Properties

Label 240.12.f.b.49.1
Level $240$
Weight $12$
Character 240.49
Analytic conductor $184.402$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,12,Mod(49,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.49"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 240.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(184.402363334\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 350078x^{4} + 30638651521x^{2} + 173683668788100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(78.0027i\) of defining polynomial
Character \(\chi\) \(=\) 240.49
Dual form 240.12.f.b.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-243.000i q^{3} +(-6709.81 + 1951.05i) q^{5} +52907.3i q^{7} -59049.0 q^{9} -531122. q^{11} +373795. i q^{13} +(474106. + 1.63048e6i) q^{15} -4.81399e6i q^{17} +5.80222e6 q^{19} +1.28565e7 q^{21} -3.32148e7i q^{23} +(4.12149e7 - 2.61824e7i) q^{25} +1.43489e7i q^{27} +1.30307e8 q^{29} -6.18143e7 q^{31} +1.29063e8i q^{33} +(-1.03225e8 - 3.54997e8i) q^{35} -1.37358e8i q^{37} +9.08322e7 q^{39} +1.46886e9 q^{41} +5.30160e8i q^{43} +(3.96207e8 - 1.15208e8i) q^{45} +1.34319e9i q^{47} -8.21851e8 q^{49} -1.16980e9 q^{51} -4.74535e9i q^{53} +(3.56372e9 - 1.03625e9i) q^{55} -1.40994e9i q^{57} +4.37861e9 q^{59} -7.78414e9 q^{61} -3.12412e9i q^{63} +(-7.29295e8 - 2.50809e9i) q^{65} +4.98481e9i q^{67} -8.07119e9 q^{69} -9.09417e9 q^{71} -1.88613e10i q^{73} +(-6.36232e9 - 1.00152e10i) q^{75} -2.81002e10i q^{77} -4.50312e10 q^{79} +3.48678e9 q^{81} +6.88856e10i q^{83} +(9.39236e9 + 3.23009e10i) q^{85} -3.16645e10i q^{87} +3.49597e9 q^{89} -1.97765e10 q^{91} +1.50209e10i q^{93} +(-3.89318e10 + 1.13205e10i) q^{95} +1.62848e11i q^{97} +3.13622e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9926 q^{5} - 354294 q^{9} - 1753400 q^{11} - 551124 q^{15} + 4069824 q^{19} - 32748624 q^{21} + 169978326 q^{25} + 71715564 q^{29} + 122243352 q^{31} - 825571904 q^{35} - 153183312 q^{39} + 2006768564 q^{41}+ \cdots + 103536516600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 243.000i 0.577350i
\(4\) 0 0
\(5\) −6709.81 + 1951.05i −0.960229 + 0.279212i
\(6\) 0 0
\(7\) 52907.3i 1.18981i 0.803798 + 0.594903i \(0.202809\pi\)
−0.803798 + 0.594903i \(0.797191\pi\)
\(8\) 0 0
\(9\) −59049.0 −0.333333
\(10\) 0 0
\(11\) −531122. −0.994339 −0.497169 0.867654i \(-0.665627\pi\)
−0.497169 + 0.867654i \(0.665627\pi\)
\(12\) 0 0
\(13\) 373795.i 0.279219i 0.990207 + 0.139610i \(0.0445848\pi\)
−0.990207 + 0.139610i \(0.955415\pi\)
\(14\) 0 0
\(15\) 474106. + 1.63048e6i 0.161203 + 0.554389i
\(16\) 0 0
\(17\) 4.81399e6i 0.822311i −0.911565 0.411156i \(-0.865125\pi\)
0.911565 0.411156i \(-0.134875\pi\)
\(18\) 0 0
\(19\) 5.80222e6 0.537588 0.268794 0.963198i \(-0.413375\pi\)
0.268794 + 0.963198i \(0.413375\pi\)
\(20\) 0 0
\(21\) 1.28565e7 0.686935
\(22\) 0 0
\(23\) 3.32148e7i 1.07604i −0.842932 0.538020i \(-0.819173\pi\)
0.842932 0.538020i \(-0.180827\pi\)
\(24\) 0 0
\(25\) 4.12149e7 2.61824e7i 0.844081 0.536216i
\(26\) 0 0
\(27\) 1.43489e7i 0.192450i
\(28\) 0 0
\(29\) 1.30307e8 1.17972 0.589859 0.807507i \(-0.299184\pi\)
0.589859 + 0.807507i \(0.299184\pi\)
\(30\) 0 0
\(31\) −6.18143e7 −0.387793 −0.193896 0.981022i \(-0.562113\pi\)
−0.193896 + 0.981022i \(0.562113\pi\)
\(32\) 0 0
\(33\) 1.29063e8i 0.574082i
\(34\) 0 0
\(35\) −1.03225e8 3.54997e8i −0.332208 1.14249i
\(36\) 0 0
\(37\) 1.37358e8i 0.325645i −0.986655 0.162822i \(-0.947940\pi\)
0.986655 0.162822i \(-0.0520598\pi\)
\(38\) 0 0
\(39\) 9.08322e7 0.161207
\(40\) 0 0
\(41\) 1.46886e9 1.98002 0.990009 0.141003i \(-0.0450326\pi\)
0.990009 + 0.141003i \(0.0450326\pi\)
\(42\) 0 0
\(43\) 5.30160e8i 0.549960i 0.961450 + 0.274980i \(0.0886712\pi\)
−0.961450 + 0.274980i \(0.911329\pi\)
\(44\) 0 0
\(45\) 3.96207e8 1.15208e8i 0.320076 0.0930708i
\(46\) 0 0
\(47\) 1.34319e9i 0.854277i 0.904186 + 0.427138i \(0.140478\pi\)
−0.904186 + 0.427138i \(0.859522\pi\)
\(48\) 0 0
\(49\) −8.21851e8 −0.415637
\(50\) 0 0
\(51\) −1.16980e9 −0.474762
\(52\) 0 0
\(53\) 4.74535e9i 1.55866i −0.626615 0.779329i \(-0.715560\pi\)
0.626615 0.779329i \(-0.284440\pi\)
\(54\) 0 0
\(55\) 3.56372e9 1.03625e9i 0.954793 0.277632i
\(56\) 0 0
\(57\) 1.40994e9i 0.310377i
\(58\) 0 0
\(59\) 4.37861e9 0.797352 0.398676 0.917092i \(-0.369470\pi\)
0.398676 + 0.917092i \(0.369470\pi\)
\(60\) 0 0
\(61\) −7.78414e9 −1.18004 −0.590020 0.807389i \(-0.700880\pi\)
−0.590020 + 0.807389i \(0.700880\pi\)
\(62\) 0 0
\(63\) 3.12412e9i 0.396602i
\(64\) 0 0
\(65\) −7.29295e8 2.50809e9i −0.0779614 0.268114i
\(66\) 0 0
\(67\) 4.98481e9i 0.451063i 0.974236 + 0.225531i \(0.0724118\pi\)
−0.974236 + 0.225531i \(0.927588\pi\)
\(68\) 0 0
\(69\) −8.07119e9 −0.621252
\(70\) 0 0
\(71\) −9.09417e9 −0.598194 −0.299097 0.954223i \(-0.596685\pi\)
