Properties

Label 150.12.a.t.1.2
Level $150$
Weight $12$
Character 150.1
Self dual yes
Analytic conductor $115.251$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,12,Mod(1,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-96,729,3072,0,-23328,-67384] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.251477084\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 175039x - 13178910 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(451.888\) of defining polynomial
Character \(\chi\) \(=\) 150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000 q^{2} +243.000 q^{3} +1024.00 q^{4} -7776.00 q^{6} -41527.6 q^{7} -32768.0 q^{8} +59049.0 q^{9} +839520. q^{11} +248832. q^{12} +1.66178e6 q^{13} +1.32888e6 q^{14} +1.04858e6 q^{16} -3.23669e6 q^{17} -1.88957e6 q^{18} +5.44307e6 q^{19} -1.00912e7 q^{21} -2.68646e7 q^{22} -2.97481e7 q^{23} -7.96262e6 q^{24} -5.31769e7 q^{26} +1.43489e7 q^{27} -4.25243e7 q^{28} +1.55089e8 q^{29} -2.76977e8 q^{31} -3.35544e7 q^{32} +2.04003e8 q^{33} +1.03574e8 q^{34} +6.04662e7 q^{36} +4.58098e8 q^{37} -1.74178e8 q^{38} +4.03812e8 q^{39} +1.42131e8 q^{41} +3.22919e8 q^{42} +1.09829e9 q^{43} +8.59668e8 q^{44} +9.51939e8 q^{46} -1.89330e9 q^{47} +2.54804e8 q^{48} -2.52786e8 q^{49} -7.86516e8 q^{51} +1.70166e9 q^{52} -1.28322e9 q^{53} -4.59165e8 q^{54} +1.36078e9 q^{56} +1.32267e9 q^{57} -4.96286e9 q^{58} -5.01298e9 q^{59} +7.45699e9 q^{61} +8.86325e9 q^{62} -2.45216e9 q^{63} +1.07374e9 q^{64} -6.52811e9 q^{66} -1.14069e9 q^{67} -3.31437e9 q^{68} -7.22879e9 q^{69} +8.23753e9 q^{71} -1.93492e9 q^{72} -1.90626e10 q^{73} -1.46591e10 q^{74} +5.57371e9 q^{76} -3.48632e10 q^{77} -1.29220e10 q^{78} +2.39605e10 q^{79} +3.48678e9 q^{81} -4.54818e9 q^{82} +6.55948e10 q^{83} -1.03334e10 q^{84} -3.51452e10 q^{86} +3.76867e10 q^{87} -2.75094e10 q^{88} +3.18476e10 q^{89} -6.90096e10 q^{91} -3.04621e10 q^{92} -6.73053e10 q^{93} +6.05855e10 q^{94} -8.15373e9 q^{96} -4.42047e10 q^{97} +8.08914e9 q^{98} +4.95728e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 96 q^{2} + 729 q^{3} + 3072 q^{4} - 23328 q^{6} - 67384 q^{7} - 98304 q^{8} + 177147 q^{9} + 876700 q^{11} + 746496 q^{12} - 315192 q^{13} + 2156288 q^{14} + 3145728 q^{16} - 2874324 q^{17} - 5668704 q^{18}+ \cdots + 51768258300 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −32.0000 −0.707107
\(3\) 243.000 0.577350
\(4\) 1024.00 0.500000
\(5\) 0 0
\(6\) −7776.00 −0.408248
\(7\) −41527.6 −0.933894 −0.466947 0.884285i \(-0.654646\pi\)
−0.466947 + 0.884285i \(0.654646\pi\)
\(8\) −32768.0 −0.353553
\(9\) 59049.0 0.333333
\(10\) 0 0
\(11\) 839520. 1.57171 0.785853 0.618414i \(-0.212224\pi\)
0.785853 + 0.618414i \(0.212224\pi\)
\(12\) 248832. 0.288675
\(13\) 1.66178e6 1.24132 0.620661 0.784079i \(-0.286864\pi\)
0.620661 + 0.784079i \(0.286864\pi\)
\(14\) 1.32888e6 0.660363
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) −3.23669e6 −0.552882 −0.276441 0.961031i \(-0.589155\pi\)
−0.276441 + 0.961031i \(0.589155\pi\)
\(18\) −1.88957e6 −0.235702
\(19\) 5.44307e6 0.504312 0.252156 0.967687i \(-0.418860\pi\)
0.252156 + 0.967687i \(0.418860\pi\)
\(20\) 0 0
\(21\) −1.00912e7 −0.539184
\(22\) −2.68646e7 −1.11136
\(23\) −2.97481e7 −0.963732 −0.481866 0.876245i \(-0.660041\pi\)
−0.481866 + 0.876245i \(0.660041\pi\)
\(24\) −7.96262e6 −0.204124
\(25\) 0 0
\(26\) −5.31769e7 −0.877747
\(27\) 1.43489e7 0.192450
\(28\) −4.25243e7 −0.466947
\(29\) 1.55089e8 1.40408 0.702042 0.712136i \(-0.252272\pi\)
0.702042 + 0.712136i \(0.252272\pi\)
\(30\) 0 0
\(31\) −2.76977e8 −1.73762 −0.868808 0.495150i \(-0.835113\pi\)
−0.868808 + 0.495150i \(0.835113\pi\)
\(32\) −3.35544e7 −0.176777
\(33\) 2.04003e8 0.907425
\(34\) 1.03574e8 0.390946
\(35\) 0 0
\(36\) 6.04662e7 0.166667
\(37\) 4.58098e8 1.08605 0.543023 0.839718i \(-0.317280\pi\)
0.543023 + 0.839718i \(0.317280\pi\)
\(38\) −1.74178e8 −0.356602
\(39\) 4.03812e8 0.716678
\(40\) 0 0
\(41\) 1.42131e8 0.191592 0.0957958 0.995401i \(-0.469460\pi\)
0.0957958 + 0.995401i \(0.469460\pi\)
\(42\) 3.22919e8 0.381261
\(43\) 1.09829e9 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(44\) 8.59668e8 0.785853
\(45\) 0 0
\(46\) 9.51939e8 0.681461
\(47\) −1.89330e9 −1.20415 −0.602075 0.798440i \(-0.705659\pi\)
−0.602075 + 0.798440i \(0.705659\pi\)
\(48\) 2.54804e8 0.144338
\(49\) −2.52786e8 −0.127842
\(50\) 0 0
\(51\) −7.86516e8 −0.319206
\(52\) 1.70166e9 0.620661
\(53\) −1.28322e9 −0.421487 −0.210743 0.977541i \(-0.567588\pi\)
−0.210743 + 0.977541i \(0.567588\pi\)
\(54\) −4.59165e8 −0.136083
\(55\) 0 0
\(56\) 1.36078e9 0.330181
\(57\) 1.32267e9 0.291165
\(58\) −4.96286e9 −0.992837
\(59\) −5.01298e9 −0.912872 −0.456436 0.889756i \(-0.650874\pi\)
−0.456436 + 0.889756i \(0.650874\pi\)
\(60\) 0 0
\(61\) 7.45699e9 1.13045 0.565223 0.824938i \(-0.308790\pi\)
0.565223 + 0.824938i \(0.308790\pi\)
\(62\) 8.86325e9 1.22868
\(63\) −2.45216e9 −0.311298
\(64\) 1.07374e9 0.125000
\(65\) 0 0
\(66\) −6.52811e9 −0.641646
\(67\) −1.14069e9 −0.103219 −0.0516093 0.998667i \(-0.516435\pi\)
−0.0516093 + 0.998667i \(0.516435\pi\)
\(68\) −3.31437e9 −0.276441
\(69\) −7.22879e9 −0.556411
