Properties

Label 275.3.x.h.101.6
Level $275$
Weight $3$
Character 275.101
Analytic conductor $7.493$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(51,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.x (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,-5,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(7\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 101.6
Character \(\chi\) \(=\) 275.101
Dual form 275.3.x.h.226.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.44335 + 0.793893i) q^{2} +(-0.583945 + 0.424261i) q^{3} +(2.10363 + 1.52838i) q^{4} +(-1.76360 + 0.573029i) q^{6} +(-7.74676 + 10.6625i) q^{7} +(-2.11375 - 2.90933i) q^{8} +(-2.62016 + 8.06402i) q^{9} +(8.18023 + 7.35417i) q^{11} -1.87684 q^{12} +(7.69834 + 2.50134i) q^{13} +(-27.3929 + 19.9021i) q^{14} +(-6.06901 - 18.6785i) q^{16} +(-7.85972 + 2.55378i) q^{17} +(-12.8039 + 17.6231i) q^{18} +(15.2188 + 20.9469i) q^{19} -9.51297i q^{21} +(14.1488 + 24.4631i) q^{22} -5.34212 q^{23} +(2.46863 + 0.802107i) q^{24} +(16.8240 + 12.2233i) q^{26} +(-3.89865 - 11.9988i) q^{27} +(-32.5927 + 10.5900i) q^{28} +(18.9800 - 26.1237i) q^{29} +(13.4739 - 41.4685i) q^{31} -36.0717i q^{32} +(-7.89690 - 0.823881i) q^{33} -21.2315 q^{34} +(-17.8367 + 12.9591i) q^{36} +(11.3991 + 8.28194i) q^{37} +(20.5553 + 63.2626i) q^{38} +(-5.55664 + 1.80546i) q^{39} +(-3.92574 - 5.40332i) q^{41} +(7.55228 - 23.2435i) q^{42} +13.9858i q^{43} +(5.96824 + 27.9730i) q^{44} +(-13.0527 - 4.24108i) q^{46} +(-65.8866 + 47.8694i) q^{47} +(11.4685 + 8.33237i) q^{48} +(-38.5348 - 118.598i) q^{49} +(3.50618 - 4.82584i) q^{51} +(12.3715 + 17.0279i) q^{52} +(-15.8277 + 48.7128i) q^{53} -32.4124i q^{54} +47.3954 q^{56} +(-17.7739 - 5.77508i) q^{57} +(67.1142 - 48.7613i) q^{58} +(43.5007 + 31.6051i) q^{59} +(-3.81411 + 1.23928i) q^{61} +(65.8431 - 90.6252i) q^{62} +(-65.6849 - 90.4074i) q^{63} +(4.36107 - 13.4220i) q^{64} +(-18.6408 - 8.28232i) q^{66} +87.7170 q^{67} +(-20.4371 - 6.64042i) q^{68} +(3.11951 - 2.26646i) q^{69} +(10.5932 + 32.6025i) q^{71} +(28.9992 - 9.42243i) q^{72} +(36.7178 - 50.5378i) q^{73} +(21.2771 + 29.2854i) q^{74} +67.3246i q^{76} +(-141.784 + 30.2507i) q^{77} -15.0102 q^{78} +(119.320 + 38.7694i) q^{79} +(-54.3698 - 39.5019i) q^{81} +(-5.30231 - 16.3188i) q^{82} +(120.797 - 39.2492i) q^{83} +(14.5394 - 20.0118i) q^{84} +(-11.1032 + 34.1723i) q^{86} +23.3073i q^{87} +(4.10473 - 39.3439i) q^{88} +43.7087 q^{89} +(-86.3078 + 62.7063i) q^{91} +(-11.2379 - 8.16479i) q^{92} +(9.72543 + 29.9318i) q^{93} +(-198.987 + 64.6549i) q^{94} +(15.3038 + 21.0639i) q^{96} +(-9.43164 + 29.0276i) q^{97} -320.369i q^{98} +(-80.7377 + 46.6964i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 5 q^{2} + 14 q^{3} + 9 q^{4} + 30 q^{6} + 5 q^{7} + 15 q^{8} - 31 q^{9} - 5 q^{11} - 4 q^{12} - 45 q^{13} + 37 q^{14} - 35 q^{16} + 5 q^{17} + 35 q^{18} + 80 q^{19} - 50 q^{22} + 34 q^{23} - 13 q^{26}+ \cdots - 609 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44335 + 0.793893i 1.22168 + 0.396947i 0.847692 0.530489i \(-0.177992\pi\)
0.373984 + 0.927435i \(0.377992\pi\)
\(3\) −0.583945 + 0.424261i −0.194648 + 0.141420i −0.680841 0.732431i \(-0.738385\pi\)
0.486192 + 0.873852i \(0.338385\pi\)
\(4\) 2.10363 + 1.52838i 0.525908 + 0.382095i
\(5\) 0 0
\(6\) −1.76360 + 0.573029i −0.293934 + 0.0955048i
\(7\) −7.74676 + 10.6625i −1.10668 + 1.52321i −0.280461 + 0.959866i \(0.590487\pi\)
−0.826219 + 0.563349i \(0.809513\pi\)
\(8\) −2.11375 2.90933i −0.264219 0.363666i
\(9\) −2.62016 + 8.06402i −0.291129 + 0.896002i
\(10\) 0 0
\(11\) 8.18023 + 7.35417i 0.743657 + 0.668561i
\(12\) −1.87684 −0.156403
\(13\) 7.69834 + 2.50134i 0.592180 + 0.192411i 0.589750 0.807586i \(-0.299226\pi\)
0.00243053 + 0.999997i \(0.499226\pi\)
\(14\) −27.3929 + 19.9021i −1.95664 + 1.42158i
\(15\) 0 0
\(16\) −6.06901 18.6785i −0.379313 1.16741i
\(17\) −7.85972 + 2.55378i −0.462336 + 0.150222i −0.530918 0.847423i \(-0.678153\pi\)
0.0685815 + 0.997646i \(0.478153\pi\)
\(18\) −12.8039 + 17.6231i −0.711330 + 0.979061i
\(19\) 15.2188 + 20.9469i 0.800989 + 1.10247i 0.992652 + 0.121006i \(0.0386119\pi\)
−0.191663 + 0.981461i \(0.561388\pi\)
\(20\) 0 0
\(21\) 9.51297i 0.452998i
\(22\) 14.1488 + 24.4631i 0.643125 + 1.11196i
\(23\) −5.34212 −0.232266 −0.116133 0.993234i \(-0.537050\pi\)
−0.116133 + 0.993234i \(0.537050\pi\)
\(24\) 2.46863 + 0.802107i 0.102860 + 0.0334211i
\(25\) 0 0
\(26\) 16.8240 + 12.2233i 0.647076 + 0.470128i
\(27\) −3.89865 11.9988i −0.144394 0.444400i
\(28\) −32.5927 + 10.5900i −1.16402 + 0.378214i
\(29\) 18.9800 26.1237i 0.654482 0.900818i −0.344801 0.938676i \(-0.612053\pi\)
0.999283 + 0.0378581i \(0.0120535\pi\)
\(30\) 0 0
\(31\) 13.4739 41.4685i 0.434643 1.33769i −0.458809 0.888535i \(-0.651724\pi\)
0.893452 0.449158i \(-0.148276\pi\)
\(32\) 36.0717i 1.12724i
\(33\) −7.89690 0.823881i −0.239300 0.0249661i
\(34\) −21.2315 −0.624455
\(35\) 0 0
\(36\) −17.8367 + 12.9591i −0.495465 + 0.359976i
\(37\) 11.3991 + 8.28194i 0.308084 + 0.223836i 0.731074 0.682298i \(-0.239019\pi\)
−0.422990 + 0.906134i \(0.639019\pi\)
\(38\) 20.5553 + 63.2626i 0.540928 + 1.66481i
\(39\) −5.55664 + 1.80546i −0.142478 + 0.0462939i
\(40\) 0 0
\(41\) −3.92574 5.40332i −0.0957498 0.131788i 0.758454 0.651726i \(-0.225955\pi\)
−0.854204 + 0.519938i \(0.825955\pi\)
\(42\) 7.55228 23.2435i 0.179816 0.553417i
\(43\) 13.9858i 0.325252i 0.986688 + 0.162626i \(0.0519963\pi\)
−0.986688 + 0.162626i \(0.948004\pi\)
\(44\) 5.96824 + 27.9730i 0.135642 + 0.635749i
\(45\) 0 0
\(46\) −13.0527 4.24108i −0.283754 0.0921973i
\(47\) −65.8866 + 47.8694i −1.40184 + 1.01850i −0.407396 + 0.913252i \(0.633563\pi\)
−0.994446 + 0.105247i \(0.966437\pi\)
\(48\) 11.4685 + 8.33237i 0.238928 + 0.173591i
\(49\) −38.5348 118.598i −0.786424 2.42036i
\(50\) 0 0
\(51\) 3.50618 4.82584i 0.0687486 0.0946243i
\(52\) 12.3715 + 17.0279i 0.237913 + 0.327460i
\(53\) −15.8277 + 48.7128i −0.298636 + 0.919109i 0.683339 + 0.730101i \(0.260527\pi\)
−0.981976 + 0.189008i \(0.939473\pi\)
\(54\) 32.4124i 0.600229i
\(55\) 0 0
\(56\) 47.3954 0.846347
\(57\) −17.7739 5.77508i −0.311822 0.101317i
\(58\) 67.1142 48.7613i 1.15714 0.840713i
\(59\) 43.5007 + 31.6051i 0.737300 + 0.535680i 0.891865 0.452303i \(-0.149397\pi\)
−0.154564 + 0.987983i \(0.549397\pi\)
\(60\) 0 0
\(61\) −3.81411 + 1.23928i −0.0625264 + 0.0203161i −0.340113 0.940385i \(-0.610465\pi\)
0.277587 + 0.960701i \(0.410465\pi\)
\(62\) 65.8431 90.6252i 1.06199 1.46170i
\(63\) −65.6849 90.4074i −1.04262 1.43504i
\(64\) 4.36107 13.4220i 0.0681417 0.209719i
\(65\) 0 0
\(66\) −18.6408 8.28232i −0.282437 0.125490i
\(67\) 87.7170 1.30921 0.654604 0.755972i \(-0.272835\pi\)
0.654604 + 0.755972i \(0.272835\pi\)
