Properties

Label 275.3.q.a.24.2
Level $275$
Weight $3$
Character 275.24
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(24,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-22,0,-50] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 24.2
Root \(0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 275.24
Dual form 275.3.q.a.149.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.951057 - 2.92705i) q^{2} +(-2.71441 - 3.73607i) q^{3} +(-4.42705 - 3.21644i) q^{4} +(-13.5172 + 4.39201i) q^{6} +(-8.78402 - 6.38197i) q^{7} +(-3.66547 + 2.66312i) q^{8} +(-3.80902 + 11.7229i) q^{9} +(10.3713 + 3.66547i) q^{11} +25.2705i q^{12} +(3.52671 - 10.8541i) q^{13} +(-27.0344 + 19.6417i) q^{14} +(-2.45492 - 7.55545i) q^{16} +(6.96767 + 21.4443i) q^{17} +(30.6911 + 22.2984i) q^{18} +(-4.96149 - 6.82891i) q^{19} +50.1410i q^{21} +(20.5927 - 26.8713i) q^{22} +0.472136i q^{23} +(19.8992 + 6.46564i) q^{24} +(-28.4164 - 20.6457i) q^{26} +(14.6089 - 4.74671i) q^{27} +(18.3601 + 56.5066i) q^{28} +(9.67376 - 13.3148i) q^{29} +(9.96556 - 30.6708i) q^{31} -42.5730 q^{32} +(-14.4576 - 48.6976i) q^{33} +69.3951 q^{34} +(54.5689 - 39.6466i) q^{36} +(-5.21682 + 7.18034i) q^{37} +(-24.7072 + 8.02786i) q^{38} +(-50.1246 + 16.2865i) q^{39} +(15.5902 + 21.4580i) q^{41} +(146.765 + 47.6869i) q^{42} -50.0350 q^{43} +(-34.1246 - 49.5860i) q^{44} +(1.38197 + 0.449028i) q^{46} +(20.6052 + 28.3607i) q^{47} +(-21.5640 + 29.6803i) q^{48} +(21.2877 + 65.5169i) q^{49} +(61.2041 - 84.2403i) q^{51} +(-50.5245 + 36.7082i) q^{52} +(31.9929 + 10.3951i) q^{53} -47.2753i q^{54} +49.1935 q^{56} +(-12.0457 + 37.0729i) q^{57} +(-29.7728 - 40.9787i) q^{58} +(-89.4681 - 65.0024i) q^{59} +(-71.4296 + 23.2089i) q^{61} +(-80.2973 - 58.3394i) q^{62} +(108.274 - 78.6656i) q^{63} +(-30.6697 + 94.3916i) q^{64} +(-156.290 - 3.99598i) q^{66} -44.4508i q^{67} +(38.1280 - 117.346i) q^{68} +(1.76393 - 1.28157i) q^{69} +(-16.2148 - 49.9040i) q^{71} +(-17.2578 - 53.1140i) q^{72} +(-63.7535 - 46.3197i) q^{73} +(16.0557 + 22.0988i) q^{74} +46.1903i q^{76} +(-67.7090 - 98.3870i) q^{77} +162.207i q^{78} +(121.151 + 39.3643i) q^{79} +(32.3607 + 23.5114i) q^{81} +(77.6359 - 25.2254i) q^{82} +(11.5765 + 35.6287i) q^{83} +(161.276 - 221.977i) q^{84} +(-47.5861 + 146.455i) q^{86} -76.0035 q^{87} +(-47.7773 + 14.1844i) q^{88} -108.326 q^{89} +(-100.249 + 72.8353i) q^{91} +(1.51860 - 2.09017i) q^{92} +(-141.639 + 46.0213i) q^{93} +(102.610 - 33.3400i) q^{94} +(115.561 + 159.056i) q^{96} +(-58.7863 - 19.1008i) q^{97} +212.017 q^{98} +(-82.4746 + 107.621i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 22 q^{4} - 50 q^{6} - 26 q^{9} - 2 q^{11} - 100 q^{14} - 42 q^{16} + 90 q^{19} + 110 q^{24} - 120 q^{26} + 140 q^{29} + 196 q^{31} + 260 q^{34} + 204 q^{36} - 240 q^{39} + 80 q^{41} - 112 q^{44} + 20 q^{46}+ \cdots - 226 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.951057 2.92705i 0.475528 1.46353i −0.369716 0.929145i \(-0.620545\pi\)
0.845244 0.534381i \(-0.179455\pi\)
\(3\) −2.71441 3.73607i −0.904804 1.24536i −0.968910 0.247413i \(-0.920420\pi\)
0.0641060 0.997943i \(-0.479580\pi\)
\(4\) −4.42705 3.21644i −1.10676 0.804110i
\(5\) 0 0
\(6\) −13.5172 + 4.39201i −2.25287 + 0.732002i
\(7\) −8.78402 6.38197i −1.25486 0.911709i −0.256367 0.966580i \(-0.582526\pi\)
−0.998494 + 0.0548701i \(0.982526\pi\)
\(8\) −3.66547 + 2.66312i −0.458184 + 0.332890i
\(9\) −3.80902 + 11.7229i −0.423224 + 1.30255i
\(10\) 0 0
\(11\) 10.3713 + 3.66547i 0.942848 + 0.333224i
\(12\) 25.2705i 2.10588i
\(13\) 3.52671 10.8541i 0.271286 0.834931i −0.718893 0.695121i \(-0.755351\pi\)
0.990178 0.139810i \(-0.0446492\pi\)
\(14\) −27.0344 + 19.6417i −1.93103 + 1.40298i
\(15\) 0 0
\(16\) −2.45492 7.55545i −0.153432 0.472216i
\(17\) 6.96767 + 21.4443i 0.409863 + 1.26143i 0.916766 + 0.399425i \(0.130790\pi\)
−0.506903 + 0.862003i \(0.669210\pi\)
\(18\) 30.6911 + 22.2984i 1.70506 + 1.23880i
\(19\) −4.96149 6.82891i −0.261131 0.359416i 0.658239 0.752809i \(-0.271301\pi\)
−0.919371 + 0.393392i \(0.871301\pi\)
\(20\) 0 0
\(21\) 50.1410i 2.38767i
\(22\) 20.5927 26.8713i 0.936033 1.22142i
\(23\) 0.472136i 0.0205277i 0.999947 + 0.0102638i \(0.00326713\pi\)
−0.999947 + 0.0102638i \(0.996733\pi\)
\(24\) 19.8992 + 6.46564i 0.829133 + 0.269402i
\(25\) 0 0
\(26\) −28.4164 20.6457i −1.09294 0.794066i
\(27\) 14.6089 4.74671i 0.541069 0.175804i
\(28\) 18.3601 + 56.5066i 0.655718 + 2.01809i
\(29\) 9.67376 13.3148i 0.333578 0.459131i −0.608974 0.793190i \(-0.708419\pi\)
0.942552 + 0.334059i \(0.108419\pi\)
\(30\) 0 0
\(31\) 9.96556 30.6708i 0.321470 0.989382i −0.651539 0.758615i \(-0.725876\pi\)
0.973009 0.230767i \(-0.0741235\pi\)
\(32\) −42.5730 −1.33041
\(33\) −14.4576 48.6976i −0.438109 1.47568i
\(34\) 69.3951 2.04103
\(35\) 0 0
\(36\) 54.5689 39.6466i 1.51580 1.10129i
\(37\) −5.21682 + 7.18034i −0.140995 + 0.194063i −0.873675 0.486511i \(-0.838269\pi\)
0.732679 + 0.680574i \(0.238269\pi\)
\(38\) −24.7072 + 8.02786i −0.650190 + 0.211260i
\(39\) −50.1246 + 16.2865i −1.28525 + 0.417602i
\(40\) 0 0
\(41\) 15.5902 + 21.4580i 0.380248 + 0.523367i 0.955650 0.294504i \(-0.0951545\pi\)
−0.575402 + 0.817871i \(0.695154\pi\)
\(42\) 146.765 + 47.6869i 3.49441 + 1.13540i
\(43\) −50.0350 −1.16360 −0.581802 0.813330i \(-0.697652\pi\)
−0.581802 + 0.813330i \(0.697652\pi\)
\(44\) −34.1246 49.5860i −0.775559 1.12695i
\(45\) 0 0
\(46\) 1.38197 + 0.449028i 0.0300427 + 0.00976148i
\(47\) 20.6052 + 28.3607i 0.438409 + 0.603419i 0.969858 0.243672i \(-0.0783520\pi\)
−0.531448 + 0.847091i \(0.678352\pi\)
\(48\) −21.5640 + 29.6803i −0.449251 + 0.618340i
\(49\) 21.2877 + 65.5169i 0.434443 + 1.33708i
\(50\) 0 0
\(51\) 61.2041 84.2403i 1.20008 1.65177i
\(52\) −50.5245 + 36.7082i −0.971625 + 0.705927i
\(53\) 31.9929 + 10.3951i 0.603640 + 0.196134i 0.594863 0.803827i \(-0.297206\pi\)
0.00877654 + 0.999961i \(0.497206\pi\)
\(54\) 47.2753i 0.875469i
\(55\) 0 0
\(56\) 49.1935 0.878455
\(57\) −12.0457 + 37.0729i −0.211329 + 0.650403i
\(58\) −29.7728 40.9787i −0.513324 0.706530i
\(59\) −89.4681 65.0024i −1.51641 1.10173i −0.963232 0.268670i \(-0.913416\pi\)
−0.553176 0.833065i \(-0.686584\pi\)
\(60\) 0 0
\(61\) −71.4296 + 23.2089i −1.17098 + 0.380473i −0.829007 0.559238i \(-0.811094\pi\)
−0.341969 + 0.939711i \(0.611094\pi\)
\(62\) −80.2973 58.3394i −1.29512 0.940958i
\(63\) 108.274 78.6656i 1.71863 1.24866i
\(64\) −30.6697 + 94.3916i −0.479214 + 1.47487i
\(65\) 0 0
\(66\) −156.290 3.99598i −2.36803 0.0605452i
\(67\) 44.4508i 0.663446i −0.943377 0.331723i \(-0.892370\pi\)
0.943377 0.331723i \(-0.107630\pi\)
\(68\) 38.1280 117.346i 0.560706 1.72568i
\(69\) 1.76393 1.28157i 0.0255642 0.0185735i