\(70\) 0 0
\(71\) 8.23753e9 0.541847 0.270923 0.962601i \(-0.412671\pi\)
0.270923 + 0.962601i \(0.412671\pi\)
\(72\) −1.93492e9 −0.117851
\(73\) −1.90626e10 −1.07623 −0.538116 0.842871i \(-0.680864\pi\)
−0.538116 + 0.842871i \(0.680864\pi\)
\(74\) −1.46591e10 −0.767951
\(75\) 0 0
\(76\) 5.57371e9 0.252156
\(77\) −3.48632e10 −1.46781
\(78\) −1.29220e10 −0.506768
\(79\) 2.39605e10 0.876085 0.438042 0.898954i \(-0.355672\pi\)
0.438042 + 0.898954i \(0.355672\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) −4.54818e9 −0.135476
\(83\) 6.55948e10 1.82785 0.913924 0.405885i \(-0.133037\pi\)
0.913924 + 0.405885i \(0.133037\pi\)
\(84\) −1.03334e10 −0.269592
\(85\) 0 0
\(86\) −3.51452e10 −0.805610
\(87\) 3.76867e10 0.810648
\(88\) −2.75094e10 −0.555682
\(89\) 3.18476e10 0.604549 0.302274 0.953221i \(-0.402254\pi\)
0.302274 + 0.953221i \(0.402254\pi\)
\(90\) 0 0
\(91\) −6.90096e10 −1.15926
\(92\) −3.04621e10 −0.481866
\(93\) −6.73053e10 −1.00321
\(94\) 6.05855e10 0.851462
\(95\) 0 0
\(96\) −8.15373e9 −0.102062
\(97\) −4.42047e10 −0.522665 −0.261333 0.965249i \(-0.584162\pi\)
−0.261333 + 0.965249i \(0.584162\pi\)
\(98\) 8.08914e9 0.0903980
\(99\) 4.95728e10 0.523902
\(100\) 0 0
\(101\) 1.88396e11 1.78362 0.891812 0.452407i \(-0.149435\pi\)
0.891812 + 0.452407i \(0.149435\pi\)
\(102\) 2.51685e10 0.225713
\(103\) −1.74933e11 −1.48685 −0.743424 0.668820i \(-0.766800\pi\)
−0.743424 + 0.668820i \(0.766800\pi\)
\(104\) −5.44531e10 −0.438874
\(105\) 0 0
\(106\) 4.10630e10 0.298036
\(107\) −1.75156e11 −1.20730 −0.603650 0.797249i \(-0.706288\pi\)
−0.603650 + 0.797249i \(0.706288\pi\)
\(108\) 1.46933e10 0.0962250
\(109\) 5.67974e10 0.353576 0.176788 0.984249i \(-0.443429\pi\)
0.176788 + 0.984249i \(0.443429\pi\)
\(110\) 0 0
\(111\) 1.11318e11 0.627029
\(112\) −4.35448e10 −0.233473
\(113\) −7.76853e10 −0.396650 −0.198325 0.980136i \(-0.563550\pi\)
−0.198325 + 0.980136i \(0.563550\pi\)
\(114\) −4.23253e10 −0.205884
\(115\) 0 0
\(116\) 1.58811e11 0.702042
\(117\) 9.81263e10 0.413774
\(118\) 1.60415e11 0.645498
\(119\) 1.34412e11 0.516333
\(120\) 0 0
\(121\) 4.19482e11 1.47026
\(122\) −2.38624e11 −0.799346
\(123\) 3.45377e10 0.110615
\(124\) −2.83624e11 −0.868808
\(125\) 0 0
\(126\) 7.84692e10 0.220121
\(127\) 2.44393e11 0.656401 0.328200 0.944608i \(-0.393558\pi\)
0.328200 + 0.944608i \(0.393558\pi\)
\(128\) −3.43597e10 −0.0883883
\(129\) 2.66884e11 0.657778
\(130\) 0 0
\(131\) 3.21349e10 0.0727755 0.0363877 0.999338i \(-0.488415\pi\)
0.0363877 + 0.999338i \(0.488415\pi\)
\(132\) 2.08899e11 0.453712
\(133\) −2.26038e11 −0.470974
\(134\) 3.65022e10 0.0729866
\(135\) 0 0
\(136\) 1.06060e11 0.195473
\(137\) 1.03419e12 1.83079 0.915395 0.402557i \(-0.131878\pi\)
0.915395 + 0.402557i \(0.131878\pi\)
\(138\) 2.31321e11 0.393442
\(139\) −6.51000e11 −1.06414 −0.532071 0.846700i \(-0.678586\pi\)
−0.532071 + 0.846700i \(0.678586\pi\)
\(140\) 0 0
\(141\) −4.60071e11 −0.695216
\(142\) −2.63601e11 −0.383143
\(143\) 1.39510e12 1.95099
\(144\) 6.19174e10 0.0833333
\(145\) 0 0
\(146\) 6.10002e11 0.761011
\(147\) −6.14269e10 −0.0738097
\(148\) 4.69092e11 0.543023
\(149\) 1.48776e12 1.65962 0.829808 0.558049i \(-0.188450\pi\)
0.829808 + 0.558049i \(0.188450\pi\)
\(150\) 0 0
\(151\) 1.69992e12 1.76220 0.881100 0.472929i \(-0.156803\pi\)
0.881100 + 0.472929i \(0.156803\pi\)
\(152\) −1.78359e11 −0.178301
\(153\) −1.91123e11 −0.184294
\(154\) 1.11562e12 1.03790
\(155\) 0 0
\(156\) 4.13503e11 0.358339
\(157\) −3.75740e11 −0.314369 −0.157184 0.987569i \(-0.550242\pi\)
−0.157184 + 0.987569i \(0.550242\pi\)
\(158\) −7.66735e11 −0.619485
\(159\) −3.11822e11 −0.243345
\(160\) 0 0
\(161\) 1.23537e12 0.900023
\(162\) −1.11577e11 −0.0785674
\(163\) 1.19182e12 0.811296 0.405648 0.914029i \(-0.367046\pi\)
0.405648 + 0.914029i \(0.367046\pi\)
\(164\) 1.45542e11 0.0957958
\(165\) 0 0
\(166\) −2.09903e12 −1.29248
\(167\) 7.86209e11 0.468379 0.234190 0.972191i \(-0.424756\pi\)
0.234190 + 0.972191i \(0.424756\pi\)
\(168\) 3.30669e11 0.190630
\(169\) 9.69345e11 0.540880
\(170\) 0 0
\(171\) 3.21408e11 0.168104
\(172\) 1.12465e12 0.569652
\(173\) 2.61407e11 0.128252 0.0641258 0.997942i \(-0.479574\pi\)
0.0641258 + 0.997942i \(0.479574\pi\)
\(174\) −1.20597e12 −0.573215
\(175\) 0 0
\(176\) 8.80300e11 0.392926
\(177\) −1.21815e12 −0.527047
\(178\) −1.01912e12 −0.427481
\(179\) 1.08084e12 0.439614 0.219807 0.975543i \(-0.429457\pi\)
0.219807 + 0.975543i \(0.429457\pi\)
\(180\) 0 0
\(181\) 3.87701e12 1.48342 0.741711 0.670720i \(-0.234015\pi\)
0.741711 + 0.670720i \(0.234015\pi\)
\(182\) 2.20831e12 0.819723
\(183\) 1.81205e12 0.652663
\(184\) 9.74786e11 0.340731
\(185\) 0 0
\(186\) 2.15377e12 0.709378
\(187\) −2.71727e12 −0.868967
\(188\) −1.93874e12 −0.602075
\(189\) −5.95876e11 −0.179728
\(190\) 0 0
\(191\) 4.34227e12 1.23604 0.618021 0.786161i \(-0.287935\pi\)
0.618021 + 0.786161i \(0.287935\pi\)
\(192\) 2.60919e11 0.0721688
\(193\) 4.45221e11 0.119677 0.0598384 0.998208i \(-0.480941\pi\)
0.0598384 + 0.998208i \(0.480941\pi\)
\(194\) 1.41455e12 0.369580
\(195\) 0 0
\(196\) −2.58852e11 −0.0639210
