Properties

Label 30.12.c.b.19.1
Level $30$
Weight $12$
Character 30.19
Analytic conductor $23.050$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [30,12,Mod(19,30)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("30.19"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 30.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.0502954168\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 350078x^{4} + 30638651521x^{2} + 173683668788100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.1
Root \(78.0027i\) of defining polynomial
Character \(\chi\) \(=\) 30.19
Dual form 30.12.c.b.19.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000i q^{2} -243.000i q^{3} -1024.00 q^{4} +(-6709.81 - 1951.05i) q^{5} -7776.00 q^{6} +52907.3i q^{7} +32768.0i q^{8} -59049.0 q^{9} +(-62433.8 + 214714. i) q^{10} +531122. q^{11} +248832. i q^{12} -373795. i q^{13} +1.69303e6 q^{14} +(-474106. + 1.63048e6i) q^{15} +1.04858e6 q^{16} +4.81399e6i q^{17} +1.88957e6i q^{18} -5.80222e6 q^{19} +(6.87084e6 + 1.99788e6i) q^{20} +1.28565e7 q^{21} -1.69959e7i q^{22} -3.32148e7i q^{23} +7.96262e6 q^{24} +(4.12149e7 + 2.61824e7i) q^{25} -1.19614e7 q^{26} +1.43489e7i q^{27} -5.41770e7i q^{28} +1.30307e8 q^{29} +(5.21755e7 + 1.51714e7i) q^{30} +6.18143e7 q^{31} -3.35544e7i q^{32} -1.29063e8i q^{33} +1.54048e8 q^{34} +(1.03225e8 - 3.54997e8i) q^{35} +6.04662e7 q^{36} +1.37358e8i q^{37} +1.85671e8i q^{38} -9.08322e7 q^{39} +(6.39322e7 - 2.19867e8i) q^{40} +1.46886e9 q^{41} -4.11407e8i q^{42} +5.30160e8i q^{43} -5.43869e8 q^{44} +(3.96207e8 + 1.15208e8i) q^{45} -1.06287e9 q^{46} +1.34319e9i q^{47} -2.54804e8i q^{48} -8.21851e8 q^{49} +(8.37837e8 - 1.31888e9i) q^{50} +1.16980e9 q^{51} +3.82766e8i q^{52} +4.74535e9i q^{53} +4.59165e8 q^{54} +(-3.56372e9 - 1.03625e9i) q^{55} -1.73366e9 q^{56} +1.40994e9i q^{57} -4.16982e9i q^{58} -4.37861e9 q^{59} +(4.85485e8 - 1.66961e9i) q^{60} -7.78414e9 q^{61} -1.97806e9i q^{62} -3.12412e9i q^{63} -1.07374e9 q^{64} +(-7.29295e8 + 2.50809e9i) q^{65} -4.13000e9 q^{66} +4.98481e9i q^{67} -4.92953e9i q^{68} -8.07119e9 q^{69} +(-1.13599e10 - 3.30320e9i) q^{70} +9.09417e9 q^{71} -1.93492e9i q^{72} +1.88613e10i q^{73} +4.39545e9 q^{74} +(6.36232e9 - 1.00152e10i) q^{75} +5.94148e9 q^{76} +2.81002e10i q^{77} +2.90663e9i q^{78} +4.50312e10 q^{79} +(-7.03574e9 - 2.04583e9i) q^{80} +3.48678e9 q^{81} -4.70035e10i q^{82} +6.88856e10i q^{83} -1.31650e10 q^{84} +(9.39236e9 - 3.23009e10i) q^{85} +1.69651e10 q^{86} -3.16645e10i q^{87} +1.74038e10i q^{88} +3.49597e9 q^{89} +(3.68665e9 - 1.26786e10i) q^{90} +1.97765e10 q^{91} +3.40119e10i q^{92} -1.50209e10i q^{93} +4.29820e10 q^{94} +(3.89318e10 + 1.13205e10i) q^{95} -8.15373e9 q^{96} -1.62848e11i q^{97} +2.62992e10i q^{98} -3.13622e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6144 q^{4} - 9926 q^{5} - 46656 q^{6} - 354294 q^{9} + 72576 q^{10} + 1753400 q^{11} - 4312576 q^{14} + 551124 q^{15} + 6291456 q^{16} - 4069824 q^{19} + 10164224 q^{20} - 32748624 q^{21} + 47775744 q^{24}+ \cdots - 103536516600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000i 0.707107i
\(3\) 243.000i 0.577350i
\(4\) −1024.00 −0.500000
\(5\) −6709.81 1951.05i −0.960229 0.279212i
\(6\) −7776.00 −0.408248
\(7\) 52907.3i 1.18981i 0.803798 + 0.594903i \(0.202809\pi\)
−0.803798 + 0.594903i \(0.797191\pi\)
\(8\) 32768.0i 0.353553i
\(9\) −59049.0 −0.333333
\(10\) −62433.8 + 214714.i −0.197433 + 0.678985i
\(11\) 531122. 0.994339 0.497169 0.867654i \(-0.334373\pi\)
0.497169 + 0.867654i \(0.334373\pi\)
\(12\) 248832.i 0.288675i
\(13\) 373795.i 0.279219i −0.990207 0.139610i \(-0.955415\pi\)
0.990207 0.139610i \(-0.0445848\pi\)
\(14\) 1.69303e6 0.841320
\(15\) −474106. + 1.63048e6i −0.161203 + 0.554389i
\(16\) 1.04858e6 0.250000
\(17\) 4.81399e6i 0.822311i 0.911565 + 0.411156i \(0.134875\pi\)
−0.911565 + 0.411156i \(0.865125\pi\)
\(18\) 1.88957e6i 0.235702i
\(19\) −5.80222e6 −0.537588 −0.268794 0.963198i \(-0.586625\pi\)
−0.268794 + 0.963198i \(0.586625\pi\)
\(20\) 6.87084e6 + 1.99788e6i 0.480115 + 0.139606i
\(21\) 1.28565e7 0.686935
\(22\) 1.69959e7i 0.703104i
\(23\) 3.32148e7i 1.07604i −0.842932 0.538020i \(-0.819173\pi\)
0.842932 0.538020i \(-0.180827\pi\)
\(24\) 7.96262e6 0.204124
\(25\) 4.12149e7 + 2.61824e7i 0.844081 + 0.536216i
\(26\) −1.19614e7 −0.197438
\(27\) 1.43489e7i 0.192450i
\(28\) 5.41770e7i 0.594903i
\(29\) 1.30307e8 1.17972 0.589859 0.807507i \(-0.299184\pi\)
0.589859 + 0.807507i \(0.299184\pi\)
\(30\) 5.21755e7 + 1.51714e7i 0.392012 + 0.113988i
\(31\) 6.18143e7 0.387793 0.193896 0.981022i \(-0.437887\pi\)
0.193896 + 0.981022i \(0.437887\pi\)
\(32\) 3.35544e7i 0.176777i
\(33\) 1.29063e8i 0.574082i
\(34\) 1.54048e8 0.581462
\(35\) 1.03225e8 3.54997e8i 0.332208 1.14249i
\(36\) 6.04662e7 0.166667
\(37\) 1.37358e8i 0.325645i 0.986655 + 0.162822i \(0.0520598\pi\)
−0.986655 + 0.162822i \(0.947940\pi\)
\(38\) 1.85671e8i 0.380132i
\(39\) −9.08322e7 −0.161207
\(40\) 6.39322e7 2.19867e8i 0.0987164 0.339492i
\(41\) 1.46886e9 1.98002 0.990009 0.141003i \(-0.0450326\pi\)
0.990009 + 0.141003i \(0.0450326\pi\)
\(42\) 4.11407e8i 0.485736i
\(43\) 5.30160e8i 0.549960i 0.961450 + 0.274980i \(0.0886712\pi\)
−0.961450 + 0.274980i \(0.911329\pi\)
\(44\) −5.43869e8 −0.497169
\(45\) 3.96207e8 + 1.15208e8i 0.320076 + 0.0930708i
\(46\) −1.06287e9 −0.760875
\(47\) 1.34319e9i 0.854277i 0.904186 + 0.427138i \(0.140478\pi\)
−0.904186 + 0.427138i \(0.859522\pi\)
\(48\) 2.54804e8i 0.144338i
\(49\) −8.21851e8 −0.415637
\(50\) 8.37837e8 1.31888e9i 0.379162 0.596855i
\(51\) 1.16980e9 0.474762
\(52\) 3.82766e8i 0.139610i
\(53\) 4.74535e9i 1.55866i 0.626615 + 0.779329i \(0.284440\pi\)
−0.626615 + 0.779329i \(0.715560\pi\)
\(54\) 4.59165e8 0.136083
\(55\) −3.56372e9 1.03625e9i −0.954793 0.277632i
\(56\) −1.73366e9 −0.420660
\(57\) 1.40994e9i 0.310377i
\(58\) 4.16982e9i 0.834186i
\(59\) −4.37861e9 −0.797352 −0.398676 0.917092i \(-0.630530\pi\)
−0.398676 + 0.917092i \(0.630530\pi\)
\(60\) 4.85485e8 1.66961e9i 0.0806016 0.277194i
\(61\) −7.78414e9 −1.18004 −0.590020 0.807389i \(-0.700880\pi\)
−0.590020 + 0.807389i \(0.700880\pi\)
\(62\) 1.97806e9i 0.274211i
\(63\) 3.12412e9i 0.396602i
\(64\) −1.07374e9 −0.125000
\(65\) −7.29295e8 + 2.50809e9i −0.0779614 + 0.268114i
\(66\) −4.13000e9 −0.405937