\(68\) −20.4371 6.64042i −0.300546 0.0976532i
\(69\) 3.11951 2.26646i 0.0452103 0.0328472i
\(70\) 0 0
\(71\) 10.5932 + 32.6025i 0.149200 + 0.459191i 0.997527 0.0702818i \(-0.0223899\pi\)
−0.848327 + 0.529473i \(0.822390\pi\)
\(72\) 28.9992 9.42243i 0.402767 0.130867i
\(73\) 36.7178 50.5378i 0.502984 0.692298i −0.479732 0.877415i \(-0.659266\pi\)
0.982717 + 0.185116i \(0.0592662\pi\)
\(74\) 21.2771 + 29.2854i 0.287528 + 0.395748i
\(75\) 0 0
\(76\) 67.3246i 0.885850i
\(77\) −141.784 + 30.2507i −1.84135 + 0.392866i
\(78\) −15.0102 −0.192438
\(79\) 119.320 + 38.7694i 1.51038 + 0.490751i 0.943024 0.332724i \(-0.107968\pi\)
0.567353 + 0.823475i \(0.307968\pi\)
\(80\) 0 0
\(81\) −54.3698 39.5019i −0.671231 0.487678i
\(82\) −5.30231 16.3188i −0.0646623 0.199010i
\(83\) 120.797 39.2492i 1.45538 0.472882i 0.528726 0.848793i \(-0.322670\pi\)
0.926656 + 0.375910i \(0.122670\pi\)
\(84\) 14.5394 20.0118i 0.173088 0.238236i
\(85\) 0 0
\(86\) −11.1032 + 34.1723i −0.129107 + 0.397352i
\(87\) 23.3073i 0.267900i
\(88\) 4.10473 39.3439i 0.0466447 0.447089i
\(89\) 43.7087 0.491109 0.245555 0.969383i \(-0.421030\pi\)
0.245555 + 0.969383i \(0.421030\pi\)
\(90\) 0 0
\(91\) −86.3078 + 62.7063i −0.948437 + 0.689080i
\(92\) −11.2379 8.16479i −0.122151 0.0887477i
\(93\) 9.72543 + 29.9318i 0.104574 + 0.321847i
\(94\) −198.987 + 64.6549i −2.11689 + 0.687818i
\(95\) 0 0
\(96\) 15.3038 + 21.0639i 0.159415 + 0.219416i
\(97\) −9.43164 + 29.0276i −0.0972334 + 0.299253i −0.987829 0.155542i \(-0.950288\pi\)
0.890596 + 0.454795i \(0.150288\pi\)
\(98\) 320.369i 3.26907i
\(99\) −80.7377 + 46.6964i −0.815532 + 0.471681i
\(100\) 0 0
\(101\) 49.2339 + 15.9971i 0.487464 + 0.158387i 0.542429 0.840102i \(-0.317505\pi\)
−0.0549650 + 0.998488i \(0.517505\pi\)
\(102\) 12.3980 9.00769i 0.121549 0.0883107i
\(103\) 55.9544 + 40.6532i 0.543246 + 0.394691i 0.825289 0.564710i \(-0.191012\pi\)
−0.282043 + 0.959402i \(0.591012\pi\)
\(104\) −8.99515 27.6842i −0.0864919 0.266195i
\(105\) 0 0
\(106\) −77.3454 + 106.457i −0.729674 + 1.00431i
\(107\) −34.9014 48.0376i −0.326181 0.448950i 0.614161 0.789181i \(-0.289495\pi\)
−0.940342 + 0.340231i \(0.889495\pi\)
\(108\) 10.1374 31.1997i 0.0938647 0.288886i
\(109\) 80.9083i 0.742278i 0.928577 + 0.371139i \(0.121033\pi\)
−0.928577 + 0.371139i \(0.878967\pi\)
\(110\) 0 0
\(111\) −10.1702 −0.0916232
\(112\) 246.174 + 79.9869i 2.19799 + 0.714169i
\(113\) 14.3011 10.3903i 0.126558 0.0919498i −0.522705 0.852513i \(-0.675077\pi\)
0.649263 + 0.760564i \(0.275077\pi\)
\(114\) −38.8430 28.2211i −0.340728 0.247554i
\(115\) 0 0
\(116\) 79.8539 25.9461i 0.688395 0.223673i
\(117\) −40.3418 + 55.5257i −0.344801 + 0.474578i
\(118\) 81.1965 + 111.757i 0.688106 + 0.947096i
\(119\) 33.6577 103.588i 0.282838 0.870485i
\(120\) 0 0
\(121\) 12.8323 + 120.318i 0.106052 + 0.994361i
\(122\) −10.3031 −0.0844514
\(123\) 4.58484 + 1.48970i 0.0372751 + 0.0121114i
\(124\) 91.7238 66.6412i 0.739708 0.537429i
\(125\) 0 0
\(126\) −88.7174 273.044i −0.704106 2.16702i
\(127\) −112.770 + 36.6413i −0.887955 + 0.288514i −0.717257 0.696809i \(-0.754602\pi\)
−0.170699 + 0.985323i \(0.554602\pi\)
\(128\) −63.4985 + 87.3982i −0.496082 + 0.682798i
\(129\) −5.93364 8.16695i −0.0459972 0.0633097i
\(130\) 0 0
\(131\) 175.467i 1.33944i 0.742612 + 0.669722i \(0.233587\pi\)
−0.742612 + 0.669722i \(0.766413\pi\)
\(132\) −15.3530 13.8026i −0.116310 0.104565i
\(133\) −341.242 −2.56573
\(134\) 214.323 + 69.6379i 1.59943 + 0.519686i
\(135\) 0 0
\(136\) 24.0433 + 17.4685i 0.176789 + 0.128444i
\(137\) −49.3113 151.765i −0.359936 1.10777i −0.953092 0.302682i \(-0.902118\pi\)
0.593155 0.805088i \(-0.297882\pi\)
\(138\) 9.42138 3.06119i 0.0682709 0.0221825i
\(139\) 108.452 149.272i 0.780232 1.07390i −0.215025 0.976609i \(-0.568983\pi\)
0.995256 0.0972881i \(-0.0310168\pi\)
\(140\) 0 0
\(141\) 18.1650 55.9062i 0.128830 0.396498i
\(142\) 88.0693i 0.620207i
\(143\) 44.5789 + 77.0765i 0.311741 + 0.538997i
\(144\) 166.525 1.15643
\(145\) 0 0
\(146\) 129.836 94.3315i 0.889289 0.646106i
\(147\) 72.8187 + 52.9059i 0.495365 + 0.359904i
\(148\) 11.3216 + 34.8443i 0.0764974 + 0.235435i
\(149\) −157.999 + 51.3369i −1.06039 + 0.344543i −0.786740 0.617285i \(-0.788233\pi\)
−0.273655 + 0.961828i \(0.588233\pi\)
\(150\) 0 0
\(151\) −96.3065 132.555i −0.637792 0.877845i 0.360704 0.932680i \(-0.382537\pi\)
−0.998495 + 0.0548355i \(0.982537\pi\)
\(152\) 28.7726 88.5529i 0.189293 0.582585i
\(153\) 70.0722i 0.457988i
\(154\) −370.444 38.6483i −2.40548 0.250963i
\(155\) 0 0
\(156\) −14.4486 4.69462i −0.0926189 0.0300937i
\(157\) 150.650 109.453i 0.959552 0.697156i 0.00650560 0.999979i \(-0.497929\pi\)
0.953047 + 0.302823i \(0.0979292\pi\)
\(158\) 260.762 + 189.454i 1.65039 + 1.19908i
\(159\) −11.4244 35.1607i −0.0718516 0.221136i
\(160\) 0 0
\(161\) 41.3841 56.9604i 0.257044 0.353791i
\(162\) −101.484 139.681i −0.626445 0.862228i
\(163\) −75.3797 + 231.995i −0.462452 + 1.42328i 0.399706 + 0.916643i \(0.369112\pi\)
−0.862159 + 0.506639i \(0.830888\pi\)
\(164\) 17.3666i 0.105894i
\(165\) 0 0
\(166\) 326.309 1.96571
\(167\) 23.1931 + 7.53588i 0.138881 + 0.0451250i 0.377632 0.925956i \(-0.376738\pi\)
−0.238752 + 0.971081i \(0.576738\pi\)
\(168\) −27.6764 + 20.1080i −0.164740 + 0.119691i
\(169\) −83.7161 60.8233i −0.495361 0.359901i
\(170\) 0 0
\(171\) −208.792 + 67.8405i −1.22100 + 0.396728i
\(172\) −21.3756 + 29.4210i −0.124277 + 0.171053i
\(173\) −34.0540 46.8713i −0.196844 0.270932i 0.699173 0.714953i \(-0.253552\pi\)
−0.896017 + 0.444020i \(0.853552\pi\)
\(174\) −18.5035 + 56.9479i −0.106342 + 0.327287i
\(175\) 0 0
\(176\) 87.7189 197.427i 0.498403 1.12174i
\(177\) −38.8109 −0.219270
\(178\) 106.796 + 34.7000i 0.599976 + 0.194944i
\(179\) −0.0910781 + 0.0661721i −0.000508816 + 0.000369677i −0.588040 0.808832i \(-0.700100\pi\)
0.587531 + 0.809202i \(0.300100\pi\)
\(180\) 0 0
\(181\) −8.38500 25.8064i −0.0463260 0.142577i 0.925218 0.379436i \(-0.123882\pi\)
−0.971544 + 0.236859i \(0.923882\pi\)
\(182\) −260.662 + 84.6944i −1.43221 + 0.465354i
\(183\) 1.70145 2.34185i 0.00929756 0.0127970i
\(184\) 11.2919 + 15.5420i 0.0613691 + 0.0844674i
\(185\) 0 0
\(186\) 80.8548i 0.434703i
\(187\) −83.0752 36.9112i −0.444252 0.197386i
\(188\) −211.764 −1.12640
\(189\) 158.139 + 51.3825i 0.836715 + 0.271865i
\(190\) 0 0
\(191\) −265.764 193.089i −1.39143 1.01093i −0.995707 0.0925661i \(-0.970493\pi\)
−0.395726 0.918369i \(-0.629507\pi\)
\(192\) 3.14780 + 9.68794i 0.0163948 + 0.0504580i
\(193\) −213.112 + 69.2444i −1.10421 + 0.358779i −0.803721 0.595006i \(-0.797150\pi\)
−0.300488 + 0.953785i \(0.597150\pi\)
\(194\) −46.0896 + 63.4369i −0.237575 + 0.326994i
\(195\) 0 0
