Properties

Label 150.12.a.t.1.3
Level $150$
Weight $12$
Character 150.1
Self dual yes
Analytic conductor $115.251$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,12,Mod(1,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-96,729,3072,0,-23328,-67384] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.251477084\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 175039x - 13178910 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-78.0027\) of defining polynomial
Character \(\chi\) \(=\) 150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000 q^{2} +243.000 q^{3} +1024.00 q^{4} -7776.00 q^{6} +52907.3 q^{7} -32768.0 q^{8} +59049.0 q^{9} +531122. q^{11} +248832. q^{12} +373795. q^{13} -1.69303e6 q^{14} +1.04858e6 q^{16} +4.81399e6 q^{17} -1.88957e6 q^{18} +5.80222e6 q^{19} +1.28565e7 q^{21} -1.69959e7 q^{22} +3.32148e7 q^{23} -7.96262e6 q^{24} -1.19614e7 q^{26} +1.43489e7 q^{27} +5.41770e7 q^{28} -1.30307e8 q^{29} +6.18143e7 q^{31} -3.35544e7 q^{32} +1.29063e8 q^{33} -1.54048e8 q^{34} +6.04662e7 q^{36} +1.37358e8 q^{37} -1.85671e8 q^{38} +9.08322e7 q^{39} +1.46886e9 q^{41} -4.11407e8 q^{42} -5.30160e8 q^{43} +5.43869e8 q^{44} -1.06287e9 q^{46} +1.34319e9 q^{47} +2.54804e8 q^{48} +8.21851e8 q^{49} +1.16980e9 q^{51} +3.82766e8 q^{52} -4.74535e9 q^{53} -4.59165e8 q^{54} -1.73366e9 q^{56} +1.40994e9 q^{57} +4.16982e9 q^{58} +4.37861e9 q^{59} -7.78414e9 q^{61} -1.97806e9 q^{62} +3.12412e9 q^{63} +1.07374e9 q^{64} -4.13000e9 q^{66} +4.98481e9 q^{67} +4.92953e9 q^{68} +8.07119e9 q^{69} +9.09417e9 q^{71} -1.93492e9 q^{72} -1.88613e10 q^{73} -4.39545e9 q^{74} +5.94148e9 q^{76} +2.81002e10 q^{77} -2.90663e9 q^{78} -4.50312e10 q^{79} +3.48678e9 q^{81} -4.70035e10 q^{82} -6.88856e10 q^{83} +1.31650e10 q^{84} +1.69651e10 q^{86} -3.16645e10 q^{87} -1.74038e10 q^{88} -3.49597e9 q^{89} +1.97765e10 q^{91} +3.40119e10 q^{92} +1.50209e10 q^{93} -4.29820e10 q^{94} -8.15373e9 q^{96} -1.62848e11 q^{97} -2.62992e10 q^{98} +3.13622e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 96 q^{2} + 729 q^{3} + 3072 q^{4} - 23328 q^{6} - 67384 q^{7} - 98304 q^{8} + 177147 q^{9} + 876700 q^{11} + 746496 q^{12} - 315192 q^{13} + 2156288 q^{14} + 3145728 q^{16} - 2874324 q^{17} - 5668704 q^{18}+ \cdots + 51768258300 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −32.0000 −0.707107
\(3\) 243.000 0.577350
\(4\) 1024.00 0.500000
\(5\) 0 0
\(6\) −7776.00 −0.408248
\(7\) 52907.3 1.18981 0.594903 0.803798i \(-0.297191\pi\)
0.594903 + 0.803798i \(0.297191\pi\)
\(8\) −32768.0 −0.353553
\(9\) 59049.0 0.333333
\(10\) 0 0
\(11\) 531122. 0.994339 0.497169 0.867654i \(-0.334373\pi\)
0.497169 + 0.867654i \(0.334373\pi\)
\(12\) 248832. 0.288675
\(13\) 373795. 0.279219 0.139610 0.990207i \(-0.455415\pi\)
0.139610 + 0.990207i \(0.455415\pi\)
\(14\) −1.69303e6 −0.841320
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) 4.81399e6 0.822311 0.411156 0.911565i \(-0.365125\pi\)
0.411156 + 0.911565i \(0.365125\pi\)
\(18\) −1.88957e6 −0.235702
\(19\) 5.80222e6 0.537588 0.268794 0.963198i \(-0.413375\pi\)
0.268794 + 0.963198i \(0.413375\pi\)
\(20\) 0 0
\(21\) 1.28565e7 0.686935
\(22\) −1.69959e7 −0.703104
\(23\) 3.32148e7 1.07604 0.538020 0.842932i \(-0.319173\pi\)
0.538020 + 0.842932i \(0.319173\pi\)
\(24\) −7.96262e6 −0.204124
\(25\) 0 0
\(26\) −1.19614e7 −0.197438
\(27\) 1.43489e7 0.192450
\(28\) 5.41770e7 0.594903
\(29\) −1.30307e8 −1.17972 −0.589859 0.807507i \(-0.700816\pi\)
−0.589859 + 0.807507i \(0.700816\pi\)
\(30\) 0 0
\(31\) 6.18143e7 0.387793 0.193896 0.981022i \(-0.437887\pi\)
0.193896 + 0.981022i \(0.437887\pi\)
\(32\) −3.35544e7 −0.176777
\(33\) 1.29063e8 0.574082
\(34\) −1.54048e8 −0.581462
\(35\) 0 0
\(36\) 6.04662e7 0.166667
\(37\) 1.37358e8 0.325645 0.162822 0.986655i \(-0.447940\pi\)
0.162822 + 0.986655i \(0.447940\pi\)
\(38\) −1.85671e8 −0.380132
\(39\) 9.08322e7 0.161207
\(40\) 0 0
\(41\) 1.46886e9 1.98002 0.990009 0.141003i \(-0.0450326\pi\)
0.990009 + 0.141003i \(0.0450326\pi\)
\(42\) −4.11407e8 −0.485736
\(43\) −5.30160e8 −0.549960 −0.274980 0.961450i \(-0.588671\pi\)
−0.274980 + 0.961450i \(0.588671\pi\)
\(44\) 5.43869e8 0.497169
\(45\) 0 0
\(46\) −1.06287e9 −0.760875
\(47\) 1.34319e9 0.854277 0.427138 0.904186i \(-0.359522\pi\)
0.427138 + 0.904186i \(0.359522\pi\)
\(48\) 2.54804e8 0.144338
\(49\) 8.21851e8 0.415637
\(50\) 0 0
\(51\) 1.16980e9 0.474762
\(52\) 3.82766e8 0.139610
\(53\) −4.74535e9 −1.55866 −0.779329 0.626615i \(-0.784440\pi\)
−0.779329 + 0.626615i \(0.784440\pi\)
\(54\) −4.59165e8 −0.136083
\(55\) 0 0
\(56\) −1.73366e9 −0.420660
\(57\) 1.40994e9 0.310377
\(58\) 4.16982e9 0.834186
\(59\) 4.37861e9 0.797352 0.398676 0.917092i \(-0.369470\pi\)
0.398676 + 0.917092i \(0.369470\pi\)
\(60\) 0 0
\(61\) −7.78414e9 −1.18004 −0.590020 0.807389i \(-0.700880\pi\)
−0.590020 + 0.807389i \(0.700880\pi\)
\(62\) −1.97806e9 −0.274211
\(63\) 3.12412e9 0.396602
\(64\) 1.07374e9 0.125000
\(65\) 0 0
\(66\) −4.13000e9 −0.405937
\(67\) 4.98481e9 0.451063 0.225531 0.974236i \(-0.427588\pi\)
0.225531 + 0.974236i \(0.427588\pi\)
\(68\) 4.92953e9 0.411156
\(69\) 8.07119e9 0.621252