−0.299097 + 0.954223i \(0.596685\pi\)
\(72\) 0 0
\(73\) 1.88613e10i 1.06487i −0.846471 0.532435i \(-0.821277\pi\)
0.846471 0.532435i \(-0.178723\pi\)
\(74\) 0 0
\(75\) −6.36232e9 1.00152e10i −0.309584 0.487330i
\(76\) 0 0
\(77\) 2.81002e10i 1.18307i
\(78\) 0 0
\(79\) −4.50312e10 −1.64651 −0.823255 0.567672i \(-0.807844\pi\)
−0.823255 + 0.567672i \(0.807844\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) 0 0
\(83\) 6.88856e10i 1.91955i 0.280773 + 0.959774i \(0.409409\pi\)
−0.280773 + 0.959774i \(0.590591\pi\)
\(84\) 0 0
\(85\) 9.39236e9 + 3.23009e10i 0.229599 + 0.789607i
\(86\) 0 0
\(87\) 3.16645e10i 0.681110i
\(88\) 0 0
\(89\) 3.49597e9 0.0663624 0.0331812 0.999449i \(-0.489436\pi\)
0.0331812 + 0.999449i \(0.489436\pi\)
\(90\) 0 0
\(91\) −1.97765e10 −0.332217
\(92\) 0 0
\(93\) 1.50209e10i 0.223892i
\(94\) 0 0
\(95\) −3.89318e10 + 1.13205e10i −0.516208 + 0.150101i
\(96\) 0 0
\(97\) 1.62848e11i 1.92548i 0.270437 + 0.962738i \(0.412832\pi\)
−0.270437 + 0.962738i \(0.587168\pi\)
\(98\) 0 0
\(99\) 3.13622e10 0.331446
\(100\) 0 0
\(101\) 1.33281e11 1.26183 0.630915 0.775852i \(-0.282680\pi\)
0.630915 + 0.775852i \(0.282680\pi\)
\(102\) 0 0
\(103\) 8.49052e10i 0.721655i −0.932633 0.360827i \(-0.882494\pi\)
0.932633 0.360827i \(-0.117506\pi\)
\(104\) 0 0
\(105\) −8.62644e10 + 2.50837e10i −0.659615 + 0.191801i
\(106\) 0 0
\(107\) 4.19151e10i 0.288908i 0.989512 + 0.144454i \(0.0461425\pi\)
−0.989512 + 0.144454i \(0.953857\pi\)
\(108\) 0 0
\(109\) −2.67212e11 −1.66345 −0.831727 0.555185i \(-0.812647\pi\)
−0.831727 + 0.555185i \(0.812647\pi\)
\(110\) 0 0
\(111\) −3.33780e10 −0.188011
\(112\) 0 0
\(113\) 2.37749e11i 1.21391i −0.794735 0.606957i \(-0.792390\pi\)
0.794735 0.606957i \(-0.207610\pi\)
\(114\) 0 0
\(115\) 6.48038e10 + 2.22865e11i 0.300443 + 1.03324i
\(116\) 0 0
\(117\) 2.20722e10i 0.0930731i
\(118\) 0 0
\(119\) 2.54695e11 0.978390
\(120\) 0 0
\(121\) −3.22132e9 −0.0112905
\(122\) 0 0
\(123\) 3.56933e11i 1.14316i
\(124\) 0 0
\(125\) −2.25461e11 + 2.56091e11i −0.660793 + 0.750568i
\(126\) 0 0
\(127\) 7.15504e10i 0.192173i −0.995373 0.0960863i \(-0.969368\pi\)
0.995373 0.0960863i \(-0.0306325\pi\)
\(128\) 0 0
\(129\) 1.28829e11 0.317519
\(130\) 0 0
\(131\) −4.56783e11 −1.03447 −0.517235 0.855844i \(-0.673039\pi\)
−0.517235 + 0.855844i \(0.673039\pi\)
\(132\) 0 0
\(133\) 3.06980e11i 0.639626i
\(134\) 0 0
\(135\) −2.79955e10 9.62784e10i −0.0537344 0.184796i
\(136\) 0 0
\(137\) 2.86655e10i 0.0507454i −0.999678 0.0253727i \(-0.991923\pi\)
0.999678 0.0253727i \(-0.00807725\pi\)
\(138\) 0 0
\(139\) 1.20093e12 1.96307 0.981536 0.191280i \(-0.0612638\pi\)
0.981536 + 0.191280i \(0.0612638\pi\)
\(140\) 0 0
\(141\) 3.26395e11 0.493217
\(142\) 0 0
\(143\) 1.98531e11i 0.277638i
\(144\) 0 0
\(145\) −8.74333e11 + 2.54236e11i −1.13280 + 0.329391i
\(146\) 0 0
\(147\) 1.99710e11i 0.239968i
\(148\) 0 0
\(149\) 6.64637e11 0.741412 0.370706 0.928750i \(-0.379116\pi\)
0.370706 + 0.928750i \(0.379116\pi\)
\(150\) 0 0
\(151\) −1.70963e12 −1.77226 −0.886130 0.463436i \(-0.846616\pi\)
−0.886130 + 0.463436i \(0.846616\pi\)
\(152\) 0 0
\(153\) 2.84261e11i 0.274104i
\(154\) 0 0
\(155\) 4.14762e11 1.20603e11i 0.372370 0.108276i
\(156\) 0 0
\(157\) 9.96231e11i 0.833512i −0.909018 0.416756i \(-0.863167\pi\)
0.909018 0.416756i \(-0.136833\pi\)
\(158\) 0 0
\(159\) −1.15312e12 −0.899892
\(160\) 0 0
\(161\) 1.75730e12 1.28028
\(162\) 0 0
\(163\) 2.56482e11i 0.174592i 0.996182 + 0.0872960i \(0.0278226\pi\)
−0.996182 + 0.0872960i \(0.972177\pi\)
\(164\) 0 0
\(165\) −2.51808e11 8.65985e11i −0.160291 0.551250i
\(166\) 0 0
\(167\) 1.02735e12i 0.612040i 0.952025 + 0.306020i \(0.0989974\pi\)
−0.952025 + 0.306020i \(0.901003\pi\)
\(168\) 0 0
\(169\) 1.65244e12 0.922037
\(170\) 0 0
\(171\) −3.42616e11 −0.179196
\(172\) 0 0
\(173\) 3.51424e12i 1.72416i 0.506769 + 0.862082i \(0.330840\pi\)
−0.506769 + 0.862082i \(0.669160\pi\)
\(174\) 0 0
\(175\) 1.38524e12 + 2.18057e12i 0.637992 + 1.00429i
\(176\) 0 0
\(177\) 1.06400e12i 0.460352i
\(178\) 0 0
\(179\) 4.59480e12 1.86885 0.934427 0.356156i \(-0.115913\pi\)
0.934427 + 0.356156i \(0.115913\pi\)
\(180\) 0 0
\(181\) −9.54953e11 −0.365384 −0.182692 0.983170i \(-0.558481\pi\)
−0.182692 + 0.983170i \(0.558481\pi\)
\(182\) 0 0
\(183\) 1.89155e12i 0.681297i
\(184\) 0 0
\(185\) 2.67993e11 + 9.21645e11i 0.0909240 + 0.312694i
\(186\) 0 0
\(187\) 2.55682e12i 0.817656i
\(188\) 0 0
\(189\) −7.59161e11 −0.228978
\(190\) 0 0
\(191\) −4.18247e12 −1.19055 −0.595277 0.803520i \(-0.702958\pi\)
−0.595277 + 0.803520i \(0.702958\pi\)
\(192\) 0 0
\(193\) 3.35128e12i 0.900836i −0.892818 0.450418i \(-0.851275\pi\)
0.892818 0.450418i \(-0.148725\pi\)
\(194\) 0 0
\(195\) −6.09467e11 + 1.77219e11i −0.154796 + 0.0450110i
\(196\) 0 0
\(197\) 7.22875e12i 1.73580i 0.496742 + 0.867899i \(0.334530\pi\)
