Properties

Label 275.3.q.g.149.12
Level $275$
Weight $3$
Character 275.149
Analytic conductor $7.493$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(24,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,0,-18,0,60] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 149.12
Character \(\chi\) \(=\) 275.149
Dual form 275.3.q.g.24.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.793893 + 2.44335i) q^{2} +(-0.424261 + 0.583945i) q^{3} +(-2.10363 + 1.52838i) q^{4} +(-1.76360 - 0.573029i) q^{6} +(10.6625 - 7.74676i) q^{7} +(2.90933 + 2.11375i) q^{8} +(2.62016 + 8.06402i) q^{9} +(8.18023 - 7.35417i) q^{11} -1.87684i q^{12} +(-2.50134 - 7.69834i) q^{13} +(27.3929 + 19.9021i) q^{14} +(-6.06901 + 18.6785i) q^{16} +(2.55378 - 7.85972i) q^{17} +(-17.6231 + 12.8039i) q^{18} +(-15.2188 + 20.9469i) q^{19} +9.51297i q^{21} +(24.4631 + 14.1488i) q^{22} +5.34212i q^{23} +(-2.46863 + 0.802107i) q^{24} +(16.8240 - 12.2233i) q^{26} +(-11.9988 - 3.89865i) q^{27} +(-10.5900 + 32.5927i) q^{28} +(-18.9800 - 26.1237i) q^{29} +(13.4739 + 41.4685i) q^{31} -36.0717 q^{32} +(0.823881 + 7.89690i) q^{33} +21.2315 q^{34} +(-17.8367 - 12.9591i) q^{36} +(8.28194 + 11.3991i) q^{37} +(-63.2626 - 20.5553i) q^{38} +(5.55664 + 1.80546i) q^{39} +(-3.92574 + 5.40332i) q^{41} +(-23.2435 + 7.55228i) q^{42} -13.9858 q^{43} +(-5.96824 + 27.9730i) q^{44} +(-13.0527 + 4.24108i) q^{46} +(47.8694 - 65.8866i) q^{47} +(-8.33237 - 11.4685i) q^{48} +(38.5348 - 118.598i) q^{49} +(3.50618 + 4.82584i) q^{51} +(17.0279 + 12.3715i) q^{52} +(-48.7128 + 15.8277i) q^{53} -32.4124i q^{54} +47.3954 q^{56} +(-5.77508 - 17.7739i) q^{57} +(48.7613 - 67.1142i) q^{58} +(-43.5007 + 31.6051i) q^{59} +(-3.81411 - 1.23928i) q^{61} +(-90.6252 + 65.8431i) q^{62} +(90.4074 + 65.6849i) q^{63} +(-4.36107 - 13.4220i) q^{64} +(-18.6408 + 8.28232i) q^{66} +87.7170i q^{67} +(6.64042 + 20.4371i) q^{68} +(-3.11951 - 2.26646i) q^{69} +(10.5932 - 32.6025i) q^{71} +(-9.42243 + 28.9992i) q^{72} +(50.5378 - 36.7178i) q^{73} +(-21.2771 + 29.2854i) q^{74} -67.3246i q^{76} +(30.2507 - 141.784i) q^{77} +15.0102i q^{78} +(-119.320 + 38.7694i) q^{79} +(-54.3698 + 39.5019i) q^{81} +(-16.3188 - 5.30231i) q^{82} +(39.2492 - 120.797i) q^{83} +(-14.5394 - 20.0118i) q^{84} +(-11.1032 - 34.1723i) q^{86} +23.3073 q^{87} +(39.3439 - 4.10473i) q^{88} -43.7087 q^{89} +(-86.3078 - 62.7063i) q^{91} +(-8.16479 - 11.2379i) q^{92} +(-29.9318 - 9.72543i) q^{93} +(198.987 + 64.6549i) q^{94} +(15.3038 - 21.0639i) q^{96} +(29.0276 - 9.43164i) q^{97} +320.369 q^{98} +(80.7377 + 46.6964i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 18 q^{4} + 60 q^{6} + 62 q^{9} - 10 q^{11} - 74 q^{14} - 70 q^{16} - 160 q^{19} - 26 q^{26} + 190 q^{29} + 190 q^{31} + 296 q^{34} - 694 q^{36} + 130 q^{39} - 580 q^{41} + 506 q^{44} - 220 q^{46}+ \cdots + 1218 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.793893 + 2.44335i 0.396947 + 1.22168i 0.927435 + 0.373984i \(0.122008\pi\)
−0.530489 + 0.847692i \(0.677992\pi\)
\(3\) −0.424261 + 0.583945i −0.141420 + 0.194648i −0.873852 0.486192i \(-0.838385\pi\)
0.732431 + 0.680841i \(0.238385\pi\)
\(4\) −2.10363 + 1.52838i −0.525908 + 0.382095i
\(5\) 0 0
\(6\) −1.76360 0.573029i −0.293934 0.0955048i
\(7\) 10.6625 7.74676i 1.52321 1.10668i 0.563349 0.826219i \(-0.309513\pi\)
0.959866 0.280461i \(-0.0904872\pi\)
\(8\) 2.90933 + 2.11375i 0.363666 + 0.264219i
\(9\) 2.62016 + 8.06402i 0.291129 + 0.896002i
\(10\) 0 0
\(11\) 8.18023 7.35417i 0.743657 0.668561i
\(12\) 1.87684i 0.156403i
\(13\) −2.50134 7.69834i −0.192411 0.592180i −0.999997 0.00243053i \(-0.999226\pi\)
0.807586 0.589750i \(-0.200774\pi\)
\(14\) 27.3929 + 19.9021i 1.95664 + 1.42158i
\(15\) 0 0
\(16\) −6.06901 + 18.6785i −0.379313 + 1.16741i
\(17\) 2.55378 7.85972i 0.150222 0.462336i −0.847423 0.530918i \(-0.821847\pi\)
0.997646 + 0.0685815i \(0.0218473\pi\)
\(18\) −17.6231 + 12.8039i −0.979061 + 0.711330i
\(19\) −15.2188 + 20.9469i −0.800989 + 1.10247i 0.191663 + 0.981461i \(0.438612\pi\)
−0.992652 + 0.121006i \(0.961388\pi\)
\(20\) 0 0
\(21\) 9.51297i 0.452998i
\(22\) 24.4631 + 14.1488i 1.11196 + 0.643125i
\(23\) 5.34212i 0.232266i 0.993234 + 0.116133i \(0.0370499\pi\)
−0.993234 + 0.116133i \(0.962950\pi\)
\(24\) −2.46863 + 0.802107i −0.102860 + 0.0334211i
\(25\) 0 0
\(26\) 16.8240 12.2233i 0.647076 0.470128i
\(27\) −11.9988 3.89865i −0.444400 0.144394i
\(28\) −10.5900 + 32.5927i −0.378214 + 1.16402i
\(29\) −18.9800 26.1237i −0.654482 0.900818i 0.344801 0.938676i \(-0.387947\pi\)
−0.999283 + 0.0378581i \(0.987947\pi\)
\(30\) 0 0
\(31\) 13.4739 + 41.4685i 0.434643 + 1.33769i 0.893452 + 0.449158i \(0.148276\pi\)
−0.458809 + 0.888535i \(0.651724\pi\)
\(32\) −36.0717 −1.12724
\(33\) 0.823881 + 7.89690i 0.0249661 + 0.239300i
\(34\) 21.2315 0.624455
\(35\) 0 0
\(36\) −17.8367 12.9591i −0.495465 0.359976i
\(37\) 8.28194 + 11.3991i 0.223836 + 0.308084i 0.906134 0.422990i \(-0.139019\pi\)
−0.682298 + 0.731074i \(0.739019\pi\)
\(38\) −63.2626 20.5553i −1.66481 0.540928i
\(39\) 5.55664 + 1.80546i 0.142478 + 0.0462939i
\(40\) 0 0
\(41\) −3.92574 + 5.40332i −0.0957498 + 0.131788i −0.854204 0.519938i \(-0.825955\pi\)
0.758454 + 0.651726i \(0.225955\pi\)
\(42\) −23.2435 + 7.55228i −0.553417 + 0.179816i
\(43\) −13.9858 −0.325252 −0.162626 0.986688i \(-0.551996\pi\)
−0.162626 + 0.986688i \(0.551996\pi\)
\(44\) −5.96824 + 27.9730i −0.135642 + 0.635749i
\(45\) 0 0
\(46\) −13.0527 + 4.24108i −0.283754 + 0.0921973i
\(47\) 47.8694 65.8866i 1.01850 1.40184i 0.105247 0.994446i \(-0.466437\pi\)
0.913252 0.407396i \(-0.133563\pi\)
\(48\) −8.33237 11.4685i −0.173591 0.238928i
\(49\) 38.5348 118.598i 0.786424 2.42036i
\(50\) 0 0
\(51\) 3.50618 + 4.82584i 0.0687486 + 0.0946243i
\(52\) 17.0279 + 12.3715i 0.327460 + 0.237913i
\(53\) −48.7128 + 15.8277i −0.919109 + 0.298636i −0.730101 0.683339i \(-0.760527\pi\)
−0.189008 + 0.981976i \(0.560527\pi\)
\(54\) 32.4124i 0.600229i
\(55\) 0 0
\(56\) 47.3954 0.846347
\(57\) −5.77508 17.7739i −0.101317 0.311822i
\(58\) 48.7613 67.1142i 0.840713 1.15714i
\(59\) −43.5007 + 31.6051i −0.737300 + 0.535680i −0.891865 0.452303i \(-0.850603\pi\)
0.154564 + 0.987983i \(0.450603\pi\)
\(60\) 0 0
\(61\) −3.81411 1.23928i −0.0625264 0.0203161i 0.277587 0.960701i \(-0.410465\pi\)
−0.340113 + 0.940385i \(0.610465\pi\)
\(62\) −90.6252 + 65.8431i −1.46170 + 1.06199i
\(63\) 90.4074 + 65.6849i 1.43504 + 1.04262i
\(64\) −4.36107 13.4220i −0.0681417 0.209719i
\(65\) 0 0
\(66\) −18.6408 + 8.28232i −0.282437 + 0.125490i
\(67\) 87.7170i 1.30921i 0.755972 + 0.654604i \(0.227165\pi\)
−0.755972 + 0.654604i \(0.772835\pi\)
\(68\) 6.64042 + 20.4371i 0.0976532 + 0.300546i
\(69\) −3.11951 2.26646i −0.0452103 0.0328472i
