Properties

Label 275.3.q.g.24.12
Level $275$
Weight $3$
Character 275.24
Analytic conductor $7.493$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(24,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,0,-18,0,60] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 24.12
Character \(\chi\) \(=\) 275.24
Dual form 275.3.q.g.149.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.793893 - 2.44335i) q^{2} +(-0.424261 - 0.583945i) q^{3} +(-2.10363 - 1.52838i) q^{4} +(-1.76360 + 0.573029i) q^{6} +(10.6625 + 7.74676i) q^{7} +(2.90933 - 2.11375i) q^{8} +(2.62016 - 8.06402i) q^{9} +(8.18023 + 7.35417i) q^{11} +1.87684i q^{12} +(-2.50134 + 7.69834i) q^{13} +(27.3929 - 19.9021i) q^{14} +(-6.06901 - 18.6785i) q^{16} +(2.55378 + 7.85972i) q^{17} +(-17.6231 - 12.8039i) q^{18} +(-15.2188 - 20.9469i) q^{19} -9.51297i q^{21} +(24.4631 - 14.1488i) q^{22} -5.34212i q^{23} +(-2.46863 - 0.802107i) q^{24} +(16.8240 + 12.2233i) q^{26} +(-11.9988 + 3.89865i) q^{27} +(-10.5900 - 32.5927i) q^{28} +(-18.9800 + 26.1237i) q^{29} +(13.4739 - 41.4685i) q^{31} -36.0717 q^{32} +(0.823881 - 7.89690i) q^{33} +21.2315 q^{34} +(-17.8367 + 12.9591i) q^{36} +(8.28194 - 11.3991i) q^{37} +(-63.2626 + 20.5553i) q^{38} +(5.55664 - 1.80546i) q^{39} +(-3.92574 - 5.40332i) q^{41} +(-23.2435 - 7.55228i) q^{42} -13.9858 q^{43} +(-5.96824 - 27.9730i) q^{44} +(-13.0527 - 4.24108i) q^{46} +(47.8694 + 65.8866i) q^{47} +(-8.33237 + 11.4685i) q^{48} +(38.5348 + 118.598i) q^{49} +(3.50618 - 4.82584i) q^{51} +(17.0279 - 12.3715i) q^{52} +(-48.7128 - 15.8277i) q^{53} +32.4124i q^{54} +47.3954 q^{56} +(-5.77508 + 17.7739i) q^{57} +(48.7613 + 67.1142i) q^{58} +(-43.5007 - 31.6051i) q^{59} +(-3.81411 + 1.23928i) q^{61} +(-90.6252 - 65.8431i) q^{62} +(90.4074 - 65.6849i) q^{63} +(-4.36107 + 13.4220i) q^{64} +(-18.6408 - 8.28232i) q^{66} -87.7170i q^{67} +(6.64042 - 20.4371i) q^{68} +(-3.11951 + 2.26646i) q^{69} +(10.5932 + 32.6025i) q^{71} +(-9.42243 - 28.9992i) q^{72} +(50.5378 + 36.7178i) q^{73} +(-21.2771 - 29.2854i) q^{74} +67.3246i q^{76} +(30.2507 + 141.784i) q^{77} -15.0102i q^{78} +(-119.320 - 38.7694i) q^{79} +(-54.3698 - 39.5019i) q^{81} +(-16.3188 + 5.30231i) q^{82} +(39.2492 + 120.797i) q^{83} +(-14.5394 + 20.0118i) q^{84} +(-11.1032 + 34.1723i) q^{86} +23.3073 q^{87} +(39.3439 + 4.10473i) q^{88} -43.7087 q^{89} +(-86.3078 + 62.7063i) q^{91} +(-8.16479 + 11.2379i) q^{92} +(-29.9318 + 9.72543i) q^{93} +(198.987 - 64.6549i) q^{94} +(15.3038 + 21.0639i) q^{96} +(29.0276 + 9.43164i) q^{97} +320.369 q^{98} +(80.7377 - 46.6964i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 18 q^{4} + 60 q^{6} + 62 q^{9} - 10 q^{11} - 74 q^{14} - 70 q^{16} - 160 q^{19} - 26 q^{26} + 190 q^{29} + 190 q^{31} + 296 q^{34} - 694 q^{36} + 130 q^{39} - 580 q^{41} + 506 q^{44} - 220 q^{46}+ \cdots + 1218 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.793893 2.44335i 0.396947 1.22168i −0.530489 0.847692i \(-0.677992\pi\)
0.927435 0.373984i \(-0.122008\pi\)
\(3\) −0.424261 0.583945i −0.141420 0.194648i 0.732431 0.680841i \(-0.238385\pi\)
−0.873852 + 0.486192i \(0.838385\pi\)
\(4\) −2.10363 1.52838i −0.525908 0.382095i
\(5\) 0 0
\(6\) −1.76360 + 0.573029i −0.293934 + 0.0955048i
\(7\) 10.6625 + 7.74676i 1.52321 + 1.10668i 0.959866 + 0.280461i \(0.0904872\pi\)
0.563349 + 0.826219i \(0.309513\pi\)
\(8\) 2.90933 2.11375i 0.363666 0.264219i
\(9\) 2.62016 8.06402i 0.291129 0.896002i
\(10\) 0 0
\(11\) 8.18023 + 7.35417i 0.743657 + 0.668561i
\(12\) 1.87684i 0.156403i
\(13\) −2.50134 + 7.69834i −0.192411 + 0.592180i 0.807586 + 0.589750i \(0.200774\pi\)
−0.999997 + 0.00243053i \(0.999226\pi\)
\(14\) 27.3929 19.9021i 1.95664 1.42158i
\(15\) 0 0
\(16\) −6.06901 18.6785i −0.379313 1.16741i
\(17\) 2.55378 + 7.85972i 0.150222 + 0.462336i 0.997646 0.0685815i \(-0.0218473\pi\)
−0.847423 + 0.530918i \(0.821847\pi\)
\(18\) −17.6231 12.8039i −0.979061 0.711330i
\(19\) −15.2188 20.9469i −0.800989 1.10247i −0.992652 0.121006i \(-0.961388\pi\)
0.191663 0.981461i \(-0.438612\pi\)
\(20\) 0 0
\(21\) 9.51297i 0.452998i
\(22\) 24.4631 14.1488i 1.11196 0.643125i
\(23\) 5.34212i 0.232266i −0.993234 0.116133i \(-0.962950\pi\)
0.993234 0.116133i \(-0.0370499\pi\)
\(24\) −2.46863 0.802107i −0.102860 0.0334211i
\(25\) 0 0
\(26\) 16.8240 + 12.2233i 0.647076 + 0.470128i
\(27\) −11.9988 + 3.89865i −0.444400 + 0.144394i
\(28\) −10.5900 32.5927i −0.378214 1.16402i
\(29\) −18.9800 + 26.1237i −0.654482 + 0.900818i −0.999283 0.0378581i \(-0.987947\pi\)
0.344801 + 0.938676i \(0.387947\pi\)
\(30\) 0 0
\(31\) 13.4739 41.4685i 0.434643 1.33769i −0.458809 0.888535i \(-0.651724\pi\)
0.893452 0.449158i \(-0.148276\pi\)
\(32\) −36.0717 −1.12724
\(33\) 0.823881 7.89690i 0.0249661 0.239300i
\(34\) 21.2315 0.624455
\(35\) 0 0
\(36\) −17.8367 + 12.9591i −0.495465 + 0.359976i
\(37\) 8.28194 11.3991i 0.223836 0.308084i −0.682298 0.731074i \(-0.739019\pi\)
0.906134 + 0.422990i \(0.139019\pi\)
\(38\) −63.2626 + 20.5553i −1.66481 + 0.540928i
\(39\) 5.55664 1.80546i 0.142478 0.0462939i
\(40\) 0 0
\(41\) −3.92574 5.40332i −0.0957498 0.131788i 0.758454 0.651726i \(-0.225955\pi\)
−0.854204 + 0.519938i \(0.825955\pi\)
\(42\) −23.2435 7.55228i −0.553417 0.179816i
\(43\) −13.9858 −0.325252 −0.162626 0.986688i \(-0.551996\pi\)
−0.162626 + 0.986688i \(0.551996\pi\)
\(44\) −5.96824 27.9730i −0.135642 0.635749i
\(45\) 0 0
\(46\) −13.0527 4.24108i −0.283754 0.0921973i
\(47\) 47.8694 + 65.8866i 1.01850 + 1.40184i 0.913252 + 0.407396i \(0.133563\pi\)
0.105247 + 0.994446i \(0.466437\pi\)
\(48\) −8.33237 + 11.4685i −0.173591 + 0.238928i
\(49\) 38.5348 + 118.598i 0.786424 + 2.42036i
\(50\) 0 0
\(51\) 3.50618 4.82584i 0.0687486 0.0946243i
\(52\) 17.0279 12.3715i 0.327460 0.237913i
\(53\) −48.7128 15.8277i −0.919109 0.298636i −0.189008 0.981976i \(-0.560527\pi\)
−0.730101 + 0.683339i \(0.760527\pi\)
\(54\) 32.4124i 0.600229i
\(55\) 0 0
\(56\) 47.3954 0.846347
\(57\) −5.77508 + 17.7739i −0.101317 + 0.311822i
\(58\) 48.7613 + 67.1142i 0.840713 + 1.15714i
\(59\) −43.5007 31.6051i −0.737300 0.535680i 0.154564 0.987983i \(-0.450603\pi\)
−0.891865 + 0.452303i \(0.850603\pi\)
\(60\) 0 0
\(61\) −3.81411 + 1.23928i −0.0625264 + 0.0203161i −0.340113 0.940385i \(-0.610465\pi\)
0.277587 + 0.960701i \(0.410465\pi\)
\(62\) −90.6252 65.8431i −1.46170 1.06199i
\(63\) 90.4074 65.6849i 1.43504 1.04262i
\(64\) −4.36107 + 13.4220i −0.0681417 + 0.209719i
\(65\) 0 0
\(66\) −18.6408 8.28232i −0.282437 0.125490i
\(67\) 87.7170i 1.30921i −0.755972 0.654604i \(-0.772835\pi\)
0.755972 0.654604i \(-0.227165\pi\)
\(68\) 6.64042 20.4371i 0.0976532 0.300546i
\(69\) −3.11951 + 2.26646i −0.0452103 + 0.0328472i
\(70\) 0 0