\(67\) 4.98481e9i 0.451063i 0.974236 + 0.225531i \(0.0724118\pi\)
−0.974236 + 0.225531i \(0.927588\pi\)
\(68\) 4.92953e9i 0.411156i
\(69\) −8.07119e9 −0.621252
\(70\) −1.13599e10 3.30320e9i −0.807860 0.234907i
\(71\) 9.09417e9 0.598194 0.299097 0.954223i \(-0.403315\pi\)
0.299097 + 0.954223i \(0.403315\pi\)
\(72\) 1.93492e9i 0.117851i
\(73\) 1.88613e10i 1.06487i 0.846471 + 0.532435i \(0.178723\pi\)
−0.846471 + 0.532435i \(0.821277\pi\)
\(74\) 4.39545e9 0.230266
\(75\) 6.36232e9 1.00152e10i 0.309584 0.487330i
\(76\) 5.94148e9 0.268794
\(77\) 2.81002e10i 1.18307i
\(78\) 2.90663e9i 0.113991i
\(79\) 4.50312e10 1.64651 0.823255 0.567672i \(-0.192156\pi\)
0.823255 + 0.567672i \(0.192156\pi\)
\(80\) −7.03574e9 2.04583e9i −0.240057 0.0698031i
\(81\) 3.48678e9 0.111111
\(82\) 4.70035e10i 1.40008i
\(83\) 6.88856e10i 1.91955i 0.280773 + 0.959774i \(0.409409\pi\)
−0.280773 + 0.959774i \(0.590591\pi\)
\(84\) −1.31650e10 −0.343467
\(85\) 9.39236e9 3.23009e10i 0.229599 0.789607i
\(86\) 1.69651e10 0.388880
\(87\) 3.16645e10i 0.681110i
\(88\) 1.74038e10i 0.351552i
\(89\) 3.49597e9 0.0663624 0.0331812 0.999449i \(-0.489436\pi\)
0.0331812 + 0.999449i \(0.489436\pi\)
\(90\) 3.68665e9 1.26786e10i 0.0658110 0.226328i
\(91\) 1.97765e10 0.332217
\(92\) 3.40119e10i 0.538020i
\(93\) 1.50209e10i 0.223892i
\(94\) 4.29820e10 0.604065
\(95\) 3.89318e10 + 1.13205e10i 0.516208 + 0.150101i
\(96\) −8.15373e9 −0.102062
\(97\) 1.62848e11i 1.92548i −0.270437 0.962738i \(-0.587168\pi\)
0.270437 0.962738i \(-0.412832\pi\)
\(98\) 2.62992e10i 0.293900i
\(99\) −3.13622e10 −0.331446
\(100\) −4.22041e10 2.68108e10i −0.422041 0.268108i
\(101\) 1.33281e11 1.26183 0.630915 0.775852i \(-0.282680\pi\)
0.630915 + 0.775852i \(0.282680\pi\)
\(102\) 3.74336e10i 0.335707i
\(103\) 8.49052e10i 0.721655i −0.932633 0.360827i \(-0.882494\pi\)
0.932633 0.360827i \(-0.117506\pi\)
\(104\) 1.22485e10 0.0987189
\(105\) −8.62644e10 2.50837e10i −0.659615 0.191801i
\(106\) 1.51851e11 1.10214
\(107\) 4.19151e10i 0.288908i 0.989512 + 0.144454i \(0.0461425\pi\)
−0.989512 + 0.144454i \(0.953857\pi\)
\(108\) 1.46933e10i 0.0962250i
\(109\) −2.67212e11 −1.66345 −0.831727 0.555185i \(-0.812647\pi\)
−0.831727 + 0.555185i \(0.812647\pi\)
\(110\) −3.31599e10 + 1.14039e11i −0.196315 + 0.675141i
\(111\) 3.33780e10 0.188011
\(112\) 5.54773e10i 0.297451i
\(113\) 2.37749e11i 1.21391i 0.794735 + 0.606957i \(0.207610\pi\)
−0.794735 + 0.606957i \(0.792390\pi\)
\(114\) 4.51181e10 0.219469
\(115\) −6.48038e10 + 2.22865e11i −0.300443 + 1.03324i
\(116\) −1.33434e11 −0.589859
\(117\) 2.20722e10i 0.0930731i
\(118\) 1.40116e11i 0.563813i
\(119\) −2.54695e11 −0.978390
\(120\) −5.34277e10 1.55355e10i −0.196006 0.0569940i
\(121\) −3.22132e9 −0.0112905
\(122\) 2.49093e11i 0.834414i
\(123\) 3.56933e11i 1.14316i
\(124\) −6.32978e10 −0.193896
\(125\) −2.25461e11 2.56091e11i −0.660793 0.750568i
\(126\) −9.99719e10 −0.280440
\(127\) 7.15504e10i 0.192173i −0.995373 0.0960863i \(-0.969368\pi\)
0.995373 0.0960863i \(-0.0306325\pi\)
\(128\) 3.43597e10i 0.0883883i
\(129\) 1.28829e11 0.317519
\(130\) 8.02590e10 + 2.33374e10i 0.189586 + 0.0551271i
\(131\) 4.56783e11 1.03447 0.517235 0.855844i \(-0.326961\pi\)
0.517235 + 0.855844i \(0.326961\pi\)
\(132\) 1.32160e11i 0.287041i
\(133\) 3.06980e11i 0.639626i
\(134\) 1.59514e11 0.318949
\(135\) 2.79955e10 9.62784e10i 0.0537344 0.184796i
\(136\) −1.57745e11 −0.290731
\(137\) 2.86655e10i 0.0507454i 0.999678 + 0.0253727i \(0.00807725\pi\)
−0.999678 + 0.0253727i \(0.991923\pi\)
\(138\) 2.58278e11i 0.439291i
\(139\) −1.20093e12 −1.96307 −0.981536 0.191280i \(-0.938736\pi\)
−0.981536 + 0.191280i \(0.938736\pi\)
\(140\) −1.05702e11 + 3.63517e11i −0.166104 + 0.571243i
\(141\) 3.26395e11 0.493217
\(142\) 2.91014e11i 0.422987i
\(143\) 1.98531e11i 0.277638i
\(144\) −6.19174e10 −0.0833333
\(145\) −8.74333e11 2.54236e11i −1.13280 0.329391i
\(146\) 6.03563e11 0.752977
\(147\) 1.99710e11i 0.239968i
\(148\) 1.40655e11i 0.162822i
\(149\) 6.64637e11 0.741412 0.370706 0.928750i \(-0.379116\pi\)
0.370706 + 0.928750i \(0.379116\pi\)
\(150\) −3.20487e11 2.03594e11i −0.344595 0.218909i
\(151\) 1.70963e12 1.77226 0.886130 0.463436i \(-0.153384\pi\)
0.886130 + 0.463436i \(0.153384\pi\)
\(152\) 1.90127e11i 0.190066i
\(153\) 2.84261e11i 0.274104i
\(154\) 8.99206e11 0.836557
\(155\) −4.14762e11 1.20603e11i −0.372370 0.108276i
\(156\) 9.30122e10 0.0806036
\(157\) 9.96231e11i 0.833512i 0.909018 + 0.416756i \(0.136833\pi\)
−0.909018 + 0.416756i \(0.863167\pi\)
\(158\) 1.44100e12i 1.16426i
\(159\) 1.15312e12 0.899892
\(160\) −6.54665e10 + 2.25144e11i −0.0493582 + 0.169746i
\(161\) 1.75730e12 1.28028
\(162\) 1.11577e11i 0.0785674i
\(163\) 2.56482e11i 0.174592i 0.996182 + 0.0872960i \(0.0278226\pi\)
−0.996182 + 0.0872960i \(0.972177\pi\)
\(164\) −1.50411e12 −0.990009
\(165\) −2.51808e11 + 8.65985e11i −0.160291 + 0.551250i
\(166\) 2.20434e12 1.35733
\(167\) 1.02735e12i 0.612040i 0.952025 + 0.306020i \(0.0989974\pi\)
−0.952025 + 0.306020i \(0.901003\pi\)
\(168\) 4.21281e11i 0.242868i
\(169\) 1.65244e12 0.922037
\(170\) −1.03363e12 3.00556e11i −0.558337 0.162351i
\(171\) 3.42616e11 0.179196
\(172\) 5.42884e11i 0.274980i
\(173\) 3.51424e12i 1.72416i −0.506769 0.862082i \(-0.669160\pi\)
0.506769 0.862082i \(-0.330840\pi\)
\(174\) −1.01327e12 −0.481617
\(175\) −1.38524e12 + 2.18057e12i −0.637992 + 1.00429i
\(176\) 5.56922e11 0.248585
\(177\) 1.06400e12i 0.460352i
\(178\) 1.11871e11i 0.0469253i
\(179\) −4.59480e12 −1.86885 −0.934427 0.356156i \(-0.884087\pi\)
−0.934427 + 0.356156i \(0.884087\pi\)
\(180\) −4.05716e11 1.17973e11i −0.160038 0.0465354i
\(181\) −9.54953e11 −0.365384 −0.182692 0.983170i \(-0.558481\pi\)
−0.182692 + 0.983170i \(0.558481\pi\)
\(182\) 6.32847e11i 0.234913i
\(183\) 1.89155e12i 0.681297i
\(184\) 1.08838e12 0.380437
\(185\) 2.67993e11 9.21645e11i 0.0909240 0.312694i
\(186\) −4.80668e11 −0.158316
\(187\) 2.55682e12i 0.817656i
\(188\) 1.37542e12i 0.427138i
\(189\) −7.59161e11 −0.228978
\(190\) 3.62255e11 1.24582e12i 0.106138 0.365014i
\(191\) 4.18247e12 1.19055 0.595277 0.803520i \(-0.297042\pi\)
0.595277 + 0.803520i \(0.297042\pi\)
\(192\) 2.60919e11i 0.0721688i
\(193\) 3.35128e12i 0.900836i 0.892818 + 0.450418i \(0.148725\pi\)
−0.892818 + 0.450418i \(0.851275\pi\)
\(194\) −5.21114e12 −1.36152