\(197\) 1.92250e12 0.461640 0.230820 0.972997i \(-0.425859\pi\)
0.230820 + 0.972997i \(0.425859\pi\)
\(198\) −1.58633e12 −0.370455
\(199\) −2.52317e12 −0.573131 −0.286566 0.958061i \(-0.592514\pi\)
−0.286566 + 0.958061i \(0.592514\pi\)
\(200\) 0 0
\(201\) −2.77189e11 −0.0595933
\(202\) −6.02866e12 −1.26121
\(203\) −6.44048e12 −1.31126
\(204\) −8.05392e11 −0.159603
\(205\) 0 0
\(206\) 5.59785e12 1.05136
\(207\) −1.75660e12 −0.321244
\(208\) 1.74250e12 0.310331
\(209\) 4.56957e12 0.792630
\(210\) 0 0
\(211\) 7.60254e12 1.25143 0.625713 0.780053i \(-0.284808\pi\)
0.625713 + 0.780053i \(0.284808\pi\)
\(212\) −1.31402e12 −0.210743
\(213\) 2.00172e12 0.312835
\(214\) 5.60501e12 0.853690
\(215\) 0 0
\(216\) −4.70185e11 −0.0680414
\(217\) 1.15022e13 1.62275
\(218\) −1.81752e12 −0.250016
\(219\) −4.63221e12 −0.621363
\(220\) 0 0
\(221\) −5.37866e12 −0.686304
\(222\) −3.56217e12 −0.443377
\(223\) −2.46671e12 −0.299531 −0.149765 0.988722i \(-0.547852\pi\)
−0.149765 + 0.988722i \(0.547852\pi\)
\(224\) 1.39343e12 0.165091
\(225\) 0 0
\(226\) 2.48593e12 0.280474
\(227\) −1.11438e13 −1.22713 −0.613567 0.789642i \(-0.710266\pi\)
−0.613567 + 0.789642i \(0.710266\pi\)
\(228\) 1.35441e12 0.145582
\(229\) −1.12840e13 −1.18404 −0.592021 0.805923i \(-0.701670\pi\)
−0.592021 + 0.805923i \(0.701670\pi\)
\(230\) 0 0
\(231\) −8.47177e12 −0.847438
\(232\) −5.08197e12 −0.496418
\(233\) −3.66685e12 −0.349813 −0.174906 0.984585i \(-0.555962\pi\)
−0.174906 + 0.984585i \(0.555962\pi\)
\(234\) −3.14004e12 −0.292582
\(235\) 0 0
\(236\) −5.13329e12 −0.456436
\(237\) 5.82239e12 0.505808
\(238\) −4.30118e12 −0.365102
\(239\) 1.40189e13 1.16285 0.581427 0.813598i \(-0.302494\pi\)
0.581427 + 0.813598i \(0.302494\pi\)
\(240\) 0 0
\(241\) −1.19865e13 −0.949723 −0.474862 0.880060i \(-0.657502\pi\)
−0.474862 + 0.880060i \(0.657502\pi\)
\(242\) −1.34234e13 −1.03963
\(243\) 8.47289e11 0.0641500
\(244\) 7.63596e12 0.565223
\(245\) 0 0
\(246\) −1.10521e12 −0.0782169
\(247\) 9.04517e12 0.626014
\(248\) 9.07597e12 0.614340
\(249\) 1.59395e13 1.05531
\(250\) 0 0
\(251\) −4.71793e12 −0.298914 −0.149457 0.988768i \(-0.547753\pi\)
−0.149457 + 0.988768i \(0.547753\pi\)
\(252\) −2.51101e12 −0.155649
\(253\) −2.49741e13 −1.51470
\(254\) −7.82059e12 −0.464146
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) 2.26178e13 1.25840 0.629199 0.777244i \(-0.283383\pi\)
0.629199 + 0.777244i \(0.283383\pi\)
\(258\) −8.54029e12 −0.465119
\(259\) −1.90237e13 −1.01425
\(260\) 0 0
\(261\) 9.15787e12 0.468028
\(262\) −1.02832e12 −0.0514600
\(263\) 2.63896e13 1.29323 0.646617 0.762815i \(-0.276183\pi\)
0.646617 + 0.762815i \(0.276183\pi\)
\(264\) −6.68478e12 −0.320823
\(265\) 0 0
\(266\) 7.23321e12 0.333029
\(267\) 7.73896e12 0.349036
\(268\) −1.16807e12 −0.0516093
\(269\) 1.82859e13 0.791550 0.395775 0.918347i \(-0.370476\pi\)
0.395775 + 0.918347i \(0.370476\pi\)
\(270\) 0 0
\(271\) −2.37685e13 −0.987803 −0.493902 0.869518i \(-0.664430\pi\)
−0.493902 + 0.869518i \(0.664430\pi\)
\(272\) −3.39392e12 −0.138220
\(273\) −1.67693e13 −0.669301
\(274\) −3.30942e13 −1.29456
\(275\) 0 0
\(276\) −7.40228e12 −0.278205
\(277\) 2.00012e13 0.736914 0.368457 0.929645i \(-0.379886\pi\)
0.368457 + 0.929645i \(0.379886\pi\)
\(278\) 2.08320e13 0.752462
\(279\) −1.63552e13 −0.579205
\(280\) 0 0
\(281\) 2.16062e13 0.735689 0.367845 0.929887i \(-0.380096\pi\)
0.367845 + 0.929887i \(0.380096\pi\)
\(282\) 1.47223e13 0.491592
\(283\) 4.22652e13 1.38407 0.692034 0.721865i \(-0.256715\pi\)
0.692034 + 0.721865i \(0.256715\pi\)
\(284\) 8.43523e12 0.270923
\(285\) 0 0
\(286\) −4.46431e13 −1.37956
\(287\) −5.90234e12 −0.178926
\(288\) −1.98136e12 −0.0589256
\(289\) −2.37957e13 −0.694322
\(290\) 0 0
\(291\) −1.07417e13 −0.301761
\(292\) −1.95201e13 −0.538116
\(293\) 5.66640e13 1.53298 0.766488 0.642259i \(-0.222003\pi\)
0.766488 + 0.642259i \(0.222003\pi\)
\(294\) 1.96566e12 0.0521913
\(295\) 0 0
\(296\) −1.50109e13 −0.383975
\(297\) 1.20462e13 0.302475
\(298\) −4.76082e13 −1.17353
\(299\) −4.94347e13 −1.19630
\(300\) 0 0
\(301\) −4.56093e13 −1.06399
\(302\) −5.43975e13 −1.24606
\(303\) 4.57801e13 1.02978
\(304\) 5.70747e12 0.126078
\(305\) 0 0
\(306\) 6.11595e12 0.130315
\(307\) 1.99364e13 0.417239 0.208619 0.977997i \(-0.433103\pi\)
0.208619 + 0.977997i \(0.433103\pi\)
\(308\) −3.57000e13 −0.733903
\(309\) −4.25087e13 −0.858433
\(310\) 0 0
\(311\) 1.05339e13 0.205309 0.102655 0.994717i \(-0.467266\pi\)
0.102655 + 0.994717i \(0.467266\pi\)
\(312\) −1.32321e13 −0.253384
\(313\) −5.27355e13 −0.992224 −0.496112 0.868259i \(-0.665239\pi\)
−0.496112 + 0.868259i \(0.665239\pi\)
\(314\) 1.20237e13 0.222292
\(315\) 0 0
\(316\) 2.45355e13 0.438042
\(317\) 6.68311e13 1.17261 0.586304 0.810091i \(-0.300583\pi\)
0.586304 + 0.810091i \(0.300583\pi\)
\(318\) 9.97832e12 0.172071
\(319\) 1.30201e14 2.20681
\(320\) 0 0
\(321\) −4.25630e13 −0.697035
\(322\) −3.95317e13 −0.636412
\(323\) −1.76175e13 −0.278825
\(324\) 3.57047e12 0.0555556
\(325\) 0 0
\(326\) −3.81383e13 −0.573673
\(327\) 1.38018e13 0.204137
\(328\) −4.65734e12 −0.0677379
\(329\) 7.86241e13 1.12455
\(330\) 0 0