\(70\) 0 0
\(71\) 10.5932 32.6025i 0.149200 0.459191i −0.848327 0.529473i \(-0.822390\pi\)
0.997527 + 0.0702818i \(0.0223899\pi\)
\(72\) −9.42243 + 28.9992i −0.130867 + 0.402767i
\(73\) 50.5378 36.7178i 0.692298 0.502984i −0.185116 0.982717i \(-0.559266\pi\)
0.877415 + 0.479732i \(0.159266\pi\)
\(74\) −21.2771 + 29.2854i −0.287528 + 0.395748i
\(75\) 0 0
\(76\) 67.3246i 0.885850i
\(77\) 30.2507 141.784i 0.392866 1.84135i
\(78\) 15.0102i 0.192438i
\(79\) −119.320 + 38.7694i −1.51038 + 0.490751i −0.943024 0.332724i \(-0.892032\pi\)
−0.567353 + 0.823475i \(0.692032\pi\)
\(80\) 0 0
\(81\) −54.3698 + 39.5019i −0.671231 + 0.487678i
\(82\) −16.3188 5.30231i −0.199010 0.0646623i
\(83\) 39.2492 120.797i 0.472882 1.45538i −0.375910 0.926656i \(-0.622670\pi\)
0.848793 0.528726i \(-0.177330\pi\)
\(84\) −14.5394 20.0118i −0.173088 0.238236i
\(85\) 0 0
\(86\) −11.1032 34.1723i −0.129107 0.397352i
\(87\) 23.3073 0.267900
\(88\) 39.3439 4.10473i 0.447089 0.0466447i
\(89\) −43.7087 −0.491109 −0.245555 0.969383i \(-0.578970\pi\)
−0.245555 + 0.969383i \(0.578970\pi\)
\(90\) 0 0
\(91\) −86.3078 62.7063i −0.948437 0.689080i
\(92\) −8.16479 11.2379i −0.0887477 0.122151i
\(93\) −29.9318 9.72543i −0.321847 0.104574i
\(94\) 198.987 + 64.6549i 2.11689 + 0.687818i
\(95\) 0 0
\(96\) 15.3038 21.0639i 0.159415 0.219416i
\(97\) 29.0276 9.43164i 0.299253 0.0972334i −0.155542 0.987829i \(-0.549712\pi\)
0.454795 + 0.890596i \(0.349712\pi\)
\(98\) 320.369 3.26907
\(99\) 80.7377 + 46.6964i 0.815532 + 0.471681i
\(100\) 0 0
\(101\) 49.2339 15.9971i 0.487464 0.158387i −0.0549650 0.998488i \(-0.517505\pi\)
0.542429 + 0.840102i \(0.317505\pi\)
\(102\) −9.00769 + 12.3980i −0.0883107 + 0.121549i
\(103\) −40.6532 55.9544i −0.394691 0.543246i 0.564710 0.825289i \(-0.308988\pi\)
−0.959402 + 0.282043i \(0.908988\pi\)
\(104\) 8.99515 27.6842i 0.0864919 0.266195i
\(105\) 0 0
\(106\) −77.3454 106.457i −0.729674 1.00431i
\(107\) −48.0376 34.9014i −0.448950 0.326181i 0.340231 0.940342i \(-0.389495\pi\)
−0.789181 + 0.614161i \(0.789495\pi\)
\(108\) 31.1997 10.1374i 0.288886 0.0938647i
\(109\) 80.9083i 0.742278i 0.928577 + 0.371139i \(0.121033\pi\)
−0.928577 + 0.371139i \(0.878967\pi\)
\(110\) 0 0
\(111\) −10.1702 −0.0916232
\(112\) 79.9869 + 246.174i 0.714169 + 2.19799i
\(113\) 10.3903 14.3011i 0.0919498 0.126558i −0.760564 0.649263i \(-0.775077\pi\)
0.852513 + 0.522705i \(0.175077\pi\)
\(114\) 38.8430 28.2211i 0.340728 0.247554i
\(115\) 0 0
\(116\) 79.8539 + 25.9461i 0.688395 + 0.223673i
\(117\) 55.5257 40.3418i 0.474578 0.344801i
\(118\) −111.757 81.1965i −0.947096 0.688106i
\(119\) −33.6577 103.588i −0.282838 0.870485i
\(120\) 0 0
\(121\) 12.8323 120.318i 0.106052 0.994361i
\(122\) 10.3031i 0.0844514i
\(123\) −1.48970 4.58484i −0.0121114 0.0372751i
\(124\) −91.7238 66.6412i −0.739708 0.537429i
\(125\) 0 0
\(126\) −88.7174 + 273.044i −0.704106 + 2.16702i
\(127\) 36.6413 112.770i 0.288514 0.887955i −0.696809 0.717257i \(-0.745398\pi\)
0.985323 0.170699i \(-0.0546024\pi\)
\(128\) −87.3982 + 63.4985i −0.682798 + 0.496082i
\(129\) 5.93364 8.16695i 0.0459972 0.0633097i
\(130\) 0 0
\(131\) 175.467i 1.33944i −0.742612 0.669722i \(-0.766413\pi\)
0.742612 0.669722i \(-0.233587\pi\)
\(132\) −13.8026 15.3530i −0.104565 0.116310i
\(133\) 341.242i 2.56573i
\(134\) −214.323 + 69.6379i −1.59943 + 0.519686i
\(135\) 0 0
\(136\) 24.0433 17.4685i 0.176789 0.128444i
\(137\) −151.765 49.3113i −1.10777 0.359936i −0.302682 0.953092i \(-0.597882\pi\)
−0.805088 + 0.593155i \(0.797882\pi\)
\(138\) 3.06119 9.42138i 0.0221825 0.0682709i
\(139\) −108.452 149.272i −0.780232 1.07390i −0.995256 0.0972881i \(-0.968983\pi\)
0.215025 0.976609i \(-0.431017\pi\)
\(140\) 0 0
\(141\) 18.1650 + 55.9062i 0.128830 + 0.396498i
\(142\) 88.0693 0.620207
\(143\) −77.0765 44.5789i −0.538997 0.311741i
\(144\) −166.525 −1.15643
\(145\) 0 0
\(146\) 129.836 + 94.3315i 0.889289 + 0.646106i
\(147\) 52.9059 + 72.8187i 0.359904 + 0.495365i
\(148\) −34.8443 11.3216i −0.235435 0.0764974i
\(149\) 157.999 + 51.3369i 1.06039 + 0.344543i 0.786740 0.617285i \(-0.211767\pi\)
0.273655 + 0.961828i \(0.411767\pi\)
\(150\) 0 0
\(151\) −96.3065 + 132.555i −0.637792 + 0.877845i −0.998495 0.0548355i \(-0.982537\pi\)
0.360704 + 0.932680i \(0.382537\pi\)
\(152\) −88.5529 + 28.7726i −0.582585 + 0.189293i
\(153\) 70.0722 0.457988
\(154\) 370.444 38.6483i 2.40548 0.250963i
\(155\) 0 0
\(156\) −14.4486 + 4.69462i −0.0926189 + 0.0300937i
\(157\) −109.453 + 150.650i −0.697156 + 0.959552i 0.302823 + 0.953047i \(0.402071\pi\)
−0.999979 + 0.00650560i \(0.997929\pi\)
\(158\) −189.454 260.762i −1.19908 1.65039i
\(159\) 11.4244 35.1607i 0.0718516 0.221136i
\(160\) 0 0
\(161\) 41.3841 + 56.9604i 0.257044 + 0.353791i
\(162\) −139.681 101.484i −0.862228 0.626445i
\(163\) −231.995 + 75.3797i −1.42328 + 0.462452i −0.916643 0.399706i \(-0.869112\pi\)
−0.506639 + 0.862159i \(0.669112\pi\)
\(164\) 17.3666i 0.105894i
\(165\) 0 0
\(166\) 326.309 1.96571
\(167\) 7.53588 + 23.1931i 0.0451250 + 0.138881i 0.971081 0.238752i \(-0.0767383\pi\)
−0.925956 + 0.377632i \(0.876738\pi\)
\(168\) −20.1080 + 27.6764i −0.119691 + 0.164740i
\(169\) 83.7161 60.8233i 0.495361 0.359901i
\(170\) 0 0
\(171\) −208.792 67.8405i −1.22100 0.396728i
\(172\) 29.4210 21.3756i 0.171053 0.124277i
\(173\) 46.8713 + 34.0540i 0.270932 + 0.196844i 0.714953 0.699173i \(-0.246448\pi\)
−0.444020 + 0.896017i \(0.646448\pi\)
\(174\) 18.5035 + 56.9479i 0.106342 + 0.327287i
\(175\) 0 0
\(176\) 87.7189 + 197.427i 0.498403 + 1.12174i
\(177\) 38.8109i 0.219270i
\(178\) −34.7000 106.796i −0.194944 0.599976i
\(179\) 0.0910781 + 0.0661721i 0.000508816 + 0.000369677i 0.588040 0.808832i \(-0.299900\pi\)
−0.587531 + 0.809202i \(0.699900\pi\)
\(180\) 0 0
\(181\) −8.38500 + 25.8064i −0.0463260 + 0.142577i −0.971544 0.236859i \(-0.923882\pi\)
0.925218 + 0.379436i \(0.123882\pi\)
\(182\) 84.6944 260.662i 0.465354 1.43221i
\(183\) 2.34185 1.70145i 0.0127970 0.00929756i
\(184\) −11.2919 + 15.5420i −0.0613691 + 0.0844674i
\(185\) 0 0
\(186\) 80.8548i 0.434703i
\(187\) −36.9112 83.0752i −0.197386 0.444252i
\(188\) 211.764i 1.12640i
\(189\) −158.139 + 51.3825i −0.836715 + 0.271865i
\(190\) 0 0
\(191\) −265.764 + 193.089i −1.39143 + 1.01093i −0.395726 + 0.918369i \(0.629507\pi\)
−0.995707 + 0.0925661i \(0.970493\pi\)
\(192\) 9.68794 + 3.14780i 0.0504580 + 0.0163948i
\(193\) −69.2444 + 213.112i −0.358779 + 1.10421i 0.595006 + 0.803721i \(0.297150\pi\)
−0.953785 + 0.300488i \(0.902850\pi\)
\(194\) 46.0896 + 63.4369i 0.237575 + 0.326994i
\(195\) 0 0
\(196\) 100.199 + 308.382i 0.511222 + 1.57338i
\(197\) 1.50117 0.00762015 0.00381008 0.999993i \(-0.498787\pi\)