\(71\) 10.5932 + 32.6025i 0.149200 + 0.459191i 0.997527 0.0702818i \(-0.0223899\pi\)
−0.848327 + 0.529473i \(0.822390\pi\)
\(72\) −9.42243 28.9992i −0.130867 0.402767i
\(73\) 50.5378 + 36.7178i 0.692298 + 0.502984i 0.877415 0.479732i \(-0.159266\pi\)
−0.185116 + 0.982717i \(0.559266\pi\)
\(74\) −21.2771 29.2854i −0.287528 0.395748i
\(75\) 0 0
\(76\) 67.3246i 0.885850i
\(77\) 30.2507 + 141.784i 0.392866 + 1.84135i
\(78\) 15.0102i 0.192438i
\(79\) −119.320 38.7694i −1.51038 0.490751i −0.567353 0.823475i \(-0.692032\pi\)
−0.943024 + 0.332724i \(0.892032\pi\)
\(80\) 0 0
\(81\) −54.3698 39.5019i −0.671231 0.487678i
\(82\) −16.3188 + 5.30231i −0.199010 + 0.0646623i
\(83\) 39.2492 + 120.797i 0.472882 + 1.45538i 0.848793 + 0.528726i \(0.177330\pi\)
−0.375910 + 0.926656i \(0.622670\pi\)
\(84\) −14.5394 + 20.0118i −0.173088 + 0.238236i
\(85\) 0 0
\(86\) −11.1032 + 34.1723i −0.129107 + 0.397352i
\(87\) 23.3073 0.267900
\(88\) 39.3439 + 4.10473i 0.447089 + 0.0466447i
\(89\) −43.7087 −0.491109 −0.245555 0.969383i \(-0.578970\pi\)
−0.245555 + 0.969383i \(0.578970\pi\)
\(90\) 0 0
\(91\) −86.3078 + 62.7063i −0.948437 + 0.689080i
\(92\) −8.16479 + 11.2379i −0.0887477 + 0.122151i
\(93\) −29.9318 + 9.72543i −0.321847 + 0.104574i
\(94\) 198.987 64.6549i 2.11689 0.687818i
\(95\) 0 0
\(96\) 15.3038 + 21.0639i 0.159415 + 0.219416i
\(97\) 29.0276 + 9.43164i 0.299253 + 0.0972334i 0.454795 0.890596i \(-0.349712\pi\)
−0.155542 + 0.987829i \(0.549712\pi\)
\(98\) 320.369 3.26907
\(99\) 80.7377 46.6964i 0.815532 0.471681i
\(100\) 0 0
\(101\) 49.2339 + 15.9971i 0.487464 + 0.158387i 0.542429 0.840102i \(-0.317505\pi\)
−0.0549650 + 0.998488i \(0.517505\pi\)
\(102\) −9.00769 12.3980i −0.0883107 0.121549i
\(103\) −40.6532 + 55.9544i −0.394691 + 0.543246i −0.959402 0.282043i \(-0.908988\pi\)
0.564710 + 0.825289i \(0.308988\pi\)
\(104\) 8.99515 + 27.6842i 0.0864919 + 0.266195i
\(105\) 0 0
\(106\) −77.3454 + 106.457i −0.729674 + 1.00431i
\(107\) −48.0376 + 34.9014i −0.448950 + 0.326181i −0.789181 0.614161i \(-0.789495\pi\)
0.340231 + 0.940342i \(0.389495\pi\)
\(108\) 31.1997 + 10.1374i 0.288886 + 0.0938647i
\(109\) 80.9083i 0.742278i −0.928577 0.371139i \(-0.878967\pi\)
0.928577 0.371139i \(-0.121033\pi\)
\(110\) 0 0
\(111\) −10.1702 −0.0916232
\(112\) 79.9869 246.174i 0.714169 2.19799i
\(113\) 10.3903 + 14.3011i 0.0919498 + 0.126558i 0.852513 0.522705i \(-0.175077\pi\)
−0.760564 + 0.649263i \(0.775077\pi\)
\(114\) 38.8430 + 28.2211i 0.340728 + 0.247554i
\(115\) 0 0
\(116\) 79.8539 25.9461i 0.688395 0.223673i
\(117\) 55.5257 + 40.3418i 0.474578 + 0.344801i
\(118\) −111.757 + 81.1965i −0.947096 + 0.688106i
\(119\) −33.6577 + 103.588i −0.282838 + 0.870485i
\(120\) 0 0
\(121\) 12.8323 + 120.318i 0.106052 + 0.994361i
\(122\) 10.3031i 0.0844514i
\(123\) −1.48970 + 4.58484i −0.0121114 + 0.0372751i
\(124\) −91.7238 + 66.6412i −0.739708 + 0.537429i
\(125\) 0 0
\(126\) −88.7174 273.044i −0.704106 2.16702i
\(127\) 36.6413 + 112.770i 0.288514 + 0.887955i 0.985323 + 0.170699i \(0.0546024\pi\)
−0.696809 + 0.717257i \(0.745398\pi\)
\(128\) −87.3982 63.4985i −0.682798 0.496082i
\(129\) 5.93364 + 8.16695i 0.0459972 + 0.0633097i
\(130\) 0 0
\(131\) 175.467i 1.33944i 0.742612 + 0.669722i \(0.233587\pi\)
−0.742612 + 0.669722i \(0.766413\pi\)
\(132\) −13.8026 + 15.3530i −0.104565 + 0.116310i
\(133\) 341.242i 2.56573i
\(134\) −214.323 69.6379i −1.59943 0.519686i
\(135\) 0 0
\(136\) 24.0433 + 17.4685i 0.176789 + 0.128444i
\(137\) −151.765 + 49.3113i −1.10777 + 0.359936i −0.805088 0.593155i \(-0.797882\pi\)
−0.302682 + 0.953092i \(0.597882\pi\)
\(138\) 3.06119 + 9.42138i 0.0221825 + 0.0682709i
\(139\) −108.452 + 149.272i −0.780232 + 1.07390i 0.215025 + 0.976609i \(0.431017\pi\)
−0.995256 + 0.0972881i \(0.968983\pi\)
\(140\) 0 0
\(141\) 18.1650 55.9062i 0.128830 0.396498i
\(142\) 88.0693 0.620207
\(143\) −77.0765 + 44.5789i −0.538997 + 0.311741i
\(144\) −166.525 −1.15643
\(145\) 0 0
\(146\) 129.836 94.3315i 0.889289 0.646106i
\(147\) 52.9059 72.8187i 0.359904 0.495365i
\(148\) −34.8443 + 11.3216i −0.235435 + 0.0764974i
\(149\) 157.999 51.3369i 1.06039 0.344543i 0.273655 0.961828i \(-0.411767\pi\)
0.786740 + 0.617285i \(0.211767\pi\)
\(150\) 0 0
\(151\) −96.3065 132.555i −0.637792 0.877845i 0.360704 0.932680i \(-0.382537\pi\)
−0.998495 + 0.0548355i \(0.982537\pi\)
\(152\) −88.5529 28.7726i −0.582585 0.189293i
\(153\) 70.0722 0.457988
\(154\) 370.444 + 38.6483i 2.40548 + 0.250963i
\(155\) 0 0
\(156\) −14.4486 4.69462i −0.0926189 0.0300937i
\(157\) −109.453 150.650i −0.697156 0.959552i −0.999979 0.00650560i \(-0.997929\pi\)
0.302823 0.953047i \(-0.402071\pi\)
\(158\) −189.454 + 260.762i −1.19908 + 1.65039i
\(159\) 11.4244 + 35.1607i 0.0718516 + 0.221136i
\(160\) 0 0
\(161\) 41.3841 56.9604i 0.257044 0.353791i
\(162\) −139.681 + 101.484i −0.862228 + 0.626445i
\(163\) −231.995 75.3797i −1.42328 0.462452i −0.506639 0.862159i \(-0.669112\pi\)
−0.916643 + 0.399706i \(0.869112\pi\)
\(164\) 17.3666i 0.105894i
\(165\) 0 0
\(166\) 326.309 1.96571
\(167\) 7.53588 23.1931i 0.0451250 0.138881i −0.925956 0.377632i \(-0.876738\pi\)
0.971081 + 0.238752i \(0.0767383\pi\)
\(168\) −20.1080 27.6764i −0.119691 0.164740i
\(169\) 83.7161 + 60.8233i 0.495361 + 0.359901i
\(170\) 0 0
\(171\) −208.792 + 67.8405i −1.22100 + 0.396728i
\(172\) 29.4210 + 21.3756i 0.171053 + 0.124277i
\(173\) 46.8713 34.0540i 0.270932 0.196844i −0.444020 0.896017i \(-0.646448\pi\)
0.714953 + 0.699173i \(0.246448\pi\)
\(174\) 18.5035 56.9479i 0.106342 0.327287i
\(175\) 0 0
\(176\) 87.7189 197.427i 0.498403 1.12174i
\(177\) 38.8109i 0.219270i
\(178\) −34.7000 + 106.796i −0.194944 + 0.599976i
\(179\) 0.0910781 0.0661721i 0.000508816 0.000369677i −0.587531 0.809202i \(-0.699900\pi\)
0.588040 + 0.808832i \(0.299900\pi\)
\(180\) 0 0
\(181\) −8.38500 25.8064i −0.0463260 0.142577i 0.925218 0.379436i \(-0.123882\pi\)
−0.971544 + 0.236859i \(0.923882\pi\)
\(182\) 84.6944 + 260.662i 0.465354 + 1.43221i
\(183\) 2.34185 + 1.70145i 0.0127970 + 0.00929756i
\(184\) −11.2919 15.5420i −0.0613691 0.0844674i
\(185\) 0 0
\(186\) 80.8548i 0.434703i
\(187\) −36.9112 + 83.0752i −0.197386 + 0.444252i
\(188\) 211.764i 1.12640i
\(189\) −158.139 51.3825i −0.836715 0.271865i
\(190\) 0 0
\(191\) −265.764 193.089i −1.39143 1.01093i −0.995707 0.0925661i \(-0.970493\pi\)
−0.395726 0.918369i \(-0.629507\pi\)
\(192\) 9.68794 3.14780i 0.0504580 0.0163948i
\(193\) −69.2444 213.112i −0.358779 1.10421i −0.953785 0.300488i \(-0.902850\pi\)
0.595006 0.803721i \(-0.297150\pi\)
\(194\) 46.0896 63.4369i 0.237575 0.326994i
\(195\) 0 0
\(196\) 100.199 308.382i 0.511222 1.57338i
\(197\) 1.50117 0.00762015 0.00381008 0.999993i \(-0.498787\pi\)