\(70\) 0 0
\(71\) −16.2148 49.9040i −0.228377 0.702873i −0.997931 0.0642910i \(-0.979521\pi\)
0.769554 0.638582i \(-0.220479\pi\)
\(72\) −17.2578 53.1140i −0.239691 0.737694i
\(73\) −63.7535 46.3197i −0.873336 0.634516i 0.0581439 0.998308i \(-0.481482\pi\)
−0.931480 + 0.363792i \(0.881482\pi\)
\(74\) 16.0557 + 22.0988i 0.216969 + 0.298633i
\(75\) 0 0
\(76\) 46.1903i 0.607767i
\(77\) −67.7090 98.3870i −0.879338 1.27775i
\(78\) 162.207i 2.07957i
\(79\) 121.151 + 39.3643i 1.53356 + 0.498283i 0.949590 0.313495i \(-0.101500\pi\)
0.583966 + 0.811778i \(0.301500\pi\)
\(80\) 0 0
\(81\) 32.3607 + 23.5114i 0.399515 + 0.290264i
\(82\) 77.6359 25.2254i 0.946779 0.307627i
\(83\) 11.5765 + 35.6287i 0.139475 + 0.429261i 0.996259 0.0864145i \(-0.0275409\pi\)
−0.856784 + 0.515676i \(0.827541\pi\)
\(84\) 161.276 221.977i 1.91995 2.64258i
\(85\) 0 0
\(86\) −47.5861 + 146.455i −0.553327 + 1.70296i
\(87\) −76.0035 −0.873604
\(88\) −47.7773 + 14.1844i −0.542924 + 0.161186i
\(89\) −108.326 −1.21715 −0.608574 0.793497i \(-0.708258\pi\)
−0.608574 + 0.793497i \(0.708258\pi\)
\(90\) 0 0
\(91\) −100.249 + 72.8353i −1.10164 + 0.800388i
\(92\) 1.51860 2.09017i 0.0165065 0.0227192i
\(93\) −141.639 + 46.0213i −1.52300 + 0.494853i
\(94\) 102.610 33.3400i 1.09159 0.354681i
\(95\) 0 0
\(96\) 115.561 + 159.056i 1.20376 + 1.65683i
\(97\) −58.7863 19.1008i −0.606044 0.196916i −0.0101097 0.999949i \(-0.503218\pi\)
−0.595934 + 0.803033i \(0.703218\pi\)
\(98\) 212.017 2.16344
\(99\) −82.4746 + 107.621i −0.833077 + 1.08708i
\(100\) 0 0
\(101\) 54.8460 + 17.8205i 0.543029 + 0.176441i 0.567671 0.823255i \(-0.307845\pi\)
−0.0246418 + 0.999696i \(0.507845\pi\)
\(102\) −188.367 259.265i −1.84673 2.54181i
\(103\) 64.6063 88.9230i 0.627246 0.863330i −0.370609 0.928789i \(-0.620851\pi\)
0.997855 + 0.0654589i \(0.0208511\pi\)
\(104\) 15.9787 + 49.1774i 0.153641 + 0.472860i
\(105\) 0 0
\(106\) 60.8541 83.7585i 0.574095 0.790174i
\(107\) 45.3934 32.9803i 0.424238 0.308227i −0.355103 0.934827i \(-0.615554\pi\)
0.779341 + 0.626600i \(0.215554\pi\)
\(108\) −79.9417 25.9746i −0.740201 0.240506i
\(109\) 64.2478i 0.589430i −0.955585 0.294715i \(-0.904775\pi\)
0.955585 0.294715i \(-0.0952247\pi\)
\(110\) 0 0
\(111\) 40.9868 0.369251
\(112\) −26.6546 + 82.0344i −0.237988 + 0.732450i
\(113\) −5.26982 7.25329i −0.0466356 0.0641884i 0.785062 0.619417i \(-0.212631\pi\)
−0.831698 + 0.555228i \(0.812631\pi\)
\(114\) 97.0582 + 70.5169i 0.851388 + 0.618570i
\(115\) 0 0
\(116\) −85.6525 + 27.8302i −0.738383 + 0.239915i
\(117\) 113.809 + 82.6869i 0.972725 + 0.706726i
\(118\) −275.354 + 200.057i −2.33351 + 1.69540i
\(119\) 75.6525 232.834i 0.635735 1.95659i
\(120\) 0 0
\(121\) 94.1287 + 76.0315i 0.777923 + 0.628360i
\(122\) 231.151i 1.89468i
\(123\) 37.8505 116.492i 0.307728 0.947088i
\(124\) −142.769 + 103.728i −1.15136 + 0.836514i
\(125\) 0 0
\(126\) −127.284 391.739i −1.01019 3.10904i
\(127\) −46.5893 143.387i −0.366845 1.12903i −0.948818 0.315824i \(-0.897719\pi\)
0.581973 0.813208i \(-0.302281\pi\)
\(128\) 109.351 + 79.4483i 0.854307 + 0.620690i
\(129\) 135.816 + 186.934i 1.05283 + 1.44910i
\(130\) 0 0
\(131\) 97.0983i 0.741208i −0.928791 0.370604i \(-0.879151\pi\)
0.928791 0.370604i \(-0.120849\pi\)
\(132\) −92.6283 + 262.089i −0.701729 + 1.98552i
\(133\) 91.6494i 0.689093i
\(134\) −130.110 42.2753i −0.970969 0.315487i
\(135\) 0 0
\(136\) −82.6484 60.0476i −0.607709 0.441526i
\(137\) 199.200 64.7239i 1.45401 0.472437i 0.527777 0.849383i \(-0.323026\pi\)
0.926235 + 0.376946i \(0.123026\pi\)
\(138\) −2.07363 6.38197i −0.0150263 0.0462461i
\(139\) 4.72136 6.49839i 0.0339666 0.0467510i −0.791696 0.610915i \(-0.790802\pi\)
0.825663 + 0.564164i \(0.190802\pi\)
\(140\) 0 0
\(141\) 50.0263 153.965i 0.354797 1.09195i
\(142\) −161.493 −1.13727
\(143\) 76.3620 99.6443i 0.534000 0.696814i
\(144\) 97.9230 0.680021
\(145\) 0 0
\(146\) −196.213 + 142.557i −1.34393 + 0.976420i
\(147\) 186.992 257.372i 1.27205 1.75083i
\(148\) 46.1903 15.0081i 0.312096 0.101406i
\(149\) 44.3951 14.4248i 0.297954 0.0968111i −0.156225 0.987721i \(-0.549933\pi\)
0.454179 + 0.890910i \(0.349933\pi\)
\(150\) 0 0
\(151\) 44.1459 + 60.7616i 0.292357 + 0.402395i 0.929778 0.368121i \(-0.119999\pi\)
−0.637421 + 0.770516i \(0.719999\pi\)
\(152\) 36.3724 + 11.8181i 0.239292 + 0.0777507i
\(153\) −277.930 −1.81654
\(154\) −352.379 + 104.616i −2.28817 + 0.679326i
\(155\) 0 0
\(156\) 274.289 + 89.1218i 1.75826 + 0.571294i
\(157\) −21.7462 29.9311i −0.138511 0.190644i 0.734126 0.679013i \(-0.237592\pi\)
−0.872637 + 0.488369i \(0.837592\pi\)
\(158\) 230.443 317.177i 1.45850 2.00745i
\(159\) −48.0050 147.744i −0.301918 0.929209i
\(160\) 0 0
\(161\) 3.01316 4.14725i 0.0187153 0.0257593i
\(162\) 99.5959 72.3607i 0.614790 0.446671i
\(163\) 44.7074 + 14.5263i 0.274278 + 0.0891185i 0.442927 0.896558i \(-0.353940\pi\)
−0.168648 + 0.985676i \(0.553940\pi\)
\(164\) 145.141i 0.885004i
\(165\) 0 0
\(166\) 115.297 0.694559
\(167\) 14.7119 45.2786i 0.0880953 0.271130i −0.897297 0.441426i \(-0.854473\pi\)
0.985393 + 0.170297i \(0.0544726\pi\)
\(168\) −133.531 183.790i −0.794830 1.09399i
\(169\) 31.3500 + 22.7771i 0.185503 + 0.134776i
\(170\) 0 0
\(171\) 98.9534 32.1519i 0.578675 0.188023i
\(172\) 221.507 + 160.935i 1.28783 + 0.935666i
\(173\) 154.439 112.207i 0.892712 0.648593i −0.0438716 0.999037i \(-0.513969\pi\)
0.936584 + 0.350444i \(0.113969\pi\)
\(174\) −72.2837 + 222.466i −0.415423 + 1.27854i
\(175\) 0 0
\(176\) 2.23356 87.3584i 0.0126907 0.496355i
\(177\) 510.702i 2.88532i
\(178\) −103.024 + 317.076i −0.578789 + 1.78133i
\(179\) 208.919 151.788i 1.16714 0.847980i 0.176480 0.984304i \(-0.443529\pi\)
0.990664 + 0.136324i \(0.0435288\pi\)
\(180\) 0 0
\(181\) −50.8115 156.382i −0.280727 0.863988i −0.987647 0.156695i \(-0.949916\pi\)
0.706920 0.707293i \(-0.250084\pi\)
\(182\) 117.850 + 362.705i 0.647528 + 1.99289i
\(183\) 280.599 + 203.867i 1.53333 + 1.11403i
\(184\) −1.25735 1.73060i −0.00683345 0.00940543i
\(185\) 0 0
\(186\) 458.353i 2.46426i
\(187\) −6.33939 + 247.945i −0.0339005 + 1.32591i
\(188\) 191.830i 1.02037i
\(189\) −158.618 51.5381i −0.839249 0.272688i
\(190\) 0 0
\(191\) 30.7426 + 22.3358i 0.160956 + 0.116942i 0.665348 0.746533i \(-0.268283\pi\)
−0.504392 + 0.863475i \(0.668283\pi\)
\(192\) 435.904 141.634i 2.27033 0.737676i
\(193\) 1.45309 + 4.47214i 0.00752894 + 0.0231717i 0.954750 0.297408i \(-0.0961222\pi\)
−0.947221 + 0.320580i \(0.896122\pi\)
\(194\) −111.818 + 153.904i −0.576382 + 0.793322i
\(195\) 0 0
\(196\) 116.489 358.517i 0.594333 1.82917i
\(197\) −107.254 −0.544439 −0.272219 0.962235i \(-0.587758\pi\)
−0.272219 + 0.962235i \(0.587758\pi\)
