Properties

Label 55.3.i.b.46.1
Level $55$
Weight $3$
Character 55.46
Analytic conductor $1.499$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [55,3,Mod(6,55)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(55, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 9])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("55.6"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.i (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 46.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 55.46
Dual form 55.3.i.b.6.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.92705 + 0.951057i) q^{2} +(-3.73607 + 2.71441i) q^{3} +(4.42705 + 3.21644i) q^{4} +(0.690983 + 2.12663i) q^{5} +(-13.5172 + 4.39201i) q^{6} +(6.38197 - 8.78402i) q^{7} +(2.66312 + 3.66547i) q^{8} +(3.80902 - 11.7229i) q^{9} +6.88191i q^{10} +(10.3713 + 3.66547i) q^{11} -25.2705 q^{12} +(-10.8541 - 3.52671i) q^{13} +(27.0344 - 19.6417i) q^{14} +(-8.35410 - 6.06961i) q^{15} +(-2.45492 - 7.55545i) q^{16} +(-21.4443 + 6.96767i) q^{17} +(22.2984 - 30.6911i) q^{18} +(4.96149 + 6.82891i) q^{19} +(-3.78115 + 11.6372i) q^{20} +50.1410i q^{21} +(26.8713 + 20.5927i) q^{22} +0.472136 q^{23} +(-19.8992 - 6.46564i) q^{24} +(-4.04508 + 2.93893i) q^{25} +(-28.4164 - 20.6457i) q^{26} +(4.74671 + 14.6089i) q^{27} +(56.5066 - 18.3601i) q^{28} +(-9.67376 + 13.3148i) q^{29} +(-18.6803 - 25.7113i) q^{30} +(9.96556 - 30.6708i) q^{31} -42.5730i q^{32} +(-48.6976 + 14.4576i) q^{33} -69.3951 q^{34} +(23.0902 + 7.50245i) q^{35} +(54.5689 - 39.6466i) q^{36} +(-7.18034 - 5.21682i) q^{37} +(8.02786 + 24.7072i) q^{38} +(50.1246 - 16.2865i) q^{39} +(-5.95492 + 8.19624i) q^{40} +(15.5902 + 21.4580i) q^{41} +(-47.6869 + 146.765i) q^{42} +50.0350i q^{43} +(34.1246 + 49.5860i) q^{44} +27.5623 q^{45} +(1.38197 + 0.449028i) q^{46} +(-28.3607 + 20.6052i) q^{47} +(29.6803 + 21.5640i) q^{48} +(-21.2877 - 65.5169i) q^{49} +(-14.6353 + 4.75528i) q^{50} +(61.2041 - 84.2403i) q^{51} +(-36.7082 - 50.5245i) q^{52} +(10.3951 - 31.9929i) q^{53} +47.2753i q^{54} +(-0.628677 + 24.5887i) q^{55} +49.1935 q^{56} +(-37.0729 - 12.0457i) q^{57} +(-40.9787 + 29.7728i) q^{58} +(89.4681 + 65.0024i) q^{59} +(-17.4615 - 53.7409i) q^{60} +(-71.4296 + 23.2089i) q^{61} +(58.3394 - 80.2973i) q^{62} +(-78.6656 - 108.274i) q^{63} +(30.6697 - 94.3916i) q^{64} -25.5195i q^{65} +(-156.290 - 3.99598i) q^{66} +44.4508 q^{67} +(-117.346 - 38.1280i) q^{68} +(-1.76393 + 1.28157i) q^{69} +(60.4508 + 43.9201i) q^{70} +(-16.2148 - 49.9040i) q^{71} +(53.1140 - 17.2578i) q^{72} +(-46.3197 + 63.7535i) q^{73} +(-16.0557 - 22.0988i) q^{74} +(7.13525 - 21.9601i) q^{75} +46.1903i q^{76} +(98.3870 - 67.7090i) q^{77} +162.207 q^{78} +(-121.151 - 39.3643i) q^{79} +(14.3713 - 10.4414i) q^{80} +(32.3607 + 23.5114i) q^{81} +(25.2254 + 77.6359i) q^{82} +(35.6287 - 11.5765i) q^{83} +(-161.276 + 