0.00381008 + 0.999993i \(0.498787\pi\)
\(198\) −49.9987 234.342i −0.252519 1.18355i
\(199\) 65.2808 0.328044 0.164022 0.986457i \(-0.447553\pi\)
0.164022 + 0.986457i \(0.447553\pi\)
\(200\) 0 0
\(201\) −51.2219 + 37.2149i −0.254835 + 0.185149i
\(202\) 78.1729 107.596i 0.386994 0.532652i
\(203\) −404.748 + 131.511i −1.99383 + 0.647836i
\(204\) −14.7514 + 4.79303i −0.0723109 + 0.0234952i
\(205\) 0 0
\(206\) 104.442 + 143.752i 0.506999 + 0.697825i
\(207\) −43.0790 13.9972i −0.208111 0.0676194i
\(208\) 158.974 0.764298
\(209\) 29.5536 283.272i 0.141405 1.35537i
\(210\) 0 0
\(211\) 235.285 + 76.4488i 1.11510 + 0.362317i 0.807894 0.589328i \(-0.200607\pi\)
0.307202 + 0.951644i \(0.400607\pi\)
\(212\) 78.2830 + 107.747i 0.369259 + 0.508242i
\(213\) 14.5438 20.0178i 0.0682808 0.0939805i
\(214\) 47.1396 + 145.081i 0.220278 + 0.677947i
\(215\) 0 0
\(216\) −26.6677 + 36.7049i −0.123462 + 0.169930i
\(217\) 464.912 337.778i 2.14245 1.55658i
\(218\) −197.688 64.2326i −0.906824 0.294645i
\(219\) 45.0893i 0.205887i
\(220\) 0 0
\(221\) −66.8947 −0.302691
\(222\) −8.07403 + 24.8493i −0.0363695 + 0.111934i
\(223\) 155.787 + 214.422i 0.698594 + 0.961533i 0.999968 + 0.00802651i \(0.00255495\pi\)
−0.301373 + 0.953506i \(0.597445\pi\)
\(224\) −384.615 279.439i −1.71703 1.24750i
\(225\) 0 0
\(226\) 43.1913 14.0337i 0.191112 0.0620961i
\(227\) −298.667 216.994i −1.31571 0.955922i −0.999975 0.00707657i \(-0.997747\pi\)
−0.315739 0.948846i \(-0.602253\pi\)
\(228\) 39.3139 28.5632i 0.172429 0.125277i
\(229\) 24.0332 73.9665i 0.104948 0.322998i −0.884770 0.466028i \(-0.845685\pi\)
0.989718 + 0.143030i \(0.0456846\pi\)
\(230\) 0 0
\(231\) 69.9600 77.8183i 0.302857 0.336876i
\(232\) 116.121i 0.500524i
\(233\) 67.2970 207.119i 0.288828 0.888922i −0.696397 0.717657i \(-0.745215\pi\)
0.985225 0.171265i \(-0.0547854\pi\)
\(234\) 142.651 103.642i 0.609618 0.442913i
\(235\) 0 0
\(236\) 43.2050 + 132.971i 0.183072 + 0.563437i
\(237\) 27.9836 + 86.1246i 0.118074 + 0.363395i
\(238\) 226.381 + 164.475i 0.951179 + 0.691072i
\(239\) 82.7232 + 113.859i 0.346122 + 0.476396i 0.946217 0.323533i \(-0.104871\pi\)
−0.600095 + 0.799929i \(0.704871\pi\)
\(240\) 0 0
\(241\) 265.314i 1.10089i 0.834872 + 0.550444i \(0.185542\pi\)
−0.834872 + 0.550444i \(0.814458\pi\)
\(242\) 304.166 + 64.1655i 1.25688 + 0.265146i
\(243\) 162.055i 0.666892i
\(244\) 9.91758 + 3.22242i 0.0406458 + 0.0132066i
\(245\) 0 0
\(246\) 10.0197 + 7.27974i 0.0407305 + 0.0295924i
\(247\) 199.324 64.7642i 0.806978 0.262203i
\(248\) −48.4540 149.126i −0.195379 0.601315i
\(249\) 53.8868 74.1687i 0.216413 0.297866i
\(250\) 0 0
\(251\) −81.5281 + 250.918i −0.324813 + 0.999672i 0.646712 + 0.762734i \(0.276144\pi\)
−0.971525 + 0.236937i \(0.923856\pi\)
\(252\) −290.575 −1.15308
\(253\) 39.2869 43.6998i 0.155284 0.172726i
\(254\) 304.627 1.19932
\(255\) 0 0
\(256\) −270.204 + 196.314i −1.05548 + 0.766853i
\(257\) −186.254 + 256.357i −0.724725 + 0.997499i 0.274628 + 0.961550i \(0.411445\pi\)
−0.999354 + 0.0359483i \(0.988555\pi\)
\(258\) 24.6654 8.01428i 0.0956024 0.0310631i
\(259\) 176.612 57.3849i 0.681901 0.221563i
\(260\) 0 0
\(261\) 160.932 + 221.503i 0.616596 + 0.848672i
\(262\) 428.728 + 139.302i 1.63637 + 0.531688i
\(263\) 415.617 1.58029 0.790145 0.612919i \(-0.210005\pi\)
0.790145 + 0.612919i \(0.210005\pi\)
\(264\) −14.2951 24.7162i −0.0541482 0.0936218i
\(265\) 0 0
\(266\) −833.775 270.910i −3.13449 1.01846i
\(267\) 18.5439 + 25.5235i 0.0694528 + 0.0955936i
\(268\) −134.065 + 184.524i −0.500242 + 0.688524i
\(269\) −21.6814 66.7285i −0.0806000 0.248061i 0.902634 0.430409i \(-0.141631\pi\)
−0.983234 + 0.182347i \(0.941631\pi\)
\(270\) 0 0
\(271\) 253.032 348.269i 0.933698 1.28513i −0.0247014 0.999695i \(-0.507863\pi\)
0.958399 0.285430i \(-0.0921365\pi\)
\(272\) 131.309 95.4013i 0.482752 0.350740i
\(273\) 73.2341 + 23.7952i 0.268257 + 0.0871619i
\(274\) 409.962i 1.49621i
\(275\) 0 0
\(276\) 10.0263 0.0363272
\(277\) −24.9552 + 76.8041i −0.0900909 + 0.277271i −0.985943 0.167081i \(-0.946566\pi\)
0.895852 + 0.444352i \(0.146566\pi\)
\(278\) 278.624 + 383.493i 1.00224 + 1.37947i
\(279\) −299.099 217.308i −1.07204 0.778882i
\(280\) 0 0
\(281\) 411.029 133.551i 1.46274 0.475272i 0.533832 0.845590i \(-0.320751\pi\)
0.928905 + 0.370318i \(0.120751\pi\)
\(282\) −122.178 88.7672i −0.433254 0.314777i
\(283\) −104.648 + 76.0310i −0.369780 + 0.268661i −0.757120 0.653276i \(-0.773394\pi\)
0.387340 + 0.921937i \(0.373394\pi\)
\(284\) 27.5448 84.7742i 0.0969888 0.298501i
\(285\) 0 0
\(286\) 47.7315 + 223.716i 0.166893 + 0.782224i
\(287\) 88.0247i 0.306706i
\(288\) −94.5136 + 290.883i −0.328172 + 1.01001i
\(289\) 178.553 129.726i 0.617829 0.448879i
\(290\) 0 0
\(291\) −6.80772 20.9520i −0.0233942 0.0720000i
\(292\) −50.1942 154.482i −0.171898 0.529047i
\(293\) 220.293 + 160.052i 0.751853 + 0.546253i 0.896401 0.443245i \(-0.146173\pi\)
−0.144548 + 0.989498i \(0.546173\pi\)
\(294\) −135.920 187.078i −0.462313 0.636319i
\(295\) 0 0
\(296\) 50.6698i 0.171182i
\(297\) −126.824 56.3494i −0.427018 0.189729i
\(298\) 426.803i 1.43222i
\(299\) 41.1255 + 13.3625i 0.137544 + 0.0446906i
\(300\) 0 0
\(301\) −149.124 108.345i −0.495428 0.359949i
\(302\) −400.335 + 130.077i −1.32561 + 0.430717i
\(303\) −11.5466 35.5368i −0.0381076 0.117283i
\(304\) −298.893 + 411.391i −0.983200 + 1.35326i
\(305\) 0 0
\(306\) 55.6298 171.211i 0.181797 0.559513i
\(307\) −341.863 −1.11356 −0.556780 0.830660i \(-0.687963\pi\)
−0.556780 + 0.830660i \(0.687963\pi\)
\(308\) 153.063 344.496i 0.496959 1.11849i
\(309\) 49.9219 0.161559
\(310\) 0 0
\(311\) −124.438 + 90.4098i −0.400123 + 0.290707i −0.769591 0.638537i \(-0.779540\pi\)
0.369468 + 0.929244i \(0.379540\pi\)
\(312\) 12.3498 16.9980i 0.0395827 0.0544809i
\(313\) −8.95868 + 2.91085i −0.0286220 + 0.00929984i −0.323293 0.946299i \(-0.604790\pi\)
0.294671 + 0.955599i \(0.404790\pi\)
\(314\) −454.985 + 147.833i −1.44900 + 0.470807i
\(315\) 0 0
\(316\) 191.751 + 263.922i 0.606806 + 0.835197i
\(317\) −214.652 69.7448i −0.677137 0.220015i −0.0497954 0.998759i \(-0.515857\pi\)
−0.627341 + 0.778744i \(0.715857\pi\)
\(318\) 94.9797 0.298678
\(319\) −347.379 + 74.1159i −1.08896 + 0.232338i
\(320\) 0 0
\(321\) 40.7610 + 13.2440i 0.126981 + 0.0412587i
\(322\) −106.320 146.336i −0.330185 0.454461i
\(323\) 125.771 173.109i 0.389384 0.535941i
\(324\) 54.0001 + 166.195i 0.166667 + 0.512948i
\(325\) 0 0
\(326\) −368.358 + 507.002i −1.12993 + 1.55522i
\(327\) −47.2461 + 34.3263i −0.144483 + 0.104973i
\(328\) −22.8426 7.42199i −0.0696419 0.0226280i
\(329\) 1073.35i 3.26246i
\(330\) 0 0
\(331\) 176.158 0.532198 0.266099 0.963946i \(-0.414265\pi\)
0.266099 + 0.963946i \(0.414265\pi\)