\(198\) 236.573 + 343.761i 1.19481 + 1.73617i
\(199\) −18.5936 −0.0934354 −0.0467177 0.998908i \(-0.514876\pi\)
−0.0467177 + 0.998908i \(0.514876\pi\)
\(200\) 0 0
\(201\) −166.071 + 120.658i −0.826226 + 0.600288i
\(202\) 104.323 143.589i 0.516452 0.710835i
\(203\) −169.949 + 55.2198i −0.837188 + 0.272019i
\(204\) −541.908 + 176.076i −2.65641 + 0.863120i
\(205\) 0 0
\(206\) −198.838 273.677i −0.965232 1.32853i
\(207\) −5.53483 1.79837i −0.0267383 0.00868780i
\(208\) −90.6654 −0.435891
\(209\) −26.4261 89.0110i −0.126441 0.425890i
\(210\) 0 0
\(211\) −92.8829 30.1795i −0.440203 0.143031i 0.0805260 0.996753i \(-0.474340\pi\)
−0.520729 + 0.853722i \(0.674340\pi\)
\(212\) −108.199 148.923i −0.510372 0.702467i
\(213\) −142.431 + 196.039i −0.668690 + 0.920373i
\(214\) −53.3632 164.235i −0.249361 0.767453i
\(215\) 0 0
\(216\) −40.9073 + 56.3041i −0.189386 + 0.260667i
\(217\) −283.278 + 205.813i −1.30543 + 0.948449i
\(218\) −188.057 61.1033i −0.862645 0.280290i
\(219\) 363.918i 1.66173i
\(220\) 0 0
\(221\) 257.331 1.16439
\(222\) 38.9808 119.971i 0.175589 0.540408i
\(223\) 222.990 + 306.920i 0.999957 + 1.37632i 0.925352 + 0.379109i \(0.123770\pi\)
0.0746047 + 0.997213i \(0.476230\pi\)
\(224\) 373.962 + 271.700i 1.66948 + 1.21294i
\(225\) 0 0
\(226\) −26.2426 + 8.52675i −0.116118 + 0.0377290i
\(227\) −168.624 122.513i −0.742837 0.539703i 0.150761 0.988570i \(-0.451828\pi\)
−0.893598 + 0.448867i \(0.851828\pi\)
\(228\) 172.570 125.379i 0.756886 0.549910i
\(229\) 19.2179 59.1466i 0.0839209 0.258282i −0.900287 0.435296i \(-0.856644\pi\)
0.984208 + 0.177014i \(0.0566438\pi\)
\(230\) 0 0
\(231\) −183.790 + 520.028i −0.795629 + 2.25121i
\(232\) 74.5673i 0.321411i
\(233\) −85.6124 + 263.488i −0.367435 + 1.13085i 0.581007 + 0.813899i \(0.302659\pi\)
−0.948442 + 0.316950i \(0.897341\pi\)
\(234\) 350.267 254.484i 1.49687 1.08754i
\(235\) 0 0
\(236\) 187.003 + 575.538i 0.792388 + 2.43872i
\(237\) −181.786 559.479i −0.767029 2.36067i
\(238\) −609.568 442.877i −2.56121 1.86083i
\(239\) 87.2179 + 120.045i 0.364928 + 0.502281i 0.951514 0.307607i \(-0.0995281\pi\)
−0.586585 + 0.809888i \(0.699528\pi\)
\(240\) 0 0
\(241\) 413.928i 1.71754i −0.512358 0.858772i \(-0.671228\pi\)
0.512358 0.858772i \(-0.328772\pi\)
\(242\) 312.070 203.209i 1.28954 0.839707i
\(243\) 322.967i 1.32908i
\(244\) 390.872 + 127.002i 1.60194 + 0.520500i
\(245\) 0 0
\(246\) −304.980 221.581i −1.23975 0.900735i
\(247\) −91.6194 + 29.7690i −0.370929 + 0.120522i
\(248\) 45.1516 + 138.962i 0.182063 + 0.560332i
\(249\) 101.688 139.961i 0.408385 0.562094i
\(250\) 0 0
\(251\) 115.281 354.797i 0.459285 1.41353i −0.406745 0.913542i \(-0.633336\pi\)
0.866030 0.499992i \(-0.166664\pi\)
\(252\) −732.358 −2.90618
\(253\) −1.73060 + 4.89667i −0.00684031 + 0.0193544i
\(254\) −464.010 −1.82681
\(255\) 0 0
\(256\) 15.3713 11.1679i 0.0600442 0.0436247i
\(257\) −119.953 + 165.102i −0.466745 + 0.642419i −0.975890 0.218261i \(-0.929962\pi\)
0.509145 + 0.860681i \(0.329962\pi\)
\(258\) 676.334 219.754i 2.62145 0.851761i
\(259\) 91.6494 29.7787i 0.353859 0.114976i
\(260\) 0 0
\(261\) 119.241 + 164.121i 0.456862 + 0.628817i
\(262\) −284.212 92.3460i −1.08478 0.352466i
\(263\) −64.2788 −0.244406 −0.122203 0.992505i \(-0.538996\pi\)
−0.122203 + 0.992505i \(0.538996\pi\)
\(264\) 182.681 + 139.997i 0.691975 + 0.530292i
\(265\) 0 0
\(266\) 268.262 + 87.1637i 1.00851 + 0.327683i
\(267\) 294.042 + 404.714i 1.10128 + 1.51578i
\(268\) −142.974 + 196.786i −0.533483 + 0.734277i
\(269\) 69.0050 + 212.376i 0.256524 + 0.789500i 0.993526 + 0.113609i \(0.0362412\pi\)
−0.737001 + 0.675891i \(0.763759\pi\)
\(270\) 0 0
\(271\) −165.220 + 227.406i −0.609667 + 0.839135i −0.996550 0.0829940i \(-0.973552\pi\)
0.386883 + 0.922129i \(0.373552\pi\)
\(272\) 144.916 105.288i 0.532780 0.387087i
\(273\) 544.235 + 176.833i 1.99354 + 0.647739i
\(274\) 644.623i 2.35264i
\(275\) 0 0
\(276\) −11.9311 −0.0432287
\(277\) 37.2156 114.538i 0.134352 0.413494i −0.861136 0.508374i \(-0.830247\pi\)
0.995489 + 0.0948799i \(0.0302467\pi\)
\(278\) −14.5309 20.0000i −0.0522692 0.0719424i
\(279\) 321.594 + 233.651i 1.15267 + 0.837460i
\(280\) 0 0
\(281\) −385.665 + 125.310i −1.37247 + 0.445944i −0.900188 0.435502i \(-0.856571\pi\)
−0.472286 + 0.881446i \(0.656571\pi\)
\(282\) −403.086 292.859i −1.42938 1.03851i
\(283\) −446.305 + 324.259i −1.57705 + 1.14579i −0.657065 + 0.753834i \(0.728202\pi\)
−0.919983 + 0.391959i \(0.871798\pi\)
\(284\) −88.7295 + 273.081i −0.312428 + 0.961554i
\(285\) 0 0
\(286\) −219.039 318.283i −0.765872 1.11288i
\(287\) 287.984i 1.00343i
\(288\) 162.161 499.081i 0.563060 1.73292i
\(289\) −177.503 + 128.963i −0.614196 + 0.446239i
\(290\) 0 0
\(291\) 88.2082 + 271.477i 0.303121 + 0.932910i
\(292\) 133.256 + 410.119i 0.456355 + 1.40452i
\(293\) −260.493 189.259i −0.889055 0.645936i 0.0465766 0.998915i \(-0.485169\pi\)
−0.935631 + 0.352979i \(0.885169\pi\)
\(294\) −575.502 792.110i −1.95749 2.69425i
\(295\) 0 0
\(296\) 40.2123i 0.135852i
\(297\) 168.912 + 4.31870i 0.568728 + 0.0145411i
\(298\) 143.666i 0.482099i
\(299\) 5.12461 + 1.66509i 0.0171392 + 0.00556885i
\(300\) 0 0
\(301\) 439.508 + 319.322i 1.46016 + 1.06087i
\(302\) 219.838 71.4296i 0.727939 0.236522i
\(303\) −82.2958 253.281i −0.271603 0.835909i
\(304\) −39.4154 + 54.2507i −0.129656 + 0.178456i
\(305\) 0 0
\(306\) −264.327 + 813.515i −0.863814 + 2.65855i
\(307\) 100.126 0.326143 0.163072 0.986614i \(-0.447860\pi\)
0.163072 + 0.986614i \(0.447860\pi\)
\(308\) −16.7046 + 653.346i −0.0542356 + 2.12125i
\(309\) −507.591 −1.64269
\(310\) 0 0
\(311\) 159.456 115.851i 0.512720 0.372513i −0.301135 0.953582i \(-0.597365\pi\)
0.813854 + 0.581069i \(0.197365\pi\)
\(312\) 140.357 193.185i 0.449863 0.619184i
\(313\) 231.099 75.0886i 0.738335 0.239900i 0.0843809 0.996434i \(-0.473109\pi\)
0.653955 + 0.756534i \(0.273109\pi\)
\(314\) −108.292 + 35.1861i −0.344878 + 0.112058i
\(315\) 0 0
\(316\) −409.728 563.943i −1.29661 1.78463i
\(317\) 537.949 + 174.790i 1.69700 + 0.551389i 0.988086 0.153906i \(-0.0491851\pi\)
0.708915 + 0.705294i \(0.249185\pi\)
\(318\) −478.111 −1.50349
\(319\) 149.135 102.633i 0.467507 0.321734i
\(320\) 0 0
\(321\) −246.433 80.0709i −0.767704 0.249442i
\(322\) −9.27354 12.7639i −0.0287998 0.0396395i
\(323\) 111.871 153.977i 0.346350 0.476709i
\(324\) −67.6393 208.172i −0.208763 0.642507i
\(325\) 0 0
\(326\) 85.0385 117.045i 0.260854 0.359035i
\(327\) −240.034 + 174.395i −0.734050 + 0.533318i
\(328\) −114.291 37.1353i −0.348447 0.113217i
\(329\) 380.623i 1.15691i
\(330\) 0 0
\(331\) −144.353 −0.436110 −0.218055 0.975936i \(-0.569971\pi\)
−0.218055 + 0.975936i \(0.569971\pi\)