\(70\) 0 0
\(71\) 9.09417e9 0.598194 0.299097 0.954223i \(-0.403315\pi\)
0.299097 + 0.954223i \(0.403315\pi\)
\(72\) −1.93492e9 −0.117851
\(73\) −1.88613e10 −1.06487 −0.532435 0.846471i \(-0.678723\pi\)
−0.532435 + 0.846471i \(0.678723\pi\)
\(74\) −4.39545e9 −0.230266
\(75\) 0 0
\(76\) 5.94148e9 0.268794
\(77\) 2.81002e10 1.18307
\(78\) −2.90663e9 −0.113991
\(79\) −4.50312e10 −1.64651 −0.823255 0.567672i \(-0.807844\pi\)
−0.823255 + 0.567672i \(0.807844\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) −4.70035e10 −1.40008
\(83\) −6.88856e10 −1.91955 −0.959774 0.280773i \(-0.909409\pi\)
−0.959774 + 0.280773i \(0.909409\pi\)
\(84\) 1.31650e10 0.343467
\(85\) 0 0
\(86\) 1.69651e10 0.388880
\(87\) −3.16645e10 −0.681110
\(88\) −1.74038e10 −0.351552
\(89\) −3.49597e9 −0.0663624 −0.0331812 0.999449i \(-0.510564\pi\)
−0.0331812 + 0.999449i \(0.510564\pi\)
\(90\) 0 0
\(91\) 1.97765e10 0.332217
\(92\) 3.40119e10 0.538020
\(93\) 1.50209e10 0.223892
\(94\) −4.29820e10 −0.604065
\(95\) 0 0
\(96\) −8.15373e9 −0.102062
\(97\) −1.62848e11 −1.92548 −0.962738 0.270437i \(-0.912832\pi\)
−0.962738 + 0.270437i \(0.912832\pi\)
\(98\) −2.62992e10 −0.293900
\(99\) 3.13622e10 0.331446
\(100\) 0 0
\(101\) 1.33281e11 1.26183 0.630915 0.775852i \(-0.282680\pi\)
0.630915 + 0.775852i \(0.282680\pi\)
\(102\) −3.74336e10 −0.335707
\(103\) 8.49052e10 0.721655 0.360827 0.932633i \(-0.382494\pi\)
0.360827 + 0.932633i \(0.382494\pi\)
\(104\) −1.22485e10 −0.0987189
\(105\) 0 0
\(106\) 1.51851e11 1.10214
\(107\) 4.19151e10 0.288908 0.144454 0.989512i \(-0.453857\pi\)
0.144454 + 0.989512i \(0.453857\pi\)
\(108\) 1.46933e10 0.0962250
\(109\) 2.67212e11 1.66345 0.831727 0.555185i \(-0.187353\pi\)
0.831727 + 0.555185i \(0.187353\pi\)
\(110\) 0 0
\(111\) 3.33780e10 0.188011
\(112\) 5.54773e10 0.297451
\(113\) −2.37749e11 −1.21391 −0.606957 0.794735i \(-0.707610\pi\)
−0.606957 + 0.794735i \(0.707610\pi\)
\(114\) −4.51181e10 −0.219469
\(115\) 0 0
\(116\) −1.33434e11 −0.589859
\(117\) 2.20722e10 0.0930731
\(118\) −1.40116e11 −0.563813
\(119\) 2.54695e11 0.978390
\(120\) 0 0
\(121\) −3.22132e9 −0.0112905
\(122\) 2.49093e11 0.834414
\(123\) 3.56933e11 1.14316
\(124\) 6.32978e10 0.193896
\(125\) 0 0
\(126\) −9.99719e10 −0.280440
\(127\) −7.15504e10 −0.192173 −0.0960863 0.995373i \(-0.530632\pi\)
−0.0960863 + 0.995373i \(0.530632\pi\)
\(128\) −3.43597e10 −0.0883883
\(129\) −1.28829e11 −0.317519
\(130\) 0 0
\(131\) 4.56783e11 1.03447 0.517235 0.855844i \(-0.326961\pi\)
0.517235 + 0.855844i \(0.326961\pi\)
\(132\) 1.32160e11 0.287041
\(133\) 3.06980e11 0.639626
\(134\) −1.59514e11 −0.318949
\(135\) 0 0
\(136\) −1.57745e11 −0.290731
\(137\) 2.86655e10 0.0507454 0.0253727 0.999678i \(-0.491923\pi\)
0.0253727 + 0.999678i \(0.491923\pi\)
\(138\) −2.58278e11 −0.439291
\(139\) 1.20093e12 1.96307 0.981536 0.191280i \(-0.0612638\pi\)
0.981536 + 0.191280i \(0.0612638\pi\)
\(140\) 0 0
\(141\) 3.26395e11 0.493217
\(142\) −2.91014e11 −0.422987
\(143\) 1.98531e11 0.277638
\(144\) 6.19174e10 0.0833333
\(145\) 0 0
\(146\) 6.03563e11 0.752977
\(147\) 1.99710e11 0.239968
\(148\) 1.40655e11 0.162822
\(149\) −6.64637e11 −0.741412 −0.370706 0.928750i \(-0.620884\pi\)
−0.370706 + 0.928750i \(0.620884\pi\)
\(150\) 0 0
\(151\) 1.70963e12 1.77226 0.886130 0.463436i \(-0.153384\pi\)
0.886130 + 0.463436i \(0.153384\pi\)
\(152\) −1.90127e11 −0.190066
\(153\) 2.84261e11 0.274104
\(154\) −8.99206e11 −0.836557
\(155\) 0 0
\(156\) 9.30122e10 0.0806036
\(157\) 9.96231e11 0.833512 0.416756 0.909018i \(-0.363167\pi\)
0.416756 + 0.909018i \(0.363167\pi\)
\(158\) 1.44100e12 1.16426
\(159\) −1.15312e12 −0.899892
\(160\) 0 0
\(161\) 1.75730e12 1.28028
\(162\) −1.11577e11 −0.0785674
\(163\) −2.56482e11 −0.174592 −0.0872960 0.996182i \(-0.527823\pi\)
−0.0872960 + 0.996182i \(0.527823\pi\)
\(164\) 1.50411e12 0.990009
\(165\) 0 0
\(166\) 2.20434e12 1.35733
\(167\) 1.02735e12 0.612040 0.306020 0.952025i \(-0.401003\pi\)
0.306020 + 0.952025i \(0.401003\pi\)
\(168\) −4.21281e11 −0.242868
\(169\) −1.65244e12 −0.922037
\(170\) 0 0
\(171\) 3.42616e11 0.179196
\(172\) −5.42884e11 −0.274980
\(173\) 3.51424e12 1.72416 0.862082 0.506769i \(-0.169160\pi\)
0.862082 + 0.506769i \(0.169160\pi\)
\(174\) 1.01327e12 0.481617
\(175\) 0 0
\(176\) 5.56922e11 0.248585
\(177\) 1.06400e12 0.460352
\(178\) 1.11871e11 0.0469253
\(179\) 4.59480e12 1.86885 0.934427 0.356156i \(-0.115913\pi\)
0.934427 + 0.356156i \(0.115913\pi\)
\(180\) 0 0
\(181\) −9.54953e11 −0.365384 −0.182692 0.983170i \(-0.558481\pi\)
−0.182692 + 0.983170i \(0.558481\pi\)
\(182\) −6.32847e11 −0.234913
\(183\) −1.89155e12 −0.681297
\(184\) −1.08838e12 −0.380437
\(185\) 0 0
\(186\) −4.80668e11 −0.158316
\(187\) 2.55682e12 0.817656
\(188\) 1.37542e12 0.427138
\(189\) 7.59161e11 0.228978
\(190\) 0 0
\(191\) 4.18247e12 1.19055 0.595277 0.803520i \(-0.297042\pi\)
0.595277 + 0.803520i \(0.297042\pi\)
\(192\) 2.60919e11 0.0721688
\(193\) −3.35128e12 −0.900836 −0.450418 0.892818i \(-0.648725\pi\)
−0.450418 + 0.892818i \(0.648725\pi\)
\(194\) 5.21114e12 1.36152
\(195\) 0 0
\(196\) 8.41575e11 0.207819