\(196\) 100.199 308.382i 0.511222 1.57338i
\(197\) 1.50117i 0.00762015i 0.999993 + 0.00381008i \(0.00121279\pi\)
−0.999993 + 0.00381008i \(0.998787\pi\)
\(198\) −234.342 + 49.9987i −1.18355 + 0.252519i
\(199\) −65.2808 −0.328044 −0.164022 0.986457i \(-0.552447\pi\)
−0.164022 + 0.986457i \(0.552447\pi\)
\(200\) 0 0
\(201\) −51.2219 + 37.2149i −0.254835 + 0.185149i
\(202\) 107.596 + 78.1729i 0.532652 + 0.386994i
\(203\) 131.511 + 404.748i 0.647836 + 1.99383i
\(204\) 14.7514 4.79303i 0.0723109 0.0234952i
\(205\) 0 0
\(206\) 104.442 + 143.752i 0.506999 + 0.697825i
\(207\) 13.9972 43.0790i 0.0676194 0.208111i
\(208\) 158.974i 0.764298i
\(209\) −29.5536 + 283.272i −0.141405 + 1.35537i
\(210\) 0 0
\(211\) 235.285 + 76.4488i 1.11510 + 0.362317i 0.807894 0.589328i \(-0.200607\pi\)
0.307202 + 0.951644i \(0.400607\pi\)
\(212\) −107.747 + 78.2830i −0.508242 + 0.369259i
\(213\) −20.0178 14.5438i −0.0939805 0.0682808i
\(214\) −47.1396 145.081i −0.220278 0.677947i
\(215\) 0 0
\(216\) −26.6677 + 36.7049i −0.123462 + 0.169930i
\(217\) 337.778 + 464.912i 1.55658 + 2.14245i
\(218\) −64.2326 + 197.688i −0.294645 + 0.906824i
\(219\) 45.0893i 0.205887i
\(220\) 0 0
\(221\) −66.8947 −0.302691
\(222\) −24.8493 8.07403i −0.111934 0.0363695i
\(223\) 214.422 155.787i 0.961533 0.698594i 0.00802651 0.999968i \(-0.497445\pi\)
0.953506 + 0.301373i \(0.0974451\pi\)
\(224\) 384.615 + 279.439i 1.71703 + 1.24750i
\(225\) 0 0
\(226\) 43.1913 14.0337i 0.191112 0.0620961i
\(227\) 216.994 298.667i 0.955922 1.31571i 0.00707657 0.999975i \(-0.497747\pi\)
0.948846 0.315739i \(-0.102253\pi\)
\(228\) −28.5632 39.3139i −0.125277 0.172429i
\(229\) −24.0332 + 73.9665i −0.104948 + 0.322998i −0.989718 0.143030i \(-0.954315\pi\)
0.884770 + 0.466028i \(0.154315\pi\)
\(230\) 0 0
\(231\) 69.9600 77.8183i 0.302857 0.336876i
\(232\) −116.121 −0.500524
\(233\) −207.119 67.2970i −0.888922 0.288828i −0.171265 0.985225i \(-0.554785\pi\)
−0.717657 + 0.696397i \(0.754785\pi\)
\(234\) −142.651 + 103.642i −0.609618 + 0.442913i
\(235\) 0 0
\(236\) 43.2050 + 132.971i 0.183072 + 0.563437i
\(237\) −86.1246 + 27.9836i −0.363395 + 0.118074i
\(238\) 164.475 226.381i 0.691072 0.951179i
\(239\) −82.7232 113.859i −0.346122 0.476396i 0.600095 0.799929i \(-0.295129\pi\)
−0.946217 + 0.323533i \(0.895129\pi\)
\(240\) 0 0
\(241\) 265.314i 1.10089i 0.834872 + 0.550444i \(0.185542\pi\)
−0.834872 + 0.550444i \(0.814458\pi\)
\(242\) −64.1655 + 304.166i −0.265146 + 1.25688i
\(243\) 162.055 0.666892
\(244\) −9.91758 3.22242i −0.0406458 0.0132066i
\(245\) 0 0
\(246\) 10.0197 + 7.27974i 0.0407305 + 0.0295924i
\(247\) 64.7642 + 199.324i 0.262203 + 0.806978i
\(248\) −149.126 + 48.4540i −0.601315 + 0.195379i
\(249\) −53.8868 + 74.1687i −0.216413 + 0.297866i
\(250\) 0 0
\(251\) −81.5281 + 250.918i −0.324813 + 0.999672i 0.646712 + 0.762734i \(0.276144\pi\)
−0.971525 + 0.236937i \(0.923856\pi\)
\(252\) 290.575i 1.15308i
\(253\) −43.6998 39.2869i −0.172726 0.155284i
\(254\) −304.627 −1.19932
\(255\) 0 0
\(256\) −270.204 + 196.314i −1.05548 + 0.766853i
\(257\) −256.357 186.254i −0.997499 0.724725i −0.0359483 0.999354i \(-0.511445\pi\)
−0.961550 + 0.274628i \(0.911445\pi\)
\(258\) −8.01428 24.6654i −0.0310631 0.0956024i
\(259\) −176.612 + 57.3849i −0.681901 + 0.221563i
\(260\) 0 0
\(261\) 160.932 + 221.503i 0.616596 + 0.848672i
\(262\) −139.302 + 428.728i −0.531688 + 1.63637i
\(263\) 415.617i 1.58029i −0.612919 0.790145i \(-0.710005\pi\)
0.612919 0.790145i \(-0.289995\pi\)
\(264\) 14.2951 + 24.7162i 0.0541482 + 0.0936218i
\(265\) 0 0
\(266\) −833.775 270.910i −3.13449 1.01846i
\(267\) −25.5235 + 18.5439i −0.0955936 + 0.0694528i
\(268\) 184.524 + 134.065i 0.688524 + 0.500242i
\(269\) 21.6814 + 66.7285i 0.0806000 + 0.248061i 0.983234 0.182347i \(-0.0583695\pi\)
−0.902634 + 0.430409i \(0.858369\pi\)
\(270\) 0 0
\(271\) 253.032 348.269i 0.933698 1.28513i −0.0247014 0.999695i \(-0.507863\pi\)
0.958399 0.285430i \(-0.0921365\pi\)
\(272\) 95.4013 + 131.309i 0.350740 + 0.482752i
\(273\) 23.7952 73.2341i 0.0871619 0.268257i
\(274\) 409.962i 1.49621i
\(275\) 0 0
\(276\) 10.0263 0.0363272
\(277\) −76.8041 24.9552i −0.277271 0.0900909i 0.167081 0.985943i \(-0.446566\pi\)
−0.444352 + 0.895852i \(0.646566\pi\)
\(278\) 383.493 278.624i 1.37947 1.00224i
\(279\) 299.099 + 217.308i 1.07204 + 0.778882i
\(280\) 0 0
\(281\) 411.029 133.551i 1.46274 0.475272i 0.533832 0.845590i \(-0.320751\pi\)
0.928905 + 0.370318i \(0.120751\pi\)
\(282\) 88.7672 122.178i 0.314777 0.433254i
\(283\) 76.0310 + 104.648i 0.268661 + 0.369780i 0.921937 0.387340i \(-0.126606\pi\)
−0.653276 + 0.757120i \(0.726606\pi\)
\(284\) −27.5448 + 84.7742i −0.0969888 + 0.298501i
\(285\) 0 0
\(286\) 47.7315 + 223.716i 0.166893 + 0.782224i
\(287\) 88.0247 0.306706
\(288\) 290.883 + 94.5136i 1.01001 + 0.328172i
\(289\) −178.553 + 129.726i −0.617829 + 0.448879i
\(290\) 0 0
\(291\) −6.80772 20.9520i −0.0233942 0.0720000i
\(292\) 154.482 50.1942i 0.529047 0.171898i
\(293\) 160.052 220.293i 0.546253 0.751853i −0.443245 0.896401i \(-0.646173\pi\)
0.989498 + 0.144548i \(0.0461727\pi\)
\(294\) 135.920 + 187.078i 0.462313 + 0.636319i
\(295\) 0 0
\(296\) 50.6698i 0.171182i
\(297\) 56.3494 126.824i 0.189729 0.427018i
\(298\) −426.803 −1.43222
\(299\) −41.1255 13.3625i −0.137544 0.0446906i
\(300\) 0 0
\(301\) −149.124 108.345i −0.495428 0.359949i
\(302\) −130.077 400.335i −0.430717 1.32561i
\(303\) −35.5368 + 11.5466i −0.117283 + 0.0381076i
\(304\) 298.893 411.391i 0.983200 1.35326i
\(305\) 0 0
\(306\) 55.6298 171.211i 0.181797 0.559513i
\(307\) 341.863i 1.11356i −0.830660 0.556780i \(-0.812037\pi\)
0.830660 0.556780i \(-0.187963\pi\)
\(308\) −344.496 153.063i −1.11849 0.496959i
\(309\) −49.9219 −0.161559
\(310\) 0 0
\(311\) −124.438 + 90.4098i −0.400123 + 0.290707i −0.769591 0.638537i \(-0.779540\pi\)
0.369468 + 0.929244i \(0.379540\pi\)
\(312\) 16.9980 + 12.3498i 0.0544809 + 0.0395827i
\(313\) 2.91085 + 8.95868i 0.00929984 + 0.0286220i 0.955599 0.294671i \(-0.0952101\pi\)
−0.946299 + 0.323293i \(0.895210\pi\)
\(314\) 454.985 147.833i 1.44900 0.470807i
\(315\) 0 0
\(316\) 191.751 + 263.922i 0.606806 + 0.835197i
\(317\) 69.7448 214.652i 0.220015 0.677137i −0.778744 0.627341i \(-0.784143\pi\)
0.998759 0.0497954i \(-0.0158569\pi\)
\(318\) 94.9797i 0.298678i
\(319\) 347.379 74.1159i 1.08896 0.232338i
\(320\) 0 0
\(321\) 40.7610 + 13.2440i 0.126981 + 0.0412587i
\(322\) 146.336 106.320i 0.454461 0.330185i
\(323\) −173.109 125.771i −0.535941 0.389384i
\(324\) −54.0001 166.195i −0.166667 0.512948i
\(325\) 0 0
\(326\) −368.358 + 507.002i −1.12993 + 1.55522i
\(327\) −34.3263 47.2461i −0.104973 0.144483i
\(328\) −7.42199 + 22.8426i −0.0226280 + 0.0696419i
\(329\) 1073.35i 3.26246i
