Properties

Label 30.12.c.b
Level $30$
Weight $12$
Character orbit 30.c
Analytic conductor $23.050$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [30,12,Mod(19,30)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("30.19"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 30.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.0502954168\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 350078x^{4} + 30638651521x^{2} + 173683668788100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 32 \beta_1 q^{2} - 243 \beta_1 q^{3} - 1024 q^{4} + (\beta_{2} + 378 \beta_1 - 1654) q^{5} - 7776 q^{6} + (8 \beta_{5} + 5 \beta_{4} + 2 \beta_{3} + \cdots - 1) q^{7} + 32768 \beta_1 q^{8} - 59049 q^{9}+ \cdots + ( - 4133430 \beta_{5} + \cdots - 17257011201) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6144 q^{4} - 9926 q^{5} - 46656 q^{6} - 354294 q^{9} + 72576 q^{10} + 1753400 q^{11} - 4312576 q^{14} + 551124 q^{15} + 6291456 q^{16} - 4069824 q^{19} + 10164224 q^{20} - 32748624 q^{21} + 47775744 q^{24}+ \cdots - 103536516600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 350078x^{4} + 30638651521x^{2} + 173683668788100 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 175039\nu ) / 13178910 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{5} + 1198\nu^{4} - 875195\nu^{3} + 156981082\nu^{2} - 46925470052\nu - 6151994261460 ) / 1396964460 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 4\nu^{5} - 1089\nu^{4} + 1166962\nu^{3} - 230154201\nu^{2} + 97497589614\nu - 4613646454980 ) / 1396964460 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3\nu^{5} - 588\nu^{4} + 875195\nu^{3} - 181996392\nu^{2} + 46925470052\nu - 9227292909960 ) / 1396964460 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 6\nu^{5} + 1089\nu^{4} + 1750390\nu^{3} + 230154201\nu^{2} + 114805407004\nu + 4613646454980 ) / 1396964460 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -5\beta_{4} + 6\beta_{3} + 3\beta_{2} - 2\beta _1 + 1 ) / 150 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 305\beta_{5} - 1590\beta_{4} - 183\beta_{3} - 1224\beta_{2} + 61\beta _1 - 17504308 ) / 150 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 875195\beta_{4} - 1050234\beta_{3} - 525117\beta_{2} + 1977186578\beta _1 - 175039 ) / 150 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 12507655 \beta_{5} + 278312010 \beta_{4} - 7504593 \beta_{3} + 293321196 \beta_{2} + \cdots + 3063962925832 ) / 150 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 20954466900 \beta_{5} - 149173690055 \beta_{4} + 199962894966 \beta_{3} + 89504214033 \beta_{2} + \cdots + 29834738011 ) / 150 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
78.0027i
373.886i
451.888i
78.0027i
373.886i
451.888i
32.0000i 243.000i −1024.00 −6709.81 1951.05i −7776.00 52907.3i 32768.0i −59049.0 −62433.8 + 214714.i
19.2 32.0000i 243.000i −1024.00 −5008.33 + 4872.86i −7776.00 78763.7i 32768.0i −59049.0 155931. + 160267.i
19.3 32.0000i 243.000i −1024.00 6755.14 1787.80i −7776.00 41527.6i 32768.0i −59049.0 −57209.7 216164.i
19.4 32.0000i 243.000i −1024.00 −6709.81 + 1951.05i −7776.00 52907.3i 32768.0i −59049.0 −62433.8 214714.i
19.5 32.0000i 243.000i −1024.00 −5008.33 4872.86i −7776.00 78763.7i 32768.0i −59049.0 155931. 160267.i
19.6 32.0000i 243.000i −1024.00 6755.14 + 1787.80i −7776.00 41527.6i 32768.0i −59049.0 −57209.7 + 216164.i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 30.12.c.b 6
3.b odd 2 1 90.12.c.c 6
4.b odd 2 1 240.12.f.b 6
5.b even 2 1 inner 30.12.c.b 6
5.c odd 4 1 150.12.a.t 3
5.c odd 4 1 150.12.a.u 3
15.d odd 2 1 90.12.c.c 6
20.d odd 2 1 240.12.f.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.12.c.b 6 1.a even 1 1 trivial
30.12.c.b 6 5.b even 2 1 inner
90.12.c.c 6 3.b odd 2 1
90.12.c.c 6 15.d odd 2 1
150.12.a.t 3 5.c odd 4 1
150.12.a.u 3 5.c odd 4 1
240.12.f.b 6 4.b odd 2 1
240.12.f.b 6 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{6} + 10727432952T_{7}^{4} + 32891155395360292368T_{7}^{2} + 29947171023497902154506242304 \) acting on \(S_{12}^{\mathrm{new}}(30, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1024)^{3} \) Copy content Toggle raw display
$3$ \( (T^{2} + 59049)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 11\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 29\!\cdots\!04 \) Copy content Toggle raw display
$11$ \( (T^{3} + \cdots + 22\!\cdots\!00)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 21\!\cdots\!36 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 48\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( (T^{3} + \cdots - 29\!\cdots\!36)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{3} + \cdots + 12\!\cdots\!16)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + \cdots + 26\!\cdots\!88)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 45\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots + 12\!\cdots\!16)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 57\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 48\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 34\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( (T^{3} + \cdots - 58\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots - 34\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 25\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots + 78\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 37\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots - 29\!\cdots\!12)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 59\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots - 39\!\cdots\!32)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 60\!\cdots\!36 \) Copy content Toggle raw display
show more
show less