(695\) −4.39759e15 + 1.16386e15i −1.02872 + 0.272260i
\(696\) 0 0
\(697\) 4.60033e14i 0.105927i
\(698\) 0 0
\(699\) −8.91045e14 −0.201965
\(700\) 0 0
\(701\) −3.59916e15 −0.803067 −0.401533 0.915844i \(-0.631523\pi\)
−0.401533 + 0.915844i \(0.631523\pi\)
\(702\) 0 0
\(703\) 2.49346e15i 0.547706i
\(704\) 0 0
\(705\) −3.10784e15 + 8.22517e14i −0.672077 + 0.177871i
\(706\) 0 0
\(707\) 7.82361e15i 1.66571i
\(708\) 0 0
\(709\) −9.13743e15 −1.91544 −0.957722 0.287695i \(-0.907111\pi\)
−0.957722 + 0.287695i \(0.907111\pi\)
\(710\) 0 0
\(711\) −1.41484e15 −0.292028
\(712\) 0 0
\(713\) 8.23952e15i 1.67459i
\(714\) 0 0
\(715\) 2.49416e15 + 9.42406e15i 0.499161 + 1.88606i
\(716\) 0 0
\(717\) 3.40659e15i 0.671375i
\(718\) 0 0
\(719\) −4.61453e15 −0.895609 −0.447805 0.894131i \(-0.647794\pi\)
−0.447805 + 0.894131i \(0.647794\pi\)
\(720\) 0 0
\(721\) 7.26454e15 1.38856
\(722\) 0 0
\(723\) 2.91271e15i 0.548323i
\(724\) 0 0
\(725\) −6.58131e15 + 3.74598e15i −1.22026 + 0.694555i
\(726\) 0 0
\(727\) 4.47421e15i 0.817104i −0.912735 0.408552i \(-0.866034\pi\)
0.912735 0.408552i \(-0.133966\pi\)
\(728\) 0 0
\(729\) −2.05891e14 −0.0370370
\(730\) 0 0
\(731\) 3.55482e15 0.629901
\(732\) 0 0
\(733\) 4.68168e15i 0.817203i −0.912713 0.408601i \(-0.866017\pi\)
0.912713 0.408601i \(-0.133983\pi\)
\(734\) 0 0
\(735\) 1.09819e14 + 4.14947e14i 0.0188842 + 0.0713530i
\(736\) 0 0
\(737\) 9.57636e14i 0.162229i
\(738\) 0 0
\(739\) 5.58278e15 0.931764 0.465882 0.884847i \(-0.345737\pi\)
0.465882 + 0.884847i \(0.345737\pi\)
\(740\) 0 0
\(741\) 2.19798e15 0.361429
\(742\) 0 0
\(743\) 5.84984e15i 0.947776i −0.880585 0.473888i \(-0.842850\pi\)
0.880585 0.473888i \(-0.157150\pi\)
\(744\) 0 0
\(745\) −1.00500e16 + 2.65982e15i −1.60438 + 0.424612i
\(746\) 0 0
\(747\) 3.87331e15i 0.609283i
\(748\) 0 0
\(749\) −7.27383e15 −1.12749
\(750\) 0 0
\(751\) −6.23385e15 −0.952218 −0.476109 0.879386i \(-0.657953\pi\)
−0.476109 + 0.879386i \(0.657953\pi\)
\(752\) 0 0
\(753\) 1.14646e15i 0.172578i
\(754\) 0 0
\(755\) −1.14832e16 + 3.03912e15i −1.70355 + 0.450858i
\(756\) 0 0
\(757\) 1.20579e16i 1.76297i 0.472210 + 0.881486i \(0.343457\pi\)
−0.472210 + 0.881486i \(0.656543\pi\)
\(758\) 0 0
\(759\) −6.06871e15 −0.874514
\(760\) 0 0
\(761\) 5.06900e15 0.719957 0.359979 0.932961i \(-0.382784\pi\)
0.359979 + 0.932961i \(0.382784\pi\)
\(762\) 0 0
\(763\) 2.35866e15i 0.330203i
\(764\) 0 0
\(765\) 3.41691e14 + 1.29106e15i 0.0471515 + 0.178160i
\(766\) 0 0
\(767\) 8.33045e15i 1.13317i
\(768\) 0 0
\(769\) −1.35439e15 −0.181614 −0.0908072 0.995868i \(-0.528945\pi\)
−0.0908072 + 0.995868i \(0.528945\pi\)
\(770\) 0 0
\(771\) −5.49612e15 −0.726537
\(772\) 0 0
\(773\) 8.61815e15i 1.12312i 0.827435 + 0.561561i \(0.189799\pi\)