\(197\) −7.22875e12 −1.73580 −0.867899 0.496742i \(-0.834530\pi\)
−0.867899 + 0.496742i \(0.834530\pi\)
\(198\) −1.00359e12 −0.234368
\(199\) 1.05138e12 0.238818 0.119409 0.992845i \(-0.461900\pi\)
0.119409 + 0.992845i \(0.461900\pi\)
\(200\) 0 0
\(201\) 1.21131e12 0.260421
\(202\) −4.26499e12 −0.892248
\(203\) −6.89417e12 −1.40363
\(204\) 1.19787e12 0.237381
\(205\) 0 0
\(206\) −2.71697e12 −0.510287
\(207\) 1.96130e12 0.358680
\(208\) 3.91953e11 0.0698048
\(209\) 3.08169e12 0.534545
\(210\) 0 0
\(211\) 3.80994e11 0.0627141 0.0313570 0.999508i \(-0.490017\pi\)
0.0313570 + 0.999508i \(0.490017\pi\)
\(212\) −4.85924e12 −0.779329
\(213\) 2.20988e12 0.345368
\(214\) −1.34128e12 −0.204289
\(215\) 0 0
\(216\) −4.70185e11 −0.0680414
\(217\) 3.27042e12 0.461398
\(218\) −8.55079e12 −1.17624
\(219\) −4.58331e12 −0.614803
\(220\) 0 0
\(221\) 1.79945e12 0.229605
\(222\) −1.06810e12 −0.132944
\(223\) −3.50569e12 −0.425693 −0.212846 0.977086i \(-0.568273\pi\)
−0.212846 + 0.977086i \(0.568273\pi\)
\(224\) −1.77527e12 −0.210330
\(225\) 0 0
\(226\) 7.60798e12 0.858367
\(227\) 4.84938e12 0.534003 0.267002 0.963696i \(-0.413967\pi\)
0.267002 + 0.963696i \(0.413967\pi\)
\(228\) 1.44378e12 0.155188
\(229\) 1.41260e12 0.148225 0.0741127 0.997250i \(-0.476388\pi\)
0.0741127 + 0.997250i \(0.476388\pi\)
\(230\) 0 0
\(231\) 6.82835e12 0.683046
\(232\) 4.26989e12 0.417093
\(233\) 9.88438e12 0.942957 0.471478 0.881878i \(-0.343721\pi\)
0.471478 + 0.881878i \(0.343721\pi\)
\(234\) −7.06311e11 −0.0658126
\(235\) 0 0
\(236\) 4.48370e12 0.398676
\(237\) −1.09426e13 −0.950613
\(238\) −8.15024e12 −0.691826
\(239\) −5.87747e12 −0.487531 −0.243765 0.969834i \(-0.578383\pi\)
−0.243765 + 0.969834i \(0.578383\pi\)
\(240\) 0 0
\(241\) −9.32982e12 −0.739230 −0.369615 0.929185i \(-0.620510\pi\)
−0.369615 + 0.929185i \(0.620510\pi\)
\(242\) 1.03082e11 0.00798360
\(243\) 8.47289e11 0.0641500
\(244\) −7.97096e12 −0.590020
\(245\) 0 0
\(246\) −1.14219e13 −0.808339
\(247\) 2.16884e12 0.150105
\(248\) −2.02553e12 −0.137105
\(249\) −1.67392e13 −1.10825
\(250\) 0 0
\(251\) 1.76150e13 1.11603 0.558016 0.829830i \(-0.311563\pi\)
0.558016 + 0.829830i \(0.311563\pi\)
\(252\) 3.19910e12 0.198301
\(253\) 1.76411e13 1.06995
\(254\) 2.28961e12 0.135887
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) 1.61047e13 0.896023 0.448012 0.894028i \(-0.352132\pi\)
0.448012 + 0.894028i \(0.352132\pi\)
\(258\) 4.12253e12 0.224520
\(259\) 7.26723e12 0.387454
\(260\) 0 0
\(261\) −7.69448e12 −0.393239
\(262\) −1.46171e13 −0.731480
\(263\) 8.60423e12 0.421653 0.210826 0.977524i \(-0.432384\pi\)
0.210826 + 0.977524i \(0.432384\pi\)
\(264\) −4.22912e12 −0.202969
\(265\) 0 0
\(266\) −9.82335e12 −0.452284
\(267\) −8.49520e11 −0.0383144
\(268\) 5.10444e12 0.225531
\(269\) 1.03462e13 0.447861 0.223931 0.974605i \(-0.428111\pi\)
0.223931 + 0.974605i \(0.428111\pi\)
\(270\) 0 0
\(271\) −3.19603e13 −1.32825 −0.664124 0.747622i \(-0.731196\pi\)
−0.664124 + 0.747622i \(0.731196\pi\)
\(272\) 5.04783e12 0.205578
\(273\) 4.80568e12 0.191805
\(274\) −9.17297e11 −0.0358824
\(275\) 0 0
\(276\) 8.26490e12 0.310626
\(277\) −7.21606e12 −0.265865 −0.132933 0.991125i \(-0.542439\pi\)
−0.132933 + 0.991125i \(0.542439\pi\)
\(278\) −3.84297e13 −1.38810
\(279\) 3.65007e12 0.129264
\(280\) 0 0
\(281\) −4.86472e13 −1.65643 −0.828216 0.560409i \(-0.810644\pi\)
−0.828216 + 0.560409i \(0.810644\pi\)
\(282\) −1.04446e13 −0.348757
\(283\) −4.50061e13 −1.47382 −0.736912 0.675988i \(-0.763717\pi\)
−0.736912 + 0.675988i \(0.763717\pi\)
\(284\) 9.31243e12 0.299097
\(285\) 0 0
\(286\) −6.35298e12 −0.196320
\(287\) 7.77134e13 2.35584
\(288\) −1.98136e12 −0.0589256
\(289\) −1.10974e13 −0.323804
\(290\) 0 0
\(291\) −3.95721e13 −1.11167
\(292\) −1.93140e13 −0.532435
\(293\) 1.55228e13 0.419949 0.209975 0.977707i \(-0.432662\pi\)
0.209975 + 0.977707i \(0.432662\pi\)
\(294\) −6.39071e12 −0.169683
\(295\) 0 0
\(296\) −4.50094e12 −0.115133
\(297\) 7.62102e12 0.191361
\(298\) 2.12684e13 0.524258
\(299\) 1.24155e13 0.300451
\(300\) 0 0
\(301\) −2.80493e13 −0.654345
\(302\) −5.47080e13 −1.25318
\(303\) 3.23873e13 0.728518
\(304\) 6.08407e12 0.134397
\(305\) 0 0
\(306\) −9.09636e12 −0.193821
\(307\) 5.15314e13 1.07848 0.539239 0.842153i \(-0.318712\pi\)
0.539239 + 0.842153i \(0.318712\pi\)
\(308\) 2.87746e13 0.591535
\(309\) 2.06320e13 0.416648
\(310\) 0 0
\(311\) −1.21704e13 −0.237204 −0.118602 0.992942i \(-0.537841\pi\)
−0.118602 + 0.992942i \(0.537841\pi\)
\(312\) −2.97639e12 −0.0569954
\(313\) 4.90592e13 0.923053 0.461527 0.887126i \(-0.347302\pi\)
0.461527 + 0.887126i \(0.347302\pi\)
\(314\) −3.18794e13 −0.589382
\(315\) 0 0
\(316\) −4.61119e13 −0.823255
\(317\) −2.65586e12 −0.0465992 −0.0232996 0.999729i \(-0.507417\pi\)
−0.0232996 + 0.999729i \(0.507417\pi\)
\(318\) 3.68998e13 0.636320
\(319\) −6.92087e13 −1.17304
\(320\) 0 0
\(321\) 1.01854e13 0.166801
\(322\) −5.62337e13 −0.905293
\(323\) 2.79319e13 0.442065
\(324\) 3.57047e12 0.0555556
\(325\) 0 0
\(326\) 8.20741e12 0.123455
\(327\) 6.49326e13 0.960395
\(328\) −4.81316e13 −0.700042
\(329\) 7.10644e13 1.01642
\(330\) 0 0