0.00381008 + 0.999993i \(0.498787\pi\)
\(198\) −49.9987 + 234.342i −0.252519 + 1.18355i
\(199\) 65.2808 0.328044 0.164022 0.986457i \(-0.447553\pi\)
0.164022 + 0.986457i \(0.447553\pi\)
\(200\) 0 0
\(201\) −51.2219 37.2149i −0.254835 0.185149i
\(202\) 78.1729 + 107.596i 0.386994 + 0.532652i
\(203\) −404.748 131.511i −1.99383 0.647836i
\(204\) −14.7514 4.79303i −0.0723109 0.0234952i
\(205\) 0 0
\(206\) 104.442 143.752i 0.506999 0.697825i
\(207\) −43.0790 + 13.9972i −0.208111 + 0.0676194i
\(208\) 158.974 0.764298
\(209\) 29.5536 + 283.272i 0.141405 + 1.35537i
\(210\) 0 0
\(211\) 235.285 76.4488i 1.11510 0.362317i 0.307202 0.951644i \(-0.400607\pi\)
0.807894 + 0.589328i \(0.200607\pi\)
\(212\) 78.2830 107.747i 0.369259 0.508242i
\(213\) 14.5438 + 20.0178i 0.0682808 + 0.0939805i
\(214\) 47.1396 145.081i 0.220278 0.677947i
\(215\) 0 0
\(216\) −26.6677 36.7049i −0.123462 0.169930i
\(217\) 464.912 + 337.778i 2.14245 + 1.55658i
\(218\) −197.688 + 64.2326i −0.906824 + 0.294645i
\(219\) 45.0893i 0.205887i
\(220\) 0 0
\(221\) −66.8947 −0.302691
\(222\) −8.07403 24.8493i −0.0363695 0.111934i
\(223\) 155.787 214.422i 0.698594 0.961533i −0.301373 0.953506i \(-0.597445\pi\)
0.999968 0.00802651i \(-0.00255495\pi\)
\(224\) −384.615 + 279.439i −1.71703 + 1.24750i
\(225\) 0 0
\(226\) 43.1913 + 14.0337i 0.191112 + 0.0620961i
\(227\) −298.667 + 216.994i −1.31571 + 0.955922i −0.315739 + 0.948846i \(0.602253\pi\)
−0.999975 + 0.00707657i \(0.997747\pi\)
\(228\) 39.3139 + 28.5632i 0.172429 + 0.125277i
\(229\) 24.0332 + 73.9665i 0.104948 + 0.322998i 0.989718 0.143030i \(-0.0456846\pi\)
−0.884770 + 0.466028i \(0.845685\pi\)
\(230\) 0 0
\(231\) 69.9600 + 77.8183i 0.302857 + 0.336876i
\(232\) 116.121i 0.500524i
\(233\) 67.2970 + 207.119i 0.288828 + 0.888922i 0.985225 + 0.171265i \(0.0547854\pi\)
−0.696397 + 0.717657i \(0.745215\pi\)
\(234\) 142.651 + 103.642i 0.609618 + 0.442913i
\(235\) 0 0
\(236\) 43.2050 132.971i 0.183072 0.563437i
\(237\) 27.9836 86.1246i 0.118074 0.363395i
\(238\) 226.381 164.475i 0.951179 0.691072i
\(239\) 82.7232 113.859i 0.346122 0.476396i −0.600095 0.799929i \(-0.704871\pi\)
0.946217 + 0.323533i \(0.104871\pi\)
\(240\) 0 0
\(241\) 265.314i 1.10089i −0.834872 0.550444i \(-0.814458\pi\)
0.834872 0.550444i \(-0.185542\pi\)
\(242\) 304.166 64.1655i 1.25688 0.265146i
\(243\) 162.055i 0.666892i
\(244\) 9.91758 3.22242i 0.0406458 0.0132066i
\(245\) 0 0
\(246\) 10.0197 7.27974i 0.0407305 0.0295924i
\(247\) 199.324 + 64.7642i 0.806978 + 0.262203i
\(248\) −48.4540 + 149.126i −0.195379 + 0.601315i
\(249\) 53.8868 + 74.1687i 0.216413 + 0.297866i
\(250\) 0 0
\(251\) −81.5281 250.918i −0.324813 0.999672i −0.971525 0.236937i \(-0.923856\pi\)
0.646712 0.762734i \(-0.276144\pi\)
\(252\) −290.575 −1.15308
\(253\) 39.2869 + 43.6998i 0.155284 + 0.172726i
\(254\) 304.627 1.19932
\(255\) 0 0
\(256\) −270.204 196.314i −1.05548 0.766853i
\(257\) −186.254 256.357i −0.724725 0.997499i −0.999354 0.0359483i \(-0.988555\pi\)
0.274628 0.961550i \(-0.411445\pi\)
\(258\) 24.6654 + 8.01428i 0.0956024 + 0.0310631i
\(259\) 176.612 + 57.3849i 0.681901 + 0.221563i
\(260\) 0 0
\(261\) 160.932 221.503i 0.616596 0.848672i
\(262\) 428.728 139.302i 1.63637 0.531688i
\(263\) 415.617 1.58029 0.790145 0.612919i \(-0.210005\pi\)
0.790145 + 0.612919i \(0.210005\pi\)
\(264\) −14.2951 + 24.7162i −0.0541482 + 0.0936218i
\(265\) 0 0
\(266\) −833.775 + 270.910i −3.13449 + 1.01846i
\(267\) 18.5439 25.5235i 0.0694528 0.0955936i
\(268\) −134.065 184.524i −0.500242 0.688524i
\(269\) −21.6814 + 66.7285i −0.0806000 + 0.248061i −0.983234 0.182347i \(-0.941631\pi\)
0.902634 + 0.430409i \(0.141631\pi\)
\(270\) 0 0
\(271\) 253.032 + 348.269i 0.933698 + 1.28513i 0.958399 + 0.285430i \(0.0921365\pi\)
−0.0247014 + 0.999695i \(0.507863\pi\)
\(272\) 131.309 + 95.4013i 0.482752 + 0.350740i
\(273\) 73.2341 23.7952i 0.268257 0.0871619i
\(274\) 409.962i 1.49621i
\(275\) 0 0
\(276\) 10.0263 0.0363272
\(277\) −24.9552 76.8041i −0.0900909 0.277271i 0.895852 0.444352i \(-0.146566\pi\)
−0.985943 + 0.167081i \(0.946566\pi\)
\(278\) 278.624 383.493i 1.00224 1.37947i
\(279\) −299.099 + 217.308i −1.07204 + 0.778882i
\(280\) 0 0
\(281\) 411.029 + 133.551i 1.46274 + 0.475272i 0.928905 0.370318i \(-0.120751\pi\)
0.533832 + 0.845590i \(0.320751\pi\)
\(282\) −122.178 + 88.7672i −0.433254 + 0.314777i
\(283\) −104.648 76.0310i −0.369780 0.268661i 0.387340 0.921937i \(-0.373394\pi\)
−0.757120 + 0.653276i \(0.773394\pi\)
\(284\) 27.5448 + 84.7742i 0.0969888 + 0.298501i
\(285\) 0 0
\(286\) 47.7315 223.716i 0.166893 0.782224i
\(287\) 88.0247i 0.306706i
\(288\) −94.5136 290.883i −0.328172 1.01001i
\(289\) 178.553 + 129.726i 0.617829 + 0.448879i
\(290\) 0 0
\(291\) −6.80772 + 20.9520i −0.0233942 + 0.0720000i
\(292\) −50.1942 + 154.482i −0.171898 + 0.529047i
\(293\) 220.293 160.052i 0.751853 0.546253i −0.144548 0.989498i \(-0.546173\pi\)
0.896401 + 0.443245i \(0.146173\pi\)
\(294\) −135.920 + 187.078i −0.462313 + 0.636319i
\(295\) 0 0
\(296\) 50.6698i 0.171182i
\(297\) −126.824 + 56.3494i −0.427018 + 0.189729i
\(298\) 426.803i 1.43222i
\(299\) 41.1255 13.3625i 0.137544 0.0446906i
\(300\) 0 0
\(301\) −149.124 + 108.345i −0.495428 + 0.359949i
\(302\) −400.335 130.077i −1.32561 0.430717i
\(303\) −11.5466 + 35.5368i −0.0381076 + 0.117283i
\(304\) −298.893 411.391i −0.983200 1.35326i
\(305\) 0 0
\(306\) 55.6298 + 171.211i 0.181797 + 0.559513i
\(307\) −341.863 −1.11356 −0.556780 0.830660i \(-0.687963\pi\)
−0.556780 + 0.830660i \(0.687963\pi\)
\(308\) 153.063 + 344.496i 0.496959 + 1.11849i
\(309\) 49.9219 0.161559
\(310\) 0 0
\(311\) −124.438 90.4098i −0.400123 0.290707i 0.369468 0.929244i \(-0.379540\pi\)
−0.769591 + 0.638537i \(0.779540\pi\)
\(312\) 12.3498 + 16.9980i 0.0395827 + 0.0544809i
\(313\) −8.95868 2.91085i −0.0286220 0.00929984i 0.294671 0.955599i \(-0.404790\pi\)
−0.323293 + 0.946299i \(0.604790\pi\)
\(314\) −454.985 147.833i −1.44900 0.470807i
\(315\) 0 0
\(316\) 191.751 263.922i 0.606806 0.835197i
\(317\) −214.652 + 69.7448i −0.677137 + 0.220015i −0.627341 0.778744i \(-0.715857\pi\)
−0.0497954 + 0.998759i \(0.515857\pi\)
\(318\) 94.9797 0.298678
\(319\) −347.379 74.1159i −1.08896 0.232338i
\(320\) 0 0
\(321\) 40.7610 13.2440i 0.126981 0.0412587i
\(322\) −106.320 + 146.336i −0.330185 + 0.454461i
\(323\) 125.771 + 173.109i 0.389384 + 0.535941i
\(324\) 54.0001 166.195i 0.166667 0.512948i
\(325\) 0 0
\(326\) −368.358 507.002i −1.12993 1.55522i
\(327\) −47.2461 34.3263i −0.144483 0.104973i
\(328\) −22.8426 + 7.42199i −0.0696419 + 0.0226280i
\(329\) 1073.35i 3.26246i
\(330\) 0 0
\(331\) 176.158 0.532198 0.266099 0.963946i \(-0.414265\pi\)
0.266099 + 0.963946i \(0.414265\pi\)