\(332\) 63.3480 194.965i 0.190807 0.587244i
\(333\) −64.3038 88.5066i −0.193104 0.265786i
\(334\) −118.541 86.1251i −0.354913 0.257860i
\(335\) 0 0
\(336\) 378.838 123.092i 1.12749 0.366345i
\(337\) 156.516 + 113.715i 0.464439 + 0.337434i 0.795270 0.606256i \(-0.207329\pi\)
−0.330831 + 0.943690i \(0.607329\pi\)
\(338\) 96.4855 70.1008i 0.285460 0.207399i
\(339\) −12.7943 + 39.3768i −0.0377413 + 0.116156i
\(340\) 0 0
\(341\) 215.779 281.569i 0.632783 0.825715i
\(342\) 320.220i 0.936315i
\(343\) 66.7300 205.374i 0.194548 0.598758i
\(344\) 183.402 133.249i 0.533144 0.387352i
\(345\) 0 0
\(346\) −181.554 558.766i −0.524723 1.61493i
\(347\) 81.0382 + 249.410i 0.233539 + 0.718760i 0.997312 + 0.0732747i \(0.0233450\pi\)
−0.763772 + 0.645486i \(0.776655\pi\)
\(348\) 336.472 + 244.461i 0.966872 + 0.702474i
\(349\) −70.2310 96.6647i −0.201235 0.276976i 0.696458 0.717597i \(-0.254758\pi\)
−0.897693 + 0.440621i \(0.854758\pi\)
\(350\) 0 0
\(351\) 175.306i 0.499449i
\(352\) −441.539 156.050i −1.25437 0.443324i
\(353\) 150.674i 0.426838i 0.976961 + 0.213419i \(0.0684599\pi\)
−0.976961 + 0.213419i \(0.931540\pi\)
\(354\) 1494.85 + 485.706i 4.22274 + 1.37205i
\(355\) 0 0
\(356\) 479.566 + 348.425i 1.34709 + 0.978722i
\(357\) −1075.24 + 349.366i −3.01187 + 0.978615i
\(358\) −245.599 755.876i −0.686031 2.11138i
\(359\) −160.143 + 220.418i −0.446080 + 0.613977i −0.971550 0.236836i \(-0.923890\pi\)
0.525470 + 0.850812i \(0.323890\pi\)
\(360\) 0 0
\(361\) 89.5375 275.568i 0.248026 0.763347i
\(362\) −506.062 −1.39796
\(363\) 28.5549 558.052i 0.0786636 1.53733i
\(364\) 678.079 1.86285
\(365\) 0 0
\(366\) 863.596 627.439i 2.35955 1.71431i
\(367\) 380.644 523.912i 1.03718 1.42755i 0.137758 0.990466i \(-0.456010\pi\)
0.899419 0.437087i \(-0.143990\pi\)
\(368\) 3.56720 1.15905i 0.00969348 0.00314960i
\(369\) −310.935 + 101.029i −0.842641 + 0.273791i
\(370\) 0 0
\(371\) −214.685 295.489i −0.578666 0.796465i
\(372\) 775.068 + 251.835i 2.08352 + 0.676975i
\(373\) 402.936 1.08026 0.540129 0.841583i \(-0.318376\pi\)
0.540129 + 0.841583i \(0.318376\pi\)
\(374\) 719.719 + 254.366i 1.92438 + 0.680122i
\(375\) 0 0
\(376\) −151.056 49.0810i −0.401744 0.130535i
\(377\) −110.404 151.957i −0.292848 0.403070i
\(378\) −301.709 + 415.267i −0.798173 + 1.09859i
\(379\) −41.9023 128.962i −0.110560 0.340269i 0.880435 0.474167i \(-0.157251\pi\)
−0.990995 + 0.133898i \(0.957251\pi\)
\(380\) 0 0
\(381\) −409.241 + 563.272i −1.07412 + 1.47840i
\(382\) 94.6161 68.7426i 0.247686 0.179955i
\(383\) −525.769 170.833i −1.37277 0.446039i −0.472481 0.881341i \(-0.656642\pi\)
−0.900285 + 0.435302i \(0.856642\pi\)
\(384\) 624.199i 1.62552i
\(385\) 0 0
\(386\) 14.4721 0.0374926
\(387\) 190.584 586.558i 0.492465 1.51565i
\(388\) 198.813 + 273.643i 0.512405 + 0.705265i
\(389\) −107.164 77.8593i −0.275486 0.200152i 0.441460 0.897281i \(-0.354461\pi\)
−0.716946 + 0.697129i \(0.754461\pi\)
\(390\) 0 0
\(391\) −10.1246 + 3.28969i −0.0258941 + 0.00841352i
\(392\) −252.509 183.458i −0.644155 0.468006i
\(393\) −362.766 + 263.565i −0.923068 + 0.670648i
\(394\) −102.005 + 313.939i −0.258896 + 0.796800i
\(395\) 0 0
\(396\) 711.275 211.167i 1.79615 0.533251i
\(397\) 110.721i 0.278895i 0.990229 + 0.139448i \(0.0445327\pi\)
−0.990229 + 0.139448i \(0.955467\pi\)
\(398\) −17.6836 + 54.4245i −0.0444312 + 0.136745i
\(399\) 342.408 248.774i 0.858166 0.623494i
\(400\) 0 0
\(401\) 9.64494 + 29.6841i 0.0240522 + 0.0740251i 0.962362 0.271770i \(-0.0876091\pi\)
−0.938310 + 0.345795i \(0.887609\pi\)
\(402\) 195.229 + 600.852i 0.485643 + 1.49466i
\(403\) −297.759 216.334i −0.738855 0.536810i
\(404\) −185.487 255.301i −0.459127 0.631934i
\(405\) 0 0
\(406\) 549.967i 1.35460i
\(407\) −80.4247 + 55.3475i −0.197604 + 0.135989i
\(408\) 471.774i 1.15631i
\(409\) −436.217 141.735i −1.06654 0.346541i −0.277404 0.960753i \(-0.589474\pi\)
−0.789141 + 0.614212i \(0.789474\pi\)
\(410\) 0 0
\(411\) −782.523 568.536i −1.90395 1.38330i
\(412\) −572.031 + 185.864i −1.38842 + 0.451127i
\(413\) 371.047 + 1141.96i 0.898418 + 2.76505i
\(414\) −10.5279 + 14.4904i −0.0254296 + 0.0350009i
\(415\) 0 0
\(416\) −150.143 + 462.092i −0.360920 + 1.11080i
\(417\) −37.0942 −0.0889548
\(418\) −285.672 7.30399i −0.683427 0.0174737i
\(419\) 47.0476 0.112285 0.0561427 0.998423i \(-0.482120\pi\)
0.0561427 + 0.998423i \(0.482120\pi\)
\(420\) 0 0
\(421\) 122.931 89.3147i 0.291998 0.212149i −0.432136 0.901809i \(-0.642240\pi\)
0.724134 + 0.689660i \(0.242240\pi\)
\(422\) −176.674 + 243.171i −0.418658 + 0.576234i
\(423\) −410.957 + 133.528i −0.971528 + 0.315669i
\(424\) −144.952 + 47.0979i −0.341869 + 0.111080i
\(425\) 0 0
\(426\) 438.358 + 603.347i 1.02901 + 1.41631i
\(427\) 775.557 + 251.994i 1.81629 + 0.590149i
\(428\) −307.038 −0.717379
\(429\) −579.556 14.8179i −1.35095 0.0345406i
\(430\) 0 0
\(431\) −492.254 159.943i −1.14212 0.371098i −0.323951 0.946074i \(-0.605011\pi\)
−0.818170 + 0.574976i \(0.805011\pi\)
\(432\) −71.7271 98.7239i −0.166035 0.228527i
\(433\) 244.693 336.791i 0.565111 0.777809i −0.426854 0.904321i \(-0.640378\pi\)
0.991965 + 0.126512i \(0.0403782\pi\)
\(434\) 333.013 + 1024.91i 0.767311 + 2.36154i
\(435\) 0 0
\(436\) −206.649 + 284.428i −0.473966 + 0.652359i
\(437\) 3.22417 2.34250i 0.00737797 0.00536041i
\(438\) 1065.21 + 346.107i 2.43198 + 0.790198i
\(439\) 685.921i 1.56246i 0.624242 + 0.781231i \(0.285408\pi\)
−0.624242 + 0.781231i \(0.714592\pi\)
\(440\) 0 0
\(441\) −849.137 −1.92548
\(442\) 244.737 753.222i 0.553703 1.70412i
\(443\) 340.140 + 468.163i 0.767810 + 1.05680i 0.996524 + 0.0833065i \(0.0265481\pi\)
−0.228714 + 0.973494i \(0.573452\pi\)
\(444\) −181.451 131.832i −0.408673 0.296918i
\(445\) 0 0
\(446\) 1110.45 360.806i 2.48979 0.808982i
\(447\) −174.399 126.708i −0.390154 0.283464i
\(448\) 871.807 633.405i 1.94600 1.41385i
\(449\) 262.733 808.609i 0.585151 1.80091i −0.0135103 0.999909i \(-0.504301\pi\)
0.598662 0.801002i \(-0.295699\pi\)
\(450\) 0 0
\(451\) 83.0370 + 279.693i 0.184117 + 0.620163i
\(452\) 49.0608i 0.108541i
\(453\) 107.179 329.864i 0.236599 0.728177i
\(454\) −518.972 + 377.055i −1.14311 + 0.830517i
\(455\) 0 0
\(456\) −54.5764 167.969i −0.119685 0.368353i
\(457\) 125.987 + 387.747i 0.275682 + 0.848462i 0.989038 + 0.147660i \(0.0471742\pi\)
−0.713356 + 0.700802i \(0.752826\pi\)
\(458\) −154.848 112.503i −0.338096 0.245641i
\(459\) 203.580 + 280.203i 0.443528 + 0.610464i
\(460\) 0 0
\(461\) 721.774i 1.56567i 0.622229 + 0.782835i \(0.286227\pi\)
−0.622229 + 0.782835i \(0.713773\pi\)
\(462\) 1347.35 + 1032.54i 2.91635 + 2.23493i
\(463\) 775.669i 1.67531i 0.546198 + 0.837656i \(0.316075\pi\)
−0.546198 + 0.837656i \(0.683925\pi\)