\(195\) 6.09467e11 + 1.77219e11i 0.154796 + 0.0450110i
\(196\) 8.41575e11 0.207819
\(197\) 7.22875e12i 1.73580i −0.496742 0.867899i \(-0.665470\pi\)
0.496742 0.867899i \(-0.334530\pi\)
\(198\) 1.00359e12i 0.234368i
\(199\) −1.05138e12 −0.238818 −0.119409 0.992845i \(-0.538100\pi\)
−0.119409 + 0.992845i \(0.538100\pi\)
\(200\) −8.57945e11 + 1.35053e12i −0.189581 + 0.298428i
\(201\) 1.21131e12 0.260421
\(202\) 4.26499e12i 0.892248i
\(203\) 6.89417e12i 1.40363i
\(204\) −1.19787e12 −0.237381
\(205\) −9.85577e12 2.86583e12i −1.90127 0.552845i
\(206\) −2.71697e12 −0.510287
\(207\) 1.96130e12i 0.358680i
\(208\) 3.91953e11i 0.0698048i
\(209\) −3.08169e12 −0.534545
\(210\) −8.02677e11 + 2.76046e12i −0.135623 + 0.466418i
\(211\) 3.80994e11 0.0627141 0.0313570 0.999508i \(-0.490017\pi\)
0.0313570 + 0.999508i \(0.490017\pi\)
\(212\) 4.85924e12i 0.779329i
\(213\) 2.20988e12i 0.345368i
\(214\) 1.34128e12 0.204289
\(215\) 1.03437e12 3.55727e12i 0.153555 0.528087i
\(216\) −4.70185e11 −0.0680414
\(217\) 3.27042e12i 0.461398i
\(218\) 8.55079e12i 1.17624i
\(219\) 4.58331e12 0.614803
\(220\) 3.64925e12 + 1.06112e12i 0.477397 + 0.138816i
\(221\) 1.79945e12 0.229605
\(222\) 1.06810e12i 0.132944i
\(223\) 3.50569e12i 0.425693i 0.977086 + 0.212846i \(0.0682734\pi\)
−0.977086 + 0.212846i \(0.931727\pi\)
\(224\) 1.77527e12 0.210330
\(225\) −2.43370e12 1.54604e12i −0.281360 0.178739i
\(226\) 7.60798e12 0.858367
\(227\) 4.84938e12i 0.534003i 0.963696 + 0.267002i \(0.0860329\pi\)
−0.963696 + 0.267002i \(0.913967\pi\)
\(228\) 1.44378e12i 0.155188i
\(229\) −1.41260e12 −0.148225 −0.0741127 0.997250i \(-0.523612\pi\)
−0.0741127 + 0.997250i \(0.523612\pi\)
\(230\) 7.13167e12 + 2.07372e12i 0.730614 + 0.212446i
\(231\) 6.82835e12 0.683046
\(232\) 4.26989e12i 0.417093i
\(233\) 9.88438e12i 0.942957i −0.881878 0.471478i \(-0.843721\pi\)
0.881878 0.471478i \(-0.156279\pi\)
\(234\) 7.06311e11 0.0658126
\(235\) 2.62063e12 9.01253e12i 0.238525 0.820302i
\(236\) 4.48370e12 0.398676
\(237\) 1.09426e13i 0.950613i
\(238\) 8.15024e12i 0.691826i
\(239\) 5.87747e12 0.487531 0.243765 0.969834i \(-0.421617\pi\)
0.243765 + 0.969834i \(0.421617\pi\)
\(240\) −4.97137e11 + 1.70969e12i −0.0403008 + 0.138597i
\(241\) −9.32982e12 −0.739230 −0.369615 0.929185i \(-0.620510\pi\)
−0.369615 + 0.929185i \(0.620510\pi\)
\(242\) 1.03082e11i 0.00798360i
\(243\) 8.47289e11i 0.0641500i
\(244\) 7.97096e12 0.590020
\(245\) 5.51446e12 + 1.60348e12i 0.399107 + 0.116051i
\(246\) −1.14219e13 −0.808339
\(247\) 2.16884e12i 0.150105i
\(248\) 2.02553e12i 0.137105i
\(249\) 1.67392e13 1.10825
\(250\) −8.19492e12 + 7.21474e12i −0.530732 + 0.467252i
\(251\) 1.76150e13 1.11603 0.558016 0.829830i \(-0.311563\pi\)
0.558016 + 0.829830i \(0.311563\pi\)
\(252\) 3.19910e12i 0.198301i
\(253\) 1.76411e13i 1.06995i
\(254\) −2.28961e12 −0.135887
\(255\) −7.84913e12 2.28234e12i −0.455880 0.132559i
\(256\) 1.09951e12 0.0625000
\(257\) 1.61047e13i 0.896023i 0.894028 + 0.448012i \(0.147868\pi\)
−0.894028 + 0.448012i \(0.852132\pi\)
\(258\) 4.12253e12i 0.224520i
\(259\) −7.26723e12 −0.387454
\(260\) 7.46798e11 2.56829e12i 0.0389807 0.134057i
\(261\) −7.69448e12 −0.393239
\(262\) 1.46171e13i 0.731480i
\(263\) 8.60423e12i 0.421653i −0.977524 0.210826i \(-0.932384\pi\)
0.977524 0.210826i \(-0.0676155\pi\)
\(264\) 4.22912e12 0.202969
\(265\) 9.25844e12 3.18404e13i 0.435196 1.49667i
\(266\) −9.82335e12 −0.452284
\(267\) 8.49520e11i 0.0383144i
\(268\) 5.10444e12i 0.225531i
\(269\) −1.03462e13 −0.447861 −0.223931 0.974605i \(-0.571889\pi\)
−0.223931 + 0.974605i \(0.571889\pi\)
\(270\) −3.08091e12 8.95856e11i −0.130671 0.0379960i
\(271\) −3.19603e13 −1.32825 −0.664124 0.747622i \(-0.731196\pi\)
−0.664124 + 0.747622i \(0.731196\pi\)
\(272\) 5.04783e12i 0.205578i
\(273\) 4.80568e12i 0.191805i
\(274\) 9.17297e11 0.0358824
\(275\) 2.18901e13 + 1.39060e13i 0.839302 + 0.533180i
\(276\) 8.26490e12 0.310626
\(277\) 7.21606e12i 0.265865i −0.991125 0.132933i \(-0.957561\pi\)
0.991125 0.132933i \(-0.0424394\pi\)
\(278\) 3.84297e13i 1.38810i
\(279\) −3.65007e12 −0.129264
\(280\) 1.16326e13 + 3.38248e12i 0.403930 + 0.117453i
\(281\) −4.86472e13 −1.65643 −0.828216 0.560409i \(-0.810644\pi\)
−0.828216 + 0.560409i \(0.810644\pi\)
\(282\) 1.04446e13i 0.348757i
\(283\) 4.50061e13i 1.47382i 0.675988 + 0.736912i \(0.263717\pi\)
−0.675988 + 0.736912i \(0.736283\pi\)
\(284\) −9.31243e12 −0.299097
\(285\) 2.75087e12 9.46043e12i 0.0866610 0.298033i
\(286\) −6.35298e12 −0.196320
\(287\) 7.77134e13i 2.35584i
\(288\) 1.98136e12i 0.0589256i
\(289\) 1.10974e13 0.323804
\(290\) −8.13554e12 + 2.79787e13i −0.232915 + 0.801010i
\(291\) −3.95721e13 −1.11167
\(292\) 1.93140e13i 0.532435i
\(293\) 1.55228e13i 0.419949i −0.977707 0.209975i \(-0.932662\pi\)
0.977707 0.209975i \(-0.0673382\pi\)
\(294\) 6.39071e12 0.169683
\(295\) 2.93796e13 + 8.54291e12i 0.765641 + 0.222631i
\(296\) −4.50094e12 −0.115133
\(297\) 7.62102e12i 0.191361i
\(298\) 2.12684e13i 0.524258i
\(299\) −1.24155e13 −0.300451
\(300\) −6.51502e12 + 1.02556e13i −0.154792 + 0.243665i
\(301\) −2.80493e13 −0.654345
\(302\) 5.47080e13i 1.25318i
\(303\) 3.23873e13i 0.728518i
\(304\) −6.08407e12 −0.134397
\(305\) 5.22301e13 + 1.51873e13i 1.13311 + 0.329482i
\(306\) −9.09636e12 −0.193821
\(307\) 5.15314e13i 1.07848i 0.842153 + 0.539239i \(0.181288\pi\)
−0.842153 + 0.539239i \(0.818712\pi\)
\(308\) 2.87746e13i 0.591535i
\(309\) −2.06320e13 −0.416648
\(310\) −3.85930e12 + 1.32724e13i −0.0765630 + 0.263305i
\(311\) −1.21704e13 −0.237204 −0.118602 0.992942i \(-0.537841\pi\)
−0.118602 + 0.992942i \(0.537841\pi\)
\(312\) 2.97639e12i 0.0569954i
\(313\) 4.90592e13i 0.923053i −0.887126 0.461527i \(-0.847302\pi\)
0.887126 0.461527i \(-0.152698\pi\)
\(314\) 3.18794e13 0.589382
\(315\) −6.09533e12 + 2.09622e13i −0.110736 + 0.380829i
\(316\) −4.61119e13 −0.823255
\(317\) 2.65586e12i 0.0465992i −0.999729 0.0232996i \(-0.992583\pi\)
0.999729 0.0232996i \(-0.00741717\pi\)
\(318\) 3.68998e13i 0.636320i
\(319\) 6.92087e13 1.17304
\(320\) 7.20460e12 + 2.09493e12i 0.120029 + 0.0349015i
\(321\) 1.01854e13 0.166801
\(322\) 5.62337e13i 0.905293i
\(323\) 2.79319e13i 0.442065i
\(324\) −3.57047e12 −0.0555556
\(325\) 9.78686e12 1.54059e13i 0.149722 0.235684i
\(326\) 8.20741e12 0.123455
\(327\) 6.49326e13i 0.960395i
\(328\) 4.81316e13i 0.700042i