−0.496742 + 0.867899i \(0.665470\pi\)
\(198\) 0 0
\(199\) 1.05138e12 0.238818 0.119409 0.992845i \(-0.461900\pi\)
0.119409 + 0.992845i \(0.461900\pi\)
\(200\) 0 0
\(201\) 1.21131e12 0.260421
\(202\) 0 0
\(203\) 6.89417e12i 1.40363i
\(204\) 0 0
\(205\) −9.85577e12 + 2.86583e12i −1.90127 + 0.552845i
\(206\) 0 0
\(207\) 1.96130e12i 0.358680i
\(208\) 0 0
\(209\) −3.08169e12 −0.534545
\(210\) 0 0
\(211\) −3.80994e11 −0.0627141 −0.0313570 0.999508i \(-0.509983\pi\)
−0.0313570 + 0.999508i \(0.509983\pi\)
\(212\) 0 0
\(213\) 2.20988e12i 0.345368i
\(214\) 0 0
\(215\) −1.03437e12 3.55727e12i −0.153555 0.528087i
\(216\) 0 0
\(217\) 3.27042e12i 0.461398i
\(218\) 0 0
\(219\) −4.58331e12 −0.614803
\(220\) 0 0
\(221\) 1.79945e12 0.229605
\(222\) 0 0
\(223\) 3.50569e12i 0.425693i 0.977086 + 0.212846i \(0.0682734\pi\)
−0.977086 + 0.212846i \(0.931727\pi\)
\(224\) 0 0
\(225\) −2.43370e12 + 1.54604e12i −0.281360 + 0.178739i
\(226\) 0 0
\(227\) 4.84938e12i 0.534003i 0.963696 + 0.267002i \(0.0860329\pi\)
−0.963696 + 0.267002i \(0.913967\pi\)
\(228\) 0 0
\(229\) −1.41260e12 −0.148225 −0.0741127 0.997250i \(-0.523612\pi\)
−0.0741127 + 0.997250i \(0.523612\pi\)
\(230\) 0 0
\(231\) −6.82835e12 −0.683046
\(232\) 0 0
\(233\) 9.88438e12i 0.942957i 0.881878 + 0.471478i \(0.156279\pi\)
−0.881878 + 0.471478i \(0.843721\pi\)
\(234\) 0 0
\(235\) −2.62063e12 9.01253e12i −0.238525 0.820302i
\(236\) 0 0
\(237\) 1.09426e13i 0.950613i
\(238\) 0 0
\(239\) −5.87747e12 −0.487531 −0.243765 0.969834i \(-0.578383\pi\)
−0.243765 + 0.969834i \(0.578383\pi\)
\(240\) 0 0
\(241\) −9.32982e12 −0.739230 −0.369615 0.929185i \(-0.620510\pi\)
−0.369615 + 0.929185i \(0.620510\pi\)
\(242\) 0 0
\(243\) 8.47289e11i 0.0641500i
\(244\) 0 0
\(245\) 5.51446e12 1.60348e12i 0.399107 0.116051i
\(246\) 0 0
\(247\) 2.16884e12i 0.150105i
\(248\) 0 0
\(249\) 1.67392e13 1.10825
\(250\) 0 0
\(251\) −1.76150e13 −1.11603 −0.558016 0.829830i \(-0.688437\pi\)
−0.558016 + 0.829830i \(0.688437\pi\)
\(252\) 0 0
\(253\) 1.76411e13i 1.06995i
\(254\) 0 0
\(255\) 7.84913e12 2.28234e12i 0.455880 0.132559i
\(256\) 0 0
\(257\) 1.61047e13i 0.896023i −0.894028 0.448012i \(-0.852132\pi\)
0.894028 0.448012i \(-0.147868\pi\)
\(258\) 0 0
\(259\) 7.26723e12 0.387454
\(260\) 0 0
\(261\) −7.69448e12 −0.393239
\(262\) 0 0
\(263\) 8.60423e12i 0.421653i −0.977524 0.210826i \(-0.932384\pi\)
0.977524 0.210826i \(-0.0676155\pi\)
\(264\) 0 0
\(265\) 9.25844e12 + 3.18404e13i 0.435196 + 1.49667i
\(266\) 0 0
\(267\) 8.49520e11i 0.0383144i
\(268\) 0 0
\(269\) −1.03462e13 −0.447861 −0.223931 0.974605i \(-0.571889\pi\)
−0.223931 + 0.974605i \(0.571889\pi\)
\(270\) 0 0
\(271\) 3.19603e13 1.32825 0.664124 0.747622i \(-0.268804\pi\)
0.664124 + 0.747622i \(0.268804\pi\)
\(272\) 0 0
\(273\) 4.80568e12i 0.191805i
\(274\) 0 0
\(275\) −2.18901e13 + 1.39060e13i −0.839302 + 0.533180i
\(276\) 0 0
\(277\) 7.21606e12i 0.265865i 0.991125 + 0.132933i \(0.0424394\pi\)
−0.991125 + 0.132933i \(0.957561\pi\)
\(278\) 0 0
\(279\) 3.65007e12 0.129264
\(280\) 0 0
\(281\) −4.86472e13 −1.65643 −0.828216 0.560409i \(-0.810644\pi\)
−0.828216 + 0.560409i \(0.810644\pi\)
\(282\) 0 0
\(283\) 4.50061e13i 1.47382i 0.675988 + 0.736912i \(0.263717\pi\)
−0.675988 + 0.736912i \(0.736283\pi\)
\(284\) 0 0
\(285\) 2.75087e12 + 9.46043e12i 0.0866610 + 0.298033i
\(286\) 0 0
\(287\) 7.77134e13i 2.35584i
\(288\) 0 0
\(289\) 1.10974e13 0.323804
\(290\) 0 0
\(291\) 3.95721e13 1.11167
\(292\) 0 0
\(293\) 1.55228e13i 0.419949i 0.977707 + 0.209975i \(0.0673382\pi\)
−0.977707 + 0.209975i \(0.932662\pi\)
\(294\) 0 0
\(295\) −2.93796e13 + 8.54291e12i −0.765641 + 0.222631i
\(296\) 0 0
\(297\) 7.62102e12i 0.191361i
\(298\) 0 0
\(299\) 1.24155e13 0.300451
\(300\) 0 0
\(301\) −2.80493e13 −0.654345
\(302\) 0 0
\(303\) 3.23873e13i 0.728518i
\(304\) 0 0
\(305\) 5.22301e13 1.51873e13i 1.13311 0.329482i
\(306\) 0 0
\(307\) 5.15314e13i 1.07848i 0.842153 + 0.539239i \(0.181288\pi\)
−0.842153 + 0.539239i \(0.818712\pi\)
\(308\) 0 0
\(309\) −2.06320e13 −0.416648
\(310\) 0 0
\(311\) 1.21704e13 0.237204 0.118602 0.992942i \(-0.462159\pi\)
0.118602 + 0.992942i \(0.462159\pi\)
\(312\) 0 0
\(313\) 4.90592e13i 0.923053i 0.887126 + 0.461527i \(0.152698\pi\)
−0.887126 + 0.461527i \(0.847302\pi\)
\(314\) 0 0
\(315\) 6.09533e12 + 2.09622e13i 0.110736 + 0.380829i
\(316\) 0 0
\(317\) 2.65586e12i 0.0465992i 0.999729 + 0.0232996i \(0.00741717\pi\)
−0.999729 + 0.0232996i \(0.992583\pi\)
\(318\) 0 0
\(319\) −6.92087e13 −1.17304
\(320\) 0 0
\(321\) 1.01854e13 0.166801
\(322\) 0 0
\(323\) 2.79319e13i 0.442065i
\(324\) 0 0
\(325\) 9.78686e12 + 1.54059e13i 0.149722 + 0.235684i
\(326\) 0 0
\(327\) 6.49326e13i 0.960395i
\(328\) 0 0
\(329\) −7.10644e13 −1.01642
\(330\) 0 0