\(331\) 2.79590e13 0.386783 0.193392 0.981122i \(-0.438051\pi\)
0.193392 + 0.981122i \(0.438051\pi\)
\(332\) 6.71691e13 0.913924
\(333\) 2.70502e13 0.362016
\(334\) −2.51587e13 −0.331194
\(335\) 0 0
\(336\) −1.05814e13 −0.134796
\(337\) −1.16982e14 −1.46606 −0.733032 0.680194i \(-0.761896\pi\)
−0.733032 + 0.680194i \(0.761896\pi\)
\(338\) −3.10190e13 −0.382460
\(339\) −1.88775e13 −0.229006
\(340\) 0 0
\(341\) −2.32527e14 −2.73102
\(342\) −1.02851e13 −0.118867
\(343\) 9.26112e13 1.05328
\(344\) −3.59887e13 −0.402805
\(345\) 0 0
\(346\) −8.36501e12 −0.0906876
\(347\) 1.62553e12 0.0173453 0.00867265 0.999962i \(-0.497239\pi\)
0.00867265 + 0.999962i \(0.497239\pi\)
\(348\) 3.85912e13 0.405324
\(349\) −1.40028e14 −1.44769 −0.723843 0.689965i \(-0.757626\pi\)
−0.723843 + 0.689965i \(0.757626\pi\)
\(350\) 0 0
\(351\) 2.38447e13 0.238893
\(352\) −2.81696e13 −0.277841
\(353\) 1.07894e13 0.104770 0.0523850 0.998627i \(-0.483318\pi\)
0.0523850 + 0.998627i \(0.483318\pi\)
\(354\) 3.89809e13 0.372678
\(355\) 0 0
\(356\) 3.26119e13 0.302274
\(357\) 3.26621e13 0.298105
\(358\) −3.45870e13 −0.310854
\(359\) −8.36216e13 −0.740114 −0.370057 0.929009i \(-0.620662\pi\)
−0.370057 + 0.929009i \(0.620662\pi\)
\(360\) 0 0
\(361\) −8.68632e13 −0.745669
\(362\) −1.24064e14 −1.04894
\(363\) 1.01934e14 0.848854
\(364\) −7.06659e13 −0.579632
\(365\) 0 0
\(366\) −5.79856e13 −0.461502
\(367\) −1.00049e13 −0.0784420 −0.0392210 0.999231i \(-0.512488\pi\)
−0.0392210 + 0.999231i \(0.512488\pi\)
\(368\) −3.11931e13 −0.240933
\(369\) 8.39267e12 0.0638639
\(370\) 0 0
\(371\) 5.32890e13 0.393624
\(372\) −6.89206e13 −0.501606
\(373\) −2.32365e14 −1.66637 −0.833186 0.552993i \(-0.813486\pi\)
−0.833186 + 0.552993i \(0.813486\pi\)
\(374\) 8.69525e13 0.614453
\(375\) 0 0
\(376\) 6.20395e13 0.425731
\(377\) 2.57724e14 1.74292
\(378\) 1.90680e13 0.127087
\(379\) 1.60902e14 1.05693 0.528465 0.848955i \(-0.322768\pi\)
0.528465 + 0.848955i \(0.322768\pi\)
\(380\) 0 0
\(381\) 5.93876e13 0.378973
\(382\) −1.38953e14 −0.874014
\(383\) 3.41226e12 0.0211568 0.0105784 0.999944i \(-0.496633\pi\)
0.0105784 + 0.999944i \(0.496633\pi\)
\(384\) −8.34942e12 −0.0510310
\(385\) 0 0
\(386\) −1.42471e13 −0.0846243
\(387\) 6.48528e13 0.379768
\(388\) −4.52656e13 −0.261333
\(389\) −2.49915e14 −1.42255 −0.711277 0.702912i \(-0.751883\pi\)
−0.711277 + 0.702912i \(0.751883\pi\)
\(390\) 0 0
\(391\) 9.62854e13 0.532830
\(392\) 8.28328e12 0.0451990
\(393\) 7.80879e12 0.0420169
\(394\) −6.15201e13 −0.326428
\(395\) 0 0
\(396\) 5.07626e13 0.261951
\(397\) 2.50976e14 1.27727 0.638637 0.769508i \(-0.279498\pi\)
0.638637 + 0.769508i \(0.279498\pi\)
\(398\) 8.07414e13 0.405265
\(399\) −5.49272e13 −0.271917
\(400\) 0 0
\(401\) 3.56396e14 1.71648 0.858240 0.513248i \(-0.171558\pi\)
0.858240 + 0.513248i \(0.171558\pi\)
\(402\) 8.87004e12 0.0421388
\(403\) −4.60273e14 −2.15694
\(404\) 1.92917e14 0.891812
\(405\) 0 0
\(406\) 2.06096e14 0.927204
\(407\) 3.84582e14 1.70695
\(408\) 2.57726e13 0.112857
\(409\) −4.76849e13 −0.206017 −0.103008 0.994680i \(-0.532847\pi\)
−0.103008 + 0.994680i \(0.532847\pi\)
\(410\) 0 0
\(411\) 2.51309e14 1.05701
\(412\) −1.79131e14 −0.743424
\(413\) 2.08177e14 0.852525
\(414\) 5.62111e13 0.227154
\(415\) 0 0
\(416\) −5.57600e13 −0.219437
\(417\) −1.58193e14 −0.614382
\(418\) −1.46226e14 −0.560474
\(419\) 2.26851e14 0.858150 0.429075 0.903269i \(-0.358840\pi\)
0.429075 + 0.903269i \(0.358840\pi\)
\(420\) 0 0
\(421\) −1.36580e14 −0.503309 −0.251654 0.967817i \(-0.580975\pi\)
−0.251654 + 0.967817i \(0.580975\pi\)
\(422\) −2.43281e14 −0.884892
\(423\) −1.11797e14 −0.401383
\(424\) 4.20485e13 0.149018
\(425\) 0 0
\(426\) −6.40551e13 −0.221208
\(427\) −3.09671e14 −1.05572
\(428\) −1.79360e14 −0.603650
\(429\) 3.39008e14 1.12641
\(430\) 0 0
\(431\) 1.21003e13 0.0391896 0.0195948 0.999808i \(-0.493762\pi\)
0.0195948 + 0.999808i \(0.493762\pi\)
\(432\) 1.50459e13 0.0481125
\(433\) 3.05977e14 0.966064 0.483032 0.875603i \(-0.339536\pi\)
0.483032 + 0.875603i \(0.339536\pi\)
\(434\) −3.68069e14 −1.14746
\(435\) 0 0
\(436\) 5.81606e13 0.176788
\(437\) −1.61921e14 −0.486021
\(438\) 1.48231e14 0.439370
\(439\) 3.68147e14 1.07762 0.538811 0.842427i \(-0.318874\pi\)
0.538811 + 0.842427i \(0.318874\pi\)
\(440\) 0 0
\(441\) −1.49267e13 −0.0426140
\(442\) 1.72117e14 0.485290
\(443\) 1.38978e13 0.0387012 0.0193506 0.999813i \(-0.493840\pi\)
0.0193506 + 0.999813i \(0.493840\pi\)
\(444\) 1.13989e14 0.313515
\(445\) 0 0
\(446\) 7.89347e13 0.211800
\(447\) 3.61525e14 0.958179
\(448\) −4.45899e13 −0.116737
\(449\) 3.92376e13 0.101472 0.0507362 0.998712i \(-0.483843\pi\)
0.0507362 + 0.998712i \(0.483843\pi\)
\(450\) 0 0
\(451\) 1.19321e14 0.301126
\(452\) −7.95497e13 −0.198325
\(453\) 4.13081e14 1.01741
\(454\) 3.56602e14 0.867715
\(455\) 0 0
\(456\) −4.33411e13 −0.102942
\(457\) −1.37201e14 −0.321973 −0.160986 0.986957i \(-0.551468\pi\)
−0.160986 + 0.986957i \(0.551468\pi\)
\(458\) 3.61087e14 0.837244
\(459\) −4.64430e13 −0.106402
\(460\) 0 0
\(461\) 2.48659e14 0.556223 0.278111 0.960549i \(-0.410292\pi\)
0.278111 + 0.960549i \(0.410292\pi\)