\(329\) −7.10644e13 −1.01642
\(330\) 2.77115e13 + 8.05786e12i 0.389793 + 0.113343i
\(331\) 8.86699e13 1.22665 0.613327 0.789829i \(-0.289831\pi\)
0.613327 + 0.789829i \(0.289831\pi\)
\(332\) 7.05389e13i 0.959774i
\(333\) 8.11085e12i 0.108548i
\(334\) 3.28753e13 0.432777
\(335\) 9.72563e12 3.34471e13i 0.125942 0.433124i
\(336\) 1.34810e13 0.171734
\(337\) 5.28648e13i 0.662525i −0.943539 0.331262i \(-0.892525\pi\)
0.943539 0.331262i \(-0.107475\pi\)
\(338\) 5.28780e13i 0.651978i
\(339\) 5.77731e13 0.700853
\(340\) −9.61778e12 + 3.30762e13i −0.114800 + 0.394804i
\(341\) 3.28309e13 0.385597
\(342\) 1.09637e13i 0.126711i
\(343\) 6.11331e13i 0.695278i
\(344\) −1.73723e13 −0.194440
\(345\) 5.41561e13 + 1.57473e13i 0.596544 + 0.173461i
\(346\) −1.12456e14 −1.21917
\(347\) 2.14116e13i 0.228474i 0.993454 + 0.114237i \(0.0364424\pi\)
−0.993454 + 0.114237i \(0.963558\pi\)
\(348\) 3.24245e13i 0.340555i
\(349\) 1.29282e14 1.33659 0.668295 0.743896i \(-0.267024\pi\)
0.668295 + 0.743896i \(0.267024\pi\)
\(350\) 6.97781e13 + 4.43277e13i 0.710142 + 0.451129i
\(351\) 5.36355e12 0.0537358
\(352\) 1.78215e13i 0.175776i
\(353\) 3.24173e13i 0.314786i −0.987536 0.157393i \(-0.949691\pi\)
0.987536 0.157393i \(-0.0503090\pi\)
\(354\) 3.40481e13 0.325518
\(355\) −6.10201e13 1.77432e13i −0.574404 0.167023i
\(356\) −3.57987e12 −0.0331812
\(357\) 6.18909e13i 0.564874i
\(358\) 1.47034e14i 1.32148i
\(359\) 1.01176e14 0.895483 0.447741 0.894163i \(-0.352229\pi\)
0.447741 + 0.894163i \(0.352229\pi\)
\(360\) −3.77513e12 + 1.29829e13i −0.0329055 + 0.113164i
\(361\) −8.28244e13 −0.710999
\(362\) 3.05585e13i 0.258366i
\(363\) 7.82780e11i 0.00651858i
\(364\) −2.02511e13 −0.166108
\(365\) 3.67995e13 1.26556e14i 0.297325 1.02252i
\(366\) 6.05295e13 0.481749
\(367\) 6.19096e12i 0.0485395i −0.999705 0.0242697i \(-0.992274\pi\)
0.999705 0.0242697i \(-0.00772605\pi\)
\(368\) 3.48282e13i 0.269010i
\(369\) −8.67347e13 −0.660006
\(370\) −2.94926e13 8.57577e12i −0.221108 0.0642930i
\(371\) −2.51063e14 −1.85450
\(372\) 1.53814e13i 0.111946i
\(373\) 2.17159e14i 1.55733i 0.627442 + 0.778664i \(0.284102\pi\)
−0.627442 + 0.778664i \(0.715898\pi\)
\(374\) 8.18181e13 0.578170
\(375\) −6.22302e13 + 5.47869e13i −0.433341 + 0.381509i
\(376\) −4.40136e13 −0.302033
\(377\) 4.87080e13i 0.329400i
\(378\) 2.42932e13i 0.161912i
\(379\) −1.35854e14 −0.892397 −0.446199 0.894934i \(-0.647222\pi\)
−0.446199 + 0.894934i \(0.647222\pi\)
\(380\) −3.98662e13 1.15922e13i −0.258104 0.0750506i
\(381\) −1.73867e13 −0.110951
\(382\) 1.33839e14i 0.841849i
\(383\) 1.53210e14i 0.949932i −0.880004 0.474966i \(-0.842460\pi\)
0.880004 0.474966i \(-0.157540\pi\)
\(384\) 8.34942e12 0.0510310
\(385\) 5.48250e13 1.88547e14i 0.330328 1.13602i
\(386\) 1.07241e14 0.636988
\(387\) 3.13054e13i 0.183320i
\(388\) 1.66756e14i 0.962738i
\(389\) −6.34461e13 −0.361145 −0.180573 0.983562i \(-0.557795\pi\)
−0.180573 + 0.983562i \(0.557795\pi\)
\(390\) 5.67100e12 1.95029e13i 0.0318276 0.109457i
\(391\) 1.59896e14 0.884839
\(392\) 2.69304e13i 0.146950i
\(393\) 1.10998e14i 0.597251i
\(394\) −2.31320e14 −1.22739
\(395\) −3.02151e14 8.78583e13i −1.58103 0.459726i
\(396\) 3.21149e13 0.165723
\(397\) 2.82212e14i 1.43624i 0.695918 + 0.718121i \(0.254998\pi\)
−0.695918 + 0.718121i \(0.745002\pi\)
\(398\) 3.36442e13i 0.168870i
\(399\) −7.45961e13 −0.369288
\(400\) 4.32169e13 + 2.74542e13i 0.211020 + 0.134054i
\(401\) −4.11588e13 −0.198230 −0.0991149 0.995076i \(-0.531601\pi\)
−0.0991149 + 0.995076i \(0.531601\pi\)
\(402\) 3.87619e13i 0.184146i
\(403\) 2.31059e13i 0.108279i
\(404\) −1.36480e14 −0.630915
\(405\) −2.33957e13 6.80291e12i −0.106692 0.0310236i
\(406\) 2.20613e14 0.992519
\(407\) 7.29538e13i 0.323801i
\(408\) 3.83320e13i 0.167854i
\(409\) −7.28620e13 −0.314792 −0.157396 0.987536i \(-0.550310\pi\)
−0.157396 + 0.987536i \(0.550310\pi\)
\(410\) −9.17065e13 + 3.15385e14i −0.390921 + 1.34440i
\(411\) 6.96573e12 0.0292979
\(412\) 8.69429e13i 0.360827i
\(413\) 2.31660e14i 0.948694i
\(414\) 6.27616e13 0.253625
\(415\) 1.34400e14 4.62209e14i 0.535961 1.84321i
\(416\) −1.25425e13 −0.0493594
\(417\) 2.91826e14i 1.13338i
\(418\) 9.86140e13i 0.377980i
\(419\) 4.44807e13 0.168265 0.0841326 0.996455i \(-0.473188\pi\)
0.0841326 + 0.996455i \(0.473188\pi\)
\(420\) 8.83347e13 + 2.56857e13i 0.329807 + 0.0959003i
\(421\) 4.08282e13 0.150456 0.0752279 0.997166i \(-0.476032\pi\)
0.0752279 + 0.997166i \(0.476032\pi\)
\(422\) 1.21918e13i 0.0443455i
\(423\) 7.93139e13i 0.284759i
\(424\) −1.55496e14 −0.551069
\(425\) −1.26042e14 + 1.98408e14i −0.440936 + 0.694097i
\(426\) −7.07163e13 −0.244212
\(427\) 4.11838e14i 1.40402i
\(428\) 4.29210e13i 0.144454i
\(429\) −4.82430e13 −0.160295
\(430\) −1.13833e14 3.30999e13i −0.373414 0.108580i
\(431\) 5.01831e14 1.62530 0.812648 0.582754i \(-0.198025\pi\)
0.812648 + 0.582754i \(0.198025\pi\)
\(432\) 1.50459e13i 0.0481125i
\(433\) 3.09744e14i 0.977957i 0.872296 + 0.488979i \(0.162630\pi\)
−0.872296 + 0.488979i \(0.837370\pi\)
\(434\) 1.04654e14 0.326258
\(435\) −6.17793e13 + 2.12463e14i −0.190174 + 0.654022i
\(436\) 2.73625e14 0.831727
\(437\) 1.92720e14i 0.578466i
\(438\) 1.46666e14i 0.434732i
\(439\) 1.08027e13 0.0316213 0.0158106 0.999875i \(-0.494967\pi\)
0.0158106 + 0.999875i \(0.494967\pi\)
\(440\) 3.39558e13 1.16776e14i 0.0981576 0.337570i
\(441\) 4.85295e13 0.138546
\(442\) 5.75823e13i 0.162355i
\(443\) 3.45097e14i 0.960993i 0.876997 + 0.480497i \(0.159544\pi\)
−0.876997 + 0.480497i \(0.840456\pi\)
\(444\) −3.41790e13 −0.0940056
\(445\) −2.34573e13 6.82082e12i −0.0637232 0.0185292i
\(446\) 1.12182e14 0.301010
\(447\) 1.61507e14i 0.428055i
\(448\) 5.68087e13i 0.148726i
\(449\) 5.12768e14 1.32607 0.663035 0.748589i \(-0.269268\pi\)
0.663035 + 0.748589i \(0.269268\pi\)
\(450\) −4.94734e13 + 7.78783e13i −0.126387 + 0.198952i
\(451\) 7.80144e14 1.96881
\(452\) 2.43455e14i 0.606957i
\(453\) 4.15439e14i 1.02322i
\(454\) 1.55180e14 0.377597
\(455\) −1.32696e14 3.85850e13i −0.319004 0.0927589i
\(456\) −4.62009e13 −0.109735
\(457\) 2.33364e14i 0.547640i −0.961781 0.273820i \(-0.911713\pi\)
0.961781 0.273820i \(-0.0882873\pi\)
\(458\) 4.52030e13i 0.104811i
\(459\) −6.90755e13 −0.158254
\(460\) 6.63591e13 2.28213e14i 0.150222 0.516622i
\(461\) 1.62814e14 0.364197 0.182098 0.983280i \(-0.441711\pi\)