\(464\) −124.348 40.4030i −0.267990 0.0870753i
\(465\) 0 0
\(466\) 689.820 + 501.184i 1.48030 + 1.07550i
\(467\) 444.372 144.385i 0.951545 0.309176i 0.208202 0.978086i \(-0.433239\pi\)
0.743343 + 0.668910i \(0.233239\pi\)
\(468\) −237.880 732.118i −0.508290 1.56436i
\(469\) −283.684 + 390.457i −0.604870 + 0.832531i
\(470\) 0 0
\(471\) −52.7965 + 162.491i −0.112094 + 0.344991i
\(472\) 501.051 1.06155
\(473\) −518.929 183.402i −1.09710 0.387741i
\(474\) −1810.51 −3.81965
\(475\) 0 0
\(476\) −1083.82 + 787.438i −2.27692 + 1.65428i
\(477\) −243.723 + 335.456i −0.510950 + 0.703262i
\(478\) 434.327 141.122i 0.908635 0.295233i
\(479\) 8.26238 2.68461i 0.0172492 0.00560461i −0.300380 0.953820i \(-0.597113\pi\)
0.317629 + 0.948215i \(0.397113\pi\)
\(480\) 0 0
\(481\) 59.5379 + 81.9469i 0.123779 + 0.170368i
\(482\) −1211.59 393.669i −2.51367 0.816741i
\(483\) −23.6734 −0.0490132
\(484\) −172.162 639.355i −0.355706 1.32098i
\(485\) 0 0
\(486\) −945.342 307.160i −1.94515 0.632017i
\(487\) −469.217 645.822i −0.963484 1.32612i −0.945270 0.326288i \(-0.894202\pi\)
−0.0182139 0.999834i \(-0.505798\pi\)
\(488\) 200.015 275.297i 0.409866 0.564133i
\(489\) −67.0830 206.460i −0.137184 0.422209i
\(490\) 0 0
\(491\) −87.5364 + 120.483i −0.178282 + 0.245384i −0.888800 0.458295i \(-0.848460\pi\)
0.710519 + 0.703678i \(0.248460\pi\)
\(492\) −542.255 + 393.972i −1.10214 + 0.800755i
\(493\) 352.930 + 114.674i 0.715881 + 0.232604i
\(494\) 296.487i 0.600176i
\(495\) 0 0
\(496\) −256.197 −0.516525
\(497\) −176.054 + 541.840i −0.354234 + 1.09022i
\(498\) −312.963 430.757i −0.628440 0.864973i
\(499\) 493.030 + 358.207i 0.988036 + 0.717850i 0.959490 0.281743i \(-0.0909124\pi\)
0.0285456 + 0.999592i \(0.490912\pi\)
\(500\) 0 0
\(501\) −209.098 + 67.9402i −0.417362 + 0.135609i
\(502\) −928.871 674.864i −1.85034 1.34435i
\(503\) 121.221 88.0720i 0.240995 0.175093i −0.460731 0.887540i \(-0.652413\pi\)
0.701727 + 0.712446i \(0.252413\pi\)
\(504\) −187.379 + 576.693i −0.371783 + 1.14423i
\(505\) 0 0
\(506\) 12.6869 + 9.72257i 0.0250730 + 0.0192146i
\(507\) 178.952i 0.352963i
\(508\) −254.943 + 784.633i −0.501856 + 1.54455i
\(509\) 256.395 186.282i 0.503723 0.365976i −0.306714 0.951802i \(-0.599230\pi\)
0.810437 + 0.585825i \(0.199230\pi\)
\(510\) 0 0
\(511\) 264.402 + 813.746i 0.517421 + 1.59246i
\(512\) 149.004 + 458.586i 0.291023 + 0.895677i
\(513\) −104.897 76.2119i −0.204477 0.148561i
\(514\) 369.179 + 508.131i 0.718247 + 0.988582i
\(515\) 0 0
\(516\) 1264.41i 2.45041i
\(517\) 109.748 + 369.666i 0.212279 + 0.715021i
\(518\) 296.584i 0.572555i
\(519\) −838.423 272.420i −1.61546 0.524895i
\(520\) 0 0
\(521\) −298.555 216.913i −0.573042 0.416340i 0.263167 0.964750i \(-0.415233\pi\)
−0.836209 + 0.548411i \(0.815233\pi\)
\(522\) 593.796 192.936i 1.13754 0.369609i
\(523\) 151.734 + 466.990i 0.290123 + 0.892907i 0.984816 + 0.173601i \(0.0555402\pi\)
−0.694693 + 0.719306i \(0.744460\pi\)
\(524\) −312.311 + 429.859i −0.596013 + 0.820342i
\(525\) 0 0
\(526\) −61.1327 + 188.147i −0.116222 + 0.357694i
\(527\) 727.150 1.37979
\(528\) −332.440 + 228.782i −0.629621 + 0.433299i
\(529\) 528.777 0.999579
\(530\) 0 0
\(531\) 1102.80 801.235i 2.07685 1.50892i
\(532\) 294.785 405.736i 0.554107 0.762662i
\(533\) 287.890 93.5410i 0.540131 0.175499i
\(534\) 1464.27 475.770i 2.74208 0.890955i
\(535\) 0 0
\(536\) 118.378 + 162.933i 0.220854 + 0.303980i
\(537\) −1134.18 368.519i −2.11207 0.686255i
\(538\) 687.262 1.27744
\(539\) −19.3682 + 757.526i −0.0359336 + 1.40543i
\(540\) 0 0
\(541\) −418.618 136.017i −0.773786 0.251418i −0.104601 0.994514i \(-0.533357\pi\)
−0.669185 + 0.743096i \(0.733357\pi\)
\(542\) 508.494 + 699.882i 0.938181 + 1.29130i
\(543\) −446.330 + 614.320i −0.821970 + 1.13134i
\(544\) −296.635 912.948i −0.545284 1.67821i
\(545\) 0 0
\(546\) 1035.20 1424.83i 1.89597 2.60957i
\(547\) 482.392 350.478i 0.881886 0.640728i −0.0518636 0.998654i \(-0.516516\pi\)
0.933750 + 0.357926i \(0.116516\pi\)
\(548\) −1090.05 354.178i −1.98914 0.646310i
\(549\) 925.768i 1.68628i
\(550\) 0 0
\(551\) −138.922 −0.252127
\(552\) −3.05266 + 9.39512i −0.00553018 + 0.0170201i
\(553\) −812.971 1118.96i −1.47011 2.02343i
\(554\) −299.864 217.864i −0.541271 0.393256i
\(555\) 0 0
\(556\) −41.8034 + 13.5827i −0.0751860 + 0.0244294i
\(557\) 485.709 + 352.889i 0.872010 + 0.633552i 0.931125 0.364699i \(-0.118828\pi\)
−0.0591158 + 0.998251i \(0.518828\pi\)
\(558\) 989.763 719.105i 1.77377 1.28872i
\(559\) −176.459 + 543.085i −0.315669 + 0.971529i
\(560\) 0 0
\(561\) 943.548 649.341i 1.68190 1.15747i
\(562\) 1248.04i 2.22071i
\(563\) 205.365 632.047i 0.364768 1.12264i −0.585358 0.810775i \(-0.699046\pi\)
0.950126 0.311866i \(-0.100954\pi\)
\(564\) −716.689 + 520.705i −1.27072 + 0.923236i
\(565\) 0 0
\(566\) 524.663 + 1614.75i 0.926966 + 2.85291i
\(567\) −134.208 413.050i −0.236698 0.728482i
\(568\) 192.335 + 139.740i 0.338618 + 0.246020i
\(569\) 255.449 + 351.595i 0.448943 + 0.617917i 0.972170 0.234276i \(-0.0752720\pi\)
−0.523227 + 0.852193i \(0.675272\pi\)
\(570\) 0 0
\(571\) 807.082i 1.41345i −0.707487 0.706727i \(-0.750171\pi\)
0.707487 0.706727i \(-0.249829\pi\)
\(572\) −658.559 + 195.517i −1.15133 + 0.341812i
\(573\) 175.485i 0.306257i
\(574\) −842.943 273.889i −1.46854 0.477158i
\(575\) 0 0
\(576\) −989.727 719.079i −1.71828 1.24840i
\(577\) −690.288 + 224.288i −1.19634 + 0.388715i −0.838413 0.545035i \(-0.816516\pi\)
−0.357927 + 0.933750i \(0.616516\pi\)
\(578\) 208.667 + 642.210i 0.361015 + 1.11109i
\(579\) 12.7639 17.5680i 0.0220448 0.0303420i
\(580\) 0 0
\(581\) 125.693 386.844i 0.216339 0.665824i
\(582\) 878.518 1.50948
\(583\) 293.706 + 225.080i 0.503783 + 0.386072i
\(584\) 357.041 0.611372
\(585\) 0 0
\(586\) −801.715 + 582.480i −1.36811 + 0.993993i
\(587\) 111.330 153.232i 0.189659 0.261043i −0.703590 0.710607i \(-0.748421\pi\)
0.893248 + 0.449564i \(0.148421\pi\)
\(588\) −1655.65 + 537.952i −2.81572 + 0.914884i
\(589\) −258.892 + 84.1192i −0.439546 + 0.142817i
\(590\) 0 0
\(591\) 291.133 + 400.710i 0.492610 + 0.678020i
\(592\) 67.0576 + 21.7883i 0.113273 + 0.0368046i
\(593\) −216.058 −0.364348 −0.182174 0.983266i \(-0.558313\pi\)
−0.182174 + 0.983266i \(0.558313\pi\)
\(594\) 173.286 490.308i 0.291728 0.825434i
\(595\) 0 0
\(596\) −242.936 78.9347i −0.407611 0.132441i
\(597\) 50.4708 + 69.4671i 0.0845407 + 0.116360i
\(598\) 9.74759 13.4164i 0.0163003 0.0224355i
\(599\) 309.617 + 952.903i 0.516890 + 1.59082i 0.779817 + 0.626007i \(0.215312\pi\)
−0.262928 + 0.964815i \(0.584688\pi\)
\(600\) 0 0
\(601\) 230.744 317.592i 0.383934 0.528440i −0.572688 0.819774i \(-0.694099\pi\)
0.956621 + 0.291334i \(0.0940992\pi\)