\(462\) 2.71097e14 0.599229
\(463\) −6.31268e14 −1.37885 −0.689427 0.724355i \(-0.742138\pi\)
−0.689427 + 0.724355i \(0.742138\pi\)
\(464\) 1.62623e14 0.351021
\(465\) 0 0
\(466\) 1.17339e14 0.247355
\(467\) −8.60246e14 −1.79217 −0.896086 0.443880i \(-0.853602\pi\)
−0.896086 + 0.443880i \(0.853602\pi\)
\(468\) 1.00481e14 0.206887
\(469\) 4.73703e13 0.0963952
\(470\) 0 0
\(471\) −9.13048e13 −0.181501
\(472\) 1.64265e14 0.322749
\(473\) 9.22035e14 1.79065
\(474\) −1.86317e14 −0.357660
\(475\) 0 0
\(476\) 1.37638e14 0.258166
\(477\) −7.57728e13 −0.140496
\(478\) −4.48605e14 −0.822263
\(479\) −5.71890e14 −1.03626 −0.518129 0.855303i \(-0.673371\pi\)
−0.518129 + 0.855303i \(0.673371\pi\)
\(480\) 0 0
\(481\) 7.61256e14 1.34813
\(482\) 3.83567e14 0.671556
\(483\) 3.00194e14 0.519629
\(484\) 4.29550e14 0.735129
\(485\) 0 0
\(486\) −2.71132e13 −0.0453609
\(487\) 7.95200e14 1.31543 0.657714 0.753268i \(-0.271524\pi\)
0.657714 + 0.753268i \(0.271524\pi\)
\(488\) −2.44351e14 −0.399673
\(489\) 2.89612e14 0.468402
\(490\) 0 0
\(491\) −5.04124e13 −0.0797240 −0.0398620 0.999205i \(-0.512692\pi\)
−0.0398620 + 0.999205i \(0.512692\pi\)
\(492\) 3.53666e13 0.0553077
\(493\) −5.01976e14 −0.776292
\(494\) −2.89446e14 −0.442658
\(495\) 0 0
\(496\) −2.90431e14 −0.434404
\(497\) −3.42085e14 −0.506027
\(498\) −5.10065e14 −0.746216
\(499\) −2.91835e14 −0.422264 −0.211132 0.977458i \(-0.567715\pi\)
−0.211132 + 0.977458i \(0.567715\pi\)
\(500\) 0 0
\(501\) 1.91049e14 0.270419
\(502\) 1.50974e14 0.211364
\(503\) 7.29427e14 1.01008 0.505042 0.863095i \(-0.331477\pi\)
0.505042 + 0.863095i \(0.331477\pi\)
\(504\) 8.03525e13 0.110060
\(505\) 0 0
\(506\) 7.99172e14 1.07106
\(507\) 2.35551e14 0.312277
\(508\) 2.50259e14 0.328200
\(509\) −3.75076e14 −0.486600 −0.243300 0.969951i \(-0.578230\pi\)
−0.243300 + 0.969951i \(0.578230\pi\)
\(510\) 0 0
\(511\) 7.91623e14 1.00509
\(512\) −3.51844e13 −0.0441942
\(513\) 7.81021e13 0.0970549
\(514\) −7.23769e14 −0.889822
\(515\) 0 0
\(516\) 2.73289e14 0.328889
\(517\) −1.58946e15 −1.89257
\(518\) 6.08758e14 0.717185
\(519\) 6.35218e13 0.0740461
\(520\) 0 0
\(521\) −1.27745e15 −1.45793 −0.728967 0.684549i \(-0.759999\pi\)
−0.728967 + 0.684549i \(0.759999\pi\)
\(522\) −2.93052e14 −0.330946
\(523\) −1.16147e15 −1.29792 −0.648959 0.760824i \(-0.724795\pi\)
−0.648959 + 0.760824i \(0.724795\pi\)
\(524\) 3.29062e13 0.0363877
\(525\) 0 0
\(526\) −8.44469e14 −0.914454
\(527\) 8.96487e14 0.960696
\(528\) 2.13913e14 0.226856
\(529\) −6.78604e13 −0.0712213
\(530\) 0 0
\(531\) −2.96011e14 −0.304291
\(532\) −2.31463e14 −0.235487
\(533\) 2.36190e14 0.237827
\(534\) −2.47647e14 −0.246806
\(535\) 0 0
\(536\) 3.73783e13 0.0364933
\(537\) 2.62645e14 0.253811
\(538\) −5.85149e14 −0.559711
\(539\) −2.12219e14 −0.200930
\(540\) 0 0
\(541\) 1.14931e15 1.06623 0.533115 0.846043i \(-0.321021\pi\)
0.533115 + 0.846043i \(0.321021\pi\)
\(542\) 7.60592e14 0.698482
\(543\) 9.42113e14 0.856454
\(544\) 1.08605e14 0.0977366
\(545\) 0 0
\(546\) 5.36619e14 0.473267
\(547\) 5.91724e13 0.0516641 0.0258321 0.999666i \(-0.491776\pi\)
0.0258321 + 0.999666i \(0.491776\pi\)
\(548\) 1.05901e15 0.915395
\(549\) 4.40328e14 0.376815
\(550\) 0 0
\(551\) 8.44162e14 0.708096
\(552\) 2.36873e14 0.196721
\(553\) −9.95020e14 −0.818170
\(554\) −6.40037e14 −0.521077
\(555\) 0 0
\(556\) −6.66624e14 −0.532071
\(557\) 8.98701e14 0.710251 0.355125 0.934819i \(-0.384438\pi\)
0.355125 + 0.934819i \(0.384438\pi\)
\(558\) 5.23366e14 0.409560
\(559\) 1.82511e15 1.41424
\(560\) 0 0
\(561\) −6.60296e14 −0.501699
\(562\) −6.91400e14 −0.520211
\(563\) −1.00499e15 −0.748799 −0.374399 0.927268i \(-0.622151\pi\)
−0.374399 + 0.927268i \(0.622151\pi\)
\(564\) −4.71113e14 −0.347608
\(565\) 0 0
\(566\) −1.35249e15 −0.978684
\(567\) −1.44798e14 −0.103766
\(568\) −2.69928e14 −0.191572
\(569\) 2.14457e15 1.50738 0.753691 0.657228i \(-0.228271\pi\)
0.753691 + 0.657228i \(0.228271\pi\)
\(570\) 0 0
\(571\) −1.36068e15 −0.938119 −0.469060 0.883167i \(-0.655407\pi\)
−0.469060 + 0.883167i \(0.655407\pi\)
\(572\) 1.42858e15 0.975496
\(573\) 1.05517e15 0.713629
\(574\) 1.88875e14 0.126520
\(575\) 0 0
\(576\) 6.34034e13 0.0416667
\(577\) −9.41505e14 −0.612852 −0.306426 0.951894i \(-0.599133\pi\)
−0.306426 + 0.951894i \(0.599133\pi\)
\(578\) 7.61463e14 0.490960
\(579\) 1.08189e14 0.0690955
\(580\) 0 0
\(581\) −2.72400e15 −1.70702
\(582\) 3.43736e14 0.213377
\(583\) −1.07729e15 −0.662453
\(584\) 6.24642e14 0.380505
\(585\) 0 0
\(586\) −1.81325e15 −1.08398
\(587\) −7.11947e14 −0.421636 −0.210818 0.977525i \(-0.567613\pi\)
−0.210818 + 0.977525i \(0.567613\pi\)
\(588\) −6.29011e13 −0.0369048
\(589\) −1.50760e15 −0.876300
\(590\) 0 0
\(591\) 4.67169e14 0.266528
\(592\) 4.80350e14 0.271512
\(593\) −2.44357e15 −1.36844 −0.684218 0.729278i \(-0.739856\pi\)
−0.684218 + 0.729278i \(0.739856\pi\)
\(594\) −3.85478e14 −0.213882
\(595\) 0 0
\(596\) 1.52346e15 0.829808
\(597\) −6.13130e14 −0.330898
\(598\) 1.58191e15 0.845913
\(599\) −6.81013e14 −0.360835 −0.180417 0.983590i \(-0.557745\pi\)
−0.180417 + 0.983590i \(0.557745\pi\)
\(600\) 0 0