\(330\) 0 0
\(331\) 176.158 0.532198 0.266099 0.963946i \(-0.414265\pi\)
0.266099 + 0.963946i \(0.414265\pi\)
\(332\) 314.100 + 102.057i 0.946083 + 0.307401i
\(333\) −96.6532 + 70.2227i −0.290250 + 0.210879i
\(334\) 50.6861 + 36.8256i 0.151755 + 0.110256i
\(335\) 0 0
\(336\) −177.688 + 57.7343i −0.528833 + 0.171828i
\(337\) −112.204 + 154.436i −0.332951 + 0.458267i −0.942366 0.334584i \(-0.891404\pi\)
0.609415 + 0.792851i \(0.291404\pi\)
\(338\) −156.261 215.074i −0.462310 0.636315i
\(339\) −3.94282 + 12.1348i −0.0116307 + 0.0357958i
\(340\) 0 0
\(341\) 415.186 240.132i 1.21755 0.704200i
\(342\) −564.009 −1.64915
\(343\) 948.878 + 308.309i 2.76641 + 0.898860i
\(344\) 40.6894 29.5625i 0.118283 0.0859376i
\(345\) 0 0
\(346\) −45.9951 141.558i −0.132934 0.409128i
\(347\) 189.153 61.4596i 0.545110 0.177117i −0.0235005 0.999724i \(-0.507481\pi\)
0.568611 + 0.822607i \(0.307481\pi\)
\(348\) −35.6224 + 49.0300i −0.102363 + 0.140891i
\(349\) −120.489 165.839i −0.345241 0.475183i 0.600722 0.799458i \(-0.294880\pi\)
−0.945963 + 0.324275i \(0.894880\pi\)
\(350\) 0 0
\(351\) 102.123i 0.290948i
\(352\) 265.278 295.075i 0.753630 0.838281i
\(353\) 193.516 0.548205 0.274102 0.961701i \(-0.411619\pi\)
0.274102 + 0.961701i \(0.411619\pi\)
\(354\) −94.8286 30.8117i −0.267877 0.0870387i
\(355\) 0 0
\(356\) 91.9471 + 66.8035i 0.258278 + 0.187650i
\(357\) 24.2940 + 74.7692i 0.0680504 + 0.209438i
\(358\) −0.275069 + 0.0893755i −0.000768350 + 0.000249652i
\(359\) 48.9531 67.3782i 0.136360 0.187683i −0.735376 0.677659i \(-0.762995\pi\)
0.871736 + 0.489976i \(0.162995\pi\)
\(360\) 0 0
\(361\) −95.6045 + 294.240i −0.264832 + 0.815070i
\(362\) 69.7108i 0.192571i
\(363\) −58.5395 64.8147i −0.161266 0.178553i
\(364\) −277.399 −0.762085
\(365\) 0 0
\(366\) 6.01643 4.37119i 0.0164383 0.0119431i
\(367\) 540.978 + 393.044i 1.47406 + 1.07096i 0.979413 + 0.201867i \(0.0647009\pi\)
0.494642 + 0.869097i \(0.335299\pi\)
\(368\) 32.4214 + 99.7828i 0.0881016 + 0.271149i
\(369\) 53.8585 17.4997i 0.145958 0.0474247i
\(370\) 0 0
\(371\) −396.786 546.129i −1.06950 1.47205i
\(372\) −25.2884 + 77.8296i −0.0679795 + 0.209219i
\(373\) 106.447i 0.285380i −0.989767 0.142690i \(-0.954425\pi\)
0.989767 0.142690i \(-0.0455752\pi\)
\(374\) −173.678 156.140i −0.464381 0.417486i
\(375\) 0 0
\(376\) 278.536 + 90.5017i 0.740787 + 0.240696i
\(377\) 211.459 153.634i 0.560899 0.407517i
\(378\) 345.597 + 251.091i 0.914278 + 0.664262i
\(379\) 165.105 + 508.140i 0.435633 + 1.34074i 0.892437 + 0.451172i \(0.148994\pi\)
−0.456804 + 0.889567i \(0.651006\pi\)
\(380\) 0 0
\(381\) 50.3062 69.2406i 0.132037 0.181734i
\(382\) −496.062 682.771i −1.29859 1.78736i
\(383\) −8.43976 + 25.9749i −0.0220359 + 0.0678196i −0.961470 0.274911i \(-0.911352\pi\)
0.939434 + 0.342730i \(0.111352\pi\)
\(384\) 77.9757i 0.203062i
\(385\) 0 0
\(386\) −575.681 −1.49140
\(387\) −112.782 36.6451i −0.291426 0.0946901i
\(388\) −64.2059 + 46.6483i −0.165479 + 0.120228i
\(389\) −549.304 399.093i −1.41209 1.02595i −0.993014 0.117995i \(-0.962353\pi\)
−0.419078 0.907950i \(-0.637647\pi\)
\(390\) 0 0
\(391\) 41.9876 13.6426i 0.107385 0.0348915i
\(392\) −263.587 + 362.797i −0.672417 + 0.925502i
\(393\) −74.4439 102.463i −0.189425 0.260721i
\(394\) −1.19177 + 3.66789i −0.00302479 + 0.00930936i
\(395\) 0 0
\(396\) −241.212 25.1656i −0.609122 0.0635495i
\(397\) −269.778 −0.679542 −0.339771 0.940508i \(-0.610350\pi\)
−0.339771 + 0.940508i \(0.610350\pi\)
\(398\) −159.504 51.8260i −0.400764 0.130216i
\(399\) 199.267 144.776i 0.499416 0.362847i
\(400\) 0 0
\(401\) −13.6189 41.9146i −0.0339623 0.104525i 0.932638 0.360813i \(-0.117501\pi\)
−0.966601 + 0.256287i \(0.917501\pi\)
\(402\) −154.698 + 50.2644i −0.384820 + 0.125036i
\(403\) 207.454 285.536i 0.514774 0.708525i
\(404\) 79.1205 + 108.900i 0.195843 + 0.269554i
\(405\) 0 0
\(406\) 1093.35i 2.69298i
\(407\) 32.3406 + 151.579i 0.0794609 + 0.372431i
\(408\) −21.4511 −0.0525763
\(409\) −69.3442 22.5313i −0.169546 0.0550888i 0.223014 0.974815i \(-0.428410\pi\)
−0.392560 + 0.919726i \(0.628410\pi\)
\(410\) 0 0
\(411\) 93.1829 + 67.7013i 0.226722 + 0.164723i
\(412\) 55.5739 + 171.039i 0.134888 + 0.415143i
\(413\) −673.979 + 218.989i −1.63191 + 0.530240i
\(414\) 68.4002 94.1448i 0.165218 0.227403i
\(415\) 0 0
\(416\) 90.2278 277.693i 0.216894 0.667530i
\(417\) 133.179i 0.319373i
\(418\) −297.097 + 668.670i −0.710759 + 1.59969i
\(419\) −46.3826 −0.110698 −0.0553491 0.998467i \(-0.517627\pi\)
−0.0553491 + 0.998467i \(0.517627\pi\)
\(420\) 0 0
\(421\) 253.022 183.831i 0.601002 0.436653i −0.245232 0.969464i \(-0.578864\pi\)
0.846234 + 0.532811i \(0.178864\pi\)
\(422\) 514.192 + 373.583i 1.21847 + 0.885267i
\(423\) −213.386 656.736i −0.504460 1.55257i
\(424\) 175.177 56.9186i 0.413154 0.134242i
\(425\) 0 0
\(426\) −37.3644 51.4277i −0.0877099 0.120722i
\(427\) 16.3332 50.2683i 0.0382510 0.117724i
\(428\) 154.396i 0.360738i
\(429\) −58.7322 26.0954i −0.136905 0.0608284i
\(430\) 0 0
\(431\) −510.568 165.893i −1.18461 0.384904i −0.350533 0.936550i \(-0.614000\pi\)
−0.834078 + 0.551647i \(0.814000\pi\)
\(432\) −200.458 + 145.642i −0.464024 + 0.337133i
\(433\) 156.542 + 113.734i 0.361529 + 0.262666i 0.753689 0.657231i \(-0.228272\pi\)
−0.392161 + 0.919897i \(0.628272\pi\)
\(434\) 456.221 + 1404.10i 1.05120 + 3.23526i
\(435\) 0 0
\(436\) −123.659 + 170.201i −0.283621 + 0.390370i
\(437\) −81.3006 111.901i −0.186043 0.256066i
\(438\) −35.7961 + 110.169i −0.0817261 + 0.251527i
\(439\) 492.610i 1.12212i 0.827776 + 0.561059i \(0.189606\pi\)
−0.827776 + 0.561059i \(0.810394\pi\)
\(440\) 0 0
\(441\) 1057.34 2.39760
\(442\) −163.447 53.1072i −0.369790 0.120152i
\(443\) −60.3521 + 43.8483i −0.136235 + 0.0989805i −0.653816 0.756654i \(-0.726833\pi\)
0.517581 + 0.855634i \(0.326833\pi\)
\(444\) −21.3943 15.5439i −0.0481854 0.0350087i
\(445\) 0 0
\(446\) 647.586 210.413i 1.45199 0.471779i
\(447\) 70.4824 97.0107i 0.157679 0.217026i
\(448\) 109.328 + 150.477i 0.244035 + 0.335886i
\(449\) −207.909 + 639.879i −0.463050 + 1.42512i 0.398368 + 0.917225i \(0.369577\pi\)
−0.861418 + 0.507896i \(0.830423\pi\)
\(450\) 0 0
\(451\) 7.62347 73.0710i 0.0169035 0.162020i
\(452\) 45.9645 0.101691
\(453\) 112.476 + 36.5455i 0.248290 + 0.0806744i
\(454\) 767.303 557.479i 1.69010 1.22793i
\(455\) 0 0
\(456\) 20.7679 + 63.9172i 0.0455437 + 0.140169i
\(457\) 537.536 174.656i 1.17623 0.382180i 0.345264 0.938506i \(-0.387789\pi\)
0.830964 + 0.556326i \(0.187789\pi\)
\(458\) −117.443 + 161.646i −0.256426 + 0.352940i
\(459\) 61.2845 + 84.3509i 0.133517 + 0.183771i
\(460\) 0 0
\(461\) 742.567i 1.61077i −0.592749 0.805387i \(-0.701958\pi\)
0.592749 0.805387i \(-0.298042\pi\)