\(602\) 1352.67 982.771i 2.24696 1.63251i
\(603\) 521.095 + 169.314i 0.864171 + 0.280786i
\(604\) 410.987i 0.680443i
\(605\) 0 0
\(606\) −819.633 −1.35253
\(607\) −162.986 + 501.620i −0.268511 + 0.826392i 0.722353 + 0.691525i \(0.243061\pi\)
−0.990864 + 0.134867i \(0.956939\pi\)
\(608\) 211.226 + 290.727i 0.347411 + 0.478170i
\(609\) 667.617 + 485.052i 1.09625 + 0.796473i
\(610\) 0 0
\(611\) 380.498 123.631i 0.622747 0.202343i
\(612\) 1230.41 + 893.946i 2.01047 + 1.46070i
\(613\) −217.265 + 157.852i −0.354429 + 0.257508i −0.750725 0.660615i \(-0.770295\pi\)
0.396296 + 0.918123i \(0.370295\pi\)
\(614\) 95.2254 293.074i 0.155090 0.477319i
\(615\) 0 0
\(616\) 510.202 + 180.317i 0.828249 + 0.292723i
\(617\) 623.989i 1.01133i −0.862731 0.505664i \(-0.831248\pi\)
0.862731 0.505664i \(-0.168752\pi\)
\(618\) −482.747 + 1485.74i −0.781144 + 2.40412i
\(619\) 727.247 528.376i 1.17487 0.853596i 0.183290 0.983059i \(-0.441325\pi\)
0.991584 + 0.129463i \(0.0413253\pi\)
\(620\) 0 0
\(621\) 2.24109 + 6.89737i 0.00360885 + 0.0111069i
\(622\) −187.452 576.917i −0.301369 0.927519i
\(623\) 951.540 + 691.334i 1.52735 + 1.10969i
\(624\) 246.103 + 338.732i 0.394396 + 0.542840i
\(625\) 0 0
\(626\) 747.852i 1.19465i
\(627\) −260.820 + 340.342i −0.415981 + 0.542811i
\(628\) 202.452i 0.322376i
\(629\) −190.326 61.8407i −0.302585 0.0983160i
\(630\) 0 0
\(631\) 861.325 + 625.789i 1.36502 + 0.991742i 0.998108 + 0.0614849i \(0.0195836\pi\)
0.366908 + 0.930257i \(0.380416\pi\)
\(632\) −548.907 + 178.351i −0.868523 + 0.282200i
\(633\) 139.370 + 428.937i 0.220174 + 0.677625i
\(634\) 1023.24 1408.37i 1.61394 2.22140i
\(635\) 0 0
\(636\) −262.690 + 808.477i −0.413035 + 1.27119i
\(637\) 786.203 1.23423
\(638\) −158.577 534.135i −0.248553 0.837202i
\(639\) 646.784 1.01218
\(640\) 0 0
\(641\) 717.550 521.330i 1.11942 0.813308i 0.135301 0.990805i \(-0.456800\pi\)
0.984121 + 0.177497i \(0.0568000\pi\)
\(642\) −468.743 + 645.170i −0.730130 + 1.00494i
\(643\) 996.713 323.852i 1.55010 0.503657i 0.595957 0.803016i \(-0.296773\pi\)
0.954141 + 0.299359i \(0.0967729\pi\)
\(644\) −26.6788 + 8.66846i −0.0414267 + 0.0134603i
\(645\) 0 0
\(646\) −344.303 473.893i −0.532977 0.733580i
\(647\) −1195.56 388.461i −1.84785 0.600403i −0.997209 0.0746578i \(-0.976214\pi\)
−0.850642 0.525745i \(-0.823786\pi\)
\(648\) −181.231 −0.279677
\(649\) −689.638 1002.10i −1.06262 1.54407i
\(650\) 0 0
\(651\) 1537.87 + 499.683i 2.36231 + 0.767562i
\(652\) −151.199 208.107i −0.231900 0.319183i
\(653\) −101.012 + 139.031i −0.154689 + 0.212912i −0.879327 0.476218i \(-0.842007\pi\)
0.724638 + 0.689130i \(0.242007\pi\)
\(654\) 282.177 + 868.452i 0.431464 + 1.32791i
\(655\) 0 0
\(656\) 123.853 170.468i 0.188800 0.259860i
\(657\) 785.841 570.947i 1.19611 0.869022i
\(658\) −1114.10 361.994i −1.69316 0.550143i
\(659\) 719.550i 1.09188i −0.837824 0.545941i \(-0.816172\pi\)
0.837824 0.545941i \(-0.183828\pi\)
\(660\) 0 0
\(661\) 655.240 0.991286 0.495643 0.868526i \(-0.334932\pi\)
0.495643 + 0.868526i \(0.334932\pi\)
\(662\) −137.287 + 422.527i −0.207383 + 0.638259i
\(663\) −698.503 961.407i −1.05355 1.45009i
\(664\) −137.317 99.7663i −0.206802 0.150250i
\(665\) 0 0
\(666\) −320.220 + 104.046i −0.480811 + 0.156225i
\(667\) 6.28639 + 4.56733i 0.00942488 + 0.00684757i
\(668\) −210.766 + 153.131i −0.315519 + 0.229238i
\(669\) 541.386 1666.21i 0.809246 2.49060i
\(670\) 0 0
\(671\) −825.890 21.1161i −1.23084 0.0314696i
\(672\) 2134.65i 3.17657i
\(673\) 211.274 650.235i 0.313929 0.966173i −0.662264 0.749270i \(-0.730404\pi\)
0.976193 0.216903i \(-0.0695955\pi\)
\(674\) 481.706 349.980i 0.714697 0.519258i
\(675\) 0 0
\(676\) −65.5269 201.671i −0.0969333 0.298330i
\(677\) 233.777 + 719.490i 0.345313 + 1.06276i 0.961416 + 0.275098i \(0.0887102\pi\)
−0.616104 + 0.787665i \(0.711290\pi\)
\(678\) 103.090 + 74.8992i 0.152050 + 0.110471i
\(679\) 394.479 + 542.954i 0.580971 + 0.799638i
\(680\) 0 0
\(681\) 962.541i 1.41342i
\(682\) −618.948 899.384i −0.907548 1.31874i
\(683\) 781.639i 1.14442i −0.820107 0.572210i \(-0.806086\pi\)
0.820107 0.572210i \(-0.193914\pi\)
\(684\) −541.486 175.940i −0.791647 0.257222i
\(685\) 0 0
\(686\) −537.676 390.644i −0.783784 0.569452i
\(687\) −273.141 + 88.7489i −0.397585 + 0.129183i
\(688\) 122.832 + 378.037i 0.178534 + 0.549472i
\(689\) 225.659 310.594i 0.327517 0.450789i
\(690\) 0 0
\(691\) −290.643 + 894.507i −0.420612 + 1.29451i 0.486522 + 0.873668i \(0.338265\pi\)
−0.907134 + 0.420842i \(0.861735\pi\)
\(692\) −1044.62 −1.50956
\(693\) 1411.29 418.992i 2.03649 0.604606i
\(694\) 807.107 1.16298
\(695\) 0 0
\(696\) 278.589 202.406i 0.400271 0.290814i
\(697\) −351.525 + 483.832i −0.504340 + 0.694164i
\(698\) −349.736 + 113.636i −0.501055 + 0.162803i
\(699\) 1216.80 395.361i 1.74077 0.565609i
\(700\) 0 0
\(701\) −3.94427 5.42882i −0.00562664 0.00774440i 0.806194 0.591651i \(-0.201524\pi\)
−0.811821 + 0.583906i \(0.801524\pi\)
\(702\) −513.131 166.726i −0.730956 0.237502i
\(703\) 74.9171 0.106568
\(704\) −664.075 + 866.547i −0.943288 + 1.23089i
\(705\) 0 0
\(706\) 441.030 + 143.299i 0.624688 + 0.202973i
\(707\) −368.038 506.561i −0.520563 0.716494i
\(708\) 1642.64 2260.90i 2.32012 3.19337i
\(709\) 307.854 + 947.478i 0.434209 + 1.33636i 0.893895 + 0.448276i \(0.147962\pi\)
−0.459686 + 0.888081i \(0.652038\pi\)
\(710\) 0 0
\(711\) −922.932 + 1270.31i −1.29808 + 1.78665i
\(712\) 397.066 288.486i 0.557678 0.405176i
\(713\) 14.4808 + 4.70510i 0.0203097 + 0.00659902i
\(714\) 3479.54i 4.87331i
\(715\) 0 0
\(716\) −1413.11 −1.97362
\(717\) 211.751 651.704i 0.295330 0.908932i
\(718\) 492.869 + 678.376i 0.686447 + 0.944813i
\(719\) −478.315 347.516i −0.665250 0.483333i 0.203182 0.979141i \(-0.434872\pi\)
−0.868432 + 0.495808i \(0.834872\pi\)
\(720\) 0 0
\(721\) −1135.01 + 368.786i −1.57421 + 0.511493i
\(722\) −721.447 524.162i −0.999234 0.725986i
\(723\) −1546.46 + 1123.57i −2.13895 + 1.55404i
\(724\) −278.048 + 855.743i −0.384044 + 1.18196i
\(725\) 0 0
\(726\) −1606.29 614.321i −2.21252 0.846172i
\(727\) 1276.13i 1.75534i 0.479266 + 0.877670i \(0.340903\pi\)
−0.479266 + 0.877670i \(0.659097\pi\)
\(728\) 173.491 533.951i 0.238312 0.733449i
\(729\) −915.382 + 665.064i −1.25567 + 0.912297i
\(730\) 0 0
\(731\) −348.627 1072.96i −0.476918 1.46780i
\(732\) −586.500 1805.06i −0.801230 2.46593i
\(733\) 27.2811 + 19.8208i 0.0372184 + 0.0270407i 0.606239 0.795283i \(-0.292678\pi\)
−0.569021 + 0.822323i \(0.692678\pi\)
\(734\) −1171.50 1612.43i −1.59605 2.19678i
\(735\) 0 0
\(736\) 20.1003i 0.0273101i
\(737\) 162.933 461.014i 0.221076 0.625528i
\(738\) 1006.21i 1.36342i
\(739\) −1127.54 366.361i −1.52577 0.495752i −0.578361 0.815781i \(-0.696308\pi\)