0.182098 + 0.983280i \(0.441711\pi\)
\(462\) 2.18507e14i 0.482986i
\(463\) 2.48926e14i 0.543718i 0.962337 + 0.271859i \(0.0876385\pi\)
−0.962337 + 0.271859i \(0.912361\pi\)
\(464\) 1.36637e14 0.294929
\(465\) −2.93065e13 + 1.00787e14i −0.0625134 + 0.214988i
\(466\) −3.16300e14 −0.666771
\(467\) 3.50158e14i 0.729494i 0.931107 + 0.364747i \(0.118845\pi\)
−0.931107 + 0.364747i \(0.881155\pi\)
\(468\) 2.26020e13i 0.0465365i
\(469\) −2.63732e14 −0.536677
\(470\) −2.88401e14 8.38603e13i −0.580041 0.168662i
\(471\) 2.42084e14 0.481228
\(472\) 1.43478e14i 0.281907i
\(473\) 2.81580e14i 0.546846i
\(474\) −3.50162e14 −0.672185
\(475\) −2.39138e14 1.51916e14i −0.453768 0.288263i
\(476\) 2.60808e14 0.489195
\(477\) 2.80208e14i 0.519553i
\(478\) 1.88079e14i 0.344736i
\(479\) −4.41157e14 −0.799370 −0.399685 0.916653i \(-0.630881\pi\)
−0.399685 + 0.916653i \(0.630881\pi\)
\(480\) 5.47099e13 + 1.59084e13i 0.0980030 + 0.0284970i
\(481\) 5.13437e13 0.0909263
\(482\) 2.98554e14i 0.522715i
\(483\) 4.27024e14i 0.739169i
\(484\) 3.29863e12 0.00564526
\(485\) −3.17725e14 + 1.09268e15i −0.537616 + 1.84890i
\(486\) −2.71132e13 −0.0453609
\(487\) 4.35803e12i 0.00720909i −0.999994 0.00360455i \(-0.998853\pi\)
0.999994 0.00360455i \(-0.00114736\pi\)
\(488\) 2.55071e14i 0.417207i
\(489\) 6.23250e13 0.100801
\(490\) 5.13112e13 1.76463e14i 0.0820605 0.282211i
\(491\) −6.73844e13 −0.106564 −0.0532821 0.998580i \(-0.516968\pi\)
−0.0532821 + 0.998580i \(0.516968\pi\)
\(492\) 3.65499e14i 0.571582i
\(493\) 6.27295e14i 0.970094i
\(494\) 6.94030e13 0.106140
\(495\) 2.10434e14 + 6.11894e13i 0.318264 + 0.0925439i
\(496\) 6.48170e13 0.0969481
\(497\) 4.81148e14i 0.711735i
\(498\) 5.35655e14i 0.783652i
\(499\) −8.06287e14 −1.16664 −0.583320 0.812243i \(-0.698247\pi\)
−0.583320 + 0.812243i \(0.698247\pi\)
\(500\) 2.30872e14 + 2.62238e14i 0.330397 + 0.375284i
\(501\) 2.49647e14 0.353361
\(502\) 5.63680e14i 0.789154i
\(503\) 1.30287e15i 1.80416i −0.431565 0.902082i \(-0.642038\pi\)
0.431565 0.902082i \(-0.357962\pi\)
\(504\) 1.02371e14 0.140220
\(505\) −8.94290e14 2.60039e14i −1.21165 0.352318i
\(506\) −5.64515e14 −0.756567
\(507\) 4.01542e14i 0.532338i
\(508\) 7.32676e13i 0.0960863i
\(509\) 1.09216e15 1.41690 0.708450 0.705761i \(-0.249395\pi\)
0.708450 + 0.705761i \(0.249395\pi\)
\(510\) −7.30350e13 + 2.51172e14i −0.0937335 + 0.322356i
\(511\) −9.97902e14 −1.26699
\(512\) 3.51844e13i 0.0441942i
\(513\) 8.32556e13i 0.103459i
\(514\) 5.15349e14 0.633584
\(515\) −1.65655e14 + 5.69697e14i −0.201495 + 0.692954i
\(516\) −1.31921e14 −0.158760
\(517\) 7.13397e14i 0.849441i
\(518\) 2.32551e14i 0.273971i
\(519\) −8.53961e14 −0.995446
\(520\) −8.21852e13 2.38975e13i −0.0947928 0.0275635i
\(521\) 5.50995e14 0.628840 0.314420 0.949284i \(-0.398190\pi\)
0.314420 + 0.949284i \(0.398190\pi\)
\(522\) 2.46223e14i 0.278062i
\(523\) 4.43612e14i 0.495729i 0.968795 + 0.247865i \(0.0797288\pi\)
−0.968795 + 0.247865i \(0.920271\pi\)
\(524\) −4.67746e14 −0.517235
\(525\) 5.29878e14 + 3.36613e14i 0.579828 + 0.368345i
\(526\) −2.75335e14 −0.298154
\(527\) 2.97573e14i 0.318886i
\(528\) 1.35332e14i 0.143520i
\(529\) −1.50411e14 −0.157861
\(530\) −1.01889e15 2.96270e14i −1.05831 0.307730i
\(531\) 2.58553e14 0.265784
\(532\) 3.14347e14i 0.319813i
\(533\) 5.49053e14i 0.552859i
\(534\) −2.71846e13 −0.0270923
\(535\) 8.17786e13 2.81242e14i 0.0806666 0.277418i
\(536\) −1.63342e14 −0.159475
\(537\) 1.11654e15i 1.07898i
\(538\) 3.31078e14i 0.316686i
\(539\) −4.36503e14 −0.413284
\(540\) −2.86674e13 + 9.85891e13i −0.0268672 + 0.0923981i
\(541\) −7.37013e14 −0.683739 −0.341869 0.939747i \(-0.611060\pi\)
−0.341869 + 0.939747i \(0.611060\pi\)
\(542\) 1.02273e15i 0.939214i
\(543\) 2.32054e14i 0.210955i
\(544\) 1.61531e14 0.145365
\(545\) 1.79294e15 + 5.21346e14i 1.59730 + 0.464457i
\(546\) −1.53782e14 −0.135627
\(547\) 2.04180e15i 1.78272i −0.453299 0.891358i \(-0.649753\pi\)
0.453299 0.891358i \(-0.350247\pi\)
\(548\) 2.93535e13i 0.0253727i
\(549\) 4.59646e14 0.393347
\(550\) 4.44993e14 7.00484e14i 0.377015 0.593476i
\(551\) −7.56069e14 −0.634202
\(552\) 2.64477e14i 0.219646i
\(553\) 2.38248e15i 1.95903i
\(554\) −2.30914e14 −0.187995
\(555\) −2.23960e14 6.51223e13i −0.180534 0.0524950i
\(556\) 1.22975e15 0.981536
\(557\) 2.16374e15i 1.71002i −0.518611 0.855011i \(-0.673551\pi\)
0.518611 0.855011i \(-0.326449\pi\)
\(558\) 1.16802e14i 0.0914036i
\(559\) 1.98171e14 0.153559
\(560\) 1.08239e14 3.72242e14i 0.0830521 0.285622i
\(561\) 6.21306e14 0.472074
\(562\) 1.55671e15i 1.17127i
\(563\) 2.38895e15i 1.77996i −0.455995 0.889982i \(-0.650717\pi\)
0.455995 0.889982i \(-0.349283\pi\)
\(564\) −3.34228e14 −0.246609
\(565\) 4.63862e14 1.59525e15i 0.338940 1.16564i
\(566\) 1.44019e15 1.04215
\(567\) 1.84476e14i 0.132201i
\(568\) 2.97998e14i 0.211494i
\(569\) −8.76463e13 −0.0616050 −0.0308025 0.999525i \(-0.509806\pi\)
−0.0308025 + 0.999525i \(0.509806\pi\)
\(570\) −3.02734e14 8.80279e13i −0.210741 0.0612786i
\(571\) 1.74097e15 1.20031 0.600155 0.799884i \(-0.295106\pi\)
0.600155 + 0.799884i \(0.295106\pi\)
\(572\) 2.03296e14i 0.138819i
\(573\) 1.01634e15i 0.687367i
\(574\) 2.48683e15 1.66583
\(575\) 8.69643e14 1.36894e15i 0.576989 0.908264i
\(576\) 6.34034e13 0.0416667
\(577\) 1.81953e15i 1.18438i −0.805797 0.592192i \(-0.798263\pi\)
0.805797 0.592192i \(-0.201737\pi\)
\(578\) 3.55117e14i 0.228964i
\(579\) 8.14362e14 0.520098
\(580\) 8.95317e14 + 2.60337e14i 0.566400 + 0.164696i
\(581\) −3.64455e15 −2.28389
\(582\) 1.26631e15i 0.786072i
\(583\) 2.52036e15i 1.54983i
\(584\) −6.18048e14 −0.376489
\(585\) 4.30641e13 1.48100e14i 0.0259871 0.0893715i
\(586\) −4.96728e14 −0.296949
\(587\) 7.68456e14i 0.455103i −0.973766 0.227551i \(-0.926928\pi\)
0.973766 0.227551i \(-0.0730719\pi\)
\(588\) 2.04503e14i 0.119984i
\(589\) −3.58660e14 −0.208473
\(590\) 2.73373e14 9.40148e14i 0.157424 0.541390i
\(591\) −1.75659e15 −1.00216
\(592\) 1.44030e14i 0.0814112i
\(593\) 1.21221e15i 0.678855i 0.940632 + 0.339427i \(0.110233\pi\)
−0.940632 + 0.339427i \(0.889767\pi\)
\(594\) 2.43873e14 0.135312
\(595\) 1.70895e15 + 4.96924e14i 0.939479 + 0.273179i
\(596\) −6.80588e14 −0.370706
\(597\) 2.55485e14i 0.137882i
\(598\) 3.97297e14i 0.212451i
\(599\) 1.29651e15 0.686954 0.343477 0.939161i \(-0.388395\pi\)
0.343477 + 0.939161i \(0.388395\pi\)