221.977i) q^{84} +(-29.6353 - 40.7894i) q^{85} +(-47.5861 + 146.455i) q^{86} -76.0035i q^{87} +(14.1844 + 47.7773i) q^{88} +108.326 q^{89} +(80.6763 + 26.2133i) q^{90} +(-100.249 + 72.8353i) q^{91} +(2.09017 + 1.51860i) q^{92} +(46.0213 + 141.639i) q^{93} +(-102.610 + 33.3400i) q^{94} +(-11.0942 + 15.2699i) q^{95} +(115.561 + 159.056i) q^{96} +(19.1008 - 58.7863i) q^{97} -212.017i q^{98} +(82.4746 - 107.621i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - 6 q^{3} + 11 q^{4} + 5 q^{5} - 25 q^{6} + 30 q^{7} - 5 q^{8} + 13 q^{9} - q^{11} - 34 q^{12} - 30 q^{13} + 50 q^{14} - 20 q^{15} - 21 q^{16} - 50 q^{17} + 40 q^{18} - 45 q^{19} + 5 q^{20}+ \cdots + 113 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.92705 + 0.951057i 1.46353 + 0.475528i 0.929145 0.369716i \(-0.120545\pi\)
0.534381 + 0.845244i \(0.320545\pi\)
\(3\) −3.73607 + 2.71441i −1.24536 + 0.904804i −0.997943 0.0641060i \(-0.979580\pi\)
−0.247413 + 0.968910i \(0.579580\pi\)
\(4\) 4.42705 + 3.21644i 1.10676 + 0.804110i
\(5\) 0.690983 + 2.12663i 0.138197 + 0.425325i
\(6\) −13.5172 + 4.39201i −2.25287 + 0.732002i
\(7\) 6.38197 8.78402i 0.911709 1.25486i −0.0548701 0.998494i \(-0.517474\pi\)
0.966580 0.256367i \(-0.0825255\pi\)
\(8\) 2.66312 + 3.66547i 0.332890 + 0.458184i
\(9\) 3.80902 11.7229i 0.423224 1.30255i
\(10\) 6.88191i 0.688191i
\(11\) 10.3713 + 3.66547i 0.942848 + 0.333224i
\(12\) −25.2705 −2.10588
\(13\) −10.8541 3.52671i −0.834931 0.271286i −0.139810 0.990178i \(-0.544649\pi\)
−0.695121 + 0.718893i \(0.744649\pi\)
\(14\) 27.0344 19.6417i 1.93103 1.40298i
\(15\) −8.35410 6.06961i −0.556940 0.404641i
\(16\) −2.45492 7.55545i −0.153432 0.472216i
\(17\) −21.4443 + 6.96767i −1.26143 + 0.409863i −0.862003 0.506903i \(-0.830790\pi\)
−0.399425 + 0.916766i \(0.630790\pi\)
\(18\) 22.2984 30.6911i 1.23880 1.70506i
\(19\) 4.96149 + 6.82891i 0.261131 + 0.359416i 0.919371 0.393392i \(-0.128699\pi\)
−0.658239 + 0.752809i \(0.728699\pi\)
\(20\) −3.78115 + 11.6372i −0.189058 + 0.581860i
\(21\) 50.1410i 2.38767i
\(22\) 26.8713 + 20.5927i 1.22142 + 0.936033i
\(23\) 0.472136 0.0205277 0.0102638 0.999947i \(-0.496733\pi\)
0.0102638 + 0.999947i \(0.496733\pi\)
\(24\) −19.8992 6.46564i −0.829133 0.269402i
\(25\) −4.04508 + 2.93893i −0.161803 + 0.117557i
\(26\) −28.4164 20.6457i −1.09294 0.794066i
\(27\) 4.74671 + 14.6089i 0.175804 + 0.541069i
\(28\) 56.5066 18.3601i 2.01809 0.655718i
\(29\) −9.67376 + 13.3148i −0.333578 + 0.459131i −0.942552 0.334059i \(-0.891581\pi\)
0.608974 + 0.793190i \(0.291581\pi\)
\(30\) −18.6803 25.7113i −0.622678 0.857043i
\(31\) 9.96556 30.6708i 0.321470 0.989382i −0.651539 0.758615i \(-0.725876\pi\)
0.973009 0.230767i \(-0.0741235\pi\)
\(32\) 42.5730i 1.33041i
\(33\) −48.6976 + 14.4576i −1.47568 + 0.438109i
\(34\) −69.3951 −2.04103
\(35\) 23.0902 + 7.50245i 0.659719 + 0.214356i
\(36\) 54.5689 39.6466i 1.51580 1.10129i
