Properties

Label 30.12
Level 30
Weight 12
Dimension 60
Nonzero newspaces 3
Newform subspaces 9
Sturm bound 576
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 9 \)
Sturm bound: \(576\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(30))\).

Total New Old
Modular forms 280 60 220
Cusp forms 248 60 188
Eisenstein series 32 0 32

Trace form

\( 60 q - 1498 q^{3} - 4096 q^{4} - 4976 q^{5} - 18496 q^{6} - 20336 q^{7} - 236196 q^{9} - 62080 q^{10} + 2081744 q^{11} + 538624 q^{12} + 3705792 q^{13} - 670720 q^{14} + 843602 q^{15} - 29360128 q^{16}+ \cdots - 30761694648 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(30))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
30.12.a \(\chi_{30}(1, \cdot)\) 30.12.a.a 1 1
30.12.a.b 1
30.12.a.c 1
30.12.a.d 1
30.12.a.e 1
30.12.a.f 1
30.12.c \(\chi_{30}(19, \cdot)\) 30.12.c.a 4 1
30.12.c.b 6
30.12.e \(\chi_{30}(17, \cdot)\) 30.12.e.a 44 2

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(30))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(30)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)