\(601\) −1.35124e15 −0.702947 −0.351474 0.936198i \(-0.614319\pi\)
−0.351474 + 0.936198i \(0.614319\pi\)
\(602\) 1.45950e15 0.752354
\(603\) −6.73569e13 −0.0344062
\(604\) 1.74072e15 0.881100
\(605\) 0 0
\(606\) −1.46496e15 −0.728161
\(607\) −2.98246e15 −1.46905 −0.734524 0.678582i \(-0.762595\pi\)
−0.734524 + 0.678582i \(0.762595\pi\)
\(608\) −1.82639e14 −0.0891506
\(609\) −1.56504e15 −0.757059
\(610\) 0 0
\(611\) −3.14624e15 −1.49474
\(612\) −1.95710e14 −0.0921470
\(613\) −2.62361e15 −1.22424 −0.612119 0.790766i \(-0.709683\pi\)
−0.612119 + 0.790766i \(0.709683\pi\)
\(614\) −6.37964e14 −0.295032
\(615\) 0 0
\(616\) 1.14240e15 0.518948
\(617\) −1.36222e15 −0.613310 −0.306655 0.951821i \(-0.599210\pi\)
−0.306655 + 0.951821i \(0.599210\pi\)
\(618\) 1.36028e15 0.607003
\(619\) −4.10602e15 −1.81603 −0.908013 0.418942i \(-0.862401\pi\)
−0.908013 + 0.418942i \(0.862401\pi\)
\(620\) 0 0
\(621\) −4.26853e14 −0.185470
\(622\) −3.37086e14 −0.145176
\(623\) −1.32255e15 −0.564585
\(624\) 4.23428e14 0.179169
\(625\) 0 0
\(626\) 1.68754e15 0.701608
\(627\) 1.11040e15 0.457625
\(628\) −3.84757e14 −0.157184
\(629\) −1.48272e15 −0.600455
\(630\) 0 0
\(631\) −3.07651e15 −1.22433 −0.612163 0.790731i \(-0.709700\pi\)
−0.612163 + 0.790731i \(0.709700\pi\)
\(632\) −7.85136e14 −0.309743
\(633\) 1.84742e15 0.722511
\(634\) −2.13859e15 −0.829159
\(635\) 0 0
\(636\) −3.19306e14 −0.121673
\(637\) −4.20073e14 −0.158693
\(638\) −4.16642e15 −1.56045
\(639\) 4.86418e14 0.180616
\(640\) 0 0
\(641\) −2.43456e14 −0.0888590 −0.0444295 0.999013i \(-0.514147\pi\)
−0.0444295 + 0.999013i \(0.514147\pi\)
\(642\) 1.36202e15 0.492878
\(643\) 6.07705e14 0.218038 0.109019 0.994040i \(-0.465229\pi\)
0.109019 + 0.994040i \(0.465229\pi\)
\(644\) 1.26502e15 0.450012
\(645\) 0 0
\(646\) 5.63761e14 0.197159
\(647\) −3.75432e14 −0.130184 −0.0650919 0.997879i \(-0.520734\pi\)
−0.0650919 + 0.997879i \(0.520734\pi\)
\(648\) −1.14255e14 −0.0392837
\(649\) −4.20849e15 −1.43477
\(650\) 0 0
\(651\) 2.79503e15 0.936894
\(652\) 1.22042e15 0.405648
\(653\) 2.76536e15 0.911442 0.455721 0.890123i \(-0.349382\pi\)
0.455721 + 0.890123i \(0.349382\pi\)
\(654\) −4.41657e14 −0.144347
\(655\) 0 0
\(656\) 1.49035e14 0.0478979
\(657\) −1.12563e15 −0.358744
\(658\) −2.51597e15 −0.795176
\(659\) 3.26634e15 1.02374 0.511872 0.859062i \(-0.328952\pi\)
0.511872 + 0.859062i \(0.328952\pi\)
\(660\) 0 0
\(661\) 1.72112e15 0.530521 0.265260 0.964177i \(-0.414542\pi\)
0.265260 + 0.964177i \(0.414542\pi\)
\(662\) −8.94688e14 −0.273497
\(663\) −1.30701e15 −0.396238
\(664\) −2.14941e15 −0.646242
\(665\) 0 0
\(666\) −8.65606e14 −0.255984
\(667\) −4.61361e15 −1.35316
\(668\) 8.05078e14 0.234190
\(669\) −5.99410e14 −0.172934
\(670\) 0 0
\(671\) 6.26029e15 1.77673
\(672\) 3.38605e14 0.0953152
\(673\) −4.18650e15 −1.16888 −0.584438 0.811438i \(-0.698685\pi\)
−0.584438 + 0.811438i \(0.698685\pi\)
\(674\) 3.74341e15 1.03666
\(675\) 0 0
\(676\) 9.92609e14 0.270440
\(677\) 4.21054e15 1.13789 0.568945 0.822376i \(-0.307352\pi\)
0.568945 + 0.822376i \(0.307352\pi\)
\(678\) 6.04081e14 0.161932
\(679\) 1.83571e15 0.488114
\(680\) 0 0
\(681\) −2.70795e15 −0.708486
\(682\) 7.44087e15 1.93112
\(683\) 6.85825e15 1.76563 0.882814 0.469722i \(-0.155646\pi\)
0.882814 + 0.469722i \(0.155646\pi\)
\(684\) 3.29122e14 0.0840520
\(685\) 0 0
\(686\) −2.96356e15 −0.744785
\(687\) −2.74201e15 −0.683607
\(688\) 1.15164e15 0.284826
\(689\) −2.13243e15 −0.523201
\(690\) 0 0
\(691\) −7.01392e15 −1.69368 −0.846841 0.531847i \(-0.821498\pi\)
−0.846841 + 0.531847i \(0.821498\pi\)
\(692\) 2.67680e14 0.0641258
\(693\) −2.05864e15 −0.489269
\(694\) −5.20168e13 −0.0122650
\(695\) 0 0
\(696\) −1.23492e15 −0.286607
\(697\) −4.60033e14 −0.105927
\(698\) 4.48089e15 1.02367
\(699\) −8.91045e14 −0.201965
\(700\) 0 0
\(701\) −3.59916e15 −0.803067 −0.401533 0.915844i \(-0.631523\pi\)
−0.401533 + 0.915844i \(0.631523\pi\)
\(702\) −7.63030e14 −0.168923
\(703\) 2.49346e15 0.547706
\(704\) 9.01428e14 0.196463
\(705\) 0 0
\(706\) −3.45261e14 −0.0740836
\(707\) −7.82361e15 −1.66571
\(708\) −1.24739e15 −0.263523
\(709\) 9.13743e15 1.91544 0.957722 0.287695i \(-0.0928888\pi\)
0.957722 + 0.287695i \(0.0928888\pi\)
\(710\) 0 0
\(711\) 1.41484e15 0.292028
\(712\) −1.04358e15 −0.213740
\(713\) 8.23952e15 1.67459
\(714\) −1.04519e15 −0.210792
\(715\) 0 0
\(716\) 1.10678e15 0.219807
\(717\) 3.40659e15 0.671375
\(718\) 2.67589e15 0.523340
\(719\) −4.61453e15 −0.895609 −0.447805 0.894131i \(-0.647794\pi\)
−0.447805 + 0.894131i \(0.647794\pi\)
\(720\) 0 0
\(721\) 7.26454e15 1.38856
\(722\) 2.77962e15 0.527268
\(723\) −2.91271e15 −0.548323
\(724\) 3.97006e15 0.741711
\(725\) 0 0
\(726\) −3.26189e15 −0.600231
\(727\) 4.47421e15 0.817104 0.408552 0.912735i \(-0.366034\pi\)
0.408552 + 0.912735i \(0.366034\pi\)
\(728\) 2.26131e15 0.409861
\(729\) 2.05891e14 0.0370370
\(730\) 0 0
\(731\) −3.55482e15 −0.629901
\(732\) 1.85554e15 0.326332
\(733\) 4.68168e15 0.817203 0.408601 0.912713i \(-0.366017\pi\)
0.408601 + 0.912713i \(0.366017\pi\)
\(734\) 3.20156e14 0.0554669
\(735\) 0 0
\(736\) 9.98181e14 0.170365