\(331\) −8.86699e13 −1.22665 −0.613327 0.789829i \(-0.710169\pi\)
−0.613327 + 0.789829i \(0.710169\pi\)
\(332\) 0 0
\(333\) 8.11085e12i 0.108548i
\(334\) 0 0
\(335\) −9.72563e12 3.34471e13i −0.125942 0.433124i
\(336\) 0 0
\(337\) 5.28648e13i 0.662525i 0.943539 + 0.331262i \(0.107475\pi\)
−0.943539 + 0.331262i \(0.892525\pi\)
\(338\) 0 0
\(339\) −5.77731e13 −0.700853
\(340\) 0 0
\(341\) 3.28309e13 0.385597
\(342\) 0 0
\(343\) 6.11331e13i 0.695278i
\(344\) 0 0
\(345\) 5.41561e13 1.57473e13i 0.596544 0.173461i
\(346\) 0 0
\(347\) 2.14116e13i 0.228474i 0.993454 + 0.114237i \(0.0364424\pi\)
−0.993454 + 0.114237i \(0.963558\pi\)
\(348\) 0 0
\(349\) 1.29282e14 1.33659 0.668295 0.743896i \(-0.267024\pi\)
0.668295 + 0.743896i \(0.267024\pi\)
\(350\) 0 0
\(351\) −5.36355e12 −0.0537358
\(352\) 0 0
\(353\) 3.24173e13i 0.314786i 0.987536 + 0.157393i \(0.0503090\pi\)
−0.987536 + 0.157393i \(0.949691\pi\)
\(354\) 0 0
\(355\) 6.10201e13 1.77432e13i 0.574404 0.167023i
\(356\) 0 0
\(357\) 6.18909e13i 0.564874i
\(358\) 0 0
\(359\) −1.01176e14 −0.895483 −0.447741 0.894163i \(-0.647771\pi\)
−0.447741 + 0.894163i \(0.647771\pi\)
\(360\) 0 0
\(361\) −8.28244e13 −0.710999
\(362\) 0 0
\(363\) 7.82780e11i 0.00651858i
\(364\) 0 0
\(365\) 3.67995e13 + 1.26556e14i 0.297325 + 1.02252i
\(366\) 0 0
\(367\) 6.19096e12i 0.0485395i −0.999705 0.0242697i \(-0.992274\pi\)
0.999705 0.0242697i \(-0.00772605\pi\)
\(368\) 0 0
\(369\) −8.67347e13 −0.660006
\(370\) 0 0
\(371\) 2.51063e14 1.85450
\(372\) 0 0
\(373\) 2.17159e14i 1.55733i −0.627442 0.778664i \(-0.715898\pi\)
0.627442 0.778664i \(-0.284102\pi\)
\(374\) 0 0
\(375\) 6.22302e13 + 5.47869e13i 0.433341 + 0.381509i
\(376\) 0 0
\(377\) 4.87080e13i 0.329400i
\(378\) 0 0
\(379\) 1.35854e14 0.892397 0.446199 0.894934i \(-0.352778\pi\)
0.446199 + 0.894934i \(0.352778\pi\)
\(380\) 0 0
\(381\) −1.73867e13 −0.110951
\(382\) 0 0
\(383\) 1.53210e14i 0.949932i −0.880004 0.474966i \(-0.842460\pi\)
0.880004 0.474966i \(-0.157540\pi\)
\(384\) 0 0
\(385\) 5.48250e13 + 1.88547e14i 0.330328 + 1.13602i
\(386\) 0 0
\(387\) 3.13054e13i 0.183320i
\(388\) 0 0
\(389\) −6.34461e13 −0.361145 −0.180573 0.983562i \(-0.557795\pi\)
−0.180573 + 0.983562i \(0.557795\pi\)
\(390\) 0 0
\(391\) −1.59896e14 −0.884839
\(392\) 0 0
\(393\) 1.10998e14i 0.597251i
\(394\) 0 0
\(395\) 3.02151e14 8.78583e13i 1.58103 0.459726i
\(396\) 0 0
\(397\) 2.82212e14i 1.43624i −0.695918 0.718121i \(-0.745002\pi\)
0.695918 0.718121i \(-0.254998\pi\)
\(398\) 0 0
\(399\) 7.45961e13 0.369288
\(400\) 0 0
\(401\) −4.11588e13 −0.198230 −0.0991149 0.995076i \(-0.531601\pi\)
−0.0991149 + 0.995076i \(0.531601\pi\)
\(402\) 0 0
\(403\) 2.31059e13i 0.108279i
\(404\) 0 0
\(405\) −2.33957e13 + 6.80291e12i −0.106692 + 0.0310236i
\(406\) 0 0
\(407\) 7.29538e13i 0.323801i
\(408\) 0 0
\(409\) −7.28620e13 −0.314792 −0.157396 0.987536i \(-0.550310\pi\)
−0.157396 + 0.987536i \(0.550310\pi\)
\(410\) 0 0
\(411\) −6.96573e12 −0.0292979
\(412\) 0 0
\(413\) 2.31660e14i 0.948694i
\(414\) 0 0
\(415\) −1.34400e14 4.62209e14i −0.535961 1.84321i
\(416\) 0 0
\(417\) 2.91826e14i 1.13338i
\(418\) 0 0
\(419\) −4.44807e13 −0.168265 −0.0841326 0.996455i \(-0.526812\pi\)
−0.0841326 + 0.996455i \(0.526812\pi\)
\(420\) 0 0
\(421\) 4.08282e13 0.150456 0.0752279 0.997166i \(-0.476032\pi\)
0.0752279 + 0.997166i \(0.476032\pi\)
\(422\) 0 0
\(423\) 7.93139e13i 0.284759i
\(424\) 0 0
\(425\) −1.26042e14 1.98408e14i −0.440936 0.694097i
\(426\) 0 0
\(427\) 4.11838e14i 1.40402i
\(428\) 0 0
\(429\) −4.82430e13 −0.160295
\(430\) 0 0
\(431\) −5.01831e14 −1.62530 −0.812648 0.582754i \(-0.801975\pi\)
−0.812648 + 0.582754i \(0.801975\pi\)
\(432\) 0 0
\(433\) 3.09744e14i 0.977957i −0.872296 0.488979i \(-0.837370\pi\)
0.872296 0.488979i \(-0.162630\pi\)
\(434\) 0 0
\(435\) 6.17793e13 + 2.12463e14i 0.190174 + 0.654022i
\(436\) 0 0
\(437\) 1.92720e14i 0.578466i
\(438\) 0 0
\(439\) −1.08027e13 −0.0316213 −0.0158106 0.999875i \(-0.505033\pi\)
−0.0158106 + 0.999875i \(0.505033\pi\)
\(440\) 0 0
\(441\) 4.85295e13 0.138546
\(442\) 0 0
\(443\) 3.45097e14i 0.960993i 0.876997 + 0.480497i \(0.159544\pi\)
−0.876997 + 0.480497i \(0.840456\pi\)
\(444\) 0 0
\(445\) −2.34573e13 + 6.82082e12i −0.0637232 + 0.0185292i
\(446\) 0 0
\(447\) 1.61507e14i 0.428055i
\(448\) 0 0
\(449\) 5.12768e14 1.32607 0.663035 0.748589i \(-0.269268\pi\)
0.663035 + 0.748589i \(0.269268\pi\)
\(450\) 0 0
\(451\) −7.80144e14 −1.96881
\(452\) 0 0
\(453\) 4.15439e14i 1.02322i
\(454\) 0 0
\(455\) 1.32696e14 3.85850e13i 0.319004 0.0927589i
\(456\) 0 0
\(457\) 2.33364e14i 0.547640i 0.961781 + 0.273820i \(0.0882873\pi\)
−0.961781 + 0.273820i \(0.911713\pi\)
\(458\) 0 0
\(459\) 6.90755e13 0.158254
\(460\) 0 0
\(461\) 1.62814e14 0.364197 0.182098 0.983280i \(-0.441711\pi\)
0.182098 + 0.983280i \(0.441711\pi\)