\(332\) 102.057 314.100i 0.307401 0.946083i
\(333\) −70.2227 96.6532i −0.210879 0.290250i
\(334\) −50.6861 36.8256i −0.151755 0.110256i
\(335\) 0 0
\(336\) −177.688 + 57.7343i −0.528833 + 0.171828i
\(337\) 154.436 + 112.204i 0.458267 + 0.332951i 0.792851 0.609415i \(-0.208596\pi\)
−0.334584 + 0.942366i \(0.608596\pi\)
\(338\) 215.074 156.261i 0.636315 0.462310i
\(339\) 3.94282 12.1348i 0.0116307 0.0357958i
\(340\) 0 0
\(341\) 415.186 240.132i 1.21755 0.704200i
\(342\) 564.009i 1.64915i
\(343\) −308.309 + 948.878i −0.898860 + 2.76641i
\(344\) −40.6894 + 29.5625i −0.118283 + 0.0859376i
\(345\) 0 0
\(346\) −45.9951 141.558i −0.132934 0.409128i
\(347\) −61.4596 189.153i −0.177117 0.545110i 0.822607 0.568611i \(-0.192519\pi\)
−0.999724 + 0.0235005i \(0.992519\pi\)
\(348\) −49.0300 35.6224i −0.140891 0.102363i
\(349\) 120.489 + 165.839i 0.345241 + 0.475183i 0.945963 0.324275i \(-0.105120\pi\)
−0.600722 + 0.799458i \(0.705120\pi\)
\(350\) 0 0
\(351\) 102.123i 0.290948i
\(352\) −295.075 265.278i −0.838281 0.753630i
\(353\) 193.516i 0.548205i 0.961701 + 0.274102i \(0.0883807\pi\)
−0.961701 + 0.274102i \(0.911619\pi\)
\(354\) 94.8286 + 30.8117i 0.267877 + 0.0870387i
\(355\) 0 0
\(356\) 91.9471 + 66.8035i 0.258278 + 0.187650i
\(357\) 74.7692 24.2940i 0.209438 0.0680504i
\(358\) −0.0893755 0.275069i −0.000249652 0.000768350i
\(359\) −48.9531 + 67.3782i −0.136360 + 0.187683i −0.871736 0.489976i \(-0.837005\pi\)
0.735376 + 0.677659i \(0.237005\pi\)
\(360\) 0 0
\(361\) −95.6045 + 294.240i −0.264832 + 0.815070i
\(362\) −69.7108 −0.192571
\(363\) 64.8147 58.5395i 0.178553 0.161266i
\(364\) 277.399 0.762085
\(365\) 0 0
\(366\) 6.01643 4.37119i 0.0164383 0.0119431i
\(367\) 393.044 540.978i 1.07096 1.47406i 0.201867 0.979413i \(-0.435299\pi\)
0.869097 0.494642i \(-0.164701\pi\)
\(368\) −99.7828 + 32.4214i −0.271149 + 0.0881016i
\(369\) −53.8585 + 17.4997i −0.145958 + 0.0474247i
\(370\) 0 0
\(371\) −396.786 546.129i −1.06950 1.47205i
\(372\) 77.8296 + 25.2884i 0.209219 + 0.0679795i
\(373\) 106.447 0.285380 0.142690 0.989767i \(-0.454425\pi\)
0.142690 + 0.989767i \(0.454425\pi\)
\(374\) 173.678 + 156.140i 0.464381 + 0.417486i
\(375\) 0 0
\(376\) 278.536 + 90.5017i 0.740787 + 0.240696i
\(377\) −153.634 211.459i −0.407517 0.560899i
\(378\) −251.091 + 345.597i −0.664262 + 0.914278i
\(379\) −165.105 508.140i −0.435633 1.34074i −0.892437 0.451172i \(-0.851006\pi\)
0.456804 0.889567i \(-0.348994\pi\)
\(380\) 0 0
\(381\) 50.3062 69.2406i 0.132037 0.181734i
\(382\) −682.771 + 496.062i −1.78736 + 1.29859i
\(383\) −25.9749 8.43976i −0.0678196 0.0220359i 0.274911 0.961470i \(-0.411352\pi\)
−0.342730 + 0.939434i \(0.611352\pi\)
\(384\) 77.9757i 0.203062i
\(385\) 0 0
\(386\) −575.681 −1.49140
\(387\) −36.6451 + 112.782i −0.0946901 + 0.291426i
\(388\) −46.6483 64.2059i −0.120228 0.165479i
\(389\) 549.304 + 399.093i 1.41209 + 1.02595i 0.993014 + 0.117995i \(0.0376467\pi\)
0.419078 + 0.907950i \(0.362353\pi\)
\(390\) 0 0
\(391\) 41.9876 13.6426i 0.107385 0.0348915i
\(392\) 362.797 + 263.587i 0.925502 + 0.672417i
\(393\) 102.463 74.4439i 0.260721 0.189425i
\(394\) 1.19177 3.66789i 0.00302479 0.00930936i
\(395\) 0 0
\(396\) −241.212 25.1656i −0.609122 0.0635495i
\(397\) 269.778i 0.679542i 0.940508 + 0.339771i \(0.110350\pi\)
−0.940508 + 0.339771i \(0.889650\pi\)
\(398\) 51.8260 159.504i 0.130216 0.400764i
\(399\) −199.267 + 144.776i −0.499416 + 0.362847i
\(400\) 0 0
\(401\) −13.6189 41.9146i −0.0339623 0.104525i 0.932638 0.360813i \(-0.117501\pi\)
−0.966601 + 0.256287i \(0.917501\pi\)
\(402\) 50.2644 + 154.698i 0.125036 + 0.384820i
\(403\) 285.536 + 207.454i 0.708525 + 0.514774i
\(404\) −79.1205 108.900i −0.195843 0.269554i
\(405\) 0 0
\(406\) 1093.35i 2.69298i
\(407\) 151.579 32.3406i 0.372431 0.0794609i
\(408\) 21.4511i 0.0525763i
\(409\) 69.3442 + 22.5313i 0.169546 + 0.0550888i 0.392560 0.919726i \(-0.371590\pi\)
−0.223014 + 0.974815i \(0.571590\pi\)
\(410\) 0 0
\(411\) 93.1829 + 67.7013i 0.226722 + 0.164723i
\(412\) 171.039 55.5739i 0.415143 0.134888i
\(413\) −218.989 673.979i −0.530240 1.63191i
\(414\) −68.4002 + 94.1448i −0.165218 + 0.227403i
\(415\) 0 0
\(416\) 90.2278 277.693i 0.216894 0.667530i
\(417\) 133.179 0.319373
\(418\) −668.670 297.097i −1.59969 0.710759i
\(419\) 46.3826 0.110698 0.0553491 0.998467i \(-0.482373\pi\)
0.0553491 + 0.998467i \(0.482373\pi\)
\(420\) 0 0
\(421\) 253.022 183.831i 0.601002 0.436653i −0.245232 0.969464i \(-0.578864\pi\)
0.846234 + 0.532811i \(0.178864\pi\)
\(422\) 373.583 514.192i 0.885267 1.21847i
\(423\) 656.736 213.386i 1.55257 0.504460i
\(424\) −175.177 + 56.9186i −0.413154 + 0.134242i
\(425\) 0 0
\(426\) −37.3644 51.4277i −0.0877099 0.120722i
\(427\) −50.2683 16.3332i −0.117724 0.0382510i
\(428\) 154.396 0.360738
\(429\) 58.7322 + 26.0954i 0.136905 + 0.0608284i
\(430\) 0 0
\(431\) −510.568 165.893i −1.18461 0.384904i −0.350533 0.936550i \(-0.614000\pi\)
−0.834078 + 0.551647i \(0.814000\pi\)
\(432\) 145.642 + 200.458i 0.337133 + 0.464024i
\(433\) −113.734 + 156.542i −0.262666 + 0.361529i −0.919897 0.392161i \(-0.871728\pi\)
0.657231 + 0.753689i \(0.271728\pi\)
\(434\) −456.221 1404.10i −1.05120 3.23526i
\(435\) 0 0
\(436\) −123.659 + 170.201i −0.283621 + 0.390370i
\(437\) −111.901 + 81.3006i −0.256066 + 0.186043i
\(438\) −110.169 35.7961i −0.251527 0.0817261i
\(439\) 492.610i 1.12212i −0.827776 0.561059i \(-0.810394\pi\)
0.827776 0.561059i \(-0.189606\pi\)
\(440\) 0 0
\(441\) 1057.34 2.39760
\(442\) −53.1072 + 163.447i −0.120152 + 0.369790i
\(443\) −43.8483 60.3521i −0.0989805 0.136235i 0.756654 0.653816i \(-0.226833\pi\)
−0.855634 + 0.517581i \(0.826833\pi\)
\(444\) 21.3943 + 15.5439i 0.0481854 + 0.0350087i
\(445\) 0 0
\(446\) 647.586 210.413i 1.45199 0.471779i
\(447\) −97.0107 70.4824i −0.217026 0.157679i
\(448\) −150.477 + 109.328i −0.335886 + 0.244035i
\(449\) 207.909 639.879i 0.463050 1.42512i −0.398368 0.917225i \(-0.630423\pi\)
0.861418 0.507896i \(-0.169577\pi\)
\(450\) 0 0
\(451\) 7.62347 73.0710i 0.0169035 0.162020i
\(452\) 45.9645i 0.101691i
\(453\) −36.5455 + 112.476i −0.0806744 + 0.248290i
\(454\) −767.303 + 557.479i −1.69010 + 1.22793i
\(455\) 0 0
\(456\) 20.7679 + 63.9172i 0.0455437 + 0.140169i
\(457\) −174.656 537.536i −0.382180 1.17623i −0.938506 0.345264i \(-0.887789\pi\)
0.556326 0.830964i \(-0.312211\pi\)
\(458\) −161.646 117.443i −0.352940 0.256426i
\(459\) −61.2845 84.3509i −0.133517 0.183771i
\(460\) 0 0
\(461\) 742.567i 1.61077i −0.592749 0.805387i \(-0.701958\pi\)
0.592749 0.805387i \(-0.298042\pi\)
\(462\) −134.597 232.716i −0.291335 0.503715i
\(463\) 279.537i 0.603752i 0.953347 + 0.301876i \(0.0976128\pi\)
−0.953347 + 0.301876i \(0.902387\pi\)