−0.827435 + 0.561561i \(0.810201\pi\)
\(774\) 0 0
\(775\) 1.17537e16 6.69001e15i 1.51013 0.859543i
\(776\) 0 0
\(777\) 4.62276e15i 0.585579i
\(778\) 0 0
\(779\) 7.73627e14 0.0966219
\(780\) 0 0
\(781\) 6.91557e15 0.851623
\(782\) 0 0
\(783\) 2.22536e15i 0.270216i
\(784\) 0 0
\(785\) −6.71749e14 2.53817e15i −0.0804311 0.303905i
\(786\) 0 0
\(787\) 4.95922e15i 0.585534i −0.956184 0.292767i \(-0.905424\pi\)
0.956184 0.292767i \(-0.0945761\pi\)
\(788\) 0 0
\(789\) −6.41268e15 −0.746649
\(790\) 0 0
\(791\) −3.22608e15 −0.370429
\(792\) 0 0
\(793\) 1.23919e16i 1.40325i
\(794\) 0 0
\(795\) −2.10640e15 + 5.57477e14i −0.235246 + 0.0622598i
\(796\) 0 0
\(797\) 1.48779e16i 1.63878i 0.573235 + 0.819391i \(0.305688\pi\)
−0.573235 + 0.819391i \(0.694312\pi\)
\(798\) 0 0
\(799\) 6.12802e15 0.665752
\(800\) 0 0
\(801\) 1.88057e15 0.201516
\(802\) 0 0
\(803\) 1.60034e16i 1.69152i
\(804\) 0 0
\(805\) 8.34507e15 2.20859e15i 0.870067 0.230271i
\(806\) 0 0
\(807\) 4.44347e15i 0.457002i
\(808\) 0 0
\(809\) 1.18817e16 1.20549 0.602744 0.797935i \(-0.294074\pi\)
0.602744 + 0.797935i \(0.294074\pi\)
\(810\) 0 0
\(811\) 7.07941e14 0.0708569 0.0354284 0.999372i \(-0.488720\pi\)
0.0354284 + 0.999372i \(0.488720\pi\)
\(812\) 0 0
\(813\) 5.77574e15i 0.570309i
\(814\) 0 0
\(815\) 2.13074e15 + 8.05091e15i 0.207570 + 0.784293i
\(816\) 0 0
\(817\) 5.97806e15i 0.574565i
\(818\) 0 0
\(819\) −4.07495e15 −0.386421
\(820\) 0 0
\(821\) 4.20085e15 0.393052 0.196526 0.980499i \(-0.437034\pi\)
0.196526 + 0.980499i \(0.437034\pi\)
\(822\) 0 0
\(823\) 1.76608e16i 1.63046i 0.579135 + 0.815232i \(0.303391\pi\)
−0.579135 + 0.815232i \(0.696609\pi\)
\(824\) 0 0
\(825\) −4.92744e15 8.65701e15i −0.448874 0.788626i
\(826\) 0 0
\(827\) 7.42500e15i 0.667446i −0.942671 0.333723i \(-0.891695\pi\)
0.942671 0.333723i \(-0.108305\pi\)
\(828\) 0 0
\(829\) 1.02610e16 0.910208 0.455104 0.890438i \(-0.349602\pi\)
0.455104 + 0.890438i \(0.349602\pi\)
\(830\) 0 0
\(831\) −4.86028e15 −0.425457
\(832\) 0 0
\(833\) 8.18189e14i 0.0706816i
\(834\) 0 0
\(835\) −1.40559e15 5.31095e15i −0.119835 0.452790i
\(836\) 0 0
\(837\) 3.97431e15i 0.334404i
\(838\) 0 0
\(839\) 5.46116e15 0.453518 0.226759 0.973951i \(-0.427187\pi\)
0.226759 + 0.973951i \(0.427187\pi\)
\(840\) 0 0
\(841\) 1.18522e16 0.971449
\(842\) 0 0
\(843\) 5.25032e15i 0.424750i
\(844\) 0 0
\(845\) −6.54806e15 + 1.73300e15i −0.522878 + 0.138384i
\(846\) 0 0
\(847\) 1.74201e16i 1.37307i
\(848\) 0 0
\(849\) −1.02704e16 −0.799092
\(850\) 0 0
\(851\) 1.36275e16 1.04666
\(852\) 0 0
\(853\) 1.38989e16i 1.05380i 0.849926 + 0.526902i \(0.176647\pi\)
−0.849926 + 0.526902i \(0.823353\pi\)
\(854\) 0 0
\(855\) −2.17115e15 + 5.74614e14i −0.162509 + 0.0430093i
\(856\) 0 0