\(331\) 8.86699e13 1.22665 0.613327 0.789829i \(-0.289831\pi\)
0.613327 + 0.789829i \(0.289831\pi\)
\(332\) −7.05389e13 −0.959774
\(333\) 8.11085e12 0.108548
\(334\) −3.28753e13 −0.432777
\(335\) 0 0
\(336\) 1.34810e13 0.171734
\(337\) −5.28648e13 −0.662525 −0.331262 0.943539i \(-0.607475\pi\)
−0.331262 + 0.943539i \(0.607475\pi\)
\(338\) 5.28780e13 0.651978
\(339\) −5.77731e13 −0.700853
\(340\) 0 0
\(341\) 3.28309e13 0.385597
\(342\) −1.09637e13 −0.126711
\(343\) −6.11331e13 −0.695278
\(344\) 1.73723e13 0.194440
\(345\) 0 0
\(346\) −1.12456e14 −1.21917
\(347\) 2.14116e13 0.228474 0.114237 0.993454i \(-0.463558\pi\)
0.114237 + 0.993454i \(0.463558\pi\)
\(348\) −3.24245e13 −0.340555
\(349\) −1.29282e14 −1.33659 −0.668295 0.743896i \(-0.732976\pi\)
−0.668295 + 0.743896i \(0.732976\pi\)
\(350\) 0 0
\(351\) 5.36355e12 0.0537358
\(352\) −1.78215e13 −0.175776
\(353\) 3.24173e13 0.314786 0.157393 0.987536i \(-0.449691\pi\)
0.157393 + 0.987536i \(0.449691\pi\)
\(354\) −3.40481e13 −0.325518
\(355\) 0 0
\(356\) −3.57987e12 −0.0331812
\(357\) 6.18909e13 0.564874
\(358\) −1.47034e14 −1.32148
\(359\) −1.01176e14 −0.895483 −0.447741 0.894163i \(-0.647771\pi\)
−0.447741 + 0.894163i \(0.647771\pi\)
\(360\) 0 0
\(361\) −8.28244e13 −0.710999
\(362\) 3.05585e13 0.258366
\(363\) −7.82780e11 −0.00651858
\(364\) 2.02511e13 0.166108
\(365\) 0 0
\(366\) 6.05295e13 0.481749
\(367\) −6.19096e12 −0.0485395 −0.0242697 0.999705i \(-0.507726\pi\)
−0.0242697 + 0.999705i \(0.507726\pi\)
\(368\) 3.48282e13 0.269010
\(369\) 8.67347e13 0.660006
\(370\) 0 0
\(371\) −2.51063e14 −1.85450
\(372\) 1.53814e13 0.111946
\(373\) −2.17159e14 −1.55733 −0.778664 0.627442i \(-0.784102\pi\)
−0.778664 + 0.627442i \(0.784102\pi\)
\(374\) −8.18181e13 −0.578170
\(375\) 0 0
\(376\) −4.40136e13 −0.302033
\(377\) −4.87080e13 −0.329400
\(378\) −2.42932e13 −0.161912
\(379\) 1.35854e14 0.892397 0.446199 0.894934i \(-0.352778\pi\)
0.446199 + 0.894934i \(0.352778\pi\)
\(380\) 0 0
\(381\) −1.73867e13 −0.110951
\(382\) −1.33839e14 −0.841849
\(383\) 1.53210e14 0.949932 0.474966 0.880004i \(-0.342460\pi\)
0.474966 + 0.880004i \(0.342460\pi\)
\(384\) −8.34942e12 −0.0510310
\(385\) 0 0
\(386\) 1.07241e14 0.636988
\(387\) −3.13054e13 −0.183320
\(388\) −1.66756e14 −0.962738
\(389\) 6.34461e13 0.361145 0.180573 0.983562i \(-0.442205\pi\)
0.180573 + 0.983562i \(0.442205\pi\)
\(390\) 0 0
\(391\) 1.59896e14 0.884839
\(392\) −2.69304e13 −0.146950
\(393\) 1.10998e14 0.597251
\(394\) 2.31320e14 1.22739
\(395\) 0 0
\(396\) 3.21149e13 0.165723
\(397\) 2.82212e14 1.43624 0.718121 0.695918i \(-0.245002\pi\)
0.718121 + 0.695918i \(0.245002\pi\)
\(398\) −3.36442e13 −0.168870
\(399\) 7.45961e13 0.369288
\(400\) 0 0
\(401\) −4.11588e13 −0.198230 −0.0991149 0.995076i \(-0.531601\pi\)
−0.0991149 + 0.995076i \(0.531601\pi\)
\(402\) −3.87619e13 −0.184146
\(403\) 2.31059e13 0.108279
\(404\) 1.36480e14 0.630915
\(405\) 0 0
\(406\) 2.20613e14 0.992519
\(407\) 7.29538e13 0.323801
\(408\) −3.83320e13 −0.167854
\(409\) 7.28620e13 0.314792 0.157396 0.987536i \(-0.449690\pi\)
0.157396 + 0.987536i \(0.449690\pi\)
\(410\) 0 0
\(411\) 6.96573e12 0.0292979
\(412\) 8.69429e13 0.360827
\(413\) 2.31660e14 0.948694
\(414\) −6.27616e13 −0.253625
\(415\) 0 0
\(416\) −1.25425e13 −0.0493594
\(417\) 2.91826e14 1.13338
\(418\) −9.86140e13 −0.377980
\(419\) −4.44807e13 −0.168265 −0.0841326 0.996455i \(-0.526812\pi\)
−0.0841326 + 0.996455i \(0.526812\pi\)
\(420\) 0 0
\(421\) 4.08282e13 0.150456 0.0752279 0.997166i \(-0.476032\pi\)
0.0752279 + 0.997166i \(0.476032\pi\)
\(422\) −1.21918e13 −0.0443455
\(423\) 7.93139e13 0.284759
\(424\) 1.55496e14 0.551069
\(425\) 0 0
\(426\) −7.07163e13 −0.244212
\(427\) −4.11838e14 −1.40402
\(428\) 4.29210e13 0.144454
\(429\) 4.82430e13 0.160295
\(430\) 0 0
\(431\) 5.01831e14 1.62530 0.812648 0.582754i \(-0.198025\pi\)
0.812648 + 0.582754i \(0.198025\pi\)
\(432\) 1.50459e13 0.0481125
\(433\) −3.09744e14 −0.977957 −0.488979 0.872296i \(-0.662630\pi\)
−0.488979 + 0.872296i \(0.662630\pi\)
\(434\) −1.04654e14 −0.326258
\(435\) 0 0
\(436\) 2.73625e14 0.831727
\(437\) 1.92720e14 0.578466
\(438\) 1.46666e14 0.434732
\(439\) −1.08027e13 −0.0316213 −0.0158106 0.999875i \(-0.505033\pi\)
−0.0158106 + 0.999875i \(0.505033\pi\)
\(440\) 0 0
\(441\) 4.85295e13 0.138546
\(442\) −5.75823e13 −0.162355
\(443\) −3.45097e14 −0.960993 −0.480497 0.876997i \(-0.659544\pi\)
−0.480497 + 0.876997i \(0.659544\pi\)
\(444\) 3.41790e13 0.0940056
\(445\) 0 0
\(446\) 1.12182e14 0.301010
\(447\) −1.61507e14 −0.428055
\(448\) 5.68087e13 0.148726
\(449\) −5.12768e14 −1.32607 −0.663035 0.748589i \(-0.730732\pi\)
−0.663035 + 0.748589i \(0.730732\pi\)
\(450\) 0 0
\(451\) 7.80144e14 1.96881
\(452\) −2.43455e14 −0.606957
\(453\) 4.15439e14 1.02322
\(454\) −1.55180e14 −0.377597
\(455\) 0 0
\(456\) −4.62009e13 −0.109735
\(457\) −2.33364e14 −0.547640 −0.273820 0.961781i \(-0.588287\pi\)
−0.273820 + 0.961781i \(0.588287\pi\)
\(458\) −4.52030e13 −0.104811
\(459\) 6.90755e13 0.158254
\(460\) 0 0
\(461\) 1.62814e14 0.364197 0.182098 0.983280i \(-0.441711\pi\)
0.182098 + 0.983280i \(0.441711\pi\)