−0.947408 + 0.320028i \(0.896308\pi\)
\(740\) 0 0
\(741\) 359.912 + 261.491i 0.485711 + 0.352890i
\(742\) −1069.09 + 347.368i −1.44082 + 0.468150i
\(743\) −423.321 1302.85i −0.569746 1.75350i −0.653412 0.757003i \(-0.726663\pi\)
0.0836663 0.996494i \(-0.473337\pi\)
\(744\) 396.613 545.891i 0.533082 0.733724i
\(745\) 0 0
\(746\) 383.215 1179.41i 0.513693 1.58098i
\(747\) −461.768 −0.618163
\(748\) 825.566 1077.28i 1.10370 1.44021i
\(749\) −609.216 −0.813372
\(750\) 0 0
\(751\) 316.835 230.194i 0.421884 0.306517i −0.356512 0.934291i \(-0.616034\pi\)
0.778395 + 0.627774i \(0.216034\pi\)
\(752\) 163.694 225.305i 0.217678 0.299608i
\(753\) −1638.46 + 532.370i −2.17592 + 0.706998i
\(754\) −549.787 + 178.637i −0.729161 + 0.236919i
\(755\) 0 0
\(756\) 536.441 + 738.347i 0.709578 + 0.976650i
\(757\) 227.712 + 73.9880i 0.300808 + 0.0977385i 0.455532 0.890219i \(-0.349449\pi\)
−0.154724 + 0.987958i \(0.549449\pi\)
\(758\) −417.330 −0.550567
\(759\) 22.9919 6.82596i 0.0302923 0.00899335i
\(760\) 0 0
\(761\) 31.0228 + 10.0799i 0.0407659 + 0.0132456i 0.329329 0.944215i \(-0.393177\pi\)
−0.288563 + 0.957461i \(0.593177\pi\)
\(762\) 1259.51 + 1733.57i 1.65291 + 2.27503i
\(763\) −410.028 + 564.354i −0.537389 + 0.739652i
\(764\) −64.2574 197.764i −0.0841065 0.258853i
\(765\) 0 0
\(766\) −1000.07 + 1376.48i −1.30558 + 1.79697i
\(767\) −1021.07 + 741.851i −1.33125 + 0.967211i
\(768\) −83.4482 27.1140i −0.108657 0.0353046i
\(769\) 80.9870i 0.105315i 0.998613 + 0.0526573i \(0.0167691\pi\)
−0.998613 + 0.0526573i \(0.983231\pi\)
\(770\) 0 0
\(771\) 942.435 1.22235
\(772\) 7.95148 24.4721i 0.0102998 0.0316997i
\(773\) −169.033 232.654i −0.218672 0.300976i 0.685561 0.728015i \(-0.259557\pi\)
−0.904233 + 0.427039i \(0.859557\pi\)
\(774\) −1535.63 1115.70i −1.98402 1.44147i
\(775\) 0 0
\(776\) 266.347 86.5414i 0.343231 0.111522i
\(777\) −360.029 261.577i −0.463358 0.336649i
\(778\) −329.817 + 239.626i −0.423929 + 0.308003i
\(779\) 69.1844 212.928i 0.0888118 0.273335i
\(780\) 0 0
\(781\) 14.7527 577.005i 0.0188895 0.738803i
\(782\) 32.7639i 0.0418976i
\(783\) 78.1213 240.433i 0.0997718 0.307066i
\(784\) 442.750 321.677i 0.564732 0.410302i
\(785\) 0 0
\(786\) 426.457 + 1312.50i 0.542566 + 1.66985i
\(787\) 24.6845 + 75.9709i 0.0313653 + 0.0965323i 0.965514 0.260353i \(-0.0838388\pi\)
−0.934148 + 0.356885i \(0.883839\pi\)
\(788\) 474.821 + 344.978i 0.602565 + 0.437789i
\(789\) 174.479 + 240.150i 0.221140 + 0.304372i
\(790\) 0 0
\(791\) 97.3449i 0.123066i
\(792\) 15.7016 614.120i 0.0198253 0.775404i
\(793\) 857.155i 1.08090i
\(794\) 324.087 + 105.302i 0.408170 + 0.132623i
\(795\) 0 0
\(796\) 82.3150 + 59.8053i 0.103411 + 0.0751323i
\(797\) 823.002 267.409i 1.03262 0.335520i 0.256797 0.966465i \(-0.417333\pi\)
0.775827 + 0.630945i \(0.217333\pi\)
\(798\) −402.525 1238.84i −0.504417 1.55244i
\(799\) −464.604 + 639.472i −0.581481 + 0.800341i
\(800\) 0 0
\(801\) 412.616 1269.90i 0.515127 1.58540i
\(802\) 96.0597 0.119775
\(803\) −491.425 714.083i −0.611987 0.889269i
\(804\) 1123.30 1.39713
\(805\) 0 0
\(806\) −916.407 + 665.809i −1.13698 + 0.826065i
\(807\) 606.142 834.282i 0.751105 1.03381i
\(808\) −248.494 + 80.7407i −0.307543 + 0.0999266i
\(809\) 164.498 53.4487i 0.203335 0.0660676i −0.205579 0.978641i \(-0.565908\pi\)
0.408914 + 0.912573i \(0.365908\pi\)
\(810\) 0 0
\(811\) −508.782 700.279i −0.627352 0.863476i 0.370510 0.928828i \(-0.379183\pi\)
−0.997862 + 0.0653524i \(0.979183\pi\)
\(812\) 929.985 + 302.170i 1.14530 + 0.372131i
\(813\) 1298.08 1.59665
\(814\) 85.5166 + 288.046i 0.105057 + 0.353865i
\(815\) 0 0
\(816\) −786.724 255.622i −0.964123 0.313263i
\(817\) 248.248 + 341.684i 0.303853 + 0.418218i
\(818\) −829.733 + 1142.03i −1.01434 + 1.39612i
\(819\) −471.994 1452.65i −0.576305 1.77368i
\(820\) 0 0
\(821\) −66.2686 + 91.2109i −0.0807169 + 0.111097i −0.847466 0.530849i \(-0.821873\pi\)
0.766749 + 0.641947i \(0.221873\pi\)
\(822\) −2408.36 + 1749.77i −2.92987 + 2.12868i
\(823\) −380.030 123.479i −0.461761 0.150035i 0.0688924 0.997624i \(-0.478053\pi\)
−0.530654 + 0.847589i \(0.678053\pi\)
\(824\) 497.999i 0.604367i
\(825\) 0 0
\(826\) 3695.47 4.47394
\(827\) 226.990 698.603i 0.274474 0.844744i −0.714884 0.699243i \(-0.753521\pi\)
0.989358 0.145501i \(-0.0464794\pi\)
\(828\) 18.7186 + 25.7639i 0.0226070 + 0.0311159i
\(829\) −251.233 182.531i −0.303055 0.220183i 0.425856 0.904791i \(-0.359973\pi\)
−0.728911 + 0.684609i \(0.759973\pi\)
\(830\) 0 0
\(831\) −528.940 + 171.863i −0.636510 + 0.206815i
\(832\) 916.373 + 665.784i 1.10141 + 0.800221i
\(833\) −1256.64 + 913.000i −1.50857 + 1.09604i
\(834\) −35.2786 + 108.576i −0.0423005 + 0.130188i
\(835\) 0 0
\(836\) −169.309 + 479.054i −0.202523 + 0.573031i
\(837\) 495.370i 0.591840i
\(838\) 44.7449 137.711i 0.0533949 0.164333i
\(839\) −534.323 + 388.208i −0.636857 + 0.462704i −0.858769 0.512363i \(-0.828770\pi\)
0.221912 + 0.975067i \(0.428770\pi\)
\(840\) 0 0
\(841\) 176.181 + 542.230i 0.209490 + 0.644745i
\(842\) −144.514 444.769i −0.171632 0.528229i
\(843\) 1515.02 + 1100.73i 1.79718 + 1.30573i
\(844\) 314.127 + 432.359i 0.372188 + 0.512273i
\(845\) 0 0
\(846\) 1329.88i 1.57197i
\(847\) −341.598 1268.59i −0.403303 1.49774i
\(848\) 267.240i 0.315141i
\(849\) 2422.91 + 787.251i 2.85384 + 0.927269i
\(850\) 0 0
\(851\) −3.39010 2.46305i −0.00398366 0.00289430i
\(852\) 1261.10 409.756i 1.48016 0.480934i
\(853\) −151.061 464.919i −0.177094 0.545040i 0.822629 0.568579i \(-0.192507\pi\)
−0.999723 + 0.0235392i \(0.992507\pi\)
\(854\) 1475.20 2030.43i 1.72740 2.37756i
\(855\) 0 0
\(856\) −78.5579 + 241.776i −0.0917732 + 0.282449i
\(857\) −433.345 −0.505653 −0.252827 0.967512i \(-0.581360\pi\)
−0.252827 + 0.967512i \(0.581360\pi\)
\(858\) −594.563 + 1682.30i −0.692964 + 1.96072i
\(859\) 199.533 0.232285 0.116143 0.993233i \(-0.462947\pi\)
0.116143 + 0.993233i \(0.462947\pi\)
\(860\) 0 0
\(861\) −1075.93 + 781.707i −1.24962 + 0.907905i
\(862\) −936.323 + 1288.74i −1.08622 + 1.49506i
\(863\) 909.036 295.364i 1.05334 0.342252i 0.269364 0.963038i \(-0.413186\pi\)
0.783980 + 0.620786i \(0.213186\pi\)
\(864\) −621.944 + 202.082i −0.719843 + 0.233891i
\(865\) 0 0
\(866\) −753.088 1036.54i −0.869617 1.19692i
\(867\) 963.630 + 313.102i 1.11145 + 0.361133i
\(868\) 1916.07 2.20746
\(869\) 1112.21 + 852.335i 1.27987 + 0.980823i
\(870\) 0 0
\(871\) −482.474 156.765i −0.553931 0.179983i
\(872\) 171.100 + 235.498i 0.196215 + 0.270067i
\(873\) 447.836 616.393i 0.512985 0.706063i
\(874\) −3.79024 11.6652i −0.00433666 0.0133469i
\(875\) 0 0
\(876\) 1170.52 1611.08i 1.33621 1.83914i
\(877\) 254.363 184.805i 0.290037 0.210724i −0.433246 0.901276i \(-0.642632\pi\)