\(464\) 603.141 + 195.972i 1.29987 + 0.422354i
\(465\) 0 0
\(466\) −452.638 328.860i −0.971325 0.705709i
\(467\) 726.720 236.126i 1.55615 0.505623i 0.600371 0.799722i \(-0.295020\pi\)
0.955775 + 0.294099i \(0.0950195\pi\)
\(468\) −55.1481 169.729i −0.117838 0.362668i
\(469\) 679.522 935.282i 1.44887 1.99420i
\(470\) 0 0
\(471\) −41.5344 + 127.830i −0.0881834 + 0.271401i
\(472\) −193.363 −0.409668
\(473\) −114.407 102.854i −0.241876 0.217451i
\(474\) 232.649 0.490820
\(475\) 0 0
\(476\) 229.125 166.469i 0.481354 0.349724i
\(477\) −255.270 + 351.349i −0.535158 + 0.736581i
\(478\) 343.870 111.730i 0.719394 0.233745i
\(479\) 596.452 193.799i 1.24520 0.404591i 0.389003 0.921236i \(-0.372820\pi\)
0.856199 + 0.516646i \(0.172820\pi\)
\(480\) 0 0
\(481\) 67.0384 + 92.2704i 0.139373 + 0.191830i
\(482\) 648.256 + 210.631i 1.34493 + 0.436994i
\(483\) −50.8194 −0.105216
\(484\) 156.896 272.717i 0.324166 0.563464i
\(485\) 0 0
\(486\) 395.956 + 128.654i 0.814725 + 0.264720i
\(487\) 98.5999 + 135.711i 0.202464 + 0.278668i 0.898160 0.439668i \(-0.144904\pi\)
−0.695696 + 0.718336i \(0.744904\pi\)
\(488\) −8.47697 + 11.6676i −0.0173708 + 0.0239089i
\(489\) 54.4088 + 167.453i 0.111265 + 0.342440i
\(490\) 0 0
\(491\) −194.221 + 267.323i −0.395563 + 0.544446i −0.959623 0.281288i \(-0.909238\pi\)
0.564060 + 0.825734i \(0.309238\pi\)
\(492\) 10.1412 7.36798i 0.0206121 0.0149756i
\(493\) −253.796 82.4632i −0.514798 0.167268i
\(494\) 538.433i 1.08995i
\(495\) 0 0
\(496\) −856.342 −1.72650
\(497\) −139.614 + 429.688i −0.280913 + 0.864563i
\(498\) −138.440 190.546i −0.277992 0.382623i
\(499\) −630.351 457.977i −1.26323 0.917789i −0.264317 0.964436i \(-0.585147\pi\)
−0.998911 + 0.0466466i \(0.985147\pi\)
\(500\) 0 0
\(501\) −16.7407 + 5.43937i −0.0334145 + 0.0108570i
\(502\) 548.355 + 398.404i 1.09234 + 0.793633i
\(503\) −336.060 + 244.162i −0.668112 + 0.485412i −0.869393 0.494122i \(-0.835490\pi\)
0.201281 + 0.979534i \(0.435490\pi\)
\(504\) 124.184 382.198i 0.246396 0.758329i
\(505\) 0 0
\(506\) −75.5844 130.685i −0.149376 0.258270i
\(507\) 74.6906i 0.147319i
\(508\) 95.2759 293.229i 0.187551 0.577223i
\(509\) −570.074 + 414.183i −1.11999 + 0.813719i −0.984207 0.177019i \(-0.943354\pi\)
−0.135781 + 0.990739i \(0.543354\pi\)
\(510\) 0 0
\(511\) 254.415 + 783.008i 0.497876 + 1.53231i
\(512\) 131.620 + 405.084i 0.257070 + 0.791180i
\(513\) 264.272 + 192.005i 0.515149 + 0.374278i
\(514\) 478.505 + 658.605i 0.930943 + 1.28133i
\(515\) 0 0
\(516\) 26.2491i 0.0508704i
\(517\) −92.9585 + 891.007i −0.179804 + 1.72342i
\(518\) 477.084i 0.921011i
\(519\) −39.7714 12.9225i −0.0766307 0.0248988i
\(520\) 0 0
\(521\) −141.580 102.864i −0.271747 0.197436i 0.443563 0.896243i \(-0.353714\pi\)
−0.715310 + 0.698808i \(0.753714\pi\)
\(522\) 668.973 217.362i 1.28156 0.416403i
\(523\) 270.629 + 832.911i 0.517455 + 1.59256i 0.778769 + 0.627310i \(0.215844\pi\)
−0.261314 + 0.965254i \(0.584156\pi\)
\(524\) 268.180 369.119i 0.511795 0.704425i
\(525\) 0 0
\(526\) 329.955 1015.50i 0.627291 1.93060i
\(527\) 360.340 0.683757
\(528\) −152.502 + 32.5375i −0.288830 + 0.0616240i
\(529\) 500.462 0.946052
\(530\) 0 0
\(531\) −368.843 + 267.980i −0.694620 + 0.504671i
\(532\) −521.547 + 717.848i −0.980352 + 1.34934i
\(533\) 51.4163 16.7062i 0.0964658 0.0313436i
\(534\) 77.0847 25.0464i 0.144353 0.0469033i
\(535\) 0 0
\(536\) −185.412 255.198i −0.345918 0.476115i
\(537\) −0.0772818 0.0251104i −0.000143914 4.67605e-5i
\(538\) −180.254 −0.335044
\(539\) −556.966 + 1253.55i −1.03333 + 2.32569i
\(540\) 0 0
\(541\) −125.231 40.6901i −0.231481 0.0752128i 0.190980 0.981594i \(-0.438834\pi\)
−0.422461 + 0.906381i \(0.638834\pi\)
\(542\) −650.063 894.735i −1.19938 1.65080i
\(543\) −11.5121 + 15.8450i −0.0212009 + 0.0291805i
\(544\) −92.1191 283.514i −0.169337 0.521165i
\(545\) 0 0
\(546\) 116.280 160.046i 0.212967 0.293124i
\(547\) 1.32090 0.959689i 0.00241481 0.00175446i −0.586577 0.809893i \(-0.699525\pi\)
0.588992 + 0.808139i \(0.299525\pi\)
\(548\) 394.623 + 128.221i 0.720115 + 0.233980i
\(549\) 34.0042i 0.0619384i
\(550\) 0 0
\(551\) 836.062 1.51735
\(552\) −4.28495 + 13.1877i −0.00776260 + 0.0238908i
\(553\) −971.910 1337.72i −1.75752 2.41902i
\(554\) 167.848 + 121.949i 0.302974 + 0.220124i
\(555\) 0 0
\(556\) 456.287 148.257i 0.820661 0.266649i
\(557\) −464.666 337.599i −0.834229 0.606103i 0.0865234 0.996250i \(-0.472424\pi\)
−0.920753 + 0.390147i \(0.872424\pi\)
\(558\) −768.412 + 558.284i −1.37708 + 1.00051i
\(559\) 34.9833 107.668i 0.0625820 0.192608i
\(560\) 0 0
\(561\) 64.1714 13.6914i 0.114387 0.0244054i
\(562\) 1110.31i 1.97565i
\(563\) −54.1325 + 166.603i −0.0961502 + 0.295920i −0.987552 0.157295i \(-0.949723\pi\)
0.891402 + 0.453214i \(0.149723\pi\)
\(564\) −123.658 + 89.8432i −0.219253 + 0.159296i
\(565\) 0 0
\(566\) 102.691 + 316.052i 0.181434 + 0.558395i
\(567\) −273.705 842.379i −0.482726 1.48568i
\(568\) 99.7328 + 72.4601i 0.175586 + 0.127571i
\(569\) 172.026 + 236.774i 0.302331 + 0.416122i 0.932970 0.359953i \(-0.117207\pi\)
−0.630640 + 0.776076i \(0.717207\pi\)
\(570\) 0 0
\(571\) 836.204i 1.46446i −0.681060 0.732228i \(-0.738481\pi\)
0.681060 0.732228i \(-0.261519\pi\)
\(572\) 230.274 + 24.0244i 0.402577 + 0.0420008i
\(573\) 237.111i 0.413807i
\(574\) −215.075 69.8822i −0.374696 0.121746i
\(575\) 0 0
\(576\) 96.8085 + 70.3355i 0.168070 + 0.122110i
\(577\) 876.557 284.811i 1.51916 0.493606i 0.573626 0.819118i \(-0.305536\pi\)
0.945538 + 0.325511i \(0.105536\pi\)
\(578\) −175.215 539.255i −0.303140 0.932968i
\(579\) −95.0683 + 130.850i −0.164194 + 0.225994i
\(580\) 0 0
\(581\) −517.288 + 1592.05i −0.890341 + 2.74019i
\(582\) −56.5977 −0.0972469
\(583\) −282.082 487.716i −0.483845 0.836563i
\(584\) 224.643 0.384663
\(585\) 0 0
\(586\) 565.953 411.189i 0.965790 0.701688i
\(587\) −154.537 + 212.702i −0.263266 + 0.362354i −0.920102 0.391679i \(-0.871894\pi\)
0.656836 + 0.754033i \(0.271894\pi\)
\(588\) −222.589 + 72.3236i −0.378553 + 0.122999i
\(589\) −1073.69 + 348.863i −1.82291 + 0.592298i
\(590\) 0 0
\(591\) −0.636888 0.876602i −0.00107765 0.00148325i
\(592\) −263.181 85.5128i −0.444563 0.144447i
\(593\) 124.297 0.209606 0.104803 0.994493i \(-0.466579\pi\)
0.104803 + 0.994493i \(0.466579\pi\)
\(594\) −238.366 + 265.141i −0.401290 + 0.446365i
\(595\) 0 0
\(596\) −410.834 133.488i −0.689318 0.223973i
\(597\) −27.6961 38.1204i −0.0463921 0.0638533i
\(598\) 65.2985 89.8757i 0.109195 0.150294i
\(599\) −24.5601 75.5882i −0.0410018 0.126191i 0.928460 0.371432i \(-0.121133\pi\)
−0.969462 + 0.245241i \(0.921133\pi\)
\(600\) 0 0
\(601\) 337.300 464.254i 0.561232 0.772469i −0.430251 0.902709i \(-0.641575\pi\)
0.991482 + 0.130240i \(0.0415749\pi\)