\(462\) −2.18507e14 −0.482986
\(463\) −2.48926e14 −0.543718 −0.271859 0.962337i \(-0.587639\pi\)
−0.271859 + 0.962337i \(0.587639\pi\)
\(464\) −1.36637e14 −0.294929
\(465\) 0 0
\(466\) −3.16300e14 −0.666771
\(467\) 3.50158e14 0.729494 0.364747 0.931107i \(-0.381155\pi\)
0.364747 + 0.931107i \(0.381155\pi\)
\(468\) 2.26020e13 0.0465365
\(469\) 2.63732e14 0.536677
\(470\) 0 0
\(471\) 2.42084e14 0.481228
\(472\) −1.43478e14 −0.281907
\(473\) −2.81580e14 −0.546846
\(474\) 3.50162e14 0.672185
\(475\) 0 0
\(476\) 2.60808e14 0.489195
\(477\) −2.80208e14 −0.519553
\(478\) 1.88079e14 0.344736
\(479\) 4.41157e14 0.799370 0.399685 0.916653i \(-0.369119\pi\)
0.399685 + 0.916653i \(0.369119\pi\)
\(480\) 0 0
\(481\) 5.13437e13 0.0909263
\(482\) 2.98554e14 0.522715
\(483\) 4.27024e14 0.739169
\(484\) −3.29863e12 −0.00564526
\(485\) 0 0
\(486\) −2.71132e13 −0.0453609
\(487\) −4.35803e12 −0.00720909 −0.00360455 0.999994i \(-0.501147\pi\)
−0.00360455 + 0.999994i \(0.501147\pi\)
\(488\) 2.55071e14 0.417207
\(489\) −6.23250e13 −0.100801
\(490\) 0 0
\(491\) −6.73844e13 −0.106564 −0.0532821 0.998580i \(-0.516968\pi\)
−0.0532821 + 0.998580i \(0.516968\pi\)
\(492\) 3.65499e14 0.571582
\(493\) −6.27295e14 −0.970094
\(494\) −6.94030e13 −0.106140
\(495\) 0 0
\(496\) 6.48170e13 0.0969481
\(497\) 4.81148e14 0.711735
\(498\) 5.35655e14 0.783652
\(499\) 8.06287e14 1.16664 0.583320 0.812243i \(-0.301753\pi\)
0.583320 + 0.812243i \(0.301753\pi\)
\(500\) 0 0
\(501\) 2.49647e14 0.353361
\(502\) −5.63680e14 −0.789154
\(503\) 1.30287e15 1.80416 0.902082 0.431565i \(-0.142038\pi\)
0.902082 + 0.431565i \(0.142038\pi\)
\(504\) −1.02371e14 −0.140220
\(505\) 0 0
\(506\) −5.64515e14 −0.756567
\(507\) −4.01542e14 −0.532338
\(508\) −7.32676e13 −0.0960863
\(509\) −1.09216e15 −1.41690 −0.708450 0.705761i \(-0.750605\pi\)
−0.708450 + 0.705761i \(0.750605\pi\)
\(510\) 0 0
\(511\) −9.97902e14 −1.26699
\(512\) −3.51844e13 −0.0441942
\(513\) 8.32556e13 0.103459
\(514\) −5.15349e14 −0.633584
\(515\) 0 0
\(516\) −1.31921e14 −0.158760
\(517\) 7.13397e14 0.849441
\(518\) −2.32551e14 −0.273971
\(519\) 8.53961e14 0.995446
\(520\) 0 0
\(521\) 5.50995e14 0.628840 0.314420 0.949284i \(-0.398190\pi\)
0.314420 + 0.949284i \(0.398190\pi\)
\(522\) 2.46223e14 0.278062
\(523\) −4.43612e14 −0.495729 −0.247865 0.968795i \(-0.579729\pi\)
−0.247865 + 0.968795i \(0.579729\pi\)
\(524\) 4.67746e14 0.517235
\(525\) 0 0
\(526\) −2.75335e14 −0.298154
\(527\) 2.97573e14 0.318886
\(528\) 1.35332e14 0.143520
\(529\) 1.50411e14 0.157861
\(530\) 0 0
\(531\) 2.58553e14 0.265784
\(532\) 3.14347e14 0.319813
\(533\) 5.49053e14 0.552859
\(534\) 2.71846e13 0.0270923
\(535\) 0 0
\(536\) −1.63342e14 −0.159475
\(537\) 1.11654e15 1.07898
\(538\) −3.31078e14 −0.316686
\(539\) 4.36503e14 0.413284
\(540\) 0 0
\(541\) −7.37013e14 −0.683739 −0.341869 0.939747i \(-0.611060\pi\)
−0.341869 + 0.939747i \(0.611060\pi\)
\(542\) 1.02273e15 0.939214
\(543\) −2.32054e14 −0.210955
\(544\) −1.61531e14 −0.145365
\(545\) 0 0
\(546\) −1.53782e14 −0.135627
\(547\) −2.04180e15 −1.78272 −0.891358 0.453299i \(-0.850247\pi\)
−0.891358 + 0.453299i \(0.850247\pi\)
\(548\) 2.93535e13 0.0253727
\(549\) −4.59646e14 −0.393347
\(550\) 0 0
\(551\) −7.56069e14 −0.634202
\(552\) −2.64477e14 −0.219646
\(553\) −2.38248e15 −1.95903
\(554\) 2.30914e14 0.187995
\(555\) 0 0
\(556\) 1.22975e15 0.981536
\(557\) −2.16374e15 −1.71002 −0.855011 0.518611i \(-0.826449\pi\)
−0.855011 + 0.518611i \(0.826449\pi\)
\(558\) −1.16802e14 −0.0914036
\(559\) −1.98171e14 −0.153559
\(560\) 0 0
\(561\) 6.21306e14 0.472074
\(562\) 1.55671e15 1.17127
\(563\) 2.38895e15 1.77996 0.889982 0.455995i \(-0.150717\pi\)
0.889982 + 0.455995i \(0.150717\pi\)
\(564\) 3.34228e14 0.246609
\(565\) 0 0
\(566\) 1.44019e15 1.04215
\(567\) 1.84476e14 0.132201
\(568\) −2.97998e14 −0.211494
\(569\) 8.76463e13 0.0616050 0.0308025 0.999525i \(-0.490194\pi\)
0.0308025 + 0.999525i \(0.490194\pi\)
\(570\) 0 0
\(571\) 1.74097e15 1.20031 0.600155 0.799884i \(-0.295106\pi\)
0.600155 + 0.799884i \(0.295106\pi\)
\(572\) 2.03296e14 0.138819
\(573\) 1.01634e15 0.687367
\(574\) −2.48683e15 −1.66583
\(575\) 0 0
\(576\) 6.34034e13 0.0416667
\(577\) −1.81953e15 −1.18438 −0.592192 0.805797i \(-0.701737\pi\)
−0.592192 + 0.805797i \(0.701737\pi\)
\(578\) 3.55117e14 0.228964
\(579\) −8.14362e14 −0.520098
\(580\) 0 0
\(581\) −3.64455e15 −2.28389
\(582\) 1.26631e15 0.786072
\(583\) −2.52036e15 −1.54983
\(584\) 6.18048e14 0.376489
\(585\) 0 0
\(586\) −4.96728e14 −0.296949
\(587\) −7.68456e14 −0.455103 −0.227551 0.973766i \(-0.573072\pi\)
−0.227551 + 0.973766i \(0.573072\pi\)
\(588\) 2.04503e14 0.119984
\(589\) 3.58660e14 0.208473
\(590\) 0 0
\(591\) −1.75659e15 −1.00216
\(592\) 1.44030e14 0.0814112
\(593\) −1.21221e15 −0.678855 −0.339427 0.940632i \(-0.610233\pi\)
−0.339427 + 0.940632i \(0.610233\pi\)
\(594\) −2.43873e14 −0.135312
\(595\) 0 0
\(596\) −6.80588e14 −0.370706
\(597\) 2.55485e14 0.137882
\(598\) −3.97297e14 −0.212451
\(599\) −1.29651e15 −0.686954 −0.343477 0.939161i \(-0.611605\pi\)
−0.343477 + 0.939161i \(0.611605\pi\)