\(462\) 232.716 134.597i 0.503715 0.291335i
\(463\) 279.537 0.603752 0.301876 0.953347i \(-0.402387\pi\)
0.301876 + 0.953347i \(0.402387\pi\)
\(464\) −603.141 195.972i −1.29987 0.422354i
\(465\) 0 0
\(466\) −452.638 328.860i −0.971325 0.705709i
\(467\) 236.126 + 726.720i 0.505623 + 1.55615i 0.799722 + 0.600371i \(0.204980\pi\)
−0.294099 + 0.955775i \(0.595020\pi\)
\(468\) −169.729 + 55.1481i −0.362668 + 0.117838i
\(469\) −679.522 + 935.282i −1.44887 + 1.99420i
\(470\) 0 0
\(471\) −41.5344 + 127.830i −0.0881834 + 0.271401i
\(472\) 193.363i 0.409668i
\(473\) −102.854 + 114.407i −0.217451 + 0.241876i
\(474\) −232.649 −0.490820
\(475\) 0 0
\(476\) 229.125 166.469i 0.481354 0.349724i
\(477\) −351.349 255.270i −0.736581 0.535158i
\(478\) −111.730 343.870i −0.233745 0.719394i
\(479\) −596.452 + 193.799i −1.24520 + 0.404591i −0.856199 0.516646i \(-0.827180\pi\)
−0.389003 + 0.921236i \(0.627180\pi\)
\(480\) 0 0
\(481\) 67.0384 + 92.2704i 0.139373 + 0.191830i
\(482\) −210.631 + 648.256i −0.436994 + 1.34493i
\(483\) 50.8194i 0.105216i
\(484\) −156.896 + 272.717i −0.324166 + 0.563464i
\(485\) 0 0
\(486\) 395.956 + 128.654i 0.814725 + 0.264720i
\(487\) −135.711 + 98.5999i −0.278668 + 0.202464i −0.718336 0.695696i \(-0.755096\pi\)
0.439668 + 0.898160i \(0.355096\pi\)
\(488\) 11.6676 + 8.47697i 0.0239089 + 0.0173708i
\(489\) −54.4088 167.453i −0.111265 0.342440i
\(490\) 0 0
\(491\) −194.221 + 267.323i −0.395563 + 0.544446i −0.959623 0.281288i \(-0.909238\pi\)
0.564060 + 0.825734i \(0.309238\pi\)
\(492\) 7.36798 + 10.1412i 0.0149756 + 0.0206121i
\(493\) −82.4632 + 253.796i −0.167268 + 0.514798i
\(494\) 538.433i 1.08995i
\(495\) 0 0
\(496\) −856.342 −1.72650
\(497\) −429.688 139.614i −0.864563 0.280913i
\(498\) −190.546 + 138.440i −0.382623 + 0.277992i
\(499\) 630.351 + 457.977i 1.26323 + 0.917789i 0.998911 0.0466466i \(-0.0148535\pi\)
0.264317 + 0.964436i \(0.414853\pi\)
\(500\) 0 0
\(501\) −16.7407 + 5.43937i −0.0334145 + 0.0108570i
\(502\) −398.404 + 548.355i −0.793633 + 1.09234i
\(503\) 244.162 + 336.060i 0.485412 + 0.668112i 0.979534 0.201281i \(-0.0645103\pi\)
−0.494122 + 0.869393i \(0.664510\pi\)
\(504\) −124.184 + 382.198i −0.246396 + 0.758329i
\(505\) 0 0
\(506\) −75.5844 130.685i −0.149376 0.258270i
\(507\) 74.6906 0.147319
\(508\) −293.229 95.2759i −0.577223 0.187551i
\(509\) 570.074 414.183i 1.11999 0.813719i 0.135781 0.990739i \(-0.456646\pi\)
0.984207 + 0.177019i \(0.0566455\pi\)
\(510\) 0 0
\(511\) 254.415 + 783.008i 0.497876 + 1.53231i
\(512\) −405.084 + 131.620i −0.791180 + 0.257070i
\(513\) 192.005 264.272i 0.374278 0.515149i
\(514\) −478.505 658.605i −0.930943 1.28133i
\(515\) 0 0
\(516\) 26.2491i 0.0508704i
\(517\) −891.007 92.9585i −1.72342 0.179804i
\(518\) −477.084 −0.921011
\(519\) 39.7714 + 12.9225i 0.0766307 + 0.0248988i
\(520\) 0 0
\(521\) −141.580 102.864i −0.271747 0.197436i 0.443563 0.896243i \(-0.353714\pi\)
−0.715310 + 0.698808i \(0.753714\pi\)
\(522\) 217.362 + 668.973i 0.416403 + 1.28156i
\(523\) 832.911 270.629i 1.59256 0.517455i 0.627310 0.778769i \(-0.284156\pi\)
0.965254 + 0.261314i \(0.0841558\pi\)
\(524\) −268.180 + 369.119i −0.511795 + 0.704425i
\(525\) 0 0
\(526\) 329.955 1015.50i 0.627291 1.93060i
\(527\) 360.340i 0.683757i
\(528\) 32.5375 + 152.502i 0.0616240 + 0.288830i
\(529\) −500.462 −0.946052
\(530\) 0 0
\(531\) −368.843 + 267.980i −0.694620 + 0.504671i
\(532\) −717.848 521.547i −1.34934 0.980352i
\(533\) −16.7062 51.4163i −0.0313436 0.0964658i
\(534\) −77.0847 + 25.0464i −0.144353 + 0.0469033i
\(535\) 0 0
\(536\) −185.412 255.198i −0.345918 0.476115i
\(537\) 0.0251104 0.0772818i 4.67605e−5 0.000143914i
\(538\) 180.254i 0.335044i
\(539\) 556.966 1253.55i 1.03333 2.32569i
\(540\) 0 0
\(541\) −125.231 40.6901i −0.231481 0.0752128i 0.190980 0.981594i \(-0.438834\pi\)
−0.422461 + 0.906381i \(0.638834\pi\)
\(542\) 894.735 650.063i 1.65080 1.19938i
\(543\) 15.8450 + 11.5121i 0.0291805 + 0.0212009i
\(544\) 92.1191 + 283.514i 0.169337 + 0.521165i
\(545\) 0 0
\(546\) 116.280 160.046i 0.212967 0.293124i
\(547\) 0.959689 + 1.32090i 0.00175446 + 0.00241481i 0.809893 0.586577i \(-0.199525\pi\)
−0.808139 + 0.588992i \(0.799525\pi\)
\(548\) 128.221 394.623i 0.233980 0.720115i
\(549\) 34.0042i 0.0619384i
\(550\) 0 0
\(551\) 836.062 1.51735
\(552\) −13.1877 4.28495i −0.0238908 0.00776260i
\(553\) −1337.72 + 971.910i −2.41902 + 1.75752i
\(554\) −167.848 121.949i −0.302974 0.220124i
\(555\) 0 0
\(556\) 456.287 148.257i 0.820661 0.266649i
\(557\) 337.599 464.666i 0.606103 0.834229i −0.390147 0.920753i \(-0.627576\pi\)
0.996250 + 0.0865234i \(0.0275757\pi\)
\(558\) 558.284 + 768.412i 1.00051 + 1.37708i
\(559\) −34.9833 + 107.668i −0.0625820 + 0.192608i
\(560\) 0 0
\(561\) 64.1714 13.6914i 0.114387 0.0244054i
\(562\) 1110.31 1.97565
\(563\) 166.603 + 54.1325i 0.295920 + 0.0961502i 0.453214 0.891402i \(-0.350277\pi\)
−0.157295 + 0.987552i \(0.550277\pi\)
\(564\) 123.658 89.8432i 0.219253 0.159296i
\(565\) 0 0
\(566\) 102.691 + 316.052i 0.181434 + 0.558395i
\(567\) 842.379 273.705i 1.48568 0.482726i
\(568\) 72.4601 99.7328i 0.127571 0.175586i
\(569\) −172.026 236.774i −0.302331 0.416122i 0.630640 0.776076i \(-0.282793\pi\)
−0.932970 + 0.359953i \(0.882793\pi\)
\(570\) 0 0
\(571\) 836.204i 1.46446i −0.681060 0.732228i \(-0.738481\pi\)
0.681060 0.732228i \(-0.261519\pi\)
\(572\) −24.0244 + 230.274i −0.0420008 + 0.402577i
\(573\) 237.111 0.413807
\(574\) 215.075 + 69.8822i 0.374696 + 0.121746i
\(575\) 0 0
\(576\) 96.8085 + 70.3355i 0.168070 + 0.122110i
\(577\) 284.811 + 876.557i 0.493606 + 1.51916i 0.819118 + 0.573626i \(0.194464\pi\)
−0.325511 + 0.945538i \(0.605536\pi\)
\(578\) −539.255 + 175.215i −0.932968 + 0.303140i
\(579\) 95.0683 130.850i 0.164194 0.225994i
\(580\) 0 0
\(581\) −517.288 + 1592.05i −0.890341 + 2.74019i
\(582\) 56.5977i 0.0972469i
\(583\) −487.716 + 282.082i −0.836563 + 0.483845i
\(584\) −224.643 −0.384663
\(585\) 0 0
\(586\) 565.953 411.189i 0.965790 0.701688i
\(587\) −212.702 154.537i −0.362354 0.263266i 0.391679 0.920102i \(-0.371894\pi\)
−0.754033 + 0.656836i \(0.771894\pi\)
\(588\) 72.3236 + 222.589i 0.122999 + 0.378553i
\(589\) 1073.69 348.863i 1.82291 0.592298i
\(590\) 0 0
\(591\) −0.636888 0.876602i −0.00107765 0.00148325i
\(592\) 85.5128 263.181i 0.144447 0.444563i
\(593\) 124.297i 0.209606i −0.994493 0.104803i \(-0.966579\pi\)
0.994493 0.104803i \(-0.0334213\pi\)
\(594\) 238.366 265.141i 0.401290 0.446365i
\(595\) 0 0
\(596\) −410.834 133.488i −0.689318 0.223973i
\(597\) 38.1204 27.6961i 0.0638533 0.0463921i
\(598\) −89.8757 65.2985i −0.150294 0.109195i
\(599\) 24.5601 + 75.5882i 0.0410018 + 0.126191i 0.969462 0.245241i \(-0.0788670\pi\)
−0.928460 + 0.371432i \(0.878867\pi\)