\(462\) 0 0
\(463\) 2.48926e14i 0.543718i 0.962337 + 0.271859i \(0.0876385\pi\)
−0.962337 + 0.271859i \(0.912361\pi\)
\(464\) 0 0
\(465\) −2.93065e13 1.00787e14i −0.0625134 0.214988i
\(466\) 0 0
\(467\) 3.50158e14i 0.729494i 0.931107 + 0.364747i \(0.118845\pi\)
−0.931107 + 0.364747i \(0.881155\pi\)
\(468\) 0 0
\(469\) −2.63732e14 −0.536677
\(470\) 0 0
\(471\) −2.42084e14 −0.481228
\(472\) 0 0
\(473\) 2.81580e14i 0.546846i
\(474\) 0 0
\(475\) 2.39138e14 1.51916e14i 0.453768 0.288263i
\(476\) 0 0
\(477\) 2.80208e14i 0.519553i
\(478\) 0 0
\(479\) 4.41157e14 0.799370 0.399685 0.916653i \(-0.369119\pi\)
0.399685 + 0.916653i \(0.369119\pi\)
\(480\) 0 0
\(481\) 5.13437e13 0.0909263
\(482\) 0 0
\(483\) 4.27024e14i 0.739169i
\(484\) 0 0
\(485\) −3.17725e14 1.09268e15i −0.537616 1.84890i
\(486\) 0 0
\(487\) 4.35803e12i 0.00720909i −0.999994 0.00360455i \(-0.998853\pi\)
0.999994 0.00360455i \(-0.00114736\pi\)
\(488\) 0 0
\(489\) 6.23250e13 0.100801
\(490\) 0 0
\(491\) 6.73844e13 0.106564 0.0532821 0.998580i \(-0.483032\pi\)
0.0532821 + 0.998580i \(0.483032\pi\)
\(492\) 0 0
\(493\) 6.27295e14i 0.970094i
\(494\) 0 0
\(495\) −2.10434e14 + 6.11894e13i −0.318264 + 0.0925439i
\(496\) 0 0
\(497\) 4.81148e14i 0.711735i
\(498\) 0 0
\(499\) 8.06287e14 1.16664 0.583320 0.812243i \(-0.301753\pi\)
0.583320 + 0.812243i \(0.301753\pi\)
\(500\) 0 0
\(501\) 2.49647e14 0.353361
\(502\) 0 0
\(503\) 1.30287e15i 1.80416i −0.431565 0.902082i \(-0.642038\pi\)
0.431565 0.902082i \(-0.357962\pi\)
\(504\) 0 0
\(505\) −8.94290e14 + 2.60039e14i −1.21165 + 0.352318i
\(506\) 0 0
\(507\) 4.01542e14i 0.532338i
\(508\) 0 0
\(509\) 1.09216e15 1.41690 0.708450 0.705761i \(-0.249395\pi\)
0.708450 + 0.705761i \(0.249395\pi\)
\(510\) 0 0
\(511\) 9.97902e14 1.26699
\(512\) 0 0
\(513\) 8.32556e13i 0.103459i
\(514\) 0 0
\(515\) 1.65655e14 + 5.69697e14i 0.201495 + 0.692954i
\(516\) 0 0
\(517\) 7.13397e14i 0.849441i
\(518\) 0 0
\(519\) 8.53961e14 0.995446
\(520\) 0 0
\(521\) 5.50995e14 0.628840 0.314420 0.949284i \(-0.398190\pi\)
0.314420 + 0.949284i \(0.398190\pi\)
\(522\) 0 0
\(523\) 4.43612e14i 0.495729i 0.968795 + 0.247865i \(0.0797288\pi\)
−0.968795 + 0.247865i \(0.920271\pi\)
\(524\) 0 0
\(525\) 5.29878e14 3.36613e14i 0.579828 0.368345i
\(526\) 0 0
\(527\) 2.97573e14i 0.318886i
\(528\) 0 0
\(529\) −1.50411e14 −0.157861
\(530\) 0 0
\(531\) −2.58553e14 −0.265784
\(532\) 0 0
\(533\) 5.49053e14i 0.552859i
\(534\) 0 0
\(535\) −8.17786e13 2.81242e14i −0.0806666 0.277418i
\(536\) 0 0
\(537\) 1.11654e15i 1.07898i
\(538\) 0 0
\(539\) 4.36503e14 0.413284
\(540\) 0 0
\(541\) −7.37013e14 −0.683739 −0.341869 0.939747i \(-0.611060\pi\)
−0.341869 + 0.939747i \(0.611060\pi\)
\(542\) 0 0
\(543\) 2.32054e14i 0.210955i
\(544\) 0 0
\(545\) 1.79294e15 5.21346e14i 1.59730 0.464457i
\(546\) 0 0
\(547\) 2.04180e15i 1.78272i −0.453299 0.891358i \(-0.649753\pi\)
0.453299 0.891358i \(-0.350247\pi\)
\(548\) 0 0
\(549\) 4.59646e14 0.393347
\(550\) 0 0
\(551\) 7.56069e14 0.634202
\(552\) 0 0
\(553\) 2.38248e15i 1.95903i
\(554\) 0 0
\(555\) 2.23960e14 6.51223e13i 0.180534 0.0524950i
\(556\) 0 0
\(557\) 2.16374e15i 1.71002i 0.518611 + 0.855011i \(0.326449\pi\)
−0.518611 + 0.855011i \(0.673551\pi\)
\(558\) 0 0
\(559\) −1.98171e14 −0.153559
\(560\) 0 0
\(561\) 6.21306e14 0.472074
\(562\) 0 0
\(563\) 2.38895e15i 1.77996i −0.455995 0.889982i \(-0.650717\pi\)
0.455995 0.889982i \(-0.349283\pi\)
\(564\) 0 0
\(565\) 4.63862e14 + 1.59525e15i 0.338940 + 1.16564i
\(566\) 0 0
\(567\) 1.84476e14i 0.132201i
\(568\) 0 0
\(569\) −8.76463e13 −0.0616050 −0.0308025 0.999525i \(-0.509806\pi\)
−0.0308025 + 0.999525i \(0.509806\pi\)
\(570\) 0 0
\(571\) −1.74097e15 −1.20031 −0.600155 0.799884i \(-0.704894\pi\)
−0.600155 + 0.799884i \(0.704894\pi\)
\(572\) 0 0
\(573\) 1.01634e15i 0.687367i
\(574\) 0 0
\(575\) −8.69643e14 1.36894e15i −0.576989 0.908264i
\(576\) 0 0
\(577\) 1.81953e15i 1.18438i 0.805797 + 0.592192i \(0.201737\pi\)
−0.805797 + 0.592192i \(0.798263\pi\)
\(578\) 0 0
\(579\) −8.14362e14 −0.520098
\(580\) 0 0
\(581\) −3.64455e15 −2.28389
\(582\) 0 0
\(583\) 2.52036e15i 1.54983i
\(584\) 0 0
\(585\) 4.30641e13 + 1.48100e14i 0.0259871 + 0.0893715i
\(586\) 0 0
\(587\) 7.68456e14i 0.455103i −0.973766 0.227551i \(-0.926928\pi\)
0.973766 0.227551i \(-0.0730719\pi\)
\(588\) 0 0
\(589\) −3.58660e14 −0.208473
\(590\) 0 0
\(591\) 1.75659e15 1.00216
\(592\) 0 0
\(593\) 1.21221e15i 0.678855i −0.940632 0.339427i \(-0.889767\pi\)
0.940632 0.339427i \(-0.110233\pi\)
\(594\) 0 0
\(595\) −1.70895e15 + 4.96924e14i −0.939479 + 0.273179i
\(596\) 0 0
\(597\) 2.55485e14i 0.137882i
\(598\) 0 0
\(599\) −1.29651e15 −0.686954 −0.343477 0.939161i \(-0.611605\pi\)
−0.343477 + 0.939161i \(0.611605\pi\)
\(600\) 0 0