\(600\) 0 0
\(601\) −1.83742e15 −0.955871 −0.477935 0.878395i \(-0.658615\pi\)
−0.477935 + 0.878395i \(0.658615\pi\)
\(602\) 8.97579e14 0.462692
\(603\) 2.94348e14 0.150354
\(604\) 1.75066e15 0.886130
\(605\) 0 0
\(606\) −1.03639e15 −0.515140
\(607\) −9.38310e14 −0.462177 −0.231089 0.972933i \(-0.574229\pi\)
−0.231089 + 0.972933i \(0.574229\pi\)
\(608\) −1.94690e14 −0.0950331
\(609\) −1.67528e15 −0.810388
\(610\) 0 0
\(611\) 5.02077e14 0.238531
\(612\) 2.91084e14 0.137052
\(613\) 8.45726e13 0.0394636 0.0197318 0.999805i \(-0.493719\pi\)
0.0197318 + 0.999805i \(0.493719\pi\)
\(614\) −1.64901e15 −0.762599
\(615\) 0 0
\(616\) −9.20787e14 −0.418278
\(617\) −1.30490e15 −0.587501 −0.293750 0.955882i \(-0.594903\pi\)
−0.293750 + 0.955882i \(0.594903\pi\)
\(618\) −6.60223e14 −0.294614
\(619\) −1.79372e15 −0.793335 −0.396668 0.917962i \(-0.629833\pi\)
−0.396668 + 0.917962i \(0.629833\pi\)
\(620\) 0 0
\(621\) 4.76596e14 0.207084
\(622\) 3.89453e14 0.167729
\(623\) −1.84962e14 −0.0789584
\(624\) 9.52445e13 0.0403018
\(625\) 0 0
\(626\) −1.56990e15 −0.652697
\(627\) 7.48850e14 0.308620
\(628\) 1.02014e15 0.416756
\(629\) 6.61240e14 0.267781
\(630\) 0 0
\(631\) −1.89462e15 −0.753981 −0.376991 0.926217i \(-0.623041\pi\)
−0.376991 + 0.926217i \(0.623041\pi\)
\(632\) 1.47558e15 0.582129
\(633\) 9.25816e13 0.0362080
\(634\) 8.49874e13 0.0329506
\(635\) 0 0
\(636\) −1.18079e15 −0.449946
\(637\) 3.07204e14 0.116054
\(638\) 2.21468e15 0.829463
\(639\) 5.37002e14 0.199398
\(640\) 0 0
\(641\) −2.48785e14 −0.0908040 −0.0454020 0.998969i \(-0.514457\pi\)
−0.0454020 + 0.998969i \(0.514457\pi\)
\(642\) −3.25931e14 −0.117946
\(643\) −4.34116e15 −1.55756 −0.778780 0.627297i \(-0.784161\pi\)
−0.778780 + 0.627297i \(0.784161\pi\)
\(644\) 1.79948e15 0.640139
\(645\) 0 0
\(646\) −8.93819e14 −0.312587
\(647\) 1.76476e15 0.611944 0.305972 0.952041i \(-0.401019\pi\)
0.305972 + 0.952041i \(0.401019\pi\)
\(648\) −1.14255e14 −0.0392837
\(649\) 2.32558e15 0.792838
\(650\) 0 0
\(651\) 7.94713e14 0.266388
\(652\) −2.62637e14 −0.0872960
\(653\) 8.57218e14 0.282533 0.141266 0.989972i \(-0.454883\pi\)
0.141266 + 0.989972i \(0.454883\pi\)
\(654\) −2.07784e15 −0.679102
\(655\) 0 0
\(656\) 1.54021e15 0.495005
\(657\) −1.11374e15 −0.354957
\(658\) −2.27406e15 −0.718720
\(659\) 2.32789e15 0.729613 0.364807 0.931083i \(-0.381135\pi\)
0.364807 + 0.931083i \(0.381135\pi\)
\(660\) 0 0
\(661\) −3.06684e15 −0.945328 −0.472664 0.881243i \(-0.656708\pi\)
−0.472664 + 0.881243i \(0.656708\pi\)
\(662\) −2.83744e15 −0.867375
\(663\) 4.37266e14 0.132563
\(664\) 2.25724e15 0.678663
\(665\) 0 0
\(666\) −2.59547e14 −0.0767552
\(667\) −4.32811e15 −1.26942
\(668\) 1.05201e15 0.306020
\(669\) −8.51882e14 −0.245774
\(670\) 0 0
\(671\) −4.13433e15 −1.17336
\(672\) −4.31391e14 −0.121434
\(673\) 2.69617e15 0.752775 0.376387 0.926462i \(-0.377166\pi\)
0.376387 + 0.926462i \(0.377166\pi\)
\(674\) 1.69167e15 0.468476
\(675\) 0 0
\(676\) −1.69210e15 −0.461018
\(677\) −5.36073e15 −1.44872 −0.724362 0.689419i \(-0.757866\pi\)
−0.724362 + 0.689419i \(0.757866\pi\)
\(678\) 1.84874e15 0.495578
\(679\) −8.61584e15 −2.29094
\(680\) 0 0
\(681\) 1.17840e15 0.308307
\(682\) −1.05059e15 −0.272658
\(683\) −7.26562e15 −1.87050 −0.935252 0.353981i \(-0.884828\pi\)
−0.935252 + 0.353981i \(0.884828\pi\)
\(684\) 3.50838e14 0.0895980
\(685\) 0 0
\(686\) 1.95626e15 0.491636
\(687\) 3.43261e14 0.0855780
\(688\) −5.55913e14 −0.137490
\(689\) −1.77379e15 −0.435207
\(690\) 0 0
\(691\) 2.83285e15 0.684061 0.342030 0.939689i \(-0.388885\pi\)
0.342030 + 0.939689i \(0.388885\pi\)
\(692\) 3.59859e15 0.862082
\(693\) 1.65929e15 0.394357
\(694\) −6.85171e14 −0.161556
\(695\) 0 0
\(696\) 1.03758e15 0.240809
\(697\) 7.07108e15 1.62819
\(698\) 4.13703e15 0.945112
\(699\) 2.40190e15 0.544416
\(700\) 0 0
\(701\) 6.35487e15 1.41794 0.708969 0.705239i \(-0.249161\pi\)
0.708969 + 0.705239i \(0.249161\pi\)
\(702\) −1.71634e14 −0.0379969
\(703\) 7.96982e14 0.175063
\(704\) 5.70288e14 0.124292
\(705\) 0 0
\(706\) −1.03735e15 −0.222587
\(707\) 7.05153e15 1.50133
\(708\) 1.08954e15 0.230176
\(709\) 5.55781e15 1.16506 0.582531 0.812808i \(-0.302062\pi\)
0.582531 + 0.812808i \(0.302062\pi\)
\(710\) 0 0
\(711\) −2.65905e15 −0.548837
\(712\) 1.14556e14 0.0234627
\(713\) 2.05315e15 0.417280
\(714\) −1.98051e15 −0.399426
\(715\) 0 0
\(716\) 4.70508e15 0.934427
\(717\) −1.42823e15 −0.281476
\(718\) 3.23763e15 0.633202
\(719\) 1.05266e15 0.204305 0.102153 0.994769i \(-0.467427\pi\)
0.102153 + 0.994769i \(0.467427\pi\)
\(720\) 0 0
\(721\) 4.49210e15 0.858629
\(722\) 2.65038e15 0.502752
\(723\) −2.26715e15 −0.426795
\(724\) −9.77872e14 −0.182692
\(725\) 0 0
\(726\) 2.50490e13 0.00460934
\(727\) −3.83121e15 −0.699675 −0.349838 0.936810i \(-0.613763\pi\)
−0.349838 + 0.936810i \(0.613763\pi\)
\(728\) −6.48036e14 −0.117456
\(729\) 2.05891e14 0.0370370
\(730\) 0 0
\(731\) −2.55219e15 −0.452238
\(732\) −1.93694e15 −0.340648
\(733\) 7.31689e15 1.27719 0.638594 0.769544i \(-0.279517\pi\)
0.638594 + 0.769544i \(0.279517\pi\)
\(734\) 1.98111e14 0.0343226
\(735\) 0 0
\(736\) −1.11450e15 −0.190219