\(600\) 3.28179e14 + 2.08481e14i 0.172297 + 0.109455i
\(601\) −1.83742e15 −0.955871 −0.477935 0.878395i \(-0.658615\pi\)
−0.477935 + 0.878395i \(0.658615\pi\)
\(602\) 8.97579e14i 0.462692i
\(603\) 2.94348e14i 0.150354i
\(604\) −1.75066e15 −0.886130
\(605\) 2.16144e13 + 6.28497e12i 0.0108415 + 0.00315245i
\(606\) −1.03639e15 −0.515140
\(607\) 9.38310e14i 0.462177i −0.972933 0.231089i \(-0.925771\pi\)
0.972933 0.231089i \(-0.0742287\pi\)
\(608\) 1.94690e14i 0.0950331i
\(609\) 1.67528e15 0.810388
\(610\) 4.85993e14 1.67136e15i 0.232979 0.801229i
\(611\) 5.02077e14 0.238531
\(612\) 2.91084e14i 0.137052i
\(613\) 8.45726e13i 0.0394636i −0.999805 0.0197318i \(-0.993719\pi\)
0.999805 0.0197318i \(-0.00628124\pi\)
\(614\) 1.64901e15 0.762599
\(615\) −6.96396e14 + 2.39495e15i −0.319185 + 1.09770i
\(616\) −9.20787e14 −0.418278
\(617\) 1.30490e15i 0.587501i −0.955882 0.293750i \(-0.905097\pi\)
0.955882 0.293750i \(-0.0949034\pi\)
\(618\) 6.60223e14i 0.294614i
\(619\) 1.79372e15 0.793335 0.396668 0.917962i \(-0.370167\pi\)
0.396668 + 0.917962i \(0.370167\pi\)
\(620\) 4.24716e14 + 1.23498e14i 0.186185 + 0.0541382i
\(621\) 4.76596e14 0.207084
\(622\) 3.89453e14i 0.167729i
\(623\) 1.84962e14i 0.0789584i
\(624\) −9.52445e13 −0.0403018
\(625\) 1.01315e15 + 2.15821e15i 0.424946 + 0.905219i
\(626\) −1.56990e15 −0.652697
\(627\) 7.48850e14i 0.308620i
\(628\) 1.02014e15i 0.416756i
\(629\) −6.61240e14 −0.267781
\(630\) 6.70792e14 + 1.95051e14i 0.269287 + 0.0783023i
\(631\) −1.89462e15 −0.753981 −0.376991 0.926217i \(-0.623041\pi\)
−0.376991 + 0.926217i \(0.623041\pi\)
\(632\) 1.47558e15i 0.582129i
\(633\) 9.25816e13i 0.0362080i
\(634\) −8.49874e13 −0.0329506
\(635\) −1.39599e14 + 4.80089e14i −0.0536570 + 0.184530i
\(636\) −1.18079e15 −0.449946
\(637\) 3.07204e14i 0.116054i
\(638\) 2.21468e15i 0.829463i
\(639\) −5.37002e14 −0.199398
\(640\) 6.70377e13 2.30547e14i 0.0246791 0.0848731i
\(641\) −2.48785e14 −0.0908040 −0.0454020 0.998969i \(-0.514457\pi\)
−0.0454020 + 0.998969i \(0.514457\pi\)
\(642\) 3.25931e14i 0.117946i
\(643\) 4.34116e15i 1.55756i 0.627297 + 0.778780i \(0.284161\pi\)
−0.627297 + 0.778780i \(0.715839\pi\)
\(644\) −1.79948e15 −0.640139
\(645\) −8.64418e14 2.51352e14i −0.304891 0.0886553i
\(646\) −8.93819e14 −0.312587
\(647\) 1.76476e15i 0.611944i 0.952041 + 0.305972i \(0.0989814\pi\)
−0.952041 + 0.305972i \(0.901019\pi\)
\(648\) 1.14255e14i 0.0392837i
\(649\) −2.32558e15 −0.792838
\(650\) −4.92990e14 3.13179e14i −0.166653 0.105869i
\(651\) 7.94713e14 0.266388
\(652\) 2.62637e14i 0.0872960i
\(653\) 8.57218e14i 0.282533i −0.989972 0.141266i \(-0.954883\pi\)
0.989972 0.141266i \(-0.0451174\pi\)
\(654\) 2.07784e15 0.679102
\(655\) −3.06493e15 8.91209e14i −0.993328 0.288837i
\(656\) 1.54021e15 0.495005
\(657\) 1.11374e15i 0.354957i
\(658\) 2.27406e15i 0.718720i
\(659\) −2.32789e15 −0.729613 −0.364807 0.931083i \(-0.618865\pi\)
−0.364807 + 0.931083i \(0.618865\pi\)
\(660\) 2.57852e14 8.86769e14i 0.0801453 0.275625i
\(661\) −3.06684e15 −0.945328 −0.472664 0.881243i \(-0.656708\pi\)
−0.472664 + 0.881243i \(0.656708\pi\)
\(662\) 2.83744e15i 0.867375i
\(663\) 4.37266e14i 0.132563i
\(664\) −2.25724e15 −0.678663
\(665\) −5.98934e14 + 2.05978e15i −0.178591 + 0.614187i
\(666\) −2.59547e14 −0.0767552
\(667\) 4.32811e15i 1.26942i
\(668\) 1.05201e15i 0.306020i
\(669\) 8.51882e14 0.245774
\(670\) −1.07031e15 3.11220e14i −0.306265 0.0890546i
\(671\) −4.13433e15 −1.17336
\(672\) 4.31391e14i 0.121434i
\(673\) 2.69617e15i 0.752775i −0.926462 0.376387i \(-0.877166\pi\)
0.926462 0.376387i \(-0.122834\pi\)
\(674\) −1.69167e15 −0.468476
\(675\) −3.75689e14 + 5.91389e14i −0.103195 + 0.162443i
\(676\) −1.69210e15 −0.461018
\(677\) 5.36073e15i 1.44872i −0.689419 0.724362i \(-0.742134\pi\)
0.689419 0.724362i \(-0.257866\pi\)
\(678\) 1.84874e15i 0.495578i
\(679\) 8.61584e15 2.29094
\(680\) 1.05844e15 + 3.07769e14i 0.279168 + 0.0811756i
\(681\) 1.17840e15 0.308307
\(682\) 1.05059e15i 0.272658i
\(683\) 7.26562e15i 1.87050i 0.353981 + 0.935252i \(0.384828\pi\)
−0.353981 + 0.935252i \(0.615172\pi\)
\(684\) −3.50838e14 −0.0895980
\(685\) 5.59280e13 1.92340e14i 0.0141687 0.0487273i
\(686\) 1.95626e15 0.491636
\(687\) 3.43261e14i 0.0855780i
\(688\) 5.55913e14i 0.137490i
\(689\) 1.77379e15 0.435207
\(690\) 5.03915e14 1.73300e15i 0.122656 0.421820i
\(691\) 2.83285e15 0.684061 0.342030 0.939689i \(-0.388885\pi\)
0.342030 + 0.939689i \(0.388885\pi\)
\(692\) 3.59859e15i 0.862082i
\(693\) 1.65929e15i 0.394357i
\(694\) 6.85171e14 0.161556
\(695\) 8.05800e15 + 2.34308e15i 1.88500 + 0.548114i
\(696\) 1.03758e15 0.240809
\(697\) 7.07108e15i 1.62819i
\(698\) 4.13703e15i 0.945112i
\(699\) −2.40190e15 −0.544416
\(700\) 1.41848e15 2.23290e15i 0.318996 0.502146i
\(701\) 6.35487e15 1.41794 0.708969 0.705239i \(-0.249161\pi\)
0.708969 + 0.705239i \(0.249161\pi\)
\(702\) 1.71634e14i 0.0379969i
\(703\) 7.96982e14i 0.175063i
\(704\) −5.70288e14 −0.124292
\(705\) −2.19005e15 6.36814e14i −0.473601 0.137712i
\(706\) −1.03735e15 −0.222587
\(707\) 7.05153e15i 1.50133i
\(708\) 1.08954e15i 0.230176i
\(709\) −5.55781e15 −1.16506 −0.582531 0.812808i \(-0.697938\pi\)
−0.582531 + 0.812808i \(0.697938\pi\)
\(710\) −5.67783e14 + 1.95264e15i −0.118103 + 0.406165i
\(711\) −2.65905e15 −0.548837
\(712\) 1.14556e14i 0.0234627i
\(713\) 2.05315e15i 0.417280i
\(714\) 1.98051e15 0.399426
\(715\) −3.87344e14 + 1.33210e15i −0.0775201 + 0.266597i
\(716\) 4.70508e15 0.934427
\(717\) 1.42823e15i 0.281476i
\(718\) 3.23763e15i 0.633202i
\(719\) −1.05266e15 −0.204305 −0.102153 0.994769i \(-0.532573\pi\)
−0.102153 + 0.994769i \(0.532573\pi\)
\(720\) 4.15454e14 + 1.20804e14i 0.0800191 + 0.0232677i
\(721\) 4.49210e15 0.858629
\(722\) 2.65038e15i 0.502752i
\(723\) 2.26715e15i 0.426795i
\(724\) 9.77872e14 0.182692
\(725\) 5.37058e15 + 3.41174e15i 0.995777 + 0.632583i
\(726\) 2.50490e13 0.00460934
\(727\) 3.83121e15i 0.699675i −0.936810 0.349838i \(-0.886237\pi\)
0.936810 0.349838i \(-0.113763\pi\)
\(728\) 6.48036e14i 0.117456i
\(729\) −2.05891e14 −0.0370370
\(730\) −4.04979e15 1.17758e15i −0.723031 0.210240i
\(731\) −2.55219e15 −0.452238
\(732\) 1.93694e15i 0.340648i
\(733\) 7.31689e15i 1.27719i −0.769544 0.638594i \(-0.779517\pi\)
0.769544 0.638594i \(-0.220483\pi\)
\(734\) −1.98111e14 −0.0343226