\(332\) 102.057 + 314.100i 0.307401 + 0.946083i
\(333\) −70.2227 + 96.6532i −0.210879 + 0.290250i
\(334\) −50.6861 + 36.8256i −0.151755 + 0.110256i
\(335\) 0 0
\(336\) −177.688 57.7343i −0.528833 0.171828i
\(337\) 154.436 112.204i 0.458267 0.332951i −0.334584 0.942366i \(-0.608596\pi\)
0.792851 + 0.609415i \(0.208596\pi\)
\(338\) 215.074 + 156.261i 0.636315 + 0.462310i
\(339\) 3.94282 + 12.1348i 0.0116307 + 0.0357958i
\(340\) 0 0
\(341\) 415.186 + 240.132i 1.21755 + 0.704200i
\(342\) 564.009i 1.64915i
\(343\) −308.309 948.878i −0.898860 2.76641i
\(344\) −40.6894 29.5625i −0.118283 0.0859376i
\(345\) 0 0
\(346\) −45.9951 + 141.558i −0.132934 + 0.409128i
\(347\) −61.4596 + 189.153i −0.177117 + 0.545110i −0.999724 0.0235005i \(-0.992519\pi\)
0.822607 + 0.568611i \(0.192519\pi\)
\(348\) −49.0300 + 35.6224i −0.140891 + 0.102363i
\(349\) 120.489 165.839i 0.345241 0.475183i −0.600722 0.799458i \(-0.705120\pi\)
0.945963 + 0.324275i \(0.105120\pi\)
\(350\) 0 0
\(351\) 102.123i 0.290948i
\(352\) −295.075 + 265.278i −0.838281 + 0.753630i
\(353\) 193.516i 0.548205i −0.961701 0.274102i \(-0.911619\pi\)
0.961701 0.274102i \(-0.0883807\pi\)
\(354\) 94.8286 30.8117i 0.267877 0.0870387i
\(355\) 0 0
\(356\) 91.9471 66.8035i 0.258278 0.187650i
\(357\) 74.7692 + 24.2940i 0.209438 + 0.0680504i
\(358\) −0.0893755 + 0.275069i −0.000249652 + 0.000768350i
\(359\) −48.9531 67.3782i −0.136360 0.187683i 0.735376 0.677659i \(-0.237005\pi\)
−0.871736 + 0.489976i \(0.837005\pi\)
\(360\) 0 0
\(361\) −95.6045 294.240i −0.264832 0.815070i
\(362\) −69.7108 −0.192571
\(363\) 64.8147 + 58.5395i 0.178553 + 0.161266i
\(364\) 277.399 0.762085
\(365\) 0 0
\(366\) 6.01643 + 4.37119i 0.0164383 + 0.0119431i
\(367\) 393.044 + 540.978i 1.07096 + 1.47406i 0.869097 + 0.494642i \(0.164701\pi\)
0.201867 + 0.979413i \(0.435299\pi\)
\(368\) −99.7828 32.4214i −0.271149 0.0881016i
\(369\) −53.8585 17.4997i −0.145958 0.0474247i
\(370\) 0 0
\(371\) −396.786 + 546.129i −1.06950 + 1.47205i
\(372\) 77.8296 25.2884i 0.209219 0.0679795i
\(373\) 106.447 0.285380 0.142690 0.989767i \(-0.454425\pi\)
0.142690 + 0.989767i \(0.454425\pi\)
\(374\) 173.678 156.140i 0.464381 0.417486i
\(375\) 0 0
\(376\) 278.536 90.5017i 0.740787 0.240696i
\(377\) −153.634 + 211.459i −0.407517 + 0.560899i
\(378\) −251.091 345.597i −0.664262 0.914278i
\(379\) −165.105 + 508.140i −0.435633 + 1.34074i 0.456804 + 0.889567i \(0.348994\pi\)
−0.892437 + 0.451172i \(0.851006\pi\)
\(380\) 0 0
\(381\) 50.3062 + 69.2406i 0.132037 + 0.181734i
\(382\) −682.771 496.062i −1.78736 1.29859i
\(383\) −25.9749 + 8.43976i −0.0678196 + 0.0220359i −0.342730 0.939434i \(-0.611352\pi\)
0.274911 + 0.961470i \(0.411352\pi\)
\(384\) 77.9757i 0.203062i
\(385\) 0 0
\(386\) −575.681 −1.49140
\(387\) −36.6451 112.782i −0.0946901 0.291426i
\(388\) −46.6483 + 64.2059i −0.120228 + 0.165479i
\(389\) 549.304 399.093i 1.41209 1.02595i 0.419078 0.907950i \(-0.362353\pi\)
0.993014 0.117995i \(-0.0376467\pi\)
\(390\) 0 0
\(391\) 41.9876 + 13.6426i 0.107385 + 0.0348915i
\(392\) 362.797 263.587i 0.925502 0.672417i
\(393\) 102.463 + 74.4439i 0.260721 + 0.189425i
\(394\) 1.19177 + 3.66789i 0.00302479 + 0.00930936i
\(395\) 0 0
\(396\) −241.212 + 25.1656i −0.609122 + 0.0635495i
\(397\) 269.778i 0.679542i −0.940508 0.339771i \(-0.889650\pi\)
0.940508 0.339771i \(-0.110350\pi\)
\(398\) 51.8260 + 159.504i 0.130216 + 0.400764i
\(399\) −199.267 144.776i −0.499416 0.362847i
\(400\) 0 0
\(401\) −13.6189 + 41.9146i −0.0339623 + 0.104525i −0.966601 0.256287i \(-0.917501\pi\)
0.932638 + 0.360813i \(0.117501\pi\)
\(402\) 50.2644 154.698i 0.125036 0.384820i
\(403\) 285.536 207.454i 0.708525 0.514774i
\(404\) −79.1205 + 108.900i −0.195843 + 0.269554i
\(405\) 0 0
\(406\) 1093.35i 2.69298i
\(407\) 151.579 + 32.3406i 0.372431 + 0.0794609i
\(408\) 21.4511i 0.0525763i
\(409\) 69.3442 22.5313i 0.169546 0.0550888i −0.223014 0.974815i \(-0.571590\pi\)
0.392560 + 0.919726i \(0.371590\pi\)
\(410\) 0 0
\(411\) 93.1829 67.7013i 0.226722 0.164723i
\(412\) 171.039 + 55.5739i 0.415143 + 0.134888i
\(413\) −218.989 + 673.979i −0.530240 + 1.63191i
\(414\) −68.4002 94.1448i −0.165218 0.227403i
\(415\) 0 0
\(416\) 90.2278 + 277.693i 0.216894 + 0.667530i
\(417\) 133.179 0.319373
\(418\) −668.670 + 297.097i −1.59969 + 0.710759i
\(419\) 46.3826 0.110698 0.0553491 0.998467i \(-0.482373\pi\)
0.0553491 + 0.998467i \(0.482373\pi\)
\(420\) 0 0
\(421\) 253.022 + 183.831i 0.601002 + 0.436653i 0.846234 0.532811i \(-0.178864\pi\)
−0.245232 + 0.969464i \(0.578864\pi\)
\(422\) 373.583 + 514.192i 0.885267 + 1.21847i
\(423\) 656.736 + 213.386i 1.55257 + 0.504460i
\(424\) −175.177 56.9186i −0.413154 0.134242i
\(425\) 0 0
\(426\) −37.3644 + 51.4277i −0.0877099 + 0.120722i
\(427\) −50.2683 + 16.3332i −0.117724 + 0.0382510i
\(428\) 154.396 0.360738
\(429\) 58.7322 26.0954i 0.136905 0.0608284i
\(430\) 0 0
\(431\) −510.568 + 165.893i −1.18461 + 0.384904i −0.834078 0.551647i \(-0.814000\pi\)
−0.350533 + 0.936550i \(0.614000\pi\)
\(432\) 145.642 200.458i 0.337133 0.464024i
\(433\) −113.734 156.542i −0.262666 0.361529i 0.657231 0.753689i \(-0.271728\pi\)
−0.919897 + 0.392161i \(0.871728\pi\)
\(434\) −456.221 + 1404.10i −1.05120 + 3.23526i
\(435\) 0 0
\(436\) −123.659 170.201i −0.283621 0.390370i
\(437\) −111.901 81.3006i −0.256066 0.186043i
\(438\) −110.169 + 35.7961i −0.251527 + 0.0817261i
\(439\) 492.610i 1.12212i 0.827776 + 0.561059i \(0.189606\pi\)
−0.827776 + 0.561059i \(0.810394\pi\)
\(440\) 0 0
\(441\) 1057.34 2.39760
\(442\) −53.1072 163.447i −0.120152 0.369790i
\(443\) −43.8483 + 60.3521i −0.0989805 + 0.136235i −0.855634 0.517581i \(-0.826833\pi\)
0.756654 + 0.653816i \(0.226833\pi\)
\(444\) 21.3943 15.5439i 0.0481854 0.0350087i
\(445\) 0 0
\(446\) 647.586 + 210.413i 1.45199 + 0.471779i
\(447\) −97.0107 + 70.4824i −0.217026 + 0.157679i
\(448\) −150.477 109.328i −0.335886 0.244035i
\(449\) 207.909 + 639.879i 0.463050 + 1.42512i 0.861418 + 0.507896i \(0.169577\pi\)
−0.398368 + 0.917225i \(0.630423\pi\)
\(450\) 0 0
\(451\) 7.62347 + 73.0710i 0.0169035 + 0.162020i
\(452\) 45.9645i 0.101691i
\(453\) −36.5455 112.476i −0.0806744 0.248290i
\(454\) −767.303 557.479i −1.69010 1.22793i
\(455\) 0 0
\(456\) 20.7679 63.9172i 0.0455437 0.140169i
\(457\) −174.656 + 537.536i −0.382180 + 1.17623i 0.556326 + 0.830964i \(0.312211\pi\)
−0.938506 + 0.345264i \(0.887789\pi\)
\(458\) −161.646 + 117.443i −0.352940 + 0.256426i
\(459\) −61.2845 + 84.3509i −0.133517 + 0.183771i
\(460\) 0 0
\(461\) 742.567i 1.61077i 0.592749 + 0.805387i \(0.298042\pi\)
−0.592749 + 0.805387i \(0.701958\pi\)
\(462\) −134.597 + 232.716i −0.291335 + 0.503715i
\(463\) 279.537i 0.603752i −0.953347 0.301876i \(-0.902387\pi\)