\(601\) −1.83742e15 −0.955871 −0.477935 0.878395i \(-0.658615\pi\)
−0.477935 + 0.878395i \(0.658615\pi\)
\(602\) 0 0
\(603\) 2.94348e14i 0.150354i
\(604\) 0 0
\(605\) 2.16144e13 6.28497e12i 0.0108415 0.00315245i
\(606\) 0 0
\(607\) 9.38310e14i 0.462177i −0.972933 0.231089i \(-0.925771\pi\)
0.972933 0.231089i \(-0.0742287\pi\)
\(608\) 0 0
\(609\) 1.67528e15 0.810388
\(610\) 0 0
\(611\) −5.02077e14 −0.238531
\(612\) 0 0
\(613\) 8.45726e13i 0.0394636i 0.999805 + 0.0197318i \(0.00628124\pi\)
−0.999805 + 0.0197318i \(0.993719\pi\)
\(614\) 0 0
\(615\) 6.96396e14 + 2.39495e15i 0.319185 + 1.09770i
\(616\) 0 0
\(617\) 1.30490e15i 0.587501i 0.955882 + 0.293750i \(0.0949034\pi\)
−0.955882 + 0.293750i \(0.905097\pi\)
\(618\) 0 0
\(619\) −1.79372e15 −0.793335 −0.396668 0.917962i \(-0.629833\pi\)
−0.396668 + 0.917962i \(0.629833\pi\)
\(620\) 0 0
\(621\) 4.76596e14 0.207084
\(622\) 0 0
\(623\) 1.84962e14i 0.0789584i
\(624\) 0 0
\(625\) 1.01315e15 2.15821e15i 0.424946 0.905219i
\(626\) 0 0
\(627\) 7.48850e14i 0.308620i
\(628\) 0 0
\(629\) −6.61240e14 −0.267781
\(630\) 0 0
\(631\) 1.89462e15 0.753981 0.376991 0.926217i \(-0.376959\pi\)
0.376991 + 0.926217i \(0.376959\pi\)
\(632\) 0 0
\(633\) 9.25816e13i 0.0362080i
\(634\) 0 0
\(635\) 1.39599e14 + 4.80089e14i 0.0536570 + 0.184530i
\(636\) 0 0
\(637\) 3.07204e14i 0.116054i
\(638\) 0 0
\(639\) 5.37002e14 0.199398
\(640\) 0 0
\(641\) −2.48785e14 −0.0908040 −0.0454020 0.998969i \(-0.514457\pi\)
−0.0454020 + 0.998969i \(0.514457\pi\)
\(642\) 0 0
\(643\) 4.34116e15i 1.55756i 0.627297 + 0.778780i \(0.284161\pi\)
−0.627297 + 0.778780i \(0.715839\pi\)
\(644\) 0 0
\(645\) −8.64418e14 + 2.51352e14i −0.304891 + 0.0886553i
\(646\) 0 0
\(647\) 1.76476e15i 0.611944i 0.952041 + 0.305972i \(0.0989814\pi\)
−0.952041 + 0.305972i \(0.901019\pi\)
\(648\) 0 0
\(649\) −2.32558e15 −0.792838
\(650\) 0 0
\(651\) −7.94713e14 −0.266388
\(652\) 0 0
\(653\) 8.57218e14i 0.282533i 0.989972 + 0.141266i \(0.0451174\pi\)
−0.989972 + 0.141266i \(0.954883\pi\)
\(654\) 0 0
\(655\) 3.06493e15 8.91209e14i 0.993328 0.288837i
\(656\) 0 0
\(657\) 1.11374e15i 0.354957i
\(658\) 0 0
\(659\) 2.32789e15 0.729613 0.364807 0.931083i \(-0.381135\pi\)
0.364807 + 0.931083i \(0.381135\pi\)
\(660\) 0 0
\(661\) −3.06684e15 −0.945328 −0.472664 0.881243i \(-0.656708\pi\)
−0.472664 + 0.881243i \(0.656708\pi\)
\(662\) 0 0
\(663\) 4.37266e14i 0.132563i
\(664\) 0 0
\(665\) −5.98934e14 2.05978e15i −0.178591 0.614187i
\(666\) 0 0
\(667\) 4.32811e15i 1.26942i
\(668\) 0 0
\(669\) 8.51882e14 0.245774
\(670\) 0 0
\(671\) 4.13433e15 1.17336
\(672\) 0 0
\(673\) 2.69617e15i 0.752775i 0.926462 + 0.376387i \(0.122834\pi\)
−0.926462 + 0.376387i \(0.877166\pi\)
\(674\) 0 0
\(675\) 3.75689e14 + 5.91389e14i 0.103195 + 0.162443i
\(676\) 0 0
\(677\) 5.36073e15i 1.44872i 0.689419 + 0.724362i \(0.257866\pi\)
−0.689419 + 0.724362i \(0.742134\pi\)
\(678\) 0 0
\(679\) −8.61584e15 −2.29094
\(680\) 0 0
\(681\) 1.17840e15 0.308307
\(682\) 0 0
\(683\) 7.26562e15i 1.87050i 0.353981 + 0.935252i \(0.384828\pi\)
−0.353981 + 0.935252i \(0.615172\pi\)
\(684\) 0 0
\(685\) 5.59280e13 + 1.92340e14i 0.0141687 + 0.0487273i
\(686\) 0 0
\(687\) 3.43261e14i 0.0855780i
\(688\) 0 0
\(689\) 1.77379e15 0.435207
\(690\) 0 0
\(691\) −2.83285e15 −0.684061 −0.342030 0.939689i \(-0.611115\pi\)
−0.342030 + 0.939689i \(0.611115\pi\)
\(692\) 0 0
\(693\) 1.65929e15i 0.394357i
\(694\) 0 0
\(695\) −8.05800e15 + 2.34308e15i −1.88500 + 0.548114i
\(696\) 0 0
\(697\) 7.07108e15i 1.62819i
\(698\) 0 0
\(699\) 2.40190e15 0.544416
\(700\) 0 0
\(701\) 6.35487e15 1.41794 0.708969 0.705239i \(-0.249161\pi\)
0.708969 + 0.705239i \(0.249161\pi\)
\(702\) 0 0
\(703\) 7.96982e14i 0.175063i
\(704\) 0 0
\(705\) −2.19005e15 + 6.36814e14i −0.473601 + 0.137712i
\(706\) 0 0
\(707\) 7.05153e15i 1.50133i
\(708\) 0 0
\(709\) −5.55781e15 −1.16506 −0.582531 0.812808i \(-0.697938\pi\)
−0.582531 + 0.812808i \(0.697938\pi\)
\(710\) 0 0
\(711\) 2.65905e15 0.548837
\(712\) 0 0
\(713\) 2.05315e15i 0.417280i
\(714\) 0 0
\(715\) 3.87344e14 + 1.33210e15i 0.0775201 + 0.266597i
\(716\) 0 0
\(717\) 1.42823e15i 0.281476i
\(718\) 0 0
\(719\) 1.05266e15 0.204305 0.102153 0.994769i \(-0.467427\pi\)
0.102153 + 0.994769i \(0.467427\pi\)
\(720\) 0 0
\(721\) 4.49210e15 0.858629
\(722\) 0 0
\(723\) 2.26715e15i 0.426795i
\(724\) 0 0
\(725\) 5.37058e15 3.41174e15i 0.995777 0.632583i
\(726\) 0 0
\(727\) 3.83121e15i 0.699675i −0.936810 0.349838i \(-0.886237\pi\)
0.936810 0.349838i \(-0.113763\pi\)
\(728\) 0 0
\(729\) −2.05891e14 −0.0370370
\(730\) 0 0
\(731\) 2.55219e15 0.452238
\(732\) 0 0
\(733\) 7.31689e15i 1.27719i 0.769544 + 0.638594i \(0.220483\pi\)
−0.769544 + 0.638594i \(0.779517\pi\)
\(734\) 0 0
\(735\) −3.89645e14 1.34001e15i −0.0670021 0.230425i
\(736\) 0 0