\(735\) 3.89645e14 1.34001e15i 0.0670021 0.230425i
\(736\) −1.11450e15 −0.190219
\(737\) 2.64754e15i 0.448509i
\(738\) 2.77551e15i 0.466695i
\(739\) 1.04805e16 1.74920 0.874598 0.484848i \(-0.161125\pi\)
0.874598 + 0.484848i \(0.161125\pi\)
\(740\) −2.74425e14 + 9.43765e14i −0.0454620 + 0.156347i
\(741\) 5.27029e14 0.0866631
\(742\) 8.03403e15i 1.31133i
\(743\) 3.28089e15i 0.531561i 0.964034 + 0.265780i \(0.0856296\pi\)
−0.964034 + 0.265780i \(0.914370\pi\)
\(744\) 4.92204e14 0.0791578
\(745\) −4.45958e15 1.29674e15i −0.711926 0.207011i
\(746\) 6.94910e15 1.10120
\(747\) 4.06763e15i 0.639850i
\(748\) 2.61818e15i 0.408828i
\(749\) −2.21761e15 −0.343744
\(750\) 1.75318e15 + 1.99137e15i 0.269768 + 0.306418i
\(751\) 9.30704e15 1.42165 0.710824 0.703370i \(-0.248322\pi\)
0.710824 + 0.703370i \(0.248322\pi\)
\(752\) 1.40843e15i 0.213569i
\(753\) 4.28044e15i 0.644342i
\(754\) −1.55866e15 −0.232921
\(755\) −1.14713e16 3.33557e15i −1.70178 0.494837i
\(756\) 7.77381e14 0.114489
\(757\) 6.20592e15i 0.907359i −0.891165 0.453680i \(-0.850111\pi\)
0.891165 0.453680i \(-0.149889\pi\)
\(758\) 4.34734e15i 0.631020i
\(759\) −4.28678e15 −0.617735
\(760\) −3.70949e14 + 1.27572e15i −0.0530688 + 0.182507i
\(761\) −6.29521e14 −0.0894118 −0.0447059 0.999000i \(-0.514235\pi\)
−0.0447059 + 0.999000i \(0.514235\pi\)
\(762\) 5.56376e14i 0.0784542i
\(763\) 1.41375e16i 1.97919i
\(764\) −4.28285e15 −0.595277
\(765\) −5.54609e14 + 1.90734e15i −0.0765331 + 0.263202i
\(766\) −4.90271e15 −0.671703
\(767\) 1.63670e15i 0.222636i
\(768\) 2.67181e14i 0.0360844i
\(769\) −4.37850e15 −0.587126 −0.293563 0.955940i \(-0.594841\pi\)
−0.293563 + 0.955940i \(0.594841\pi\)
\(770\) −6.03350e15 1.75440e15i −0.803286 0.233577i
\(771\) 3.91343e15 0.517319
\(772\) 3.43171e15i 0.450418i
\(773\) 6.24169e15i 0.813420i −0.913557 0.406710i \(-0.866676\pi\)
0.913557 0.406710i \(-0.133324\pi\)
\(774\) −1.00177e15 −0.129627
\(775\) 2.54767e15 + 1.61845e15i 0.327328 + 0.207940i
\(776\) 5.33620e15 0.680758
\(777\) 1.76594e15i 0.223697i
\(778\) 2.03027e15i 0.255368i
\(779\) −8.52266e15 −1.06443
\(780\) −6.24094e14 1.81472e14i −0.0773980 0.0225055i
\(781\) 4.83011e15 0.594808
\(782\) 5.11666e15i 0.625676i
\(783\) 1.86976e15i 0.227037i
\(784\) −8.61773e14 −0.103909
\(785\) 1.94370e15 6.68452e15i 0.232727 0.800363i
\(786\) −3.55194e15 −0.422320
\(787\) 1.67198e16i 1.97411i 0.160397 + 0.987053i \(0.448722\pi\)
−0.160397 + 0.987053i \(0.551278\pi\)
\(788\) 7.40224e15i 0.867899i
\(789\) −2.09083e15 −0.243441
\(790\) −2.81147e15 + 9.66882e15i −0.325075 + 1.11796i
\(791\) −1.25787e16 −1.44432
\(792\) 1.02768e15i 0.117184i
\(793\) 2.90968e15i 0.329490i
\(794\) 9.03078e15 1.01558
\(795\) −7.73721e15 2.24980e15i −0.864102 0.251261i
\(796\) 1.07661e15 0.119409
\(797\) 4.36301e15i 0.480580i −0.970701 0.240290i \(-0.922758\pi\)
0.970701 0.240290i \(-0.0772425\pi\)
\(798\) 2.38707e15i 0.261126i
\(799\) −6.46610e15 −0.702481
\(800\) 8.78536e14 1.38294e15i 0.0947904 0.149214i
\(801\) −2.06433e14 −0.0221208
\(802\) 1.31708e15i 0.140170i
\(803\) 1.00177e16i 1.05884i
\(804\) −1.24038e15 −0.130211
\(805\) −1.17912e16 3.42859e15i −1.22936 0.357469i
\(806\) −7.39388e14 −0.0765649
\(807\) 2.51413e15i 0.258573i
\(808\) 4.36735e15i 0.446124i
\(809\) −3.55238e15 −0.360415 −0.180208 0.983629i \(-0.557677\pi\)
−0.180208 + 0.983629i \(0.557677\pi\)
\(810\) −2.17693e14 + 7.48661e14i −0.0219370 + 0.0754427i
\(811\) 1.38794e16 1.38917 0.694585 0.719411i \(-0.255588\pi\)
0.694585 + 0.719411i \(0.255588\pi\)
\(812\) 7.05963e15i 0.701817i
\(813\) 7.76635e15i 0.766865i
\(814\) 2.33452e15 0.228962
\(815\) 5.00410e14 1.72094e15i 0.0487482 0.167648i
\(816\) 1.22662e15 0.118690
\(817\) 3.07611e15i 0.295652i
\(818\) 2.33158e15i 0.222591i
\(819\) −1.16778e15 −0.110739
\(820\) 1.00923e16 + 2.93461e15i 0.950636 + 0.276423i
\(821\) 9.65670e15 0.903528 0.451764 0.892138i \(-0.350795\pi\)
0.451764 + 0.892138i \(0.350795\pi\)
\(822\) 2.22903e14i 0.0207167i
\(823\) 1.62599e16i 1.50114i 0.660793 + 0.750568i \(0.270220\pi\)
−0.660793 + 0.750568i \(0.729780\pi\)
\(824\) 2.78217e15 0.255144
\(825\) 3.37917e15 5.31930e15i 0.307832 0.484571i
\(826\) −7.41313e15 −0.670828
\(827\) 9.52899e15i 0.856578i −0.903642 0.428289i \(-0.859117\pi\)
0.903642 0.428289i \(-0.140883\pi\)
\(828\) 2.00837e15i 0.179340i
\(829\) −1.66053e16 −1.47298 −0.736492 0.676446i \(-0.763519\pi\)
−0.736492 + 0.676446i \(0.763519\pi\)
\(830\) −1.47907e16 4.30079e15i −1.30334 0.378982i
\(831\) −1.75350e15 −0.153497
\(832\) 4.01360e14i 0.0349024i
\(833\) 3.95638e15i 0.341783i
\(834\) 9.33843e15 0.801420
\(835\) 2.00442e15 6.89335e15i 0.170889 0.587699i
\(836\) 3.15565e15 0.267272
\(837\) 8.86967e14i 0.0746307i
\(838\) 1.42338e15i 0.118981i
\(839\) 1.01371e16 0.841827 0.420913 0.907101i \(-0.361710\pi\)
0.420913 + 0.907101i \(0.361710\pi\)
\(840\) 8.21942e14 2.82671e15i 0.0678117 0.233209i
\(841\) 4.77933e15 0.391732
\(842\) 1.30650e15i 0.106388i
\(843\) 1.18213e16i 0.956341i
\(844\) −3.90138e14 −0.0313570
\(845\) −1.10875e16 3.22400e15i −0.885367 0.257444i
\(846\) −2.53805e15 −0.201355
\(847\) 1.70431e14i 0.0134335i
\(848\) 4.97586e15i 0.389665i
\(849\) 1.09365e16 0.850913
\(850\) 6.34906e15 + 4.03334e15i 0.490801 + 0.311789i
\(851\) 4.56231e15 0.350407
\(852\) 2.26292e15i 0.172684i
\(853\) 2.03075e16i 1.53970i −0.638224 0.769851i \(-0.720331\pi\)
0.638224 0.769851i \(-0.279669\pi\)
\(854\) −1.31788e16 −0.992791
\(855\) −2.29888e15 6.68462e14i −0.172069 0.0500337i
\(856\) −1.37347e15 −0.102144
\(857\) 4.99342e15i 0.368981i 0.982834 + 0.184490i \(0.0590635\pi\)
−0.982834 + 0.184490i \(0.940937\pi\)
\(858\) 1.54378e15i 0.113345i
\(859\) −5.27939e15 −0.385142 −0.192571 0.981283i \(-0.561683\pi\)
−0.192571 + 0.981283i \(0.561683\pi\)
\(860\) −1.05920e15 + 3.64265e15i −0.0767777 + 0.264044i
\(861\) 1.88843e16 1.36014
\(862\) 1.60586e16i 1.14926i
\(863\) 6.94499e15i 0.493869i −0.969032 0.246935i \(-0.920577\pi\)
0.969032 0.246935i \(-0.0794233\pi\)
\(864\) 4.81469e14 0.0340207
\(865\) −6.85648e15 + 2.35799e16i −0.481408 + 1.65559i
\(866\) 9.91182e15 0.691520
\(867\) 2.69667e15i 0.186949i
\(868\) 3.34891e15i 0.230699i
\(869\) 2.39170e16 1.63719
\(870\) 6.79881e15 + 1.97694e15i 0.462463 + 0.134474i
\(871\) 1.86330e15 0.125945
\(872\) 8.75601e15i 0.588120i
\(873\) 9.61601e15i 0.641825i