0.953347 0.301876i \(-0.0976128\pi\)
\(464\) 603.141 195.972i 1.29987 0.422354i
\(465\) 0 0
\(466\) −452.638 + 328.860i −0.971325 + 0.705709i
\(467\) 726.720 + 236.126i 1.55615 + 0.505623i 0.955775 0.294099i \(-0.0950195\pi\)
0.600371 + 0.799722i \(0.295020\pi\)
\(468\) −55.1481 + 169.729i −0.117838 + 0.362668i
\(469\) 679.522 + 935.282i 1.44887 + 1.99420i
\(470\) 0 0
\(471\) −41.5344 127.830i −0.0881834 0.271401i
\(472\) −193.363 −0.409668
\(473\) −114.407 + 102.854i −0.241876 + 0.217451i
\(474\) 232.649 0.490820
\(475\) 0 0
\(476\) 229.125 + 166.469i 0.481354 + 0.349724i
\(477\) −255.270 351.349i −0.535158 0.736581i
\(478\) 343.870 + 111.730i 0.719394 + 0.233745i
\(479\) 596.452 + 193.799i 1.24520 + 0.404591i 0.856199 0.516646i \(-0.172820\pi\)
0.389003 + 0.921236i \(0.372820\pi\)
\(480\) 0 0
\(481\) 67.0384 92.2704i 0.139373 0.191830i
\(482\) 648.256 210.631i 1.34493 0.436994i
\(483\) −50.8194 −0.105216
\(484\) 156.896 + 272.717i 0.324166 + 0.563464i
\(485\) 0 0
\(486\) 395.956 128.654i 0.814725 0.264720i
\(487\) 98.5999 135.711i 0.202464 0.278668i −0.695696 0.718336i \(-0.744904\pi\)
0.898160 + 0.439668i \(0.144904\pi\)
\(488\) −8.47697 11.6676i −0.0173708 0.0239089i
\(489\) 54.4088 167.453i 0.111265 0.342440i
\(490\) 0 0
\(491\) −194.221 267.323i −0.395563 0.544446i 0.564060 0.825734i \(-0.309238\pi\)
−0.959623 + 0.281288i \(0.909238\pi\)
\(492\) 10.1412 + 7.36798i 0.0206121 + 0.0149756i
\(493\) −253.796 + 82.4632i −0.514798 + 0.167268i
\(494\) 538.433i 1.08995i
\(495\) 0 0
\(496\) −856.342 −1.72650
\(497\) −139.614 429.688i −0.280913 0.864563i
\(498\) −138.440 + 190.546i −0.277992 + 0.382623i
\(499\) −630.351 + 457.977i −1.26323 + 0.917789i −0.998911 0.0466466i \(-0.985147\pi\)
−0.264317 + 0.964436i \(0.585147\pi\)
\(500\) 0 0
\(501\) −16.7407 5.43937i −0.0334145 0.0108570i
\(502\) 548.355 398.404i 1.09234 0.793633i
\(503\) −336.060 244.162i −0.668112 0.485412i 0.201281 0.979534i \(-0.435490\pi\)
−0.869393 + 0.494122i \(0.835490\pi\)
\(504\) 124.184 + 382.198i 0.246396 + 0.758329i
\(505\) 0 0
\(506\) −75.5844 + 130.685i −0.149376 + 0.258270i
\(507\) 74.6906i 0.147319i
\(508\) 95.2759 + 293.229i 0.187551 + 0.577223i
\(509\) −570.074 414.183i −1.11999 0.813719i −0.135781 0.990739i \(-0.543354\pi\)
−0.984207 + 0.177019i \(0.943354\pi\)
\(510\) 0 0
\(511\) 254.415 783.008i 0.497876 1.53231i
\(512\) 131.620 405.084i 0.257070 0.791180i
\(513\) 264.272 192.005i 0.515149 0.374278i
\(514\) 478.505 658.605i 0.930943 1.28133i
\(515\) 0 0
\(516\) 26.2491i 0.0508704i
\(517\) −92.9585 891.007i −0.179804 1.72342i
\(518\) 477.084i 0.921011i
\(519\) −39.7714 + 12.9225i −0.0766307 + 0.0248988i
\(520\) 0 0
\(521\) −141.580 + 102.864i −0.271747 + 0.197436i −0.715310 0.698808i \(-0.753714\pi\)
0.443563 + 0.896243i \(0.353714\pi\)
\(522\) 668.973 + 217.362i 1.28156 + 0.416403i
\(523\) 270.629 832.911i 0.517455 1.59256i −0.261314 0.965254i \(-0.584156\pi\)
0.778769 0.627310i \(-0.215844\pi\)
\(524\) 268.180 + 369.119i 0.511795 + 0.704425i
\(525\) 0 0
\(526\) 329.955 + 1015.50i 0.627291 + 1.93060i
\(527\) 360.340 0.683757
\(528\) −152.502 32.5375i −0.288830 0.0616240i
\(529\) 500.462 0.946052
\(530\) 0 0
\(531\) −368.843 267.980i −0.694620 0.504671i
\(532\) −521.547 717.848i −0.980352 1.34934i
\(533\) 51.4163 + 16.7062i 0.0964658 + 0.0313436i
\(534\) 77.0847 + 25.0464i 0.144353 + 0.0469033i
\(535\) 0 0
\(536\) −185.412 + 255.198i −0.345918 + 0.476115i
\(537\) −0.0772818 + 0.0251104i −0.000143914 + 4.67605e-5i
\(538\) −180.254 −0.335044
\(539\) −556.966 1253.55i −1.03333 2.32569i
\(540\) 0 0
\(541\) −125.231 + 40.6901i −0.231481 + 0.0752128i −0.422461 0.906381i \(-0.638834\pi\)
0.190980 + 0.981594i \(0.438834\pi\)
\(542\) −650.063 + 894.735i −1.19938 + 1.65080i
\(543\) −11.5121 15.8450i −0.0212009 0.0291805i
\(544\) −92.1191 + 283.514i −0.169337 + 0.521165i
\(545\) 0 0
\(546\) 116.280 + 160.046i 0.212967 + 0.293124i
\(547\) 1.32090 + 0.959689i 0.00241481 + 0.00175446i 0.588992 0.808139i \(-0.299525\pi\)
−0.586577 + 0.809893i \(0.699525\pi\)
\(548\) 394.623 128.221i 0.720115 0.233980i
\(549\) 34.0042i 0.0619384i
\(550\) 0 0
\(551\) 836.062 1.51735
\(552\) −4.28495 13.1877i −0.00776260 0.0238908i
\(553\) −971.910 + 1337.72i −1.75752 + 2.41902i
\(554\) 167.848 121.949i 0.302974 0.220124i
\(555\) 0 0
\(556\) 456.287 + 148.257i 0.820661 + 0.266649i
\(557\) −464.666 + 337.599i −0.834229 + 0.606103i −0.920753 0.390147i \(-0.872424\pi\)
0.0865234 + 0.996250i \(0.472424\pi\)
\(558\) −768.412 558.284i −1.37708 1.00051i
\(559\) 34.9833 + 107.668i 0.0625820 + 0.192608i
\(560\) 0 0
\(561\) 64.1714 + 13.6914i 0.114387 + 0.0244054i
\(562\) 1110.31i 1.97565i
\(563\) −54.1325 166.603i −0.0961502 0.295920i 0.891402 0.453214i \(-0.149723\pi\)
−0.987552 + 0.157295i \(0.949723\pi\)
\(564\) −123.658 89.8432i −0.219253 0.159296i
\(565\) 0 0
\(566\) 102.691 316.052i 0.181434 0.558395i
\(567\) −273.705 + 842.379i −0.482726 + 1.48568i
\(568\) 99.7328 72.4601i 0.175586 0.127571i
\(569\) 172.026 236.774i 0.302331 0.416122i −0.630640 0.776076i \(-0.717207\pi\)
0.932970 + 0.359953i \(0.117207\pi\)
\(570\) 0 0
\(571\) 836.204i 1.46446i 0.681060 + 0.732228i \(0.261519\pi\)
−0.681060 + 0.732228i \(0.738481\pi\)
\(572\) 230.274 24.0244i 0.402577 0.0420008i
\(573\) 237.111i 0.413807i
\(574\) −215.075 + 69.8822i −0.374696 + 0.121746i
\(575\) 0 0
\(576\) 96.8085 70.3355i 0.168070 0.122110i
\(577\) 876.557 + 284.811i 1.51916 + 0.493606i 0.945538 0.325511i \(-0.105536\pi\)
0.573626 + 0.819118i \(0.305536\pi\)
\(578\) −175.215 + 539.255i −0.303140 + 0.932968i
\(579\) −95.0683 130.850i −0.164194 0.225994i
\(580\) 0 0
\(581\) −517.288 1592.05i −0.890341 2.74019i
\(582\) −56.5977 −0.0972469
\(583\) −282.082 + 487.716i −0.483845 + 0.836563i
\(584\) 224.643 0.384663
\(585\) 0 0
\(586\) 565.953 + 411.189i 0.965790 + 0.701688i
\(587\) −154.537 212.702i −0.263266 0.362354i 0.656836 0.754033i \(-0.271894\pi\)
−0.920102 + 0.391679i \(0.871894\pi\)
\(588\) −222.589 72.3236i −0.378553 0.122999i
\(589\) −1073.69 348.863i −1.82291 0.592298i
\(590\) 0 0
\(591\) −0.636888 + 0.876602i −0.00107765 + 0.00148325i
\(592\) −263.181 + 85.5128i −0.444563 + 0.144447i
\(593\) 124.297 0.209606 0.104803 0.994493i \(-0.466579\pi\)
0.104803 + 0.994493i \(0.466579\pi\)
\(594\) −238.366 265.141i −0.401290 0.446365i
\(595\) 0 0
\(596\) −410.834 + 133.488i −0.689318 + 0.223973i
\(597\) −27.6961 + 38.1204i −0.0463921 + 0.0638533i
\(598\) 65.2985 + 89.8757i 0.109195 + 0.150294i
\(599\) −24.5601 + 75.5882i −0.0410018 + 0.126191i −0.969462 0.245241i \(-0.921133\pi\)
0.928460 + 0.371432i \(0.121133\pi\)
\(600\) 0 0