\(602\) −383.113 + 278.348i −0.636400 + 0.462372i
\(603\) −707.351 229.832i −1.17305 0.381148i
\(604\) 426.039i 0.705363i
\(605\) 0 0
\(606\) −95.9957 −0.158409
\(607\) −146.723 + 451.568i −0.241719 + 0.743934i 0.754440 + 0.656369i \(0.227909\pi\)
−0.996159 + 0.0875652i \(0.972091\pi\)
\(608\) 548.968 + 755.590i 0.902908 + 1.24275i
\(609\) 248.514 + 180.556i 0.408069 + 0.296480i
\(610\) 0 0
\(611\) −626.956 + 203.710i −1.02611 + 0.333405i
\(612\) −147.406 107.097i −0.240860 0.174995i
\(613\) 709.576 515.537i 1.15755 0.841007i 0.168081 0.985773i \(-0.446243\pi\)
0.989466 + 0.144766i \(0.0462431\pi\)
\(614\) −271.403 + 835.291i −0.442024 + 1.36041i
\(615\) 0 0
\(616\) 387.706 + 348.554i 0.629392 + 0.565835i
\(617\) 401.953i 0.651464i 0.945462 + 0.325732i \(0.105611\pi\)
−0.945462 + 0.325732i \(0.894389\pi\)
\(618\) 39.6326 121.977i 0.0641305 0.197373i
\(619\) 165.411 120.178i 0.267223 0.194149i −0.446102 0.894982i \(-0.647188\pi\)
0.713325 + 0.700833i \(0.247188\pi\)
\(620\) 0 0
\(621\) 20.8270 + 64.0991i 0.0335379 + 0.103219i
\(622\) 122.112 + 375.822i 0.196322 + 0.604216i
\(623\) −466.044 338.601i −0.748064 0.543500i
\(624\) −67.4465 92.8322i −0.108087 0.148770i
\(625\) 0 0
\(626\) 24.2001i 0.0386583i
\(627\) −177.954 + 102.923i −0.283818 + 0.164152i
\(628\) 484.198i 0.771016i
\(629\) 110.744 + 35.9829i 0.176064 + 0.0572066i
\(630\) 0 0
\(631\) −418.233 303.864i −0.662810 0.481560i 0.204801 0.978804i \(-0.434345\pi\)
−0.867611 + 0.497244i \(0.834345\pi\)
\(632\) −429.089 + 139.420i −0.678939 + 0.220601i
\(633\) −55.1804 169.828i −0.0871729 0.268291i
\(634\) −340.822 + 469.101i −0.537574 + 0.739907i
\(635\) 0 0
\(636\) 29.7061 91.4260i 0.0467077 0.143752i
\(637\) −1009.40 −1.58461
\(638\) −94.6906 + 907.609i −0.148418 + 1.42258i
\(639\) 290.663 0.454872
\(640\) 0 0
\(641\) −221.224 + 160.729i −0.345124 + 0.250747i −0.746820 0.665026i \(-0.768421\pi\)
0.401697 + 0.915773i \(0.368421\pi\)
\(642\) 64.7197 89.0791i 0.100810 0.138752i
\(643\) 150.697 48.9645i 0.234366 0.0761501i −0.189479 0.981885i \(-0.560680\pi\)
0.423845 + 0.905735i \(0.360680\pi\)
\(644\) −174.114 + 56.5731i −0.270364 + 0.0878464i
\(645\) 0 0
\(646\) −323.117 444.733i −0.500182 0.688441i
\(647\) −971.123 315.537i −1.50096 0.487692i −0.560664 0.828044i \(-0.689454\pi\)
−0.940298 + 0.340351i \(0.889454\pi\)
\(648\) −241.677 −0.372958
\(649\) −123.416 578.449i −0.190164 0.891293i
\(650\) 0 0
\(651\) −394.488 128.177i −0.605973 0.196892i
\(652\) 372.823 + 513.147i 0.571815 + 0.787036i
\(653\) 60.3750 83.0990i 0.0924579 0.127257i −0.760282 0.649593i \(-0.774939\pi\)
0.852740 + 0.522336i \(0.174939\pi\)
\(654\) 46.3628 + 142.690i 0.0708912 + 0.218181i
\(655\) 0 0
\(656\) −77.1005 + 106.120i −0.117531 + 0.161768i
\(657\) 428.510 311.331i 0.652223 0.473868i
\(658\) 2622.57 + 852.124i 3.98567 + 1.29502i
\(659\) 375.067i 0.569145i 0.958655 + 0.284573i \(0.0918517\pi\)
−0.958655 + 0.284573i \(0.908148\pi\)
\(660\) 0 0
\(661\) −1095.09 −1.65671 −0.828356 0.560203i \(-0.810723\pi\)
−0.828356 + 0.560203i \(0.810723\pi\)
\(662\) 139.850 430.415i 0.211254 0.650174i
\(663\) 28.3808 + 39.0628i 0.0428067 + 0.0589183i
\(664\) 369.523 + 268.474i 0.556511 + 0.404329i
\(665\) 0 0
\(666\) −291.907 + 94.8464i −0.438299 + 0.142412i
\(667\) 139.556 + 101.393i 0.209230 + 0.152014i
\(668\) −51.3005 + 37.2720i −0.0767971 + 0.0557964i
\(669\) 59.1164 181.942i 0.0883654 0.271961i
\(670\) 0 0
\(671\) −40.3142 17.9120i −0.0600807 0.0266945i
\(672\) 343.149i 0.510639i
\(673\) −0.725514 + 2.23290i −0.00107803 + 0.00331783i −0.951594 0.307358i \(-0.900555\pi\)
0.950516 + 0.310675i \(0.100555\pi\)
\(674\) 396.760 288.263i 0.588665 0.427690i
\(675\) 0 0
\(676\) −83.1469 255.900i −0.122998 0.378550i
\(677\) 5.13532 + 15.8049i 0.00758541 + 0.0233455i 0.954778 0.297321i \(-0.0960931\pi\)
−0.947192 + 0.320666i \(0.896093\pi\)
\(678\) −26.5193 19.2674i −0.0391140 0.0284180i
\(679\) 236.442 + 325.435i 0.348221 + 0.479285i
\(680\) 0 0
\(681\) 266.468i 0.391289i
\(682\) −257.114 1205.09i −0.377000 1.76699i
\(683\) 560.470i 0.820600i 0.911951 + 0.410300i \(0.134576\pi\)
−0.911951 + 0.410300i \(0.865424\pi\)
\(684\) 542.907 + 176.401i 0.793723 + 0.257896i
\(685\) 0 0
\(686\) 2073.68 + 1506.62i 3.02285 + 2.19623i
\(687\) −53.3887 + 17.3470i −0.0777128 + 0.0252504i
\(688\) 84.8800 + 261.234i 0.123372 + 0.379700i
\(689\) 243.695 335.417i 0.353693 0.486817i
\(690\) 0 0
\(691\) 129.822 399.551i 0.187876 0.578222i −0.812110 0.583504i \(-0.801681\pi\)
0.999986 + 0.00528214i \(0.00168136\pi\)
\(692\) −150.647 −0.217699
\(693\) 1222.61 + 127.555i 1.76423 + 0.184062i
\(694\) −510.960 −0.736254
\(695\) 0 0
\(696\) 67.8086 49.2658i 0.0974261 0.0707842i
\(697\) 32.4431 44.6541i 0.0465468 0.0640661i
\(698\) 500.858 162.739i 0.717562 0.233150i
\(699\) −149.498 + 48.5747i −0.213874 + 0.0694917i
\(700\) 0 0
\(701\) 65.3351 + 89.9261i 0.0932027 + 0.128283i 0.853072 0.521794i \(-0.174737\pi\)
−0.759869 + 0.650076i \(0.774737\pi\)
\(702\) −249.522 81.0745i −0.355444 0.115491i
\(703\) −364.817 −0.518943
\(704\) −134.382 + 77.7229i −0.190884 + 0.110402i
\(705\) 0 0
\(706\) 472.828 + 153.631i 0.669729 + 0.217608i
\(707\) 401.031 + 551.972i 0.567229 + 0.780724i
\(708\) 59.3177 81.6438i 0.0837821 0.115316i
\(709\) −34.0103 104.673i −0.0479694 0.147634i 0.924203 0.381902i \(-0.124731\pi\)
−0.972172 + 0.234268i \(0.924731\pi\)
\(710\) 0 0
\(711\) −625.273 + 860.615i −0.879428 + 1.21043i
\(712\) −127.163 + 92.3893i −0.178600 + 0.129760i
\(713\) −221.530 71.9794i −0.310701 0.100953i
\(714\) 201.974i 0.282877i
\(715\) 0 0
\(716\) −0.292731 −0.000408842
\(717\) 31.3910 96.6117i 0.0437811 0.134744i
\(718\) 125.765 + 173.101i 0.175160 + 0.241087i
\(719\) −442.734 321.665i −0.615763 0.447378i 0.235676 0.971832i \(-0.424270\pi\)
−0.851439 + 0.524453i \(0.824270\pi\)
\(720\) 0 0
\(721\) −866.930 + 281.683i −1.20240 + 0.390683i
\(722\) 643.033 + 467.191i 0.890627 + 0.647078i
\(723\) 154.929 112.563i 0.214286 0.155688i
\(724\) −21.8030 + 67.1026i −0.0301146 + 0.0926831i
\(725\) 0 0
\(726\) −91.5766 204.839i −0.126139 0.282148i
\(727\) 321.509i 0.442241i 0.975246 + 0.221121i \(0.0709714\pi\)
−0.975246 + 0.221121i \(0.929029\pi\)
\(728\) −118.552 + 364.866i −0.162847 + 0.501190i
\(729\) −394.697 + 286.764i −0.541422 + 0.393366i
\(730\) 0 0
\(731\) −35.7167 109.925i −0.0488600 0.150376i
\(732\) −2.32593 7.15847i −0.00317750 0.00977933i
\(733\) −54.3778 39.5078i −0.0741853 0.0538988i 0.550074 0.835116i \(-0.314599\pi\)
−0.624260 + 0.781217i \(0.714599\pi\)
\(734\) −1009.77 1389.82i −1.37570 1.89349i
\(735\) 0 0
\(736\) 192.700i 0.261820i
\(737\) 645.086 717.545i 0.875286 0.973602i