\(874\) 6.16703e15 0.409037
\(875\) 1.35491e16 1.19285e16i 0.893030 0.786216i
\(876\) −4.69330e15 −0.307402
\(877\) 1.66689e16i 1.08495i 0.840073 + 0.542473i \(0.182512\pi\)
−0.840073 + 0.542473i \(0.817488\pi\)
\(878\) 3.45688e14i 0.0223596i
\(879\) −3.77203e15 −0.242458
\(880\) −3.73684e15 1.08658e15i −0.238698 0.0694079i
\(881\) −7.30716e15 −0.463854 −0.231927 0.972733i \(-0.574503\pi\)
−0.231927 + 0.972733i \(0.574503\pi\)
\(882\) 1.55294e15i 0.0979667i
\(883\) 1.41660e16i 0.888100i −0.896002 0.444050i \(-0.853541\pi\)
0.896002 0.444050i \(-0.146459\pi\)
\(884\) −1.84263e15 −0.114803
\(885\) 2.07593e15 7.13925e15i 0.128536 0.442043i
\(886\) 1.10431e16 0.679525
\(887\) 1.48432e16i 0.907713i −0.891075 0.453857i \(-0.850048\pi\)
0.891075 0.453857i \(-0.149952\pi\)
\(888\) 1.09373e15i 0.0664720i
\(889\) 3.78554e15 0.228648
\(890\) −2.18266e14 + 7.50632e14i −0.0131021 + 0.0450591i
\(891\) 1.85191e15 0.110482
\(892\) 3.58982e15i 0.212846i
\(893\) 7.79348e15i 0.459249i
\(894\) −5.16822e15 −0.302680
\(895\) 3.08302e16 + 8.96471e15i 1.79453 + 0.521807i
\(896\) −1.81788e15 −0.105165
\(897\) 3.01697e15i 0.173465i
\(898\) 1.64086e16i 0.937673i
\(899\) 8.05482e15 0.457486
\(900\) 2.49211e15 + 1.58315e15i 0.140680 + 0.0893693i
\(901\) −2.28441e16 −1.28170
\(902\) 2.49646e16i 1.39216i
\(903\) 6.81599e15i 0.377786i
\(904\) −7.79057e15 −0.429183
\(905\) 6.40755e15 + 1.86317e15i 0.350853 + 0.102020i
\(906\) −1.32940e16 −0.723522
\(907\) 1.13330e16i 0.613061i 0.951861 + 0.306530i \(0.0991681\pi\)
−0.951861 + 0.306530i \(0.900832\pi\)
\(908\) 4.96577e15i 0.267002i
\(909\) −7.87011e15 −0.420610
\(910\) −1.23472e15 + 4.24628e15i −0.0655905 + 0.225570i
\(911\) −1.91130e16 −1.00920 −0.504602 0.863352i \(-0.668361\pi\)
−0.504602 + 0.863352i \(0.668361\pi\)
\(912\) 1.47843e15i 0.0775942i
\(913\) 3.65867e16i 1.90868i
\(914\) −7.46766e15 −0.387240
\(915\) 3.69051e15 1.26919e16i 0.190226 0.654201i
\(916\) 1.44650e15 0.0741127
\(917\) 2.41671e16i 1.23082i
\(918\) 2.21042e15i 0.111902i
\(919\) −7.09706e15 −0.357144 −0.178572 0.983927i \(-0.557148\pi\)
−0.178572 + 0.983927i \(0.557148\pi\)
\(920\) −7.30283e15 2.12349e15i −0.365307 0.106223i
\(921\) 1.25221e16 0.622660
\(922\) 5.21004e15i 0.257526i
\(923\) 3.39936e15i 0.167027i
\(924\) −6.99223e15 −0.341523
\(925\) −3.59636e15 + 5.66119e15i −0.174616 + 0.274871i
\(926\) 7.96562e15 0.384467
\(927\) 5.01357e15i 0.240552i
\(928\) 4.37237e15i 0.208546i
\(929\) 1.87622e16 0.889604 0.444802 0.895629i \(-0.353274\pi\)
0.444802 + 0.895629i \(0.353274\pi\)
\(930\) 3.22519e15 + 9.37809e14i 0.152019 + 0.0442037i
\(931\) 4.76856e15 0.223442
\(932\) 1.01216e16i 0.471478i
\(933\) 2.95741e15i 0.136950i
\(934\) 1.12051e16 0.515830
\(935\) 4.98849e15 1.71557e16i 0.228300 0.785137i
\(936\) −7.23263e14 −0.0329063
\(937\) 3.08165e16i 1.39385i 0.717145 + 0.696924i \(0.245448\pi\)
−0.717145 + 0.696924i \(0.754552\pi\)
\(938\) 8.43944e15i 0.379488i
\(939\) −1.19214e16 −0.532925
\(940\) −2.68353e15 + 9.22883e15i −0.119262 + 0.410151i
\(941\) −4.26974e16 −1.88651 −0.943255 0.332070i \(-0.892253\pi\)
−0.943255 + 0.332070i \(0.892253\pi\)
\(942\) 7.74669e15i 0.340280i
\(943\) 4.87879e16i 2.13058i
\(944\) −4.59131e15 −0.199338
\(945\) 5.09383e15 + 1.48117e15i 0.219872 + 0.0639335i
\(946\) 9.01055e15 0.386679
\(947\) 1.63317e16i 0.696799i 0.937346 + 0.348399i \(0.113275\pi\)
−0.937346 + 0.348399i \(0.886725\pi\)
\(948\) 1.12052e16i 0.475306i
\(949\) 7.05028e15 0.297332
\(950\) −4.86132e15 + 7.65242e15i −0.203833 + 0.320862i
\(951\) −6.45373e14 −0.0269041
\(952\) 8.34585e15i 0.345913i
\(953\) 2.78821e16i 1.14899i 0.818509 + 0.574494i \(0.194801\pi\)
−0.818509 + 0.574494i \(0.805199\pi\)
\(954\) −8.96666e15 −0.367379
\(955\) −2.80636e16 8.16023e15i −1.14321 0.332417i
\(956\) −6.01853e15 −0.243765
\(957\) 1.68177e16i 0.677254i
\(958\) 1.41170e16i 0.565240i
\(959\) −1.51662e15 −0.0603772
\(960\) 5.09068e14 1.75072e15i 0.0201504 0.0692986i
\(961\) −2.15875e16 −0.849617
\(962\) 1.64300e15i 0.0642946i
\(963\) 2.47504e15i 0.0963026i
\(964\) 9.55374e15 0.369615
\(965\) 6.53854e15 2.24865e16i 0.251525 0.865010i
\(966\) −1.36648e16 −0.522671
\(967\) 7.21160e15i 0.274275i −0.990552 0.137137i \(-0.956210\pi\)
0.990552 0.137137i \(-0.0437902\pi\)
\(968\) 1.05556e14i 0.00399180i
\(969\) −6.78744e15 −0.255226
\(970\) 3.49657e16 + 1.01672e16i 1.30737 + 0.380152i
\(971\) −4.56053e16 −1.69555 −0.847773 0.530359i \(-0.822057\pi\)
−0.847773 + 0.530359i \(0.822057\pi\)
\(972\) 8.67624e14i 0.0320750i
\(973\) 6.35379e16i 2.33567i
\(974\) −1.39457e14 −0.00509760
\(975\) −3.74364e15 2.37821e15i −0.136072 0.0864419i
\(976\) −8.16227e15 −0.295010
\(977\) 4.85178e16i 1.74374i 0.489740 + 0.871868i \(0.337092\pi\)
−0.489740 + 0.871868i \(0.662908\pi\)
\(978\) 1.99440e15i 0.0712769i
\(979\) 1.85678e15 0.0659867
\(980\) −5.64681e15 1.64196e15i −0.199554 0.0580255i
\(981\) 1.57786e16 0.554485
\(982\) 2.15630e15i 0.0753522i
\(983\) 4.37954e16i 1.52189i 0.648814 + 0.760947i \(0.275265\pi\)
−0.648814 + 0.760947i \(0.724735\pi\)
\(984\) 1.16960e16 0.404170
\(985\) −1.41037e16 + 4.85035e16i −0.484656 + 1.66676i
\(986\) 2.00735e16 0.685960
\(987\) 1.72687e16i 0.586832i
\(988\) 2.22090e15i 0.0750525i
\(989\) 1.76092e16 0.591778
\(990\) 1.95806e15 6.73390e15i 0.0654384 0.225047i
\(991\) −2.55075e16 −0.847740 −0.423870 0.905723i \(-0.639329\pi\)
−0.423870 + 0.905723i \(0.639329\pi\)
\(992\) 2.07414e15i 0.0685527i
\(993\) 2.15468e16i 0.708209i
\(994\) 1.53967e16 0.503273
\(995\) 7.05456e15 + 2.05130e15i 0.229321 + 0.0666810i
\(996\) −1.71409e16 −0.554126
\(997\) 8.08618e15i 0.259968i −0.991516 0.129984i \(-0.958507\pi\)
0.991516 0.129984i \(-0.0414926\pi\)
\(998\) 2.58012e16i 0.824939i
\(999\) −1.97094e15 −0.0626704
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.12.c.b.19.1 6
3.2 odd 2 90.12.c.c.19.6 6
4.3 odd 2 240.12.f.b.49.4 6
5.2 odd 4 150.12.a.u.1.1 3
5.3 odd 4 150.12.a.t.1.3 3
5.4 even 2 inner 30.12.c.b.19.4 yes 6
15.14 odd 2 90.12.c.c.19.3 6
20.19 odd 2 240.12.f.b.49.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.12.c.b.19.1 6 1.1 even 1 trivial
30.12.c.b.19.4 yes 6 5.4 even 2 inner
90.12.c.c.19.3 6 15.14 odd 2
90.12.c.c.19.6 6 3.2 odd 2
150.12.a.t.1.3 3 5.3 odd 4
150.12.a.u.1.1 3 5.2 odd 4
240.12.f.b.49.1 6 20.19 odd 2
240.12.f.b.49.4 6 4.3 odd 2