\(737\) −9.57636e14 −0.162229
\(738\) −2.68565e14 −0.0451586
\(739\) 5.58278e15 0.931764 0.465882 0.884847i \(-0.345737\pi\)
0.465882 + 0.884847i \(0.345737\pi\)
\(740\) 0 0
\(741\) 2.19798e15 0.361429
\(742\) −1.70525e15 −0.278334
\(743\) −5.84984e15 −0.947776 −0.473888 0.880585i \(-0.657150\pi\)
−0.473888 + 0.880585i \(0.657150\pi\)
\(744\) 2.20546e15 0.354689
\(745\) 0 0
\(746\) 7.43568e15 1.17830
\(747\) 3.87331e15 0.609283
\(748\) −2.78248e15 −0.434484
\(749\) 7.27383e15 1.12749
\(750\) 0 0
\(751\) 6.23385e15 0.952218 0.476109 0.879386i \(-0.342047\pi\)
0.476109 + 0.879386i \(0.342047\pi\)
\(752\) −1.98527e15 −0.301037
\(753\) −1.14646e15 −0.172578
\(754\) −8.24716e15 −1.23243
\(755\) 0 0
\(756\) −6.10177e14 −0.0898640
\(757\) 1.20579e16 1.76297 0.881486 0.472210i \(-0.156543\pi\)
0.881486 + 0.472210i \(0.156543\pi\)
\(758\) −5.14887e15 −0.747362
\(759\) −6.06871e15 −0.874514
\(760\) 0 0
\(761\) 5.06900e15 0.719957 0.359979 0.932961i \(-0.382784\pi\)
0.359979 + 0.932961i \(0.382784\pi\)
\(762\) −1.90040e15 −0.267975
\(763\) −2.35866e15 −0.330203
\(764\) 4.44649e15 0.618021
\(765\) 0 0
\(766\) −1.09192e14 −0.0149601
\(767\) −8.33045e15 −1.13317
\(768\) 2.67181e14 0.0360844
\(769\) 1.35439e15 0.181614 0.0908072 0.995868i \(-0.471055\pi\)
0.0908072 + 0.995868i \(0.471055\pi\)
\(770\) 0 0
\(771\) 5.49612e15 0.726537
\(772\) 4.55906e14 0.0598384
\(773\) −8.61815e15 −1.12312 −0.561561 0.827435i \(-0.689799\pi\)
−0.561561 + 0.827435i \(0.689799\pi\)
\(774\) −2.07529e15 −0.268537
\(775\) 0 0
\(776\) 1.44850e15 0.184790
\(777\) −4.62276e15 −0.585579
\(778\) 7.99727e15 1.00590
\(779\) 7.73627e14 0.0966219
\(780\) 0 0
\(781\) 6.91557e15 0.851623
\(782\) −3.08113e15 −0.376767
\(783\) 2.22536e15 0.270216
\(784\) −2.65065e14 −0.0319605
\(785\) 0 0
\(786\) −2.49881e14 −0.0297105
\(787\) 4.95922e15 0.585534 0.292767 0.956184i \(-0.405424\pi\)
0.292767 + 0.956184i \(0.405424\pi\)
\(788\) 1.96864e15 0.230820
\(789\) 6.41268e15 0.746649
\(790\) 0 0
\(791\) 3.22608e15 0.370429
\(792\) −1.62440e15 −0.185227
\(793\) 1.23919e16 1.40325
\(794\) −8.03123e15 −0.903170
\(795\) 0 0
\(796\) −2.58372e15 −0.286566
\(797\) 1.48779e16 1.63878 0.819391 0.573235i \(-0.194312\pi\)
0.819391 + 0.573235i \(0.194312\pi\)
\(798\) 1.75767e15 0.192274
\(799\) 6.12802e15 0.665752
\(800\) 0 0
\(801\) 1.88057e15 0.201516
\(802\) −1.14047e16 −1.21374
\(803\) −1.60034e16 −1.69152
\(804\) −2.83841e14 −0.0297966
\(805\) 0 0
\(806\) 1.47287e16 1.52519
\(807\) 4.44347e15 0.457002
\(808\) −6.17335e15 −0.630606
\(809\) −1.18817e16 −1.20549 −0.602744 0.797935i \(-0.705926\pi\)
−0.602744 + 0.797935i \(0.705926\pi\)
\(810\) 0 0
\(811\) −7.07941e14 −0.0708569 −0.0354284 0.999372i \(-0.511280\pi\)
−0.0354284 + 0.999372i \(0.511280\pi\)
\(812\) −6.59506e15 −0.655632
\(813\) −5.77574e15 −0.570309
\(814\) −1.23066e16 −1.20699
\(815\) 0 0
\(816\) −8.24722e14 −0.0798016
\(817\) 5.97806e15 0.574565
\(818\) 1.52592e15 0.145676
\(819\) −4.07495e15 −0.386421
\(820\) 0 0
\(821\) 4.20085e15 0.393052 0.196526 0.980499i \(-0.437034\pi\)
0.196526 + 0.980499i \(0.437034\pi\)
\(822\) −8.04189e15 −0.747417
\(823\) 1.76608e16 1.63046 0.815232 0.579135i \(-0.196609\pi\)
0.815232 + 0.579135i \(0.196609\pi\)
\(824\) 5.73220e15 0.525680
\(825\) 0 0
\(826\) −6.66166e15 −0.602826
\(827\) 7.42500e15 0.667446 0.333723 0.942671i \(-0.391695\pi\)
0.333723 + 0.942671i \(0.391695\pi\)
\(828\) −1.79875e15 −0.160622
\(829\) −1.02610e16 −0.910208 −0.455104 0.890438i \(-0.650398\pi\)
−0.455104 + 0.890438i \(0.650398\pi\)
\(830\) 0 0
\(831\) 4.86028e15 0.425457
\(832\) 1.78432e15 0.155165
\(833\) 8.18189e14 0.0706816
\(834\) 5.06217e15 0.434434
\(835\) 0 0
\(836\) 4.67924e15 0.396315
\(837\) −3.97431e15 −0.334404
\(838\) −7.25923e15 −0.606804
\(839\) 5.46116e15 0.453518 0.226759 0.973951i \(-0.427187\pi\)
0.226759 + 0.973951i \(0.427187\pi\)
\(840\) 0 0
\(841\) 1.18522e16 0.971449
\(842\) 4.37055e15 0.355893
\(843\) 5.25032e15 0.424750
\(844\) 7.78500e15 0.625713
\(845\) 0 0
\(846\) 3.57751e15 0.283821
\(847\) −1.74201e16 −1.37307
\(848\) −1.34555e15 −0.105372
\(849\) 1.02704e16 0.799092
\(850\) 0 0
\(851\) −1.36275e16 −1.04666
\(852\) 2.04976e15 0.156418
\(853\) −1.38989e16 −1.05380 −0.526902 0.849926i \(-0.676647\pi\)
−0.526902 + 0.849926i \(0.676647\pi\)
\(854\) 9.90947e15 0.746504
\(855\) 0 0
\(856\) 5.73953e15 0.426845
\(857\) −1.35605e16 −1.00203 −0.501017 0.865437i \(-0.667041\pi\)
−0.501017 + 0.865437i \(0.667041\pi\)
\(858\) −1.08483e16 −0.796490
\(859\) 4.45328e15 0.324876 0.162438 0.986719i \(-0.448064\pi\)
0.162438 + 0.986719i \(0.448064\pi\)
\(860\) 0 0
\(861\) −1.43427e15 −0.103303
\(862\) −3.87209e14 −0.0277112
\(863\) −1.15395e16 −0.820593 −0.410297 0.911952i \(-0.634575\pi\)
−0.410297 + 0.911952i \(0.634575\pi\)
\(864\) −4.81469e14 −0.0340207
\(865\) 0 0
\(866\) −9.79127e15 −0.683110
\(867\) −5.78236e15 −0.400867
\(868\) 1.17782e16 0.811374
\(869\) 2.01153e16 1.37695
\(870\) 0 0
\(871\) −1.89558e15 −0.128128
\(872\) −1.86114e15 −0.125008
\(873\) −2.61024e15 −0.174222
\(874\) 5.18147e15 0.343669
\(875\) 0 0
\(876\) −4.74338e15 −0.310681