\(738\) 145.488i 0.197139i
\(739\) 143.429 + 46.6030i 0.194086 + 0.0630622i 0.404447 0.914561i \(-0.367464\pi\)
−0.210361 + 0.977624i \(0.567464\pi\)
\(740\) 0 0
\(741\) −122.384 88.9172i −0.165161 0.119996i
\(742\) −1649.39 + 535.920i −2.22290 + 0.722264i
\(743\) 57.7178 + 177.637i 0.0776820 + 0.239081i 0.982355 0.187026i \(-0.0598848\pi\)
−0.904673 + 0.426107i \(0.859885\pi\)
\(744\) −66.5243 + 91.5628i −0.0894144 + 0.123068i
\(745\) 0 0
\(746\) 84.5073 260.087i 0.113281 0.348642i
\(747\) 1076.95 1.44169
\(748\) 204.618 118.345i 0.273554 0.158216i
\(749\) −782.573 −1.04482
\(750\) 0 0
\(751\) −635.190 + 461.493i −0.845793 + 0.614504i −0.923983 0.382434i \(-0.875086\pi\)
0.0781901 + 0.996938i \(0.475086\pi\)
\(752\) 940.142 1293.99i 1.25019 1.72074i
\(753\) 181.111 58.8467i 0.240520 0.0781496i
\(754\) −638.637 + 207.506i −0.846999 + 0.275207i
\(755\) 0 0
\(756\) 254.135 + 349.786i 0.336157 + 0.462680i
\(757\) 817.184 + 265.519i 1.07950 + 0.350752i 0.794182 0.607680i \(-0.207900\pi\)
0.285322 + 0.958432i \(0.407900\pi\)
\(758\) −1372.64 −1.81087
\(759\) −42.1862 4.40127i −0.0555813 0.00579878i
\(760\) 0 0
\(761\) 1125.43 + 365.675i 1.47888 + 0.480519i 0.933779 0.357849i \(-0.116490\pi\)
0.545105 + 0.838368i \(0.316490\pi\)
\(762\) −129.241 177.885i −0.169608 0.233445i
\(763\) 626.778 862.685i 0.821465 1.13065i
\(764\) 263.957 + 812.375i 0.345493 + 1.06332i
\(765\) 0 0
\(766\) −41.2426 + 56.7656i −0.0538415 + 0.0741065i
\(767\) 352.117 255.828i 0.459084 0.333544i
\(768\) 229.274 + 74.4956i 0.298534 + 0.0969994i
\(769\) 617.014i 0.802359i −0.915999 0.401179i \(-0.868600\pi\)
0.915999 0.401179i \(-0.131400\pi\)
\(770\) 0 0
\(771\) 228.719 0.296653
\(772\) −180.052 + 554.142i −0.233228 + 0.717801i
\(773\) 719.122 + 989.787i 0.930300 + 1.28045i 0.959742 + 0.280882i \(0.0906269\pi\)
−0.0294422 + 0.999566i \(0.509373\pi\)
\(774\) 246.474 + 179.074i 0.318441 + 0.231361i
\(775\) 0 0
\(776\) 104.387 33.9174i 0.134519 0.0437080i
\(777\) −108.439 78.7859i −0.139562 0.101398i
\(778\) 1411.21 1025.31i 1.81390 1.31787i
\(779\) −53.4376 + 164.464i −0.0685977 + 0.211122i
\(780\) 0 0
\(781\) −153.110 + 344.601i −0.196043 + 0.441230i
\(782\) 113.421i 0.145040i
\(783\) 125.890 387.449i 0.160779 0.494827i
\(784\) 1981.36 1439.54i 2.52725 1.83615i
\(785\) 0 0
\(786\) −100.548 309.454i −0.127923 0.393708i
\(787\) −37.0249 113.951i −0.0470456 0.144792i 0.924774 0.380516i \(-0.124254\pi\)
−0.971820 + 0.235725i \(0.924254\pi\)
\(788\) −3.15791 2.29436i −0.00400750 0.00291162i
\(789\) −176.330 242.697i −0.223485 0.307601i
\(790\) 0 0
\(791\) 232.976i 0.294534i
\(792\) 136.188 306.515i 0.171954 0.387013i
\(793\) 32.4622i 0.0409359i
\(794\) 659.163 + 214.175i 0.830180 + 0.269742i
\(795\) 0 0
\(796\) −137.327 99.7738i −0.172521 0.125344i
\(797\) −567.539 + 184.404i −0.712094 + 0.231373i −0.642592 0.766209i \(-0.722141\pi\)
−0.0695017 + 0.997582i \(0.522141\pi\)
\(798\) 195.542 + 601.815i 0.245040 + 0.754155i
\(799\) −395.602 + 544.500i −0.495121 + 0.681476i
\(800\) 0 0
\(801\) −114.524 + 352.468i −0.142976 + 0.440035i
\(802\) −113.224 −0.141177
\(803\) 143.381 + 672.024i 0.178557 + 0.836892i
\(804\) 164.631 0.204764
\(805\) 0 0
\(806\) 733.568 532.968i 0.910134 0.661251i
\(807\) −29.7672 + 40.9711i −0.0368863 + 0.0507696i
\(808\) 177.051 57.5275i 0.219123 0.0711974i
\(809\) 268.262 87.1635i 0.331597 0.107742i −0.138487 0.990364i \(-0.544224\pi\)
0.470083 + 0.882622i \(0.344224\pi\)
\(810\) 0 0
\(811\) 72.7008 + 100.064i 0.0896434 + 0.123384i 0.851483 0.524382i \(-0.175704\pi\)
−0.761840 + 0.647766i \(0.775704\pi\)
\(812\) 1052.44 + 341.959i 1.29611 + 0.421131i
\(813\) −310.722 −0.382192
\(814\) 41.3184 396.036i 0.0507596 0.486531i
\(815\) 0 0
\(816\) −111.418 36.2020i −0.136542 0.0443652i
\(817\) 212.847 + 292.959i 0.260523 + 0.358579i
\(818\) 110.104 151.545i 0.134601 0.185263i
\(819\) 279.525 + 860.288i 0.341300 + 1.05041i
\(820\) 0 0
\(821\) 406.944 560.110i 0.495668 0.682229i −0.485753 0.874096i \(-0.661454\pi\)
0.981421 + 0.191868i \(0.0614544\pi\)
\(822\) 239.395 173.931i 0.291235 0.211595i
\(823\) −1017.93 330.747i −1.23686 0.401879i −0.383663 0.923473i \(-0.625338\pi\)
−0.853194 + 0.521594i \(0.825338\pi\)
\(824\) 248.720i 0.301845i
\(825\) 0 0
\(826\) −1820.62 −2.20414
\(827\) −443.516 + 1365.00i −0.536295 + 1.65054i 0.204541 + 0.978858i \(0.434430\pi\)
−0.740835 + 0.671687i \(0.765570\pi\)
\(828\) 69.2293 + 95.2860i 0.0836103 + 0.115080i
\(829\) −75.5393 54.8825i −0.0911209 0.0662032i 0.541292 0.840835i \(-0.317935\pi\)
−0.632413 + 0.774631i \(0.717935\pi\)
\(830\) 0 0
\(831\) 55.4369 18.0125i 0.0667111 0.0216757i
\(832\) −92.4186 67.1460i −0.111080 0.0807044i
\(833\) −833.736 + 605.745i −1.00088 + 0.727185i
\(834\) 105.730 325.402i 0.126774 0.390170i
\(835\) 0 0
\(836\) −495.117 + 550.731i −0.592245 + 0.658769i
\(837\) 550.102i 0.657231i
\(838\) 36.8228 113.329i 0.0439413 0.135237i
\(839\) 995.583 723.334i 1.18663 0.862138i 0.193727 0.981056i \(-0.437942\pi\)
0.992904 + 0.118918i \(0.0379425\pi\)
\(840\) 0 0
\(841\) −62.3252 191.817i −0.0741085 0.228082i
\(842\) −248.292 764.163i −0.294883 0.907558i
\(843\) −252.370 183.358i −0.299372 0.217506i
\(844\) −378.111 520.425i −0.447999 0.616617i
\(845\) 0 0
\(846\) 1774.04i 2.09698i
\(847\) −795.247 + 1382.30i −0.938899 + 1.63199i
\(848\) 1005.94i 1.18625i
\(849\) 88.7959 + 28.8515i 0.104589 + 0.0339830i
\(850\) 0 0
\(851\) −60.8955 44.2432i −0.0715576 0.0519896i
\(852\) −61.1897 + 19.8817i −0.0718189 + 0.0233354i
\(853\) −230.655 709.882i −0.270404 0.832218i −0.990399 0.138239i \(-0.955856\pi\)
0.719995 0.693979i \(-0.244144\pi\)
\(854\) −79.8154 + 109.856i −0.0934606 + 0.128638i
\(855\) 0 0
\(856\) −65.9844 + 203.079i −0.0770846 + 0.237242i
\(857\) 1009.05 1.17742 0.588710 0.808344i \(-0.299636\pi\)
0.588710 + 0.808344i \(0.299636\pi\)
\(858\) 110.387 122.787i 0.128656 0.143108i
\(859\) −666.482 −0.775882 −0.387941 0.921684i \(-0.626813\pi\)
−0.387941 + 0.921684i \(0.626813\pi\)
\(860\) 0 0
\(861\) −51.4016 + 37.3455i −0.0596999 + 0.0433745i
\(862\) −810.672 + 1115.79i −0.940455 + 1.29443i
\(863\) −302.330 + 98.2329i −0.350324 + 0.113827i −0.478893 0.877873i \(-0.658962\pi\)
0.128569 + 0.991701i \(0.458962\pi\)
\(864\) 432.817 140.631i 0.500946 0.162767i
\(865\) 0 0
\(866\) 292.194 + 402.171i 0.337406 + 0.464400i
\(867\) −151.506 49.2272i −0.174747 0.0567788i
\(868\) −1494.26 −1.72150
\(869\) −690.947 1194.64i −0.795106 1.37473i
\(870\) 0 0
\(871\) 675.275 + 219.410i 0.775287 + 0.251906i
\(872\) −171.020 235.389i −0.196124 0.269942i
\(873\) 152.114 209.367i 0.174243 0.239824i
\(874\) 109.809 + 337.957i 0.125639 + 0.386678i
\(875\) 0 0