\(600\) 0 0
\(601\) 337.300 464.254i 0.561232 0.772469i −0.430251 0.902709i \(-0.641575\pi\)
0.991482 + 0.130240i \(0.0415749\pi\)
\(602\) −278.348 383.113i −0.462372 0.636400i
\(603\) −229.832 + 707.351i −0.381148 + 1.17305i
\(604\) 426.039i 0.705363i
\(605\) 0 0
\(606\) −95.9957 −0.158409
\(607\) −451.568 146.723i −0.743934 0.241719i −0.0875652 0.996159i \(-0.527909\pi\)
−0.656369 + 0.754440i \(0.727909\pi\)
\(608\) 755.590 548.968i 1.24275 0.902908i
\(609\) −248.514 180.556i −0.408069 0.296480i
\(610\) 0 0
\(611\) −626.956 + 203.710i −1.02611 + 0.333405i
\(612\) 107.097 147.406i 0.174995 0.240860i
\(613\) −515.537 709.576i −0.841007 1.15755i −0.985773 0.168081i \(-0.946243\pi\)
0.144766 0.989466i \(-0.453757\pi\)
\(614\) 271.403 835.291i 0.442024 1.36041i
\(615\) 0 0
\(616\) 387.706 + 348.554i 0.629392 + 0.565835i
\(617\) −401.953 −0.651464 −0.325732 0.945462i \(-0.605611\pi\)
−0.325732 + 0.945462i \(0.605611\pi\)
\(618\) −121.977 39.6326i −0.197373 0.0641305i
\(619\) −165.411 + 120.178i −0.267223 + 0.194149i −0.713325 0.700833i \(-0.752812\pi\)
0.446102 + 0.894982i \(0.352812\pi\)
\(620\) 0 0
\(621\) 20.8270 + 64.0991i 0.0335379 + 0.103219i
\(622\) −375.822 + 122.112i −0.604216 + 0.196322i
\(623\) −338.601 + 466.044i −0.543500 + 0.748064i
\(624\) 67.4465 + 92.8322i 0.108087 + 0.148770i
\(625\) 0 0
\(626\) 24.2001i 0.0386583i
\(627\) −102.923 177.954i −0.164152 0.283818i
\(628\) 484.198 0.771016
\(629\) −110.744 35.9829i −0.176064 0.0572066i
\(630\) 0 0
\(631\) −418.233 303.864i −0.662810 0.481560i 0.204801 0.978804i \(-0.434345\pi\)
−0.867611 + 0.497244i \(0.834345\pi\)
\(632\) −139.420 429.089i −0.220601 0.678939i
\(633\) −169.828 + 55.1804i −0.268291 + 0.0871729i
\(634\) 340.822 469.101i 0.537574 0.739907i
\(635\) 0 0
\(636\) 29.7061 91.4260i 0.0467077 0.143752i
\(637\) 1009.40i 1.58461i
\(638\) 907.609 + 94.6906i 1.42258 + 0.148418i
\(639\) −290.663 −0.454872
\(640\) 0 0
\(641\) −221.224 + 160.729i −0.345124 + 0.250747i −0.746820 0.665026i \(-0.768421\pi\)
0.401697 + 0.915773i \(0.368421\pi\)
\(642\) 89.0791 + 64.7197i 0.138752 + 0.100810i
\(643\) −48.9645 150.697i −0.0761501 0.234366i 0.905735 0.423845i \(-0.139320\pi\)
−0.981885 + 0.189479i \(0.939320\pi\)
\(644\) 174.114 56.5731i 0.270364 0.0878464i
\(645\) 0 0
\(646\) −323.117 444.733i −0.500182 0.688441i
\(647\) 315.537 971.123i 0.487692 1.50096i −0.340351 0.940298i \(-0.610546\pi\)
0.828044 0.560664i \(-0.189454\pi\)
\(648\) 241.677i 0.372958i
\(649\) 123.416 + 578.449i 0.190164 + 0.891293i
\(650\) 0 0
\(651\) −394.488 128.177i −0.605973 0.196892i
\(652\) −513.147 + 372.823i −0.787036 + 0.571815i
\(653\) −83.0990 60.3750i −0.127257 0.0924579i 0.522336 0.852740i \(-0.325061\pi\)
−0.649593 + 0.760282i \(0.725061\pi\)
\(654\) −46.3628 142.690i −0.0708912 0.218181i
\(655\) 0 0
\(656\) −77.1005 + 106.120i −0.117531 + 0.161768i
\(657\) 311.331 + 428.510i 0.473868 + 0.652223i
\(658\) 852.124 2622.57i 1.29502 3.98567i
\(659\) 375.067i 0.569145i −0.958655 0.284573i \(-0.908148\pi\)
0.958655 0.284573i \(-0.0918517\pi\)
\(660\) 0 0
\(661\) −1095.09 −1.65671 −0.828356 0.560203i \(-0.810723\pi\)
−0.828356 + 0.560203i \(0.810723\pi\)
\(662\) 430.415 + 139.850i 0.650174 + 0.211254i
\(663\) 39.0628 28.3808i 0.0589183 0.0428067i
\(664\) −369.523 268.474i −0.556511 0.404329i
\(665\) 0 0
\(666\) −291.907 + 94.8464i −0.438299 + 0.142412i
\(667\) −101.393 + 139.556i −0.152014 + 0.209230i
\(668\) 37.2720 + 51.3005i 0.0557964 + 0.0767971i
\(669\) −59.1164 + 181.942i −0.0883654 + 0.271961i
\(670\) 0 0
\(671\) −40.3142 17.9120i −0.0600807 0.0266945i
\(672\) −343.149 −0.510639
\(673\) 2.23290 + 0.725514i 0.00331783 + 0.00107803i 0.310675 0.950516i \(-0.399445\pi\)
−0.307358 + 0.951594i \(0.599445\pi\)
\(674\) −396.760 + 288.263i −0.588665 + 0.427690i
\(675\) 0 0
\(676\) −83.1469 255.900i −0.122998 0.378550i
\(677\) −15.8049 + 5.13532i −0.0233455 + 0.00758541i −0.320666 0.947192i \(-0.603907\pi\)
0.297321 + 0.954778i \(0.403907\pi\)
\(678\) −19.2674 + 26.5193i −0.0284180 + 0.0391140i
\(679\) −236.442 325.435i −0.348221 0.479285i
\(680\) 0 0
\(681\) 266.468i 0.391289i
\(682\) 1205.09 257.114i 1.76699 0.377000i
\(683\) 560.470 0.820600 0.410300 0.911951i \(-0.365424\pi\)
0.410300 + 0.911951i \(0.365424\pi\)
\(684\) −542.907 176.401i −0.793723 0.257896i
\(685\) 0 0
\(686\) 2073.68 + 1506.62i 3.02285 + 2.19623i
\(687\) −17.3470 53.3887i −0.0252504 0.0777128i
\(688\) 261.234 84.8800i 0.379700 0.123372i
\(689\) −243.695 + 335.417i −0.353693 + 0.486817i
\(690\) 0 0
\(691\) 129.822 399.551i 0.187876 0.578222i −0.812110 0.583504i \(-0.801681\pi\)
0.999986 + 0.00528214i \(0.00168136\pi\)
\(692\) 150.647i 0.217699i
\(693\) 127.555 1222.61i 0.184062 1.76423i
\(694\) 510.960 0.736254
\(695\) 0 0
\(696\) 67.8086 49.2658i 0.0974261 0.0707842i
\(697\) 44.6541 + 32.4431i 0.0640661 + 0.0465468i
\(698\) −162.739 500.858i −0.233150 0.717562i
\(699\) 149.498 48.5747i 0.213874 0.0694917i
\(700\) 0 0
\(701\) 65.3351 + 89.9261i 0.0932027 + 0.128283i 0.853072 0.521794i \(-0.174737\pi\)
−0.759869 + 0.650076i \(0.774737\pi\)
\(702\) 81.0745 249.522i 0.115491 0.355444i
\(703\) 364.817i 0.518943i
\(704\) 134.382 77.7229i 0.190884 0.110402i
\(705\) 0 0
\(706\) 472.828 + 153.631i 0.669729 + 0.217608i
\(707\) −551.972 + 401.031i −0.780724 + 0.567229i
\(708\) −81.6438 59.3177i −0.115316 0.0837821i
\(709\) 34.0103 + 104.673i 0.0479694 + 0.147634i 0.972172 0.234268i \(-0.0752692\pi\)
−0.924203 + 0.381902i \(0.875269\pi\)
\(710\) 0 0
\(711\) −625.273 + 860.615i −0.879428 + 1.21043i
\(712\) −92.3893 127.163i −0.129760 0.178600i
\(713\) −71.9794 + 221.530i −0.100953 + 0.310701i
\(714\) 201.974i 0.282877i
\(715\) 0 0
\(716\) −0.292731 −0.000408842
\(717\) 96.6117 + 31.3910i 0.134744 + 0.0437811i
\(718\) 173.101 125.765i 0.241087 0.175160i
\(719\) 442.734 + 321.665i 0.615763 + 0.447378i 0.851439 0.524453i \(-0.175730\pi\)
−0.235676 + 0.971832i \(0.575730\pi\)
\(720\) 0 0
\(721\) −866.930 + 281.683i −1.20240 + 0.390683i
\(722\) −467.191 + 643.033i −0.647078 + 0.890627i
\(723\) −112.563 154.929i −0.155688 0.214286i
\(724\) 21.8030 67.1026i 0.0301146 0.0926831i
\(725\) 0 0
\(726\) −91.5766 204.839i −0.126139 0.282148i
\(727\) −321.509 −0.442241 −0.221121 0.975246i \(-0.570971\pi\)
−0.221121 + 0.975246i \(0.570971\pi\)
\(728\) 364.866 + 118.552i 0.501190 + 0.162847i
\(729\) 394.697 286.764i 0.541422 0.393366i
\(730\) 0 0
\(731\) −35.7167 109.925i −0.0488600 0.150376i
\(732\) 7.15847 2.32593i 0.00977933 0.00317750i
\(733\) −39.5078 + 54.3778i −0.0538988 + 0.0741853i −0.835116 0.550074i \(-0.814599\pi\)
0.781217 + 0.624260i \(0.214599\pi\)
\(734\) 1009.77 + 1389.82i 1.37570 + 1.89349i
\(735\) 0 0