\(737\) 2.64754e15i 0.448509i
\(738\) 0 0
\(739\) −1.04805e16 −1.74920 −0.874598 0.484848i \(-0.838875\pi\)
−0.874598 + 0.484848i \(0.838875\pi\)
\(740\) 0 0
\(741\) 5.27029e14 0.0866631
\(742\) 0 0
\(743\) 3.28089e15i 0.531561i 0.964034 + 0.265780i \(0.0856296\pi\)
−0.964034 + 0.265780i \(0.914370\pi\)
\(744\) 0 0
\(745\) −4.45958e15 + 1.29674e15i −0.711926 + 0.207011i
\(746\) 0 0
\(747\) 4.06763e15i 0.639850i
\(748\) 0 0
\(749\) −2.21761e15 −0.343744
\(750\) 0 0
\(751\) −9.30704e15 −1.42165 −0.710824 0.703370i \(-0.751678\pi\)
−0.710824 + 0.703370i \(0.751678\pi\)
\(752\) 0 0
\(753\) 4.28044e15i 0.644342i
\(754\) 0 0
\(755\) 1.14713e16 3.33557e15i 1.70178 0.494837i
\(756\) 0 0
\(757\) 6.20592e15i 0.907359i 0.891165 + 0.453680i \(0.149889\pi\)
−0.891165 + 0.453680i \(0.850111\pi\)
\(758\) 0 0
\(759\) 4.28678e15 0.617735
\(760\) 0 0
\(761\) −6.29521e14 −0.0894118 −0.0447059 0.999000i \(-0.514235\pi\)
−0.0447059 + 0.999000i \(0.514235\pi\)
\(762\) 0 0
\(763\) 1.41375e16i 1.97919i
\(764\) 0 0
\(765\) −5.54609e14 1.90734e15i −0.0765331 0.263202i
\(766\) 0 0
\(767\) 1.63670e15i 0.222636i
\(768\) 0 0
\(769\) −4.37850e15 −0.587126 −0.293563 0.955940i \(-0.594841\pi\)
−0.293563 + 0.955940i \(0.594841\pi\)
\(770\) 0 0
\(771\) −3.91343e15 −0.517319
\(772\) 0 0
\(773\) 6.24169e15i 0.813420i 0.913557 + 0.406710i \(0.133324\pi\)
−0.913557 + 0.406710i \(0.866676\pi\)
\(774\) 0 0
\(775\) −2.54767e15 + 1.61845e15i −0.327328 + 0.207940i
\(776\) 0 0
\(777\) 1.76594e15i 0.223697i
\(778\) 0 0
\(779\) 8.52266e15 1.06443
\(780\) 0 0
\(781\) 4.83011e15 0.594808
\(782\) 0 0
\(783\) 1.86976e15i 0.227037i
\(784\) 0 0
\(785\) 1.94370e15 + 6.68452e15i 0.232727 + 0.800363i
\(786\) 0 0
\(787\) 1.67198e16i 1.97411i 0.160397 + 0.987053i \(0.448722\pi\)
−0.160397 + 0.987053i \(0.551278\pi\)
\(788\) 0 0
\(789\) −2.09083e15 −0.243441
\(790\) 0 0
\(791\) 1.25787e16 1.44432
\(792\) 0 0
\(793\) 2.90968e15i 0.329490i
\(794\) 0 0
\(795\) 7.73721e15 2.24980e15i 0.864102 0.251261i
\(796\) 0 0
\(797\) 4.36301e15i 0.480580i 0.970701 + 0.240290i \(0.0772425\pi\)
−0.970701 + 0.240290i \(0.922758\pi\)
\(798\) 0 0
\(799\) 6.46610e15 0.702481
\(800\) 0 0
\(801\) −2.06433e14 −0.0221208
\(802\) 0 0
\(803\) 1.00177e16i 1.05884i
\(804\) 0 0
\(805\) −1.17912e16 + 3.42859e15i −1.22936 + 0.357469i
\(806\) 0 0
\(807\) 2.51413e15i 0.258573i
\(808\) 0 0
\(809\) −3.55238e15 −0.360415 −0.180208 0.983629i \(-0.557677\pi\)
−0.180208 + 0.983629i \(0.557677\pi\)
\(810\) 0 0
\(811\) −1.38794e16 −1.38917 −0.694585 0.719411i \(-0.744412\pi\)
−0.694585 + 0.719411i \(0.744412\pi\)
\(812\) 0 0
\(813\) 7.76635e15i 0.766865i
\(814\) 0 0
\(815\) −5.00410e14 1.72094e15i −0.0487482 0.167648i
\(816\) 0 0
\(817\) 3.07611e15i 0.295652i
\(818\) 0 0
\(819\) 1.16778e15 0.110739
\(820\) 0 0
\(821\) 9.65670e15 0.903528 0.451764 0.892138i \(-0.350795\pi\)
0.451764 + 0.892138i \(0.350795\pi\)
\(822\) 0 0
\(823\) 1.62599e16i 1.50114i 0.660793 + 0.750568i \(0.270220\pi\)
−0.660793 + 0.750568i \(0.729780\pi\)
\(824\) 0 0
\(825\) 3.37917e15 + 5.31930e15i 0.307832 + 0.484571i
\(826\) 0 0
\(827\) 9.52899e15i 0.856578i −0.903642 0.428289i \(-0.859117\pi\)
0.903642 0.428289i \(-0.140883\pi\)
\(828\) 0 0
\(829\) −1.66053e16 −1.47298 −0.736492 0.676446i \(-0.763519\pi\)
−0.736492 + 0.676446i \(0.763519\pi\)
\(830\) 0 0
\(831\) 1.75350e15 0.153497
\(832\) 0 0
\(833\) 3.95638e15i 0.341783i
\(834\) 0 0
\(835\) −2.00442e15 6.89335e15i −0.170889 0.587699i
\(836\) 0 0
\(837\) 8.86967e14i 0.0746307i
\(838\) 0 0
\(839\) −1.01371e16 −0.841827 −0.420913 0.907101i \(-0.638290\pi\)
−0.420913 + 0.907101i \(0.638290\pi\)
\(840\) 0 0
\(841\) 4.77933e15 0.391732
\(842\) 0 0
\(843\) 1.18213e16i 0.956341i
\(844\) 0 0
\(845\) −1.10875e16 + 3.22400e15i −0.885367 + 0.257444i
\(846\) 0 0
\(847\) 1.70431e14i 0.0134335i
\(848\) 0 0
\(849\) 1.09365e16 0.850913
\(850\) 0 0
\(851\) −4.56231e15 −0.350407
\(852\) 0 0
\(853\) 2.03075e16i 1.53970i 0.638224 + 0.769851i \(0.279669\pi\)
−0.638224 + 0.769851i \(0.720331\pi\)
\(854\) 0 0
\(855\) 2.29888e15 6.68462e14i 0.172069 0.0500337i
\(856\) 0 0
\(857\) 4.99342e15i 0.368981i −0.982834 0.184490i \(-0.940937\pi\)
0.982834 0.184490i \(-0.0590635\pi\)
\(858\) 0 0
\(859\) 5.27939e15 0.385142 0.192571 0.981283i \(-0.438317\pi\)
0.192571 + 0.981283i \(0.438317\pi\)
\(860\) 0 0
\(861\) 1.88843e16 1.36014
\(862\) 0 0
\(863\) 6.94499e15i 0.493869i −0.969032 0.246935i \(-0.920577\pi\)
0.969032 0.246935i \(-0.0794233\pi\)
\(864\) 0 0
\(865\) −6.85648e15 2.35799e16i −0.481408 1.65559i
\(866\) 0 0
\(867\) 2.69667e15i 0.186949i
\(868\) 0 0
\(869\) 2.39170e16 1.63719
\(870\) 0 0
\(871\) −1.86330e15 −0.125945
\(872\) 0 0
\(873\) 9.61601e15i 0.641825i
\(874\) 0 0
\(875\) −1.35491e16 1.19285e16i −0.893030 0.786216i
\(876\) 0 0