\(601\) 337.300 + 464.254i 0.561232 + 0.772469i 0.991482 0.130240i \(-0.0415749\pi\)
−0.430251 + 0.902709i \(0.641575\pi\)
\(602\) −383.113 278.348i −0.636400 0.462372i
\(603\) −707.351 + 229.832i −1.17305 + 0.381148i
\(604\) 426.039i 0.705363i
\(605\) 0 0
\(606\) −95.9957 −0.158409
\(607\) −146.723 451.568i −0.241719 0.743934i −0.996159 0.0875652i \(-0.972091\pi\)
0.754440 0.656369i \(-0.227909\pi\)
\(608\) 548.968 755.590i 0.902908 1.24275i
\(609\) 248.514 180.556i 0.408069 0.296480i
\(610\) 0 0
\(611\) −626.956 203.710i −1.02611 0.333405i
\(612\) −147.406 + 107.097i −0.240860 + 0.174995i
\(613\) 709.576 + 515.537i 1.15755 + 0.841007i 0.989466 0.144766i \(-0.0462431\pi\)
0.168081 + 0.985773i \(0.446243\pi\)
\(614\) −271.403 835.291i −0.442024 1.36041i
\(615\) 0 0
\(616\) 387.706 348.554i 0.629392 0.565835i
\(617\) 401.953i 0.651464i −0.945462 0.325732i \(-0.894389\pi\)
0.945462 0.325732i \(-0.105611\pi\)
\(618\) 39.6326 + 121.977i 0.0641305 + 0.197373i
\(619\) 165.411 + 120.178i 0.267223 + 0.194149i 0.713325 0.700833i \(-0.247188\pi\)
−0.446102 + 0.894982i \(0.647188\pi\)
\(620\) 0 0
\(621\) 20.8270 64.0991i 0.0335379 0.103219i
\(622\) 122.112 375.822i 0.196322 0.604216i
\(623\) −466.044 + 338.601i −0.748064 + 0.543500i
\(624\) −67.4465 + 92.8322i −0.108087 + 0.148770i
\(625\) 0 0
\(626\) 24.2001i 0.0386583i
\(627\) −177.954 102.923i −0.283818 0.164152i
\(628\) 484.198i 0.771016i
\(629\) 110.744 35.9829i 0.176064 0.0572066i
\(630\) 0 0
\(631\) −418.233 + 303.864i −0.662810 + 0.481560i −0.867611 0.497244i \(-0.834345\pi\)
0.204801 + 0.978804i \(0.434345\pi\)
\(632\) −429.089 139.420i −0.678939 0.220601i
\(633\) −55.1804 + 169.828i −0.0871729 + 0.268291i
\(634\) −340.822 469.101i −0.537574 0.739907i
\(635\) 0 0
\(636\) 29.7061 + 91.4260i 0.0467077 + 0.143752i
\(637\) −1009.40 −1.58461
\(638\) −94.6906 907.609i −0.148418 1.42258i
\(639\) 290.663 0.454872
\(640\) 0 0
\(641\) −221.224 160.729i −0.345124 0.250747i 0.401697 0.915773i \(-0.368421\pi\)
−0.746820 + 0.665026i \(0.768421\pi\)
\(642\) 64.7197 + 89.0791i 0.100810 + 0.138752i
\(643\) 150.697 + 48.9645i 0.234366 + 0.0761501i 0.423845 0.905735i \(-0.360680\pi\)
−0.189479 + 0.981885i \(0.560680\pi\)
\(644\) −174.114 56.5731i −0.270364 0.0878464i
\(645\) 0 0
\(646\) −323.117 + 444.733i −0.500182 + 0.688441i
\(647\) −971.123 + 315.537i −1.50096 + 0.487692i −0.940298 0.340351i \(-0.889454\pi\)
−0.560664 + 0.828044i \(0.689454\pi\)
\(648\) −241.677 −0.372958
\(649\) −123.416 + 578.449i −0.190164 + 0.891293i
\(650\) 0 0
\(651\) −394.488 + 128.177i −0.605973 + 0.196892i
\(652\) 372.823 513.147i 0.571815 0.787036i
\(653\) 60.3750 + 83.0990i 0.0924579 + 0.127257i 0.852740 0.522336i \(-0.174939\pi\)
−0.760282 + 0.649593i \(0.774939\pi\)
\(654\) 46.3628 142.690i 0.0708912 0.218181i
\(655\) 0 0
\(656\) −77.1005 106.120i −0.117531 0.161768i
\(657\) 428.510 + 311.331i 0.652223 + 0.473868i
\(658\) 2622.57 852.124i 3.98567 1.29502i
\(659\) 375.067i 0.569145i −0.958655 0.284573i \(-0.908148\pi\)
0.958655 0.284573i \(-0.0918517\pi\)
\(660\) 0 0
\(661\) −1095.09 −1.65671 −0.828356 0.560203i \(-0.810723\pi\)
−0.828356 + 0.560203i \(0.810723\pi\)
\(662\) 139.850 + 430.415i 0.211254 + 0.650174i
\(663\) 28.3808 39.0628i 0.0428067 0.0589183i
\(664\) 369.523 268.474i 0.556511 0.404329i
\(665\) 0 0
\(666\) −291.907 94.8464i −0.438299 0.142412i
\(667\) 139.556 101.393i 0.209230 0.152014i
\(668\) −51.3005 37.2720i −0.0767971 0.0557964i
\(669\) 59.1164 + 181.942i 0.0883654 + 0.271961i
\(670\) 0 0
\(671\) −40.3142 + 17.9120i −0.0600807 + 0.0266945i
\(672\) 343.149i 0.510639i
\(673\) −0.725514 2.23290i −0.00107803 0.00331783i 0.950516 0.310675i \(-0.100555\pi\)
−0.951594 + 0.307358i \(0.900555\pi\)
\(674\) 396.760 + 288.263i 0.588665 + 0.427690i
\(675\) 0 0
\(676\) −83.1469 + 255.900i −0.122998 + 0.378550i
\(677\) 5.13532 15.8049i 0.00758541 0.0233455i −0.947192 0.320666i \(-0.896093\pi\)
0.954778 + 0.297321i \(0.0960931\pi\)
\(678\) −26.5193 + 19.2674i −0.0391140 + 0.0284180i
\(679\) 236.442 325.435i 0.348221 0.479285i
\(680\) 0 0
\(681\) 266.468i 0.391289i
\(682\) −257.114 + 1205.09i −0.377000 + 1.76699i
\(683\) 560.470i 0.820600i −0.911951 0.410300i \(-0.865424\pi\)
0.911951 0.410300i \(-0.134576\pi\)
\(684\) 542.907 176.401i 0.793723 0.257896i
\(685\) 0 0
\(686\) 2073.68 1506.62i 3.02285 2.19623i
\(687\) −53.3887 17.3470i −0.0777128 0.0252504i
\(688\) 84.8800 261.234i 0.123372 0.379700i
\(689\) 243.695 + 335.417i 0.353693 + 0.486817i
\(690\) 0 0
\(691\) 129.822 + 399.551i 0.187876 + 0.578222i 0.999986 0.00528214i \(-0.00168136\pi\)
−0.812110 + 0.583504i \(0.801681\pi\)
\(692\) −150.647 −0.217699
\(693\) 1222.61 127.555i 1.76423 0.184062i
\(694\) −510.960 −0.736254
\(695\) 0 0
\(696\) 67.8086 + 49.2658i 0.0974261 + 0.0707842i
\(697\) 32.4431 + 44.6541i 0.0465468 + 0.0640661i
\(698\) 500.858 + 162.739i 0.717562 + 0.233150i
\(699\) −149.498 48.5747i −0.213874 0.0694917i
\(700\) 0 0
\(701\) 65.3351 89.9261i 0.0932027 0.128283i −0.759869 0.650076i \(-0.774737\pi\)
0.853072 + 0.521794i \(0.174737\pi\)
\(702\) −249.522 + 81.0745i −0.355444 + 0.115491i
\(703\) −364.817 −0.518943
\(704\) −134.382 77.7229i −0.190884 0.110402i
\(705\) 0 0
\(706\) 472.828 153.631i 0.669729 0.217608i
\(707\) 401.031 551.972i 0.567229 0.780724i
\(708\) 59.3177 + 81.6438i 0.0837821 + 0.115316i
\(709\) −34.0103 + 104.673i −0.0479694 + 0.147634i −0.972172 0.234268i \(-0.924731\pi\)
0.924203 + 0.381902i \(0.124731\pi\)
\(710\) 0 0
\(711\) −625.273 860.615i −0.879428 1.21043i
\(712\) −127.163 92.3893i −0.178600 0.129760i
\(713\) −221.530 + 71.9794i −0.310701 + 0.100953i
\(714\) 201.974i 0.282877i
\(715\) 0 0
\(716\) −0.292731 −0.000408842
\(717\) 31.3910 + 96.6117i 0.0437811 + 0.134744i
\(718\) 125.765 173.101i 0.175160 0.241087i
\(719\) −442.734 + 321.665i −0.615763 + 0.447378i −0.851439 0.524453i \(-0.824270\pi\)
0.235676 + 0.971832i \(0.424270\pi\)
\(720\) 0 0
\(721\) −866.930 281.683i −1.20240 0.390683i
\(722\) 643.033 467.191i 0.890627 0.647078i
\(723\) 154.929 + 112.563i 0.214286 + 0.155688i
\(724\) −21.8030 67.1026i −0.0301146 0.0926831i
\(725\) 0 0
\(726\) −91.5766 + 204.839i −0.126139 + 0.282148i
\(727\) 321.509i 0.442241i −0.975246 0.221121i \(-0.929029\pi\)
0.975246 0.221121i \(-0.0709714\pi\)
\(728\) −118.552 364.866i −0.162847 0.501190i
\(729\) −394.697 286.764i −0.541422 0.393366i
\(730\) 0 0
\(731\) −35.7167 + 109.925i −0.0488600 + 0.150376i
\(732\) −2.32593 + 7.15847i −0.00317750 + 0.00977933i
\(733\) −54.3778 + 39.5078i −0.0741853 + 0.0538988i −0.624260 0.781217i \(-0.714599\pi\)
0.550074 + 0.835116i \(0.314599\pi\)
\(734\) −1009.77 + 1389.82i −1.37570 + 1.89349i
\(735\) 0 0
\(736\) 192.700i 0.261820i