\(737\) 2.64754e15 0.448509
\(738\) −2.77551e15 −0.466695
\(739\) −1.04805e16 −1.74920 −0.874598 0.484848i \(-0.838875\pi\)
−0.874598 + 0.484848i \(0.838875\pi\)
\(740\) 0 0
\(741\) 5.27029e14 0.0866631
\(742\) 8.03403e15 1.31133
\(743\) −3.28089e15 −0.531561 −0.265780 0.964034i \(-0.585630\pi\)
−0.265780 + 0.964034i \(0.585630\pi\)
\(744\) −4.92204e14 −0.0791578
\(745\) 0 0
\(746\) 6.94910e15 1.10120
\(747\) −4.06763e15 −0.639850
\(748\) 2.61818e15 0.408828
\(749\) 2.21761e15 0.343744
\(750\) 0 0
\(751\) 9.30704e15 1.42165 0.710824 0.703370i \(-0.248322\pi\)
0.710824 + 0.703370i \(0.248322\pi\)
\(752\) 1.40843e15 0.213569
\(753\) 4.28044e15 0.644342
\(754\) 1.55866e15 0.232921
\(755\) 0 0
\(756\) 7.77381e14 0.114489
\(757\) −6.20592e15 −0.907359 −0.453680 0.891165i \(-0.649889\pi\)
−0.453680 + 0.891165i \(0.649889\pi\)
\(758\) −4.34734e15 −0.631020
\(759\) 4.28678e15 0.617735
\(760\) 0 0
\(761\) −6.29521e14 −0.0894118 −0.0447059 0.999000i \(-0.514235\pi\)
−0.0447059 + 0.999000i \(0.514235\pi\)
\(762\) 5.56376e14 0.0784542
\(763\) 1.41375e16 1.97919
\(764\) 4.28285e15 0.595277
\(765\) 0 0
\(766\) −4.90271e15 −0.671703
\(767\) 1.63670e15 0.222636
\(768\) 2.67181e14 0.0360844
\(769\) 4.37850e15 0.587126 0.293563 0.955940i \(-0.405159\pi\)
0.293563 + 0.955940i \(0.405159\pi\)
\(770\) 0 0
\(771\) 3.91343e15 0.517319
\(772\) −3.43171e15 −0.450418
\(773\) 6.24169e15 0.813420 0.406710 0.913557i \(-0.366676\pi\)
0.406710 + 0.913557i \(0.366676\pi\)
\(774\) 1.00177e15 0.129627
\(775\) 0 0
\(776\) 5.33620e15 0.680758
\(777\) 1.76594e15 0.223697
\(778\) −2.03027e15 −0.255368
\(779\) 8.52266e15 1.06443
\(780\) 0 0
\(781\) 4.83011e15 0.594808
\(782\) −5.11666e15 −0.625676
\(783\) −1.86976e15 −0.227037
\(784\) 8.61773e14 0.103909
\(785\) 0 0
\(786\) −3.55194e15 −0.422320
\(787\) 1.67198e16 1.97411 0.987053 0.160397i \(-0.0512776\pi\)
0.987053 + 0.160397i \(0.0512776\pi\)
\(788\) −7.40224e15 −0.867899
\(789\) 2.09083e15 0.243441
\(790\) 0 0
\(791\) −1.25787e16 −1.44432
\(792\) −1.02768e15 −0.117184
\(793\) −2.90968e15 −0.329490
\(794\) −9.03078e15 −1.01558
\(795\) 0 0
\(796\) 1.07661e15 0.119409
\(797\) −4.36301e15 −0.480580 −0.240290 0.970701i \(-0.577242\pi\)
−0.240290 + 0.970701i \(0.577242\pi\)
\(798\) −2.38707e15 −0.261126
\(799\) 6.46610e15 0.702481
\(800\) 0 0
\(801\) −2.06433e14 −0.0221208
\(802\) 1.31708e15 0.140170
\(803\) −1.00177e16 −1.05884
\(804\) 1.24038e15 0.130211
\(805\) 0 0
\(806\) −7.39388e14 −0.0765649
\(807\) 2.51413e15 0.258573
\(808\) −4.36735e15 −0.446124
\(809\) 3.55238e15 0.360415 0.180208 0.983629i \(-0.442323\pi\)
0.180208 + 0.983629i \(0.442323\pi\)
\(810\) 0 0
\(811\) 1.38794e16 1.38917 0.694585 0.719411i \(-0.255588\pi\)
0.694585 + 0.719411i \(0.255588\pi\)
\(812\) −7.05963e15 −0.701817
\(813\) −7.76635e15 −0.766865
\(814\) −2.33452e15 −0.228962
\(815\) 0 0
\(816\) 1.22662e15 0.118690
\(817\) −3.07611e15 −0.295652
\(818\) −2.33158e15 −0.222591
\(819\) 1.16778e15 0.110739
\(820\) 0 0
\(821\) 9.65670e15 0.903528 0.451764 0.892138i \(-0.350795\pi\)
0.451764 + 0.892138i \(0.350795\pi\)
\(822\) −2.22903e14 −0.0207167
\(823\) −1.62599e16 −1.50114 −0.750568 0.660793i \(-0.770220\pi\)
−0.750568 + 0.660793i \(0.770220\pi\)
\(824\) −2.78217e15 −0.255144
\(825\) 0 0
\(826\) −7.41313e15 −0.670828
\(827\) −9.52899e15 −0.856578 −0.428289 0.903642i \(-0.640883\pi\)
−0.428289 + 0.903642i \(0.640883\pi\)
\(828\) 2.00837e15 0.179340
\(829\) 1.66053e16 1.47298 0.736492 0.676446i \(-0.236481\pi\)
0.736492 + 0.676446i \(0.236481\pi\)
\(830\) 0 0
\(831\) −1.75350e15 −0.153497
\(832\) 4.01360e14 0.0349024
\(833\) 3.95638e15 0.341783
\(834\) −9.33843e15 −0.801420
\(835\) 0 0
\(836\) 3.15565e15 0.267272
\(837\) 8.86967e14 0.0746307
\(838\) 1.42338e15 0.118981
\(839\) −1.01371e16 −0.841827 −0.420913 0.907101i \(-0.638290\pi\)
−0.420913 + 0.907101i \(0.638290\pi\)
\(840\) 0 0
\(841\) 4.77933e15 0.391732
\(842\) −1.30650e15 −0.106388
\(843\) −1.18213e16 −0.956341
\(844\) 3.90138e14 0.0313570
\(845\) 0 0
\(846\) −2.53805e15 −0.201355
\(847\) −1.70431e14 −0.0134335
\(848\) −4.97586e15 −0.389665
\(849\) −1.09365e16 −0.850913
\(850\) 0 0
\(851\) 4.56231e15 0.350407
\(852\) 2.26292e15 0.172684
\(853\) 2.03075e16 1.53970 0.769851 0.638224i \(-0.220331\pi\)
0.769851 + 0.638224i \(0.220331\pi\)
\(854\) 1.31788e16 0.992791
\(855\) 0 0
\(856\) −1.37347e15 −0.102144
\(857\) 4.99342e15 0.368981 0.184490 0.982834i \(-0.440937\pi\)
0.184490 + 0.982834i \(0.440937\pi\)
\(858\) −1.54378e15 −0.113345
\(859\) 5.27939e15 0.385142 0.192571 0.981283i \(-0.438317\pi\)
0.192571 + 0.981283i \(0.438317\pi\)
\(860\) 0 0
\(861\) 1.88843e16 1.36014
\(862\) −1.60586e16 −1.14926
\(863\) 6.94499e15 0.493869 0.246935 0.969032i \(-0.420577\pi\)
0.246935 + 0.969032i \(0.420577\pi\)
\(864\) −4.81469e14 −0.0340207
\(865\) 0 0
\(866\) 9.91182e15 0.691520
\(867\) −2.69667e15 −0.186949
\(868\) 3.34891e15 0.230699
\(869\) −2.39170e16 −1.63719
\(870\) 0 0
\(871\) 1.86330e15 0.125945
\(872\) −8.75601e15 −0.588120
\(873\) −9.61601e15 −0.641825
\(874\) −6.16703e15 −0.409037
\(875\) 0 0
\(876\) −4.69330e15 −0.307402