\(736\) 192.700i 0.261820i
\(737\) 717.545 + 645.086i 0.973602 + 0.875286i
\(738\) 145.488 0.197139
\(739\) −143.429 46.6030i −0.194086 0.0630622i 0.210361 0.977624i \(-0.432536\pi\)
−0.404447 + 0.914561i \(0.632536\pi\)
\(740\) 0 0
\(741\) −122.384 88.9172i −0.165161 0.119996i
\(742\) −535.920 1649.39i −0.722264 2.22290i
\(743\) 177.637 57.7178i 0.239081 0.0776820i −0.187026 0.982355i \(-0.559885\pi\)
0.426107 + 0.904673i \(0.359885\pi\)
\(744\) 66.5243 91.5628i 0.0894144 0.123068i
\(745\) 0 0
\(746\) 84.5073 260.087i 0.113281 0.348642i
\(747\) 1076.95i 1.44169i
\(748\) −118.345 204.618i −0.158216 0.273554i
\(749\) 782.573 1.04482
\(750\) 0 0
\(751\) −635.190 + 461.493i −0.845793 + 0.614504i −0.923983 0.382434i \(-0.875086\pi\)
0.0781901 + 0.996938i \(0.475086\pi\)
\(752\) 1293.99 + 940.142i 1.72074 + 1.25019i
\(753\) −58.8467 181.111i −0.0781496 0.240520i
\(754\) 638.637 207.506i 0.846999 0.275207i
\(755\) 0 0
\(756\) 254.135 + 349.786i 0.336157 + 0.462680i
\(757\) −265.519 + 817.184i −0.350752 + 1.07950i 0.607680 + 0.794182i \(0.292100\pi\)
−0.958432 + 0.285322i \(0.907900\pi\)
\(758\) 1372.64i 1.81087i
\(759\) 42.1862 + 4.40127i 0.0555813 + 0.00579878i
\(760\) 0 0
\(761\) 1125.43 + 365.675i 1.47888 + 0.480519i 0.933779 0.357849i \(-0.116490\pi\)
0.545105 + 0.838368i \(0.316490\pi\)
\(762\) 177.885 129.241i 0.233445 0.169608i
\(763\) −862.685 626.778i −1.13065 0.821465i
\(764\) −263.957 812.375i −0.345493 1.06332i
\(765\) 0 0
\(766\) −41.2426 + 56.7656i −0.0538415 + 0.0741065i
\(767\) 255.828 + 352.117i 0.333544 + 0.459084i
\(768\) 74.4956 229.274i 0.0969994 0.298534i
\(769\) 617.014i 0.802359i 0.915999 + 0.401179i \(0.131400\pi\)
−0.915999 + 0.401179i \(0.868600\pi\)
\(770\) 0 0
\(771\) 228.719 0.296653
\(772\) −554.142 180.052i −0.717801 0.233228i
\(773\) 989.787 719.122i 1.28045 0.930300i 0.280882 0.959742i \(-0.409373\pi\)
0.999566 + 0.0294422i \(0.00937308\pi\)
\(774\) −246.474 179.074i −0.318441 0.231361i
\(775\) 0 0
\(776\) 104.387 33.9174i 0.134519 0.0437080i
\(777\) 78.7859 108.439i 0.101398 0.139562i
\(778\) −1025.31 1411.21i −1.31787 1.81390i
\(779\) 53.4376 164.464i 0.0685977 0.211122i
\(780\) 0 0
\(781\) −153.110 + 344.601i −0.196043 + 0.441230i
\(782\) 113.421 0.145040
\(783\) −387.449 125.890i −0.494827 0.160779i
\(784\) −1981.36 + 1439.54i −2.52725 + 1.83615i
\(785\) 0 0
\(786\) −100.548 309.454i −0.127923 0.393708i
\(787\) 113.951 37.0249i 0.144792 0.0470456i −0.235725 0.971820i \(-0.575746\pi\)
0.380516 + 0.924774i \(0.375746\pi\)
\(788\) −2.29436 + 3.15791i −0.00291162 + 0.00400750i
\(789\) 176.330 + 242.697i 0.223485 + 0.307601i
\(790\) 0 0
\(791\) 232.976i 0.294534i
\(792\) 306.515 + 136.188i 0.387013 + 0.171954i
\(793\) −32.4622 −0.0409359
\(794\) −659.163 214.175i −0.830180 0.269742i
\(795\) 0 0
\(796\) −137.327 99.7738i −0.172521 0.125344i
\(797\) −184.404 567.539i −0.231373 0.712094i −0.997582 0.0695017i \(-0.977859\pi\)
0.766209 0.642592i \(-0.222141\pi\)
\(798\) 601.815 195.542i 0.754155 0.245040i
\(799\) 395.602 544.500i 0.495121 0.681476i
\(800\) 0 0
\(801\) −114.524 + 352.468i −0.142976 + 0.440035i
\(802\) 113.224i 0.141177i
\(803\) 672.024 143.381i 0.836892 0.178557i
\(804\) −164.631 −0.204764
\(805\) 0 0
\(806\) 733.568 532.968i 0.910134 0.661251i
\(807\) −40.9711 29.7672i −0.0507696 0.0368863i
\(808\) −57.5275 177.051i −0.0711974 0.219123i
\(809\) −268.262 + 87.1635i −0.331597 + 0.107742i −0.470083 0.882622i \(-0.655776\pi\)
0.138487 + 0.990364i \(0.455776\pi\)
\(810\) 0 0
\(811\) 72.7008 + 100.064i 0.0896434 + 0.123384i 0.851483 0.524382i \(-0.175704\pi\)
−0.761840 + 0.647766i \(0.775704\pi\)
\(812\) −341.959 + 1052.44i −0.421131 + 1.29611i
\(813\) 310.722i 0.382192i
\(814\) −41.3184 + 396.036i −0.0507596 + 0.486531i
\(815\) 0 0
\(816\) −111.418 36.2020i −0.136542 0.0443652i
\(817\) −292.959 + 212.847i −0.358579 + 0.260523i
\(818\) −151.545 110.104i −0.185263 0.134601i
\(819\) −279.525 860.288i −0.341300 1.05041i
\(820\) 0 0
\(821\) 406.944 560.110i 0.495668 0.682229i −0.485753 0.874096i \(-0.661454\pi\)
0.981421 + 0.191868i \(0.0614544\pi\)
\(822\) 173.931 + 239.395i 0.211595 + 0.291235i
\(823\) −330.747 + 1017.93i −0.401879 + 1.23686i 0.521594 + 0.853194i \(0.325338\pi\)
−0.923473 + 0.383663i \(0.874662\pi\)
\(824\) 248.720i 0.301845i
\(825\) 0 0
\(826\) −1820.62 −2.20414
\(827\) −1365.00 443.516i −1.65054 0.536295i −0.671687 0.740835i \(-0.734430\pi\)
−0.978858 + 0.204541i \(0.934430\pi\)
\(828\) 95.2860 69.2293i 0.115080 0.0836103i
\(829\) 75.5393 + 54.8825i 0.0911209 + 0.0662032i 0.632413 0.774631i \(-0.282065\pi\)
−0.541292 + 0.840835i \(0.682065\pi\)
\(830\) 0 0
\(831\) 55.4369 18.0125i 0.0667111 0.0216757i
\(832\) 67.1460 92.4186i 0.0807044 0.111080i
\(833\) 605.745 + 833.736i 0.727185 + 1.00088i
\(834\) −105.730 + 325.402i −0.126774 + 0.390170i
\(835\) 0 0
\(836\) −495.117 + 550.731i −0.592245 + 0.658769i
\(837\) −550.102 −0.657231
\(838\) −113.329 36.8228i −0.135237 0.0439413i
\(839\) −995.583 + 723.334i −1.18663 + 0.862138i −0.992904 0.118918i \(-0.962058\pi\)
−0.193727 + 0.981056i \(0.562058\pi\)
\(840\) 0 0
\(841\) −62.3252 191.817i −0.0741085 0.228082i
\(842\) 764.163 248.292i 0.907558 0.294883i
\(843\) −183.358 + 252.370i −0.217506 + 0.299372i
\(844\) 378.111 + 520.425i 0.447999 + 0.616617i
\(845\) 0 0
\(846\) 1774.04i 2.09698i
\(847\) −1382.30 795.247i −1.63199 0.938899i
\(848\) 1005.94 1.18625
\(849\) −88.7959 28.8515i −0.104589 0.0339830i
\(850\) 0 0
\(851\) −60.8955 44.2432i −0.0715576 0.0519896i
\(852\) −19.8817 61.1897i −0.0233354 0.0718189i
\(853\) −709.882 + 230.655i −0.832218 + 0.270404i −0.693979 0.719995i \(-0.744144\pi\)
−0.138239 + 0.990399i \(0.544144\pi\)
\(854\) 79.8154 109.856i 0.0934606 0.128638i
\(855\) 0 0
\(856\) −65.9844 + 203.079i −0.0770846 + 0.237242i
\(857\) 1009.05i 1.17742i 0.808344 + 0.588710i \(0.200364\pi\)
−0.808344 + 0.588710i \(0.799636\pi\)
\(858\) −122.787 110.387i −0.143108 0.128656i
\(859\) 666.482 0.775882 0.387941 0.921684i \(-0.373187\pi\)
0.387941 + 0.921684i \(0.373187\pi\)
\(860\) 0 0
\(861\) −51.4016 + 37.3455i −0.0596999 + 0.0433745i
\(862\) −1115.79 810.672i −1.29443 0.940455i
\(863\) 98.2329 + 302.330i 0.113827 + 0.350324i 0.991701 0.128569i \(-0.0410383\pi\)
−0.877873 + 0.478893i \(0.841038\pi\)
\(864\) −432.817 + 140.631i −0.500946 + 0.162767i
\(865\) 0 0
\(866\) 292.194 + 402.171i 0.337406 + 0.464400i
\(867\) 49.2272 151.506i 0.0567788 0.174747i
\(868\) 1494.26i 1.72150i
\(869\) 690.947 + 1194.64i 0.795106 + 1.37473i
\(870\) 0 0
\(871\) 675.275 + 219.410i 0.775287 + 0.251906i
\(872\) 235.389 171.020i 0.269942 0.196124i
\(873\) −209.367 152.114i −0.239824 0.174243i