\(877\) 1.66689e16i 1.08495i −0.840073 0.542473i \(-0.817488\pi\)
0.840073 0.542473i \(-0.182512\pi\)
\(878\) 0 0
\(879\) 3.77203e15 0.242458
\(880\) 0 0
\(881\) −7.30716e15 −0.463854 −0.231927 0.972733i \(-0.574503\pi\)
−0.231927 + 0.972733i \(0.574503\pi\)
\(882\) 0 0
\(883\) 1.41660e16i 0.888100i −0.896002 0.444050i \(-0.853541\pi\)
0.896002 0.444050i \(-0.146459\pi\)
\(884\) 0 0
\(885\) 2.07593e15 + 7.13925e15i 0.128536 + 0.442043i
\(886\) 0 0
\(887\) 1.48432e16i 0.907713i −0.891075 0.453857i \(-0.850048\pi\)
0.891075 0.453857i \(-0.149952\pi\)
\(888\) 0 0
\(889\) 3.78554e15 0.228648
\(890\) 0 0
\(891\) −1.85191e15 −0.110482
\(892\) 0 0
\(893\) 7.79348e15i 0.459249i
\(894\) 0 0
\(895\) −3.08302e16 + 8.96471e15i −1.79453 + 0.521807i
\(896\) 0 0
\(897\) 3.01697e15i 0.173465i
\(898\) 0 0
\(899\) −8.05482e15 −0.457486
\(900\) 0 0
\(901\) −2.28441e16 −1.28170
\(902\) 0 0
\(903\) 6.81599e15i 0.377786i
\(904\) 0 0
\(905\) 6.40755e15 1.86317e15i 0.350853 0.102020i
\(906\) 0 0
\(907\) 1.13330e16i 0.613061i 0.951861 + 0.306530i \(0.0991681\pi\)
−0.951861 + 0.306530i \(0.900832\pi\)
\(908\) 0 0
\(909\) −7.87011e15 −0.420610
\(910\) 0 0
\(911\) 1.91130e16 1.00920 0.504602 0.863352i \(-0.331639\pi\)
0.504602 + 0.863352i \(0.331639\pi\)
\(912\) 0 0
\(913\) 3.65867e16i 1.90868i
\(914\) 0 0
\(915\) −3.69051e15 1.26919e16i −0.190226 0.654201i
\(916\) 0 0
\(917\) 2.41671e16i 1.23082i
\(918\) 0 0
\(919\) 7.09706e15 0.357144 0.178572 0.983927i \(-0.442852\pi\)
0.178572 + 0.983927i \(0.442852\pi\)
\(920\) 0 0
\(921\) 1.25221e16 0.622660
\(922\) 0 0
\(923\) 3.39936e15i 0.167027i
\(924\) 0 0
\(925\) −3.59636e15 5.66119e15i −0.174616 0.274871i
\(926\) 0 0
\(927\) 5.01357e15i 0.240552i
\(928\) 0 0
\(929\) 1.87622e16 0.889604 0.444802 0.895629i \(-0.353274\pi\)
0.444802 + 0.895629i \(0.353274\pi\)
\(930\) 0 0
\(931\) −4.76856e15 −0.223442
\(932\) 0 0
\(933\) 2.95741e15i 0.136950i
\(934\) 0 0
\(935\) −4.98849e15 1.71557e16i −0.228300 0.785137i
\(936\) 0 0
\(937\) 3.08165e16i 1.39385i −0.717145 0.696924i \(-0.754552\pi\)
0.717145 0.696924i \(-0.245448\pi\)
\(938\) 0 0
\(939\) 1.19214e16 0.532925
\(940\) 0 0
\(941\) −4.26974e16 −1.88651 −0.943255 0.332070i \(-0.892253\pi\)
−0.943255 + 0.332070i \(0.892253\pi\)
\(942\) 0 0
\(943\) 4.87879e16i 2.13058i
\(944\) 0 0
\(945\) 5.09383e15 1.48117e15i 0.219872 0.0639335i
\(946\) 0 0
\(947\) 1.63317e16i 0.696799i 0.937346 + 0.348399i \(0.113275\pi\)
−0.937346 + 0.348399i \(0.886725\pi\)
\(948\) 0 0
\(949\) 7.05028e15 0.297332
\(950\) 0 0
\(951\) 6.45373e14 0.0269041
\(952\) 0 0
\(953\) 2.78821e16i 1.14899i −0.818509 0.574494i \(-0.805199\pi\)
0.818509 0.574494i \(-0.194801\pi\)
\(954\) 0 0
\(955\) 2.80636e16 8.16023e15i 1.14321 0.332417i
\(956\) 0 0
\(957\) 1.68177e16i 0.677254i
\(958\) 0 0
\(959\) 1.51662e15 0.0603772
\(960\) 0 0
\(961\) −2.15875e16 −0.849617
\(962\) 0 0
\(963\) 2.47504e15i 0.0963026i
\(964\) 0 0
\(965\) 6.53854e15 + 2.24865e16i 0.251525 + 0.865010i
\(966\) 0 0
\(967\) 7.21160e15i 0.274275i −0.990552 0.137137i \(-0.956210\pi\)
0.990552 0.137137i \(-0.0437902\pi\)
\(968\) 0 0
\(969\) −6.78744e15 −0.255226
\(970\) 0 0
\(971\) 4.56053e16 1.69555 0.847773 0.530359i \(-0.177943\pi\)
0.847773 + 0.530359i \(0.177943\pi\)
\(972\) 0 0
\(973\) 6.35379e16i 2.33567i
\(974\) 0 0
\(975\) 3.74364e15 2.37821e15i 0.136072 0.0864419i
\(976\) 0 0
\(977\) 4.85178e16i 1.74374i −0.489740 0.871868i \(-0.662908\pi\)
0.489740 0.871868i \(-0.337092\pi\)
\(978\) 0 0
\(979\) −1.85678e15 −0.0659867
\(980\) 0 0
\(981\) 1.57786e16 0.554485
\(982\) 0 0
\(983\) 4.37954e16i 1.52189i 0.648814 + 0.760947i \(0.275265\pi\)
−0.648814 + 0.760947i \(0.724735\pi\)
\(984\) 0 0
\(985\) −1.41037e16 4.85035e16i −0.484656 1.66676i
\(986\) 0 0
\(987\) 1.72687e16i 0.586832i
\(988\) 0 0
\(989\) 1.76092e16 0.591778
\(990\) 0 0
\(991\) 2.55075e16 0.847740 0.423870 0.905723i \(-0.360671\pi\)
0.423870 + 0.905723i \(0.360671\pi\)
\(992\) 0 0
\(993\) 2.15468e16i 0.708209i
\(994\) 0 0
\(995\) −7.05456e15 + 2.05130e15i −0.229321 + 0.0666810i
\(996\) 0 0
\(997\) 8.08618e15i 0.259968i 0.991516 + 0.129984i \(0.0414926\pi\)
−0.991516 + 0.129984i \(0.958507\pi\)
\(998\) 0 0
\(999\) 1.97094e15 0.0626704
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.12.f.b.49.1 6
4.3 odd 2 30.12.c.b.19.4 yes 6
5.4 even 2 inner 240.12.f.b.49.4 6
12.11 even 2 90.12.c.c.19.3 6
20.3 even 4 150.12.a.u.1.1 3
20.7 even 4 150.12.a.t.1.3 3
20.19 odd 2 30.12.c.b.19.1 6
60.59 even 2 90.12.c.c.19.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.12.c.b.19.1 6 20.19 odd 2
30.12.c.b.19.4 yes 6 4.3 odd 2
90.12.c.c.19.3 6 12.11 even 2
90.12.c.c.19.6 6 60.59 even 2
150.12.a.t.1.3 3 20.7 even 4
150.12.a.u.1.1 3 20.3 even 4
240.12.f.b.49.1 6 1.1 even 1 trivial
240.12.f.b.49.4 6 5.4 even 2 inner