\(876\) −68.9135 + 94.8513i −0.0786683 + 0.108278i
\(877\) 998.734 725.623i 1.13881 0.827392i 0.151855 0.988403i \(-0.451475\pi\)
0.986953 + 0.161011i \(0.0514753\pi\)
\(878\) −1203.62 391.080i −1.37087 0.445421i
\(879\) 196.543i 0.223598i
\(880\) 0 0
\(881\) 902.924 1.02488 0.512442 0.858722i \(-0.328741\pi\)
0.512442 + 0.858722i \(0.328741\pi\)
\(882\) 839.417 2583.46i 0.951720 2.92909i
\(883\) 13.5788 + 18.6896i 0.0153780 + 0.0211660i 0.816637 0.577152i \(-0.195836\pi\)
−0.801259 + 0.598318i \(0.795836\pi\)
\(884\) 140.722 + 102.240i 0.159188 + 0.115657i
\(885\) 0 0
\(886\) −182.272 + 59.2238i −0.205725 + 0.0668441i
\(887\) −1241.51 902.007i −1.39967 1.01692i −0.994725 0.102578i \(-0.967291\pi\)
−0.404944 0.914341i \(-0.632709\pi\)
\(888\) −29.5884 + 21.4972i −0.0333202 + 0.0242086i
\(889\) −482.917 + 1486.26i −0.543213 + 1.67184i
\(890\) 0 0
\(891\) −154.253 722.979i −0.173124 0.811425i
\(892\) 689.166i 0.772607i
\(893\) 651.603 2005.43i 0.729679 2.24572i
\(894\) −249.229 + 181.076i −0.278780 + 0.202546i
\(895\) 0 0
\(896\) −439.975 1354.10i −0.491044 1.51128i
\(897\) −9.64499 29.6842i −0.0107525 0.0330928i
\(898\) −1398.39 1015.99i −1.55723 1.13139i
\(899\) 827.576 + 1139.06i 0.920552 + 1.26703i
\(900\) 0 0
\(901\) 423.289i 0.469799i
\(902\) −172.486 76.6374i −0.191226 0.0849638i
\(903\) 133.047i 0.147338i
\(904\) 60.4578 + 19.6439i 0.0668780 + 0.0217300i
\(905\) 0 0
\(906\) 245.804 + 178.587i 0.271307 + 0.197116i
\(907\) −356.091 + 115.701i −0.392603 + 0.127565i −0.498665 0.866795i \(-0.666176\pi\)
0.106061 + 0.994360i \(0.466176\pi\)
\(908\) 296.636 + 912.953i 0.326692 + 1.00546i
\(909\) 258.001 355.108i 0.283830 0.390658i
\(910\) 0 0
\(911\) −197.187 + 606.878i −0.216451 + 0.666167i 0.782597 + 0.622529i \(0.213895\pi\)
−0.999047 + 0.0436379i \(0.986105\pi\)
\(912\) 367.038 0.402454
\(913\) −567.292 + 1276.79i −0.621349 + 1.39846i
\(914\) −1452.05 −1.58867
\(915\) 0 0
\(916\) −163.606 + 118.867i −0.178609 + 0.129767i
\(917\) −1359.30 + 1870.92i −1.48234 + 2.04026i
\(918\) −254.752 + 82.7740i −0.277508 + 0.0901678i
\(919\) 844.869 274.515i 0.919335 0.298710i 0.189141 0.981950i \(-0.439430\pi\)
0.730194 + 0.683240i \(0.239430\pi\)
\(920\) 0 0
\(921\) 145.039 + 199.629i 0.157480 + 0.216753i
\(922\) −1814.35 589.519i −1.96784 0.639391i
\(923\) −277.483 −0.300631
\(924\) −266.106 + 56.7757i −0.287993 + 0.0614455i
\(925\) 0 0
\(926\) 683.007 + 221.922i 0.737589 + 0.239657i
\(927\) 344.699 + 474.438i 0.371844 + 0.511799i
\(928\) 684.641 942.328i 0.737760 1.01544i
\(929\) 461.175 + 1419.35i 0.496421 + 1.52783i 0.814730 + 0.579841i \(0.196885\pi\)
−0.318309 + 0.947987i \(0.603115\pi\)
\(930\) 0 0
\(931\) 1897.80 2612.10i 2.03845 2.80569i
\(932\) −458.124 + 332.847i −0.491550 + 0.357132i
\(933\) 105.589 + 34.3079i 0.113171 + 0.0367716i
\(934\) 1963.09i 2.10181i
\(935\) 0 0
\(936\) 246.815 0.263691
\(937\) 25.8710 79.6229i 0.0276105 0.0849764i −0.936302 0.351197i \(-0.885775\pi\)
0.963912 + 0.266220i \(0.0857749\pi\)
\(938\) −1745.75 2402.83i −1.86115 2.56165i
\(939\) 5.50060 + 3.99642i 0.00585793 + 0.00425603i
\(940\) 0 0
\(941\) 1139.52 370.253i 1.21097 0.393468i 0.367184 0.930148i \(-0.380322\pi\)
0.843785 + 0.536681i \(0.180322\pi\)
\(942\) 279.359 + 202.966i 0.296559 + 0.215463i
\(943\) −28.8652 + 20.9718i −0.0306100 + 0.0222394i
\(944\) −326.330 + 1004.34i −0.345688 + 1.06392i
\(945\) 0 0
\(946\) −342.136 + 197.882i −0.361666 + 0.209177i
\(947\) 934.828i 0.987147i −0.869704 0.493574i \(-0.835690\pi\)
0.869704 0.493574i \(-0.164310\pi\)
\(948\) 72.7638 223.944i 0.0767551 0.236228i
\(949\) −409.079 + 297.213i −0.431063 + 0.313186i
\(950\) 0 0
\(951\) 50.3415 + 154.935i 0.0529353 + 0.162918i
\(952\) 121.037 + 372.515i 0.127140 + 0.391297i
\(953\) 765.792 + 556.381i 0.803560 + 0.583820i 0.911956 0.410287i \(-0.134572\pi\)
−0.108397 + 0.994108i \(0.534572\pi\)
\(954\) 655.813 + 902.649i 0.687435 + 0.946173i
\(955\) 0 0
\(956\) 365.949i 0.382792i
\(957\) 190.659 + 171.406i 0.199226 + 0.179107i
\(958\) 1611.20i 1.68183i
\(959\) −2000.19 649.902i −2.08571 0.677687i
\(960\) 0 0
\(961\) −760.623 552.625i −0.791491 0.575052i
\(962\) 278.670 90.5455i 0.289678 0.0941221i
\(963\) 155.579 + 478.823i 0.161557 + 0.497220i
\(964\) 405.501 558.124i 0.420644 0.578967i
\(965\) 0 0
\(966\) −40.3452 + 124.170i −0.0417652 + 0.128540i
\(967\) 196.064 0.202755 0.101378 0.994848i \(-0.467675\pi\)
0.101378 + 0.994848i \(0.467675\pi\)
\(968\) 291.655 + 322.919i 0.301297 + 0.333594i
\(969\) −154.446 −0.159387
\(970\) 0 0
\(971\) 337.051 244.882i 0.347117 0.252196i −0.400541 0.916279i \(-0.631178\pi\)
0.747659 + 0.664083i \(0.231178\pi\)
\(972\) 247.681 340.904i 0.254816 0.350724i
\(973\) −2312.74 + 751.456i −2.37692 + 0.772308i
\(974\) 409.868 133.174i 0.420809 0.136729i
\(975\) 0 0
\(976\) 46.2957 + 63.7206i 0.0474341 + 0.0652875i
\(977\) 1028.91 + 334.314i 1.05313 + 0.342184i 0.783898 0.620890i \(-0.213229\pi\)
0.269237 + 0.963074i \(0.413229\pi\)
\(978\) 452.341 0.462517
\(979\) −357.547 321.441i −0.365217 0.328336i
\(980\) 0 0
\(981\) −652.446 211.993i −0.665083 0.216099i
\(982\) 498.973 + 686.777i 0.508119 + 0.699366i
\(983\) 320.324 440.888i 0.325863 0.448512i −0.614383 0.789008i \(-0.710595\pi\)
0.940246 + 0.340496i \(0.110595\pi\)
\(984\) 5.35717 + 16.4877i 0.00544428 + 0.0167558i
\(985\) 0 0
\(986\) −402.973 + 554.645i −0.408695 + 0.562520i
\(987\) 626.777 455.380i 0.635032 0.461378i
\(988\) −518.288 168.402i −0.524583 0.170447i
\(989\) 74.7140i 0.0755450i
\(990\) 0 0
\(991\) −1732.03 −1.74776 −0.873881 0.486140i \(-0.838405\pi\)
−0.873881 + 0.486140i \(0.838405\pi\)
\(992\) −486.028 + 1495.84i −0.489947 + 1.50790i
\(993\) −74.7368 102.866i −0.0752637 0.103592i
\(994\) 939.039 + 682.252i 0.944708 + 0.686370i
\(995\) 0 0
\(996\) −226.716 + 73.6645i −0.227626 + 0.0739603i
\(997\) −449.898 326.870i −0.451252 0.327854i 0.338838 0.940845i \(-0.389966\pi\)
−0.790090 + 0.612991i \(0.789966\pi\)
\(998\) −1619.43 + 1176.58i −1.62268 + 1.17894i
\(999\) −54.9323 + 169.064i −0.0549872 + 0.169233i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.q.g.24.12 56
5.2 odd 4 275.3.x.h.101.6 28
5.3 odd 4 275.3.x.i.101.2 yes 28
5.4 even 2 inner 275.3.q.g.24.3 56
11.6 odd 10 inner 275.3.q.g.149.3 56
55.17 even 20 275.3.x.h.226.6 yes 28
55.28 even 20 275.3.x.i.226.2 yes 28
55.39 odd 10 inner 275.3.q.g.149.12 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.q.g.24.3 56 5.4 even 2 inner
275.3.q.g.24.12 56 1.1 even 1 trivial
275.3.q.g.149.3 56 11.6 odd 10 inner
275.3.q.g.149.12 56 55.39 odd 10 inner
275.3.x.h.101.6 28 5.2 odd 4
275.3.x.h.226.6 yes 28 55.17 even 20
275.3.x.i.101.2 yes 28 5.3 odd 4
275.3.x.i.226.2 yes 28 55.28 even 20