\(874\) −109.809 337.957i −0.125639 0.386678i
\(875\) 0 0
\(876\) −68.9135 + 94.8513i −0.0786683 + 0.108278i
\(877\) 725.623 + 998.734i 0.827392 + 1.13881i 0.988403 + 0.151855i \(0.0485247\pi\)
−0.161011 + 0.986953i \(0.551475\pi\)
\(878\) −391.080 + 1203.62i −0.445421 + 1.37087i
\(879\) 196.543i 0.223598i
\(880\) 0 0
\(881\) 902.924 1.02488 0.512442 0.858722i \(-0.328741\pi\)
0.512442 + 0.858722i \(0.328741\pi\)
\(882\) 2583.46 + 839.417i 2.92909 + 0.951720i
\(883\) 18.6896 13.5788i 0.0211660 0.0153780i −0.577152 0.816637i \(-0.695836\pi\)
0.598318 + 0.801259i \(0.295836\pi\)
\(884\) −140.722 102.240i −0.159188 0.115657i
\(885\) 0 0
\(886\) −182.272 + 59.2238i −0.205725 + 0.0668441i
\(887\) 902.007 1241.51i 1.01692 1.39967i 0.102578 0.994725i \(-0.467291\pi\)
0.914341 0.404944i \(-0.132709\pi\)
\(888\) 21.4972 + 29.5884i 0.0242086 + 0.0333202i
\(889\) 482.917 1486.26i 0.543213 1.67184i
\(890\) 0 0
\(891\) −154.253 722.979i −0.173124 0.811425i
\(892\) 689.166 0.772607
\(893\) −2005.43 651.603i −2.24572 0.729679i
\(894\) 249.229 181.076i 0.278780 0.202546i
\(895\) 0 0
\(896\) −439.975 1354.10i −0.491044 1.51128i
\(897\) 29.6842 9.64499i 0.0330928 0.0107525i
\(898\) −1015.99 + 1398.39i −1.13139 + 1.55723i
\(899\) −827.576 1139.06i −0.920552 1.26703i
\(900\) 0 0
\(901\) 423.289i 0.469799i
\(902\) 76.6374 172.486i 0.0849638 0.191226i
\(903\) 133.047 0.147338
\(904\) −60.4578 19.6439i −0.0668780 0.0217300i
\(905\) 0 0
\(906\) 245.804 + 178.587i 0.271307 + 0.197116i
\(907\) −115.701 356.091i −0.127565 0.392603i 0.866795 0.498665i \(-0.166176\pi\)
−0.994360 + 0.106061i \(0.966176\pi\)
\(908\) 912.953 296.636i 1.00546 0.326692i
\(909\) −258.001 + 355.108i −0.283830 + 0.390658i
\(910\) 0 0
\(911\) −197.187 + 606.878i −0.216451 + 0.666167i 0.782597 + 0.622529i \(0.213895\pi\)
−0.999047 + 0.0436379i \(0.986105\pi\)
\(912\) 367.038i 0.402454i
\(913\) 1276.79 + 567.292i 1.39846 + 0.621349i
\(914\) 1452.05 1.58867
\(915\) 0 0
\(916\) −163.606 + 118.867i −0.178609 + 0.129767i
\(917\) −1870.92 1359.30i −2.04026 1.48234i
\(918\) 82.7740 + 254.752i 0.0901678 + 0.277508i
\(919\) −844.869 + 274.515i −0.919335 + 0.298710i −0.730194 0.683240i \(-0.760570\pi\)
−0.189141 + 0.981950i \(0.560570\pi\)
\(920\) 0 0
\(921\) 145.039 + 199.629i 0.157480 + 0.216753i
\(922\) 589.519 1814.35i 0.639391 1.96784i
\(923\) 277.483i 0.300631i
\(924\) 266.106 56.7757i 0.287993 0.0614455i
\(925\) 0 0
\(926\) 683.007 + 221.922i 0.737589 + 0.239657i
\(927\) −474.438 + 344.699i −0.511799 + 0.371844i
\(928\) −942.328 684.641i −1.01544 0.737760i
\(929\) −461.175 1419.35i −0.496421 1.52783i −0.814730 0.579841i \(-0.803115\pi\)
0.318309 0.947987i \(-0.396885\pi\)
\(930\) 0 0
\(931\) 1897.80 2612.10i 2.03845 2.80569i
\(932\) −332.847 458.124i −0.357132 0.491550i
\(933\) 34.3079 105.589i 0.0367716 0.113171i
\(934\) 1963.09i 2.10181i
\(935\) 0 0
\(936\) 246.815 0.263691
\(937\) 79.6229 + 25.8710i 0.0849764 + 0.0276105i 0.351197 0.936302i \(-0.385775\pi\)
−0.266220 + 0.963912i \(0.585775\pi\)
\(938\) −2402.83 + 1745.75i −2.56165 + 1.86115i
\(939\) −5.50060 3.99642i −0.00585793 0.00425603i
\(940\) 0 0
\(941\) 1139.52 370.253i 1.21097 0.393468i 0.367184 0.930148i \(-0.380322\pi\)
0.843785 + 0.536681i \(0.180322\pi\)
\(942\) −202.966 + 279.359i −0.215463 + 0.296559i
\(943\) 20.9718 + 28.8652i 0.0222394 + 0.0306100i
\(944\) 326.330 1004.34i 0.345688 1.06392i
\(945\) 0 0
\(946\) −342.136 + 197.882i −0.361666 + 0.209177i
\(947\) 934.828 0.987147 0.493574 0.869704i \(-0.335690\pi\)
0.493574 + 0.869704i \(0.335690\pi\)
\(948\) −223.944 72.7638i −0.236228 0.0767551i
\(949\) 409.079 297.213i 0.431063 0.313186i
\(950\) 0 0
\(951\) 50.3415 + 154.935i 0.0529353 + 0.162918i
\(952\) −372.515 + 121.037i −0.391297 + 0.127140i
\(953\) 556.381 765.792i 0.583820 0.803560i −0.410287 0.911956i \(-0.634572\pi\)
0.994108 + 0.108397i \(0.0345716\pi\)
\(954\) −655.813 902.649i −0.687435 0.946173i
\(955\) 0 0
\(956\) 365.949i 0.382792i
\(957\) −171.406 + 190.659i −0.179107 + 0.199226i
\(958\) −1611.20 −1.68183
\(959\) 2000.19 + 649.902i 2.08571 + 0.677687i
\(960\) 0 0
\(961\) −760.623 552.625i −0.791491 0.575052i
\(962\) 90.5455 + 278.670i 0.0941221 + 0.289678i
\(963\) 478.823 155.579i 0.497220 0.161557i
\(964\) −405.501 + 558.124i −0.420644 + 0.578967i
\(965\) 0 0
\(966\) −40.3452 + 124.170i −0.0417652 + 0.128540i
\(967\) 196.064i 0.202755i 0.994848 + 0.101378i \(0.0323251\pi\)
−0.994848 + 0.101378i \(0.967675\pi\)
\(968\) 322.919 291.655i 0.333594 0.301297i
\(969\) 154.446 0.159387
\(970\) 0 0
\(971\) 337.051 244.882i 0.347117 0.252196i −0.400541 0.916279i \(-0.631178\pi\)
0.747659 + 0.664083i \(0.231178\pi\)
\(972\) 340.904 + 247.681i 0.350724 + 0.254816i
\(973\) 751.456 + 2312.74i 0.772308 + 2.37692i
\(974\) −409.868 + 133.174i −0.420809 + 0.136729i
\(975\) 0 0
\(976\) 46.2957 + 63.7206i 0.0474341 + 0.0652875i
\(977\) −334.314 + 1028.91i −0.342184 + 1.05313i 0.620890 + 0.783898i \(0.286771\pi\)
−0.963074 + 0.269237i \(0.913229\pi\)
\(978\) 452.341i 0.462517i
\(979\) 357.547 + 321.441i 0.365217 + 0.328336i
\(980\) 0 0
\(981\) −652.446 211.993i −0.665083 0.216099i
\(982\) −686.777 + 498.973i −0.699366 + 0.508119i
\(983\) −440.888 320.324i −0.448512 0.325863i 0.340496 0.940246i \(-0.389405\pi\)
−0.789008 + 0.614383i \(0.789405\pi\)
\(984\) −5.35717 16.4877i −0.00544428 0.0167558i
\(985\) 0 0
\(986\) −402.973 + 554.645i −0.408695 + 0.562520i
\(987\) 455.380 + 626.777i 0.461378 + 0.635032i
\(988\) −168.402 + 518.288i −0.170447 + 0.524583i
\(989\) 74.7140i 0.0755450i
\(990\) 0 0
\(991\) −1732.03 −1.74776 −0.873881 0.486140i \(-0.838405\pi\)
−0.873881 + 0.486140i \(0.838405\pi\)
\(992\) −1495.84 486.028i −1.50790 0.489947i
\(993\) −102.866 + 74.7368i −0.103592 + 0.0752637i
\(994\) −939.039 682.252i −0.944708 0.686370i
\(995\) 0 0
\(996\) −226.716 + 73.6645i −0.227626 + 0.0739603i
\(997\) 326.870 449.898i 0.327854 0.451252i −0.612991 0.790090i \(-0.710034\pi\)
0.940845 + 0.338838i \(0.110034\pi\)
\(998\) 1176.58 + 1619.43i 1.17894 + 1.62268i
\(999\) 54.9323 169.064i 0.0549872 0.169233i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.x.h.101.6 28
5.2 odd 4 275.3.q.g.24.3 56
5.3 odd 4 275.3.q.g.24.12 56
5.4 even 2 275.3.x.i.101.2 yes 28
11.6 odd 10 inner 275.3.x.h.226.6 yes 28
55.17 even 20 275.3.q.g.149.12 56
55.28 even 20 275.3.q.g.149.3 56
55.39 odd 10 275.3.x.i.226.2 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.q.g.24.3 56 5.2 odd 4
275.3.q.g.24.12 56 5.3 odd 4
275.3.q.g.149.3 56 55.28 even 20
275.3.q.g.149.12 56 55.17 even 20
275.3.x.h.101.6 28 1.1 even 1 trivial
275.3.x.h.226.6 yes 28 11.6 odd 10 inner
275.3.x.i.101.2 yes 28 5.4 even 2
275.3.x.i.226.2 yes 28 55.39 odd 10