\(857\) 1.35605e16i 1.00203i −0.865437 0.501017i \(-0.832959\pi\)
0.865437 0.501017i \(-0.167041\pi\)
\(858\) 0 0
\(859\) 4.45328e15 0.324876 0.162438 0.986719i \(-0.448064\pi\)
0.162438 + 0.986719i \(0.448064\pi\)
\(860\) 0 0
\(861\) −1.43427e15 −0.103303
\(862\) 0 0
\(863\) 1.15395e16i 0.820593i −0.911952 0.410297i \(-0.865425\pi\)
0.911952 0.410297i \(-0.134575\pi\)
\(864\) 0 0
\(865\) −4.67344e14 1.76584e15i −0.0328131 0.123983i
\(866\) 0 0
\(867\) 5.78236e15i 0.400867i
\(868\) 0 0
\(869\) −2.01153e16 −1.37695
\(870\) 0 0
\(871\) 1.89558e15 0.128128
\(872\) 0 0
\(873\) 2.61024e15i 0.174222i
\(874\) 0 0
\(875\) 9.92627e15 + 1.01110e16i 0.654247 + 0.666422i
\(876\) 0 0
\(877\) 1.61714e16i 1.05257i −0.850308 0.526285i \(-0.823584\pi\)
0.850308 0.526285i \(-0.176416\pi\)
\(878\) 0 0
\(879\) 1.37693e16 0.885064
\(880\) 0 0
\(881\) −2.06661e16 −1.31187 −0.655936 0.754817i \(-0.727726\pi\)
−0.655936 + 0.754817i \(0.727726\pi\)
\(882\) 0 0
\(883\) 2.69113e15i 0.168714i 0.996436 + 0.0843569i \(0.0268836\pi\)
−0.996436 + 0.0843569i \(0.973116\pi\)
\(884\) 0 0
\(885\) −2.17782e15 8.22880e15i −0.134845 0.509505i
\(886\) 0 0
\(887\) 2.20727e16i 1.34982i −0.737900 0.674911i \(-0.764182\pi\)
0.737900 0.674911i \(-0.235818\pi\)
\(888\) 0 0
\(889\) 1.01491e16 0.613009
\(890\) 0 0
\(891\) −2.92722e15 −0.174634
\(892\) 0 0
\(893\) 1.03053e16i 0.607267i
\(894\) 0 0
\(895\) 7.30125e15 1.93234e15i 0.424982 0.112475i
\(896\) 0 0
\(897\) 1.20126e16i 0.690685i
\(898\) 0 0
\(899\) −4.29561e16 −2.43976
\(900\) 0 0
\(901\) 4.15339e15 0.233032
\(902\) 0 0
\(903\) 1.10831e16i 0.614295i
\(904\) 0 0
\(905\) 2.61897e16 6.93133e15i 1.43405 0.379533i
\(906\) 0 0
\(907\) 2.50362e16i 1.35434i −0.735827 0.677170i \(-0.763206\pi\)
0.735827 0.677170i \(-0.236794\pi\)
\(908\) 0 0
\(909\) −1.11246e16 −0.594541
\(910\) 0 0
\(911\) 1.34918e16 0.712393 0.356196 0.934411i \(-0.384073\pi\)
0.356196 + 0.934411i \(0.384073\pi\)
\(912\) 0 0
\(913\) 5.50682e16i 2.87284i
\(914\) 0 0
\(915\) 3.23959e15 + 1.22406e16i 0.166984 + 0.630940i
\(916\) 0 0
\(917\) 1.33449e15i 0.0679646i
\(918\) 0 0
\(919\) 1.86406e16 0.938048 0.469024 0.883185i \(-0.344606\pi\)
0.469024 + 0.883185i \(0.344606\pi\)
\(920\) 0 0
\(921\) 4.84454e15 0.240893
\(922\) 0 0
\(923\) 1.36889e16i 0.672606i
\(924\) 0 0
\(925\) 1.10648e16 + 1.94397e16i 0.537233 + 0.943864i
\(926\) 0 0
\(927\) 1.03296e16i 0.495616i
\(928\) 0 0
\(929\) −1.26618e16 −0.600358 −0.300179 0.953883i \(-0.597046\pi\)
−0.300179 + 0.953883i \(0.597046\pi\)
\(930\) 0 0
\(931\) 1.37593e15 0.0644723
\(932\) 0 0
\(933\) 2.55975e15i 0.118535i
\(934\) 0 0
\(935\) 4.85794e15 + 1.83555e16i 0.222325 + 0.840045i
\(936\) 0 0
\(937\) 3.98788e16i 1.80374i 0.432006 + 0.901871i \(0.357806\pi\)