\(37\) −7.18034 5.21682i −0.194063 0.140995i 0.486511 0.873675i \(-0.338269\pi\)
−0.680574 + 0.732679i \(0.738269\pi\)
\(38\) 8.02786 + 24.7072i 0.211260 + 0.650190i
\(39\) 50.1246 16.2865i 1.28525 0.417602i
\(40\) −5.95492 + 8.19624i −0.148873 + 0.204906i
\(41\) 15.5902 + 21.4580i 0.380248 + 0.523367i 0.955650 0.294504i \(-0.0951545\pi\)
−0.575402 + 0.817871i \(0.695154\pi\)
\(42\) −47.6869 + 146.765i −1.13540 + 3.49441i
\(43\) 50.0350i 1.16360i 0.813330 + 0.581802i \(0.197652\pi\)
−0.813330 + 0.581802i \(0.802348\pi\)
\(44\) 34.1246 + 49.5860i 0.775559 + 1.12695i
\(45\) 27.5623 0.612496
\(46\) 1.38197 + 0.449028i 0.0300427 + 0.00976148i
\(47\) −28.3607 + 20.6052i −0.603419 + 0.438409i −0.847091 0.531448i \(-0.821648\pi\)
0.243672 + 0.969858i \(0.421648\pi\)
\(48\) 29.6803 + 21.5640i 0.618340 + 0.449251i
\(49\) −21.2877 65.5169i −0.434443 1.33708i
\(50\) −14.6353 + 4.75528i −0.292705 + 0.0951057i
\(51\) 61.2041 84.2403i 1.20008 1.65177i
\(52\) −36.7082 50.5245i −0.705927 0.971625i
\(53\) 10.3951 31.9929i 0.196134 0.603640i −0.803827 0.594863i \(-0.797206\pi\)
0.999961 0.00877654i \(-0.00279370\pi\)
\(54\) 47.2753i 0.875469i
\(55\) −0.628677 + 24.5887i −0.0114305 + 0.447067i
\(56\) 49.1935 0.878455
\(57\) −37.0729 12.0457i −0.650403 0.211329i
\(58\) −40.9787 + 29.7728i −0.706530 + 0.513324i
\(59\) 89.4681 + 65.0024i 1.51641 + 1.10173i 0.963232 + 0.268670i \(0.0865842\pi\)
0.553176 + 0.833065i \(0.313416\pi\)
\(60\) −17.4615 53.7409i −0.291025 0.895682i
\(61\) −71.4296 + 23.2089i −1.17098 + 0.380473i −0.829007 0.559238i \(-0.811094\pi\)
−0.341969 + 0.939711i \(0.611094\pi\)
\(62\) 58.3394 80.2973i 0.940958 1.29512i
\(63\) −78.6656 108.274i −1.24866 1.71863i
\(64\) 30.6697 94.3916i 0.479214 1.47487i
\(65\) 25.5195i 0.392608i
\(66\) −156.290 3.99598i −2.36803 0.0605452i
\(67\) 44.4508 0.663446 0.331723 0.943377i \(-0.392370\pi\)
0.331723 + 0.943377i \(0.392370\pi\)
\(68\) −117.346 38.1280i −1.72568 0.560706i
\(69\) −1.76393 + 1.28157i −0.0255642 + 0.0185735i
\(70\) 60.4508 + 43.9201i 0.863584 + 0.627430i
\(71\) −16.2148 49.9040i −0.228377 0.702873i −0.997931 0.0642910i \(-0.979521\pi\)
0.769554 0.638582i \(-0.220479\pi\)
\(72\) 53.1140 17.2578i 0.737694 0.239691i
\(73\) −46.3197 + 63.7535i −0.634516 + 0.873336i −0.998308 0.0581439i \(-0.981482\pi\)
0.363792 + 0.931480i \(0.381482\pi\)
\(74\) −16.0557 22.0988i −0.216969 0.298633i
\(75\) 7.13525 21.9601i 0.0951367 0.292801i
\(76\) 46.1903i 0.607767i
\(77\) 98.3870 67.7090i 1.27775 0.879338i
\(78\) 162.207 2.07957
\(79\) −121.151 39.3643i −1.53356 0.498283i −0.583966 0.811778i \(-0.698500\pi\)
−0.949590 + 0.313495i \(0.898500\pi\)
\(80\) 14.3713 10.4414i 0.179642 0.130517i
\(81\) 32.3607 + 23.5114i 0.399515 + 0.290264i
\(82\) 25.2254 + 77.6359i 0.307627 + 0.946779i
\(83\) 35.6287 11.5765i 0.429261 0.139475i −0.0864145 0.996259i \(-0.527541\pi\)