\(877\) 1.66689e16 1.08495 0.542473 0.840073i \(-0.317488\pi\)
0.542473 + 0.840073i \(0.317488\pi\)
\(878\) 3.45688e14 0.0223596
\(879\) 3.77203e15 0.242458
\(880\) 0 0
\(881\) −7.30716e15 −0.463854 −0.231927 0.972733i \(-0.574503\pi\)
−0.231927 + 0.972733i \(0.574503\pi\)
\(882\) −1.55294e15 −0.0979667
\(883\) 1.41660e16 0.888100 0.444050 0.896002i \(-0.353541\pi\)
0.444050 + 0.896002i \(0.353541\pi\)
\(884\) 1.84263e15 0.114803
\(885\) 0 0
\(886\) 1.10431e16 0.679525
\(887\) −1.48432e16 −0.907713 −0.453857 0.891075i \(-0.649952\pi\)
−0.453857 + 0.891075i \(0.649952\pi\)
\(888\) −1.09373e15 −0.0664720
\(889\) −3.78554e15 −0.228648
\(890\) 0 0
\(891\) 1.85191e15 0.110482
\(892\) −3.58982e15 −0.212846
\(893\) 7.79348e15 0.459249
\(894\) 5.16822e15 0.302680
\(895\) 0 0
\(896\) −1.81788e15 −0.105165
\(897\) 3.01697e15 0.173465
\(898\) 1.64086e16 0.937673
\(899\) −8.05482e15 −0.457486
\(900\) 0 0
\(901\) −2.28441e16 −1.28170
\(902\) −2.49646e16 −1.39216
\(903\) −6.81599e15 −0.377786
\(904\) 7.79057e15 0.429183
\(905\) 0 0
\(906\) −1.32940e16 −0.723522
\(907\) 1.13330e16 0.613061 0.306530 0.951861i \(-0.400832\pi\)
0.306530 + 0.951861i \(0.400832\pi\)
\(908\) 4.96577e15 0.267002
\(909\) 7.87011e15 0.420610
\(910\) 0 0
\(911\) −1.91130e16 −1.00920 −0.504602 0.863352i \(-0.668361\pi\)
−0.504602 + 0.863352i \(0.668361\pi\)
\(912\) 1.47843e15 0.0775942
\(913\) −3.65867e16 −1.90868
\(914\) 7.46766e15 0.387240
\(915\) 0 0
\(916\) 1.44650e15 0.0741127
\(917\) 2.41671e16 1.23082
\(918\) −2.21042e15 −0.111902
\(919\) 7.09706e15 0.357144 0.178572 0.983927i \(-0.442852\pi\)
0.178572 + 0.983927i \(0.442852\pi\)
\(920\) 0 0
\(921\) 1.25221e16 0.622660
\(922\) −5.21004e15 −0.257526
\(923\) 3.39936e15 0.167027
\(924\) 6.99223e15 0.341523
\(925\) 0 0
\(926\) 7.96562e15 0.384467
\(927\) 5.01357e15 0.240552
\(928\) 4.37237e15 0.208546
\(929\) −1.87622e16 −0.889604 −0.444802 0.895629i \(-0.646726\pi\)
−0.444802 + 0.895629i \(0.646726\pi\)
\(930\) 0 0
\(931\) 4.76856e15 0.223442
\(932\) 1.01216e16 0.471478
\(933\) −2.95741e15 −0.136950
\(934\) −1.12051e16 −0.515830
\(935\) 0 0
\(936\) −7.23263e14 −0.0329063
\(937\) 3.08165e16 1.39385 0.696924 0.717145i \(-0.254552\pi\)
0.696924 + 0.717145i \(0.254552\pi\)
\(938\) −8.43944e15 −0.379488
\(939\) 1.19214e16 0.532925
\(940\) 0 0
\(941\) −4.26974e16 −1.88651 −0.943255 0.332070i \(-0.892253\pi\)
−0.943255 + 0.332070i \(0.892253\pi\)
\(942\) −7.74669e15 −0.340280
\(943\) 4.87879e16 2.13058
\(944\) 4.59131e15 0.199338
\(945\) 0 0
\(946\) 9.01055e15 0.386679
\(947\) 1.63317e16 0.696799 0.348399 0.937346i \(-0.386725\pi\)
0.348399 + 0.937346i \(0.386725\pi\)
\(948\) −1.12052e16 −0.475306
\(949\) −7.05028e15 −0.297332
\(950\) 0 0
\(951\) −6.45373e14 −0.0269041
\(952\) −8.34585e15 −0.345913
\(953\) −2.78821e16 −1.14899 −0.574494 0.818509i \(-0.694801\pi\)
−0.574494 + 0.818509i \(0.694801\pi\)
\(954\) 8.96666e15 0.367379
\(955\) 0 0
\(956\) −6.01853e15 −0.243765
\(957\) −1.68177e16 −0.677254
\(958\) −1.41170e16 −0.565240
\(959\) 1.51662e15 0.0603772
\(960\) 0 0
\(961\) −2.15875e16 −0.849617
\(962\) −1.64300e15 −0.0642946
\(963\) 2.47504e15 0.0963026
\(964\) −9.55374e15 −0.369615
\(965\) 0 0
\(966\) −1.36648e16 −0.522671
\(967\) −7.21160e15 −0.274275 −0.137137 0.990552i \(-0.543790\pi\)
−0.137137 + 0.990552i \(0.543790\pi\)
\(968\) 1.05556e14 0.00399180
\(969\) 6.78744e15 0.255226
\(970\) 0 0
\(971\) −4.56053e16 −1.69555 −0.847773 0.530359i \(-0.822057\pi\)
−0.847773 + 0.530359i \(0.822057\pi\)
\(972\) 8.67624e14 0.0320750
\(973\) 6.35379e16 2.33567
\(974\) 1.39457e14 0.00509760
\(975\) 0 0
\(976\) −8.16227e15 −0.295010
\(977\) 4.85178e16 1.74374 0.871868 0.489740i \(-0.162908\pi\)
0.871868 + 0.489740i \(0.162908\pi\)
\(978\) 1.99440e15 0.0712769
\(979\) −1.85678e15 −0.0659867
\(980\) 0 0
\(981\) 1.57786e16 0.554485
\(982\) 2.15630e15 0.0753522
\(983\) −4.37954e16 −1.52189 −0.760947 0.648814i \(-0.775265\pi\)
−0.760947 + 0.648814i \(0.775265\pi\)
\(984\) −1.16960e16 −0.404170
\(985\) 0 0
\(986\) 2.00735e16 0.685960
\(987\) 1.72687e16 0.586832
\(988\) 2.22090e15 0.0750525
\(989\) −1.76092e16 −0.591778
\(990\) 0 0
\(991\) −2.55075e16 −0.847740 −0.423870 0.905723i \(-0.639329\pi\)
−0.423870 + 0.905723i \(0.639329\pi\)
\(992\) −2.07414e15 −0.0685527
\(993\) 2.15468e16 0.708209
\(994\) −1.53967e16 −0.503273
\(995\) 0 0
\(996\) −1.71409e16 −0.554126
\(997\) −8.08618e15 −0.259968 −0.129984 0.991516i \(-0.541493\pi\)
−0.129984 + 0.991516i \(0.541493\pi\)
\(998\) −2.58012e16 −0.824939
\(999\) 1.97094e15 0.0626704
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.12.a.t.1.3 3
5.2 odd 4 30.12.c.b.19.1 6
5.3 odd 4 30.12.c.b.19.4 yes 6
5.4 even 2 150.12.a.u.1.1 3
15.2 even 4 90.12.c.c.19.6 6
15.8 even 4 90.12.c.c.19.3 6
20.3 even 4 240.12.f.b.49.1 6
20.7 even 4 240.12.f.b.49.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.12.c.b.19.1 6 5.2 odd 4
30.12.c.b.19.4 yes 6 5.3 odd 4
90.12.c.c.19.3 6 15.8 even 4
90.12.c.c.19.6 6 15.2 even 4
150.12.a.t.1.3 3 1.1 even 1 trivial
150.12.a.u.1.1 3 5.4 even 2
240.12.f.b.49.1 6 20.3 even 4
240.12.f.b.49.4 6 20.7 even 4