\(877\) −1.61714e16 −1.05257 −0.526285 0.850308i \(-0.676416\pi\)
−0.526285 + 0.850308i \(0.676416\pi\)
\(878\) −1.17807e16 −0.761994
\(879\) 1.37693e16 0.885064
\(880\) 0 0
\(881\) −2.06661e16 −1.31187 −0.655936 0.754817i \(-0.727726\pi\)
−0.655936 + 0.754817i \(0.727726\pi\)
\(882\) 4.77656e14 0.0301327
\(883\) 2.69113e15 0.168714 0.0843569 0.996436i \(-0.473116\pi\)
0.0843569 + 0.996436i \(0.473116\pi\)
\(884\) −5.50775e15 −0.343152
\(885\) 0 0
\(886\) −4.44728e14 −0.0273659
\(887\) 2.20727e16 1.34982 0.674911 0.737900i \(-0.264182\pi\)
0.674911 + 0.737900i \(0.264182\pi\)
\(888\) −3.64766e15 −0.221688
\(889\) −1.01491e16 −0.613009
\(890\) 0 0
\(891\) 2.92722e15 0.174634
\(892\) −2.52591e15 −0.149765
\(893\) −1.03053e16 −0.607267
\(894\) −1.15688e16 −0.677535
\(895\) 0 0
\(896\) 1.42688e15 0.0825453
\(897\) −1.20126e16 −0.690685
\(898\) −1.25560e15 −0.0717518
\(899\) −4.29561e16 −2.43976
\(900\) 0 0
\(901\) 4.15339e15 0.233032
\(902\) −3.81829e15 −0.212928
\(903\) −1.10831e16 −0.614295
\(904\) 2.54559e15 0.140237
\(905\) 0 0
\(906\) −1.32186e16 −0.719416
\(907\) 2.50362e16 1.35434 0.677170 0.735827i \(-0.263206\pi\)
0.677170 + 0.735827i \(0.263206\pi\)
\(908\) −1.14113e16 −0.613567
\(909\) 1.11246e16 0.594541
\(910\) 0 0
\(911\) −1.34918e16 −0.712393 −0.356196 0.934411i \(-0.615927\pi\)
−0.356196 + 0.934411i \(0.615927\pi\)
\(912\) 1.38692e15 0.0727912
\(913\) 5.50682e16 2.87284
\(914\) 4.39044e15 0.227669
\(915\) 0 0
\(916\) −1.15548e16 −0.592021
\(917\) −1.33449e15 −0.0679646
\(918\) 1.48618e15 0.0752377
\(919\) 1.86406e16 0.938048 0.469024 0.883185i \(-0.344606\pi\)
0.469024 + 0.883185i \(0.344606\pi\)
\(920\) 0 0
\(921\) 4.84454e15 0.240893
\(922\) −7.95708e15 −0.393309
\(923\) 1.36889e16 0.672606
\(924\) −8.67509e15 −0.423719
\(925\) 0 0
\(926\) 2.02006e16 0.974997
\(927\) −1.03296e16 −0.495616
\(928\) −5.20393e15 −0.248209
\(929\) 1.26618e16 0.600358 0.300179 0.953883i \(-0.402954\pi\)
0.300179 + 0.953883i \(0.402954\pi\)
\(930\) 0 0
\(931\) −1.37593e15 −0.0644723
\(932\) −3.75486e15 −0.174906
\(933\) 2.55975e15 0.118535
\(934\) 2.75279e16 1.26726
\(935\) 0 0
\(936\) −3.21540e15 −0.146291
\(937\) 3.98788e16 1.80374 0.901871 0.432006i \(-0.142194\pi\)
0.901871 + 0.432006i \(0.142194\pi\)
\(938\) −1.51585e15 −0.0681617
\(939\) −1.28147e16 −0.572861
\(940\) 0 0
\(941\) −2.35800e16 −1.04184 −0.520920 0.853606i \(-0.674411\pi\)
−0.520920 + 0.853606i \(0.674411\pi\)
\(942\) 2.92175e15 0.128340
\(943\) −4.22812e15 −0.184643
\(944\) −5.25649e15 −0.228218
\(945\) 0 0
\(946\) −2.95051e16 −1.26618
\(947\) 2.50128e16 1.06718 0.533591 0.845743i \(-0.320842\pi\)
0.533591 + 0.845743i \(0.320842\pi\)
\(948\) 5.96213e15 0.252904
\(949\) −3.16778e16 −1.33595
\(950\) 0 0
\(951\) 1.62400e16 0.677005
\(952\) −4.40441e15 −0.182551
\(953\) 3.78726e16 1.56068 0.780340 0.625355i \(-0.215046\pi\)
0.780340 + 0.625355i \(0.215046\pi\)
\(954\) 2.42473e15 0.0993453
\(955\) 0 0
\(956\) 1.43554e16 0.581427
\(957\) 3.16387e16 1.27410
\(958\) 1.83005e16 0.732744
\(959\) −4.29476e16 −1.70976
\(960\) 0 0
\(961\) 5.13075e16 2.01931
\(962\) −2.43602e16 −0.953274
\(963\) −1.03428e16 −0.402433
\(964\) −1.22741e16 −0.474862
\(965\) 0 0
\(966\) −9.60621e15 −0.367433
\(967\) −1.01035e16 −0.384262 −0.192131 0.981369i \(-0.561540\pi\)
−0.192131 + 0.981369i \(0.561540\pi\)
\(968\) −1.37456e16 −0.519815
\(969\) −4.28106e15 −0.160980
\(970\) 0 0
\(971\) −1.09869e16 −0.408478 −0.204239 0.978921i \(-0.565472\pi\)
−0.204239 + 0.978921i \(0.565472\pi\)
\(972\) 8.67624e14 0.0320750
\(973\) 2.70344e16 0.993795
\(974\) −2.54464e16 −0.930148
\(975\) 0 0
\(976\) 7.81922e15 0.282611
\(977\) −2.52822e16 −0.908644 −0.454322 0.890837i \(-0.650119\pi\)
−0.454322 + 0.890837i \(0.650119\pi\)
\(978\) −9.26760e15 −0.331210
\(979\) 2.67367e16 0.950173
\(980\) 0 0
\(981\) 3.35383e15 0.117859
\(982\) 1.61320e15 0.0563734
\(983\) −4.29168e16 −1.49136 −0.745680 0.666304i \(-0.767875\pi\)
−0.745680 + 0.666304i \(0.767875\pi\)
\(984\) −1.13173e15 −0.0391085
\(985\) 0 0
\(986\) 1.60632e16 0.548921
\(987\) 1.91056e16 0.649258
\(988\) 9.26226e15 0.313007
\(989\) −3.26720e16 −1.09798
\(990\) 0 0
\(991\) −5.20325e16 −1.72930 −0.864648 0.502377i \(-0.832459\pi\)
−0.864648 + 0.502377i \(0.832459\pi\)
\(992\) 9.29379e15 0.307170
\(993\) 6.79404e15 0.223309
\(994\) 1.09467e16 0.357815
\(995\) 0 0
\(996\) 1.63221e16 0.527654
\(997\) 5.42887e16 1.74537 0.872683 0.488288i \(-0.162378\pi\)
0.872683 + 0.488288i \(0.162378\pi\)
\(998\) 9.33872e15 0.298586
\(999\) 6.57320e15 0.209010
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.12.a.t.1.2 3
5.2 odd 4 30.12.c.b.19.3 6
5.3 odd 4 30.12.c.b.19.6 yes 6
5.4 even 2 150.12.a.u.1.2 3
15.2 even 4 90.12.c.c.19.4 6
15.8 even 4 90.12.c.c.19.1 6
20.3 even 4 240.12.f.b.49.3 6
20.7 even 4 240.12.f.b.49.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.12.c.b.19.3 6 5.2 odd 4
30.12.c.b.19.6 yes 6 5.3 odd 4
90.12.c.c.19.1 6 15.8 even 4
90.12.c.c.19.4 6 15.2 even 4
150.12.a.t.1.2 3 1.1 even 1 trivial
150.12.a.u.1.2 3 5.4 even 2
240.12.f.b.49.3 6 20.3 even 4
240.12.f.b.49.6 6 20.7 even 4