\(737\) 645.086 + 717.545i 0.875286 + 0.973602i
\(738\) 145.488i 0.197139i
\(739\) 143.429 46.6030i 0.194086 0.0630622i −0.210361 0.977624i \(-0.567464\pi\)
0.404447 + 0.914561i \(0.367464\pi\)
\(740\) 0 0
\(741\) −122.384 + 88.9172i −0.165161 + 0.119996i
\(742\) −1649.39 535.920i −2.22290 0.722264i
\(743\) 57.7178 177.637i 0.0776820 0.239081i −0.904673 0.426107i \(-0.859885\pi\)
0.982355 + 0.187026i \(0.0598848\pi\)
\(744\) −66.5243 91.5628i −0.0894144 0.123068i
\(745\) 0 0
\(746\) 84.5073 + 260.087i 0.113281 + 0.348642i
\(747\) 1076.95 1.44169
\(748\) 204.618 + 118.345i 0.273554 + 0.158216i
\(749\) −782.573 −1.04482
\(750\) 0 0
\(751\) −635.190 461.493i −0.845793 0.614504i 0.0781901 0.996938i \(-0.475086\pi\)
−0.923983 + 0.382434i \(0.875086\pi\)
\(752\) 940.142 + 1293.99i 1.25019 + 1.72074i
\(753\) 181.111 + 58.8467i 0.240520 + 0.0781496i
\(754\) −638.637 207.506i −0.846999 0.275207i
\(755\) 0 0
\(756\) 254.135 349.786i 0.336157 0.462680i
\(757\) 817.184 265.519i 1.07950 0.350752i 0.285322 0.958432i \(-0.407900\pi\)
0.794182 + 0.607680i \(0.207900\pi\)
\(758\) −1372.64 −1.81087
\(759\) −42.1862 + 4.40127i −0.0555813 + 0.00579878i
\(760\) 0 0
\(761\) 1125.43 365.675i 1.47888 0.480519i 0.545105 0.838368i \(-0.316490\pi\)
0.933779 + 0.357849i \(0.116490\pi\)
\(762\) −129.241 + 177.885i −0.169608 + 0.233445i
\(763\) 626.778 + 862.685i 0.821465 + 1.13065i
\(764\) 263.957 812.375i 0.345493 1.06332i
\(765\) 0 0
\(766\) −41.2426 56.7656i −0.0538415 0.0741065i
\(767\) 352.117 + 255.828i 0.459084 + 0.333544i
\(768\) 229.274 74.4956i 0.298534 0.0969994i
\(769\) 617.014i 0.802359i 0.915999 + 0.401179i \(0.131400\pi\)
−0.915999 + 0.401179i \(0.868600\pi\)
\(770\) 0 0
\(771\) 228.719 0.296653
\(772\) −180.052 554.142i −0.233228 0.717801i
\(773\) 719.122 989.787i 0.930300 1.28045i −0.0294422 0.999566i \(-0.509373\pi\)
0.959742 0.280882i \(-0.0906269\pi\)
\(774\) 246.474 179.074i 0.318441 0.231361i
\(775\) 0 0
\(776\) 104.387 + 33.9174i 0.134519 + 0.0437080i
\(777\) −108.439 + 78.7859i −0.139562 + 0.101398i
\(778\) 1411.21 + 1025.31i 1.81390 + 1.31787i
\(779\) −53.4376 164.464i −0.0685977 0.211122i
\(780\) 0 0
\(781\) −153.110 344.601i −0.196043 0.441230i
\(782\) 113.421i 0.145040i
\(783\) 125.890 + 387.449i 0.160779 + 0.494827i
\(784\) 1981.36 + 1439.54i 2.52725 + 1.83615i
\(785\) 0 0
\(786\) −100.548 + 309.454i −0.127923 + 0.393708i
\(787\) −37.0249 + 113.951i −0.0470456 + 0.144792i −0.971820 0.235725i \(-0.924254\pi\)
0.924774 + 0.380516i \(0.124254\pi\)
\(788\) −3.15791 + 2.29436i −0.00400750 + 0.00291162i
\(789\) −176.330 + 242.697i −0.223485 + 0.307601i
\(790\) 0 0
\(791\) 232.976i 0.294534i
\(792\) 136.188 + 306.515i 0.171954 + 0.387013i
\(793\) 32.4622i 0.0409359i
\(794\) 659.163 214.175i 0.830180 0.269742i
\(795\) 0 0
\(796\) −137.327 + 99.7738i −0.172521 + 0.125344i
\(797\) −567.539 184.404i −0.712094 0.231373i −0.0695017 0.997582i \(-0.522141\pi\)
−0.642592 + 0.766209i \(0.722141\pi\)
\(798\) 195.542 601.815i 0.245040 0.754155i
\(799\) −395.602 544.500i −0.495121 0.681476i
\(800\) 0 0
\(801\) −114.524 352.468i −0.142976 0.440035i
\(802\) −113.224 −0.141177
\(803\) 143.381 672.024i 0.178557 0.836892i
\(804\) 164.631 0.204764
\(805\) 0 0
\(806\) 733.568 + 532.968i 0.910134 + 0.661251i
\(807\) −29.7672 40.9711i −0.0368863 0.0507696i
\(808\) 177.051 + 57.5275i 0.219123 + 0.0711974i
\(809\) 268.262 + 87.1635i 0.331597 + 0.107742i 0.470083 0.882622i \(-0.344224\pi\)
−0.138487 + 0.990364i \(0.544224\pi\)
\(810\) 0 0
\(811\) 72.7008 100.064i 0.0896434 0.123384i −0.761840 0.647766i \(-0.775704\pi\)
0.851483 + 0.524382i \(0.175704\pi\)
\(812\) 1052.44 341.959i 1.29611 0.421131i
\(813\) −310.722 −0.382192
\(814\) 41.3184 + 396.036i 0.0507596 + 0.486531i
\(815\) 0 0
\(816\) −111.418 + 36.2020i −0.136542 + 0.0443652i
\(817\) 212.847 292.959i 0.260523 0.358579i
\(818\) 110.104 + 151.545i 0.134601 + 0.185263i
\(819\) 279.525 860.288i 0.341300 1.05041i
\(820\) 0 0
\(821\) 406.944 + 560.110i 0.495668 + 0.682229i 0.981421 0.191868i \(-0.0614544\pi\)
−0.485753 + 0.874096i \(0.661454\pi\)
\(822\) 239.395 + 173.931i 0.291235 + 0.211595i
\(823\) −1017.93 + 330.747i −1.23686 + 0.401879i −0.853194 0.521594i \(-0.825338\pi\)
−0.383663 + 0.923473i \(0.625338\pi\)
\(824\) 248.720i 0.301845i
\(825\) 0 0
\(826\) −1820.62 −2.20414
\(827\) −443.516 1365.00i −0.536295 1.65054i −0.740835 0.671687i \(-0.765570\pi\)
0.204541 0.978858i \(-0.434430\pi\)
\(828\) 69.2293 95.2860i 0.0836103 0.115080i
\(829\) −75.5393 + 54.8825i −0.0911209 + 0.0662032i −0.632413 0.774631i \(-0.717935\pi\)
0.541292 + 0.840835i \(0.317935\pi\)
\(830\) 0 0
\(831\) 55.4369 + 18.0125i 0.0667111 + 0.0216757i
\(832\) −92.4186 + 67.1460i −0.111080 + 0.0807044i
\(833\) −833.736 605.745i −1.00088 0.727185i
\(834\) 105.730 + 325.402i 0.126774 + 0.390170i
\(835\) 0 0
\(836\) −495.117 550.731i −0.592245 0.658769i
\(837\) 550.102i 0.657231i
\(838\) 36.8228 + 113.329i 0.0439413 + 0.135237i
\(839\) 995.583 + 723.334i 1.18663 + 0.862138i 0.992904 0.118918i \(-0.0379425\pi\)
0.193727 + 0.981056i \(0.437942\pi\)
\(840\) 0 0
\(841\) −62.3252 + 191.817i −0.0741085 + 0.228082i
\(842\) −248.292 + 764.163i −0.294883 + 0.907558i
\(843\) −252.370 + 183.358i −0.299372 + 0.217506i
\(844\) −378.111 + 520.425i −0.447999 + 0.616617i
\(845\) 0 0
\(846\) 1774.04i 2.09698i
\(847\) −795.247 1382.30i −0.938899 1.63199i
\(848\) 1005.94i 1.18625i
\(849\) 88.7959 28.8515i 0.104589 0.0339830i
\(850\) 0 0
\(851\) −60.8955 + 44.2432i −0.0715576 + 0.0519896i
\(852\) −61.1897 19.8817i −0.0718189 0.0233354i
\(853\) −230.655 + 709.882i −0.270404 + 0.832218i 0.719995 + 0.693979i \(0.244144\pi\)
−0.990399 + 0.138239i \(0.955856\pi\)
\(854\) −79.8154 109.856i −0.0934606 0.128638i
\(855\) 0 0
\(856\) −65.9844 203.079i −0.0770846 0.237242i
\(857\) 1009.05 1.17742 0.588710 0.808344i \(-0.299636\pi\)
0.588710 + 0.808344i \(0.299636\pi\)
\(858\) 110.387 + 122.787i 0.128656 + 0.143108i
\(859\) −666.482 −0.775882 −0.387941 0.921684i \(-0.626813\pi\)
−0.387941 + 0.921684i \(0.626813\pi\)
\(860\) 0 0
\(861\) −51.4016 37.3455i −0.0596999 0.0433745i
\(862\) −810.672 1115.79i −0.940455 1.29443i
\(863\) −302.330 98.2329i −0.350324 0.113827i 0.128569 0.991701i \(-0.458962\pi\)
−0.478893 + 0.877873i \(0.658962\pi\)
\(864\) 432.817 + 140.631i 0.500946 + 0.162767i
\(865\) 0 0
\(866\) 292.194 402.171i 0.337406 0.464400i
\(867\) −151.506 + 49.2272i −0.174747 + 0.0567788i
\(868\) −1494.26 −1.72150
\(869\) −690.947 + 1194.64i −0.795106 + 1.37473i
\(870\) 0 0
\(871\) 675.275 219.410i 0.775287 0.251906i
\(872\) −171.020 + 235.389i −0.196124 + 0.269942i
\(873\) 152.114 + 209.367i 0.174243 + 0.239824i