−0.432006 + 0.901871i \(0.642194\pi\)
\(938\) 0 0
\(939\) −1.28147e16 −0.572861
\(940\) 0 0
\(941\) −2.35800e16 −1.04184 −0.520920 0.853606i \(-0.674411\pi\)
−0.520920 + 0.853606i \(0.674411\pi\)
\(942\) 0 0
\(943\) 4.22812e15i 0.184643i
\(944\) 0 0
\(945\) 4.02522e15 1.06531e15i 0.173746 0.0459833i
\(946\) 0 0
\(947\) 2.50128e16i 1.06718i −0.845743 0.533591i \(-0.820842\pi\)
0.845743 0.533591i \(-0.179158\pi\)
\(948\) 0 0
\(949\) 3.16778e16 1.33595
\(950\) 0 0
\(951\) −1.62400e16 −0.677005
\(952\) 0 0
\(953\) 3.78726e16i 1.56068i −0.625355 0.780340i \(-0.715046\pi\)
0.625355 0.780340i \(-0.284954\pi\)
\(954\) 0 0
\(955\) −2.93326e16 + 7.76313e15i −1.19490 + 0.316241i
\(956\) 0 0
\(957\) 3.16387e16i 1.27410i
\(958\) 0 0
\(959\) −4.29476e16 −1.70976
\(960\) 0 0
\(961\) 5.13075e16 2.01931
\(962\) 0 0
\(963\) 1.03428e16i 0.402433i
\(964\) 0 0
\(965\) −7.95967e14 3.00753e15i −0.0306193 0.115694i
\(966\) 0 0
\(967\) 1.01035e16i 0.384262i 0.981369 + 0.192131i \(0.0615398\pi\)
−0.981369 + 0.192131i \(0.938460\pi\)
\(968\) 0 0
\(969\) 4.28106e15 0.160980
\(970\) 0 0
\(971\) 1.09869e16 0.408478 0.204239 0.978921i \(-0.434528\pi\)
0.204239 + 0.978921i \(0.434528\pi\)
\(972\) 0 0
\(973\) 2.70344e16i 0.993795i
\(974\) 0 0
\(975\) 1.71360e16 9.75356e15i 0.622852 0.354518i
\(976\) 0 0
\(977\) 2.52822e16i 0.908644i −0.890837 0.454322i \(-0.849881\pi\)
0.890837 0.454322i \(-0.150119\pi\)
\(978\) 0 0
\(979\) 2.67367e16 0.950173
\(980\) 0 0
\(981\) 3.35383e15 0.117859
\(982\) 0 0
\(983\) 4.29168e16i 1.49136i −0.666304 0.745680i \(-0.732125\pi\)
0.666304 0.745680i \(-0.267875\pi\)
\(984\) 0 0
\(985\) 3.43706e15 + 1.29868e16i 0.118110 + 0.446275i
\(986\) 0 0
\(987\) 1.91056e16i 0.649258i
\(988\) 0 0
\(989\) 3.26720e16 1.09798
\(990\) 0 0
\(991\) 5.20325e16 1.72930 0.864648 0.502377i \(-0.167541\pi\)
0.864648 + 0.502377i \(0.167541\pi\)
\(992\) 0 0
\(993\) 6.79404e15i 0.223309i
\(994\) 0 0
\(995\) −1.70443e16 + 4.51093e15i −0.554056 + 0.146635i
\(996\) 0 0
\(997\) 5.42887e16i 1.74537i 0.488288 + 0.872683i \(0.337622\pi\)
−0.488288 + 0.872683i \(0.662378\pi\)
\(998\) 0 0
\(999\) 6.57320e15 0.209010
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.12.f.b.49.6 6
4.3 odd 2 30.12.c.b.19.3 6
5.4 even 2 inner 240.12.f.b.49.3 6
12.11 even 2 90.12.c.c.19.4 6
20.3 even 4 150.12.a.t.1.2 3
20.7 even 4 150.12.a.u.1.2 3
20.19 odd 2 30.12.c.b.19.6 yes 6
60.59 even 2 90.12.c.c.19.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.12.c.b.19.3 6 4.3 odd 2
30.12.c.b.19.6 yes 6 20.19 odd 2
90.12.c.c.19.1 6 60.59 even 2
90.12.c.c.19.4 6 12.11 even 2
150.12.a.t.1.2 3 20.3 even 4
150.12.a.u.1.2 3 20.7 even 4
240.12.f.b.49.3 6 5.4 even 2 inner
240.12.f.b.49.6 6 1.1 even 1 trivial