0.723284 + 0.690551i \(0.242632\pi\)
\(878\) 2007.73 + 652.349i 2.28670 + 0.742995i
\(879\) 1486.95i 1.69164i
\(880\) 0 0
\(881\) 330.178 0.374777 0.187388 0.982286i \(-0.439998\pi\)
0.187388 + 0.982286i \(0.439998\pi\)
\(882\) −807.577 + 2485.47i −0.915620 + 2.81799i
\(883\) 594.275 + 817.950i 0.673018 + 0.926330i 0.999824 0.0187613i \(-0.00597225\pi\)
−0.326806 + 0.945092i \(0.605972\pi\)
\(884\) −1139.22 827.691i −1.28871 0.936302i
\(885\) 0 0
\(886\) 1693.83 550.358i 1.91177 0.621172i
\(887\) 186.442 + 135.458i 0.210194 + 0.152715i 0.687901 0.725804i \(-0.258532\pi\)
−0.477708 + 0.878519i \(0.658532\pi\)
\(888\) −150.236 + 109.153i −0.169185 + 0.122920i
\(889\) −505.850 + 1556.85i −0.569010 + 1.75123i
\(890\) 0 0
\(891\) 249.443 + 362.461i 0.279958 + 0.406803i
\(892\) 2075.99i 2.32734i
\(893\) 91.4398 281.423i 0.102396 0.315143i
\(894\) −536.745 + 389.968i −0.600385 + 0.436206i
\(895\) 0 0
\(896\) −453.507 1395.75i −0.506147 1.55776i
\(897\) −7.68943 23.6656i −0.00857239 0.0263831i
\(898\) −2116.97 1538.07i −2.35742 1.71277i
\(899\) −311.971 429.392i −0.347020 0.477633i
\(900\) 0 0
\(901\) 758.494i 0.841836i
\(902\) 897.650 + 22.9508i 0.995177 + 0.0254444i
\(903\) 2508.80i 2.77830i
\(904\) 38.6327 + 12.5525i 0.0427353 + 0.0138856i
\(905\) 0 0
\(906\) −863.596 627.439i −0.953196 0.692537i
\(907\) 1097.69 356.661i 1.21024 0.393232i 0.366723 0.930330i \(-0.380480\pi\)
0.843519 + 0.537099i \(0.180480\pi\)
\(908\) 352.453 + 1084.74i 0.388164 + 1.19465i
\(909\) −417.818 + 575.078i −0.459646 + 0.632649i
\(910\) 0 0
\(911\) 187.421 576.824i 0.205732 0.633177i −0.793951 0.607982i \(-0.791979\pi\)
0.999683 0.0251948i \(-0.00802062\pi\)
\(912\) 309.674 0.339555
\(913\) −10.5326 + 411.950i −0.0115363 + 0.451204i
\(914\) 1254.78 1.37284
\(915\) 0 0
\(916\) −275.320 + 200.032i −0.300568 + 0.218375i
\(917\) −619.678 + 852.914i −0.675767 + 0.930113i
\(918\) 1013.78 329.399i 1.10434 0.358822i
\(919\) 1094.16 355.514i 1.19060 0.386849i 0.354304 0.935130i \(-0.384718\pi\)
0.836294 + 0.548281i \(0.184718\pi\)
\(920\) 0 0
\(921\) −271.783 374.077i −0.295096 0.406164i
\(922\) 2112.67 + 686.448i 2.29140 + 0.744520i
\(923\) −598.848 −0.648806
\(924\) 2486.29 1711.04i 2.69079 1.85178i
\(925\) 0 0
\(926\) 2270.42 + 737.706i 2.45186 + 0.796658i
\(927\) 796.353 + 1096.09i 0.859065 + 1.18240i
\(928\) −411.841 + 566.851i −0.443795 + 0.610831i
\(929\) −444.730 1368.74i −0.478719 1.47335i −0.840876 0.541228i \(-0.817960\pi\)
0.362157 0.932117i \(-0.382040\pi\)
\(930\) 0 0
\(931\) 341.790 470.434i 0.367121 0.505299i
\(932\) 1226.50 891.107i 1.31599 0.956123i
\(933\) −865.658 281.269i −0.927822 0.301468i
\(934\) 1438.02i 1.53963i
\(935\) 0 0
\(936\) −637.368 −0.680948
\(937\) 151.919 467.559i 0.162133 0.498996i −0.836680 0.547692i \(-0.815507\pi\)
0.998814 + 0.0486963i \(0.0155066\pi\)
\(938\) 873.089 + 1201.70i 0.930799 + 1.28113i
\(939\) −907.834 659.580i −0.966810 0.702428i
\(940\) 0 0
\(941\) 1702.39 553.141i 1.80913 0.587822i 0.809132 0.587628i \(-0.199938\pi\)
1.00000 0.000194881i \(-6.20325e-5\pi\)
\(942\) 425.406 + 309.076i 0.451599 + 0.328106i
\(943\) −10.1311 + 7.36068i −0.0107435 + 0.00780560i
\(944\) −271.486 + 835.547i −0.287591 + 0.885113i
\(945\) 0 0
\(946\) −1030.36 + 1344.51i −1.08917 + 1.42125i
\(947\) 1111.85i 1.17407i 0.809560 + 0.587037i \(0.199706\pi\)
−0.809560 + 0.587037i \(0.800294\pi\)
\(948\) −994.756 + 3061.55i −1.04932 + 3.22948i
\(949\) −727.599 + 528.631i −0.766700 + 0.557040i
\(950\) 0 0
\(951\) −807.187 2484.27i −0.848777 2.61227i
\(952\) 342.764 + 1054.92i 0.360046 + 1.10811i
\(953\) 241.935 + 175.776i 0.253867 + 0.184445i 0.707439 0.706775i \(-0.249850\pi\)
−0.453572 + 0.891220i \(0.649850\pi\)
\(954\) 750.102 + 1032.43i 0.786271 + 1.08221i
\(955\) 0 0
\(956\) 811.977i 0.849348i
\(957\) −788.257 278.589i −0.823675 0.291106i
\(958\) 26.7376i 0.0279098i
\(959\) −2162.84 702.749i −2.25531 0.732794i
\(960\) 0 0
\(961\) −63.9224 46.4423i −0.0665165 0.0483271i
\(962\) 296.487 96.3344i 0.308198 0.100140i
\(963\) 213.722 + 657.767i 0.221933 + 0.683040i
\(964\) −1331.38 + 1832.48i −1.38109 + 1.90091i
\(965\) 0 0
\(966\) −22.5147 + 69.2931i −0.0233072 + 0.0717320i
\(967\) −246.770 −0.255191 −0.127596 0.991826i \(-0.540726\pi\)
−0.127596 + 0.991826i \(0.540726\pi\)
\(968\) −547.507 28.0153i −0.565606 0.0289414i
\(969\) −878.933 −0.907052
\(970\) 0 0
\(971\) −161.120 + 117.060i −0.165932 + 0.120556i −0.667652 0.744473i \(-0.732701\pi\)
0.501720 + 0.865030i \(0.332701\pi\)
\(972\) −1038.81 + 1429.79i −1.06873 + 1.47098i
\(973\) −82.9451 + 26.9505i −0.0852467 + 0.0276983i
\(974\) −2336.60 + 759.209i −2.39898 + 0.779475i
\(975\) 0 0
\(976\) 350.707 + 482.707i 0.359331 + 0.494577i
\(977\) 224.505 + 72.9462i 0.229790 + 0.0746635i 0.421649 0.906759i \(-0.361451\pi\)
−0.191858 + 0.981423i \(0.561451\pi\)
\(978\) −668.119 −0.683149
\(979\) −1123.49 397.066i −1.14759 0.405584i
\(980\) 0 0
\(981\) 753.174 + 244.721i 0.767762 + 0.249461i
\(982\) 269.409 + 370.810i 0.274347 + 0.377607i
\(983\) 218.714 301.034i 0.222497 0.306241i −0.683146 0.730282i \(-0.739389\pi\)
0.905643 + 0.424041i \(0.139389\pi\)
\(984\) 171.492 + 527.798i 0.174280 + 0.536380i
\(985\) 0 0
\(986\) 671.312 923.982i 0.680844 0.937101i
\(987\) −1422.03 + 1033.17i −1.44076 + 1.04678i
\(988\) 501.354 + 162.900i 0.507443 + 0.164878i
\(989\) 23.6233i 0.0238861i
\(990\) 0 0
\(991\) −759.033 −0.765927 −0.382963 0.923764i \(-0.625096\pi\)
−0.382963 + 0.923764i \(0.625096\pi\)
\(992\) −424.264 + 1305.75i −0.427685 + 1.31628i
\(993\) 391.832 + 539.311i 0.394594 + 0.543113i
\(994\) 1418.55 + 1030.64i 1.42712 + 1.03686i
\(995\) 0 0
\(996\) −900.355 + 292.543i −0.903971 + 0.293718i
\(997\) 572.222 + 415.743i 0.573944 + 0.416994i 0.836536 0.547913i \(-0.184577\pi\)
−0.262592 + 0.964907i \(0.584577\pi\)
\(998\) 1517.39 1102.45i 1.52043 1.10466i
\(999\) −42.1289 + 129.659i −0.0421711 + 0.129789i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.q.a.24.2 8
5.2 odd 4 55.3.i.b.46.1 yes 4
5.3 odd 4 275.3.x.a.101.1 4
5.4 even 2 inner 275.3.q.a.24.1 8
11.6 odd 10 inner 275.3.q.a.149.1 8
55.7 even 20 605.3.c.b.241.1 4
55.17 even 20 55.3.i.b.6.1 4
55.28 even 20 275.3.x.a.226.1 4
55.37 odd 20 605.3.c.b.241.4 4
55.39 odd 10 inner 275.3.q.a.149.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.b.6.1 4 55.17 even 20
55.3.i.b.46.1 yes 4 5.2 odd 4
275.3.q.a.24.1 8 5.4 even 2 inner
275.3.q.a.24.2 8 1.1 even 1 trivial
275.3.q.a.149.1 8 11.6 odd 10 inner
275.3.q.a.149.2 8 55.39 odd 10 inner
275.3.x.a.101.1 4 5.3 odd 4
275.3.x.a.226.1 4 55.28 even 20
605.3.c.b.241.1 4 55.7 even 20
605.3.c.b.241.4 4 55.37 odd 20