\(874\) 109.809 337.957i 0.125639 0.386678i
\(875\) 0 0
\(876\) −68.9135 94.8513i −0.0786683 0.108278i
\(877\) 998.734 + 725.623i 1.13881 + 0.827392i 0.986953 0.161011i \(-0.0514753\pi\)
0.151855 + 0.988403i \(0.451475\pi\)
\(878\) −1203.62 + 391.080i −1.37087 + 0.445421i
\(879\) 196.543i 0.223598i
\(880\) 0 0
\(881\) 902.924 1.02488 0.512442 0.858722i \(-0.328741\pi\)
0.512442 + 0.858722i \(0.328741\pi\)
\(882\) 839.417 + 2583.46i 0.951720 + 2.92909i
\(883\) 13.5788 18.6896i 0.0153780 0.0211660i −0.801259 0.598318i \(-0.795836\pi\)
0.816637 + 0.577152i \(0.195836\pi\)
\(884\) 140.722 102.240i 0.159188 0.115657i
\(885\) 0 0
\(886\) −182.272 59.2238i −0.205725 0.0668441i
\(887\) −1241.51 + 902.007i −1.39967 + 1.01692i −0.404944 + 0.914341i \(0.632709\pi\)
−0.994725 + 0.102578i \(0.967291\pi\)
\(888\) −29.5884 21.4972i −0.0333202 0.0242086i
\(889\) −482.917 1486.26i −0.543213 1.67184i
\(890\) 0 0
\(891\) −154.253 + 722.979i −0.173124 + 0.811425i
\(892\) 689.166i 0.772607i
\(893\) 651.603 + 2005.43i 0.729679 + 2.24572i
\(894\) −249.229 181.076i −0.278780 0.202546i
\(895\) 0 0
\(896\) −439.975 + 1354.10i −0.491044 + 1.51128i
\(897\) −9.64499 + 29.6842i −0.0107525 + 0.0330928i
\(898\) −1398.39 + 1015.99i −1.55723 + 1.13139i
\(899\) 827.576 1139.06i 0.920552 1.26703i
\(900\) 0 0
\(901\) 423.289i 0.469799i
\(902\) −172.486 + 76.6374i −0.191226 + 0.0849638i
\(903\) 133.047i 0.147338i
\(904\) 60.4578 19.6439i 0.0668780 0.0217300i
\(905\) 0 0
\(906\) 245.804 178.587i 0.271307 0.197116i
\(907\) −356.091 115.701i −0.392603 0.127565i 0.106061 0.994360i \(-0.466176\pi\)
−0.498665 + 0.866795i \(0.666176\pi\)
\(908\) 296.636 912.953i 0.326692 1.00546i
\(909\) 258.001 + 355.108i 0.283830 + 0.390658i
\(910\) 0 0
\(911\) −197.187 606.878i −0.216451 0.666167i −0.999047 0.0436379i \(-0.986105\pi\)
0.782597 0.622529i \(-0.213895\pi\)
\(912\) 367.038 0.402454
\(913\) −567.292 1276.79i −0.621349 1.39846i
\(914\) −1452.05 −1.58867
\(915\) 0 0
\(916\) −163.606 118.867i −0.178609 0.129767i
\(917\) −1359.30 1870.92i −1.48234 2.04026i
\(918\) −254.752 82.7740i −0.277508 0.0901678i
\(919\) 844.869 + 274.515i 0.919335 + 0.298710i 0.730194 0.683240i \(-0.239430\pi\)
0.189141 + 0.981950i \(0.439430\pi\)
\(920\) 0 0
\(921\) 145.039 199.629i 0.157480 0.216753i
\(922\) −1814.35 + 589.519i −1.96784 + 0.639391i
\(923\) −277.483 −0.300631
\(924\) −266.106 56.7757i −0.287993 0.0614455i
\(925\) 0 0
\(926\) 683.007 221.922i 0.737589 0.239657i
\(927\) 344.699 474.438i 0.371844 0.511799i
\(928\) 684.641 + 942.328i 0.737760 + 1.01544i
\(929\) 461.175 1419.35i 0.496421 1.52783i −0.318309 0.947987i \(-0.603115\pi\)
0.814730 0.579841i \(-0.196885\pi\)
\(930\) 0 0
\(931\) 1897.80 + 2612.10i 2.03845 + 2.80569i
\(932\) −458.124 332.847i −0.491550 0.357132i
\(933\) 105.589 34.3079i 0.113171 0.0367716i
\(934\) 1963.09i 2.10181i
\(935\) 0 0
\(936\) 246.815 0.263691
\(937\) 25.8710 + 79.6229i 0.0276105 + 0.0849764i 0.963912 0.266220i \(-0.0857749\pi\)
−0.936302 + 0.351197i \(0.885775\pi\)
\(938\) −1745.75 + 2402.83i −1.86115 + 2.56165i
\(939\) 5.50060 3.99642i 0.00585793 0.00425603i
\(940\) 0 0
\(941\) 1139.52 + 370.253i 1.21097 + 0.393468i 0.843785 0.536681i \(-0.180322\pi\)
0.367184 + 0.930148i \(0.380322\pi\)
\(942\) 279.359 202.966i 0.296559 0.215463i
\(943\) −28.8652 20.9718i −0.0306100 0.0222394i
\(944\) −326.330 1004.34i −0.345688 1.06392i
\(945\) 0 0
\(946\) −342.136 197.882i −0.361666 0.209177i
\(947\) 934.828i 0.987147i 0.869704 + 0.493574i \(0.164310\pi\)
−0.869704 + 0.493574i \(0.835690\pi\)
\(948\) 72.7638 + 223.944i 0.0767551 + 0.236228i
\(949\) −409.079 297.213i −0.431063 0.313186i
\(950\) 0 0
\(951\) 50.3415 154.935i 0.0529353 0.162918i
\(952\) 121.037 372.515i 0.127140 0.391297i
\(953\) 765.792 556.381i 0.803560 0.583820i −0.108397 0.994108i \(-0.534572\pi\)
0.911956 + 0.410287i \(0.134572\pi\)
\(954\) 655.813 902.649i 0.687435 0.946173i
\(955\) 0 0
\(956\) 365.949i 0.382792i
\(957\) 190.659 171.406i 0.199226 0.179107i
\(958\) 1611.20i 1.68183i
\(959\) −2000.19 + 649.902i −2.08571 + 0.677687i
\(960\) 0 0
\(961\) −760.623 + 552.625i −0.791491 + 0.575052i
\(962\) 278.670 + 90.5455i 0.289678 + 0.0941221i
\(963\) 155.579 478.823i 0.161557 0.497220i
\(964\) 405.501 + 558.124i 0.420644 + 0.578967i
\(965\) 0 0
\(966\) −40.3452 124.170i −0.0417652 0.128540i
\(967\) 196.064 0.202755 0.101378 0.994848i \(-0.467675\pi\)
0.101378 + 0.994848i \(0.467675\pi\)
\(968\) 291.655 322.919i 0.301297 0.333594i
\(969\) −154.446 −0.159387
\(970\) 0 0
\(971\) 337.051 + 244.882i 0.347117 + 0.252196i 0.747659 0.664083i \(-0.231178\pi\)
−0.400541 + 0.916279i \(0.631178\pi\)
\(972\) 247.681 + 340.904i 0.254816 + 0.350724i
\(973\) −2312.74 751.456i −2.37692 0.772308i
\(974\) 409.868 + 133.174i 0.420809 + 0.136729i
\(975\) 0 0
\(976\) 46.2957 63.7206i 0.0474341 0.0652875i
\(977\) 1028.91 334.314i 1.05313 0.342184i 0.269237 0.963074i \(-0.413229\pi\)
0.783898 + 0.620890i \(0.213229\pi\)
\(978\) 452.341 0.462517
\(979\) −357.547 + 321.441i −0.365217 + 0.328336i
\(980\) 0 0
\(981\) −652.446 + 211.993i −0.665083 + 0.216099i
\(982\) 498.973 686.777i 0.508119 0.699366i
\(983\) 320.324 + 440.888i 0.325863 + 0.448512i 0.940246 0.340496i \(-0.110595\pi\)
−0.614383 + 0.789008i \(0.710595\pi\)
\(984\) 5.35717 16.4877i 0.00544428 0.0167558i
\(985\) 0 0
\(986\) −402.973 554.645i −0.408695 0.562520i
\(987\) 626.777 + 455.380i 0.635032 + 0.461378i
\(988\) −518.288 + 168.402i −0.524583 + 0.170447i
\(989\) 74.7140i 0.0755450i
\(990\) 0 0
\(991\) −1732.03 −1.74776 −0.873881 0.486140i \(-0.838405\pi\)
−0.873881 + 0.486140i \(0.838405\pi\)
\(992\) −486.028 1495.84i −0.489947 1.50790i
\(993\) −74.7368 + 102.866i −0.0752637 + 0.103592i
\(994\) 939.039 682.252i 0.944708 0.686370i
\(995\) 0 0
\(996\) −226.716 73.6645i −0.227626 0.0739603i
\(997\) −449.898 + 326.870i −0.451252 + 0.327854i −0.790090 0.612991i \(-0.789966\pi\)
0.338838 + 0.940845i \(0.389966\pi\)
\(998\) −1619.43 1176.58i −1.62268 1.17894i
\(999\) −54.9323 169.064i −0.0549872 0.169233i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.q.g.149.12 56
5.2 odd 4 275.3.x.i.226.2 yes 28
5.3 odd 4 275.3.x.h.226.6 yes 28
5.4 even 2 inner 275.3.q.g.149.3 56
11.2 odd 10 inner 275.3.q.g.24.3 56
55.2 even 20 275.3.x.i.101.2 yes 28
55.13 even 20 275.3.x.h.101.6 28
55.24 odd 10 inner 275.3.q.g.24.12 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.q.g.24.3 56 11.2 odd 10 inner
275.3.q.g.24.12 56 55.24 odd 10 inner
275.3.q.g.149.3 56 5.4 even 2 inner
275.3.q.g.149.12 56 1.1 even 1 trivial
275.3.x.h.101.6 28 55.13 even 20
275.3.x.h.226.6 yes 28 5.3 odd 4
275.3.x.i.101.2 yes 28 55.2 even 20
275.3.x.i.226.2 yes 28 5.2 odd 4