0.515676 + 0.856784i \(0.327541\pi\)
\(84\) −161.276 + 221.977i −1.91995 + 2.64258i
\(85\) −29.6353 40.7894i −0.348650 0.479876i
\(86\) −47.5861 + 146.455i −0.553327 + 1.70296i
\(87\) 76.0035i 0.873604i
\(88\) 14.1844 + 47.7773i 0.161186 + 0.542924i
\(89\) 108.326 1.21715 0.608574 0.793497i \(-0.291742\pi\)
0.608574 + 0.793497i \(0.291742\pi\)
\(90\) 80.6763 + 26.2133i 0.896403 + 0.291259i
\(91\) −100.249 + 72.8353i −1.10164 + 0.800388i
\(92\) 2.09017 + 1.51860i 0.0227192 + 0.0165065i
\(93\) 46.0213 + 141.639i 0.494853 + 1.52300i
\(94\) −102.610 + 33.3400i −1.09159 + 0.354681i
\(95\) −11.0942 + 15.2699i −0.116781 + 0.160736i
\(96\) 115.561 + 159.056i 1.20376 + 1.65683i
\(97\) 19.1008 58.7863i 0.196916 0.606044i −0.803033 0.595934i \(-0.796782\pi\)
0.999949 0.0101097i \(-0.00321808\pi\)
\(98\) 212.017i 2.16344i
\(99\) 82.4746 107.621i 0.833077 1.08708i
\(100\) −27.3607 −0.273607
\(101\) 54.8460 + 17.8205i 0.543029 + 0.176441i 0.567671 0.823255i \(-0.307845\pi\)
−0.0246418 + 0.999696i \(0.507845\pi\)
\(102\) 259.265 188.367i 2.54181 1.84673i
\(103\) −88.9230 64.6063i −0.863330 0.627246i 0.0654589 0.997855i \(-0.479149\pi\)
−0.928789 + 0.370609i \(0.879149\pi\)
\(104\) −15.9787 49.1774i −0.153641 0.472860i
\(105\) −106.631 + 34.6466i −1.01554 + 0.329967i
\(106\) 60.8541 83.7585i 0.574095 0.790174i
\(107\) 32.9803 + 45.3934i 0.308227 + 0.424238i 0.934827 0.355103i \(-0.115554\pi\)
−0.626600 + 0.779341i \(0.715554\pi\)
\(108\) −25.9746 + 79.9417i −0.240506 + 0.740201i
\(109\) 64.2478i 0.589430i 0.955585 + 0.294715i \(0.0952247\pi\)
−0.955585 + 0.294715i \(0.904775\pi\)
\(110\) −25.2254 + 71.3745i −0.229322 + 0.648859i
\(111\) 40.9868 0.369251
\(112\) −82.0344 26.6546i −0.732450 0.237988i
\(113\) −7.25329 + 5.26982i −0.0641884 + 0.0466356i −0.619417 0.785062i \(-0.712631\pi\)
0.555228 + 0.831698i \(0.312631\pi\)
\(114\) −97.0582 70.5169i −0.851388 0.618570i
\(115\) 0.326238 + 1.00406i 0.00283685 + 0.00873093i
\(116\) −85.6525 + 27.8302i −0.738383 + 0.239915i
\(117\) −82.6869 + 113.809i −0.706726 + 0.972725i
\(118\) 200.057 + 275.354i 1.69540 + 2.33351i
\(119\) −75.6525 + 232.834i −0.635735 + 1.95659i
\(120\) 46.7858i 0.389882i
\(121\) 94.1287 + 76.0315i 0.777923 + 0.628360i
\(122\) −231.151 −1.89468
\(123\) −116.492 37.8505i −0.947088 0.307728i
\(124\) 142.769 103.728i 1.15136 0.836514i
\(125\) −9.04508 6.57164i −0.0723607 0.0525731i
\(126\) −127.284 391.739i −1.01019 3.10904i
\(127\) 143.387 46.5893i 1.12903 0.366845i 0.315824 0.948818i \(-0.397719\pi\)
0.813208 + 0.581973i \(0.197719\pi\)
\(128\) 79.4483 109.351i 0.620690 0.854307i
\(129\) −135.816 186.934i −1.05283 1.44910i
\(130\) 24.2705 74.6969i 0.186696 0.574592i
\(131\) 97.0983i 0.741208i −0.928791 0.370604i \(-0.879151\pi\)
0.928791 0.370604i \(-0.120849\pi\)
\(132\) −262.089 92.6283i −1.98552 0.701729i
\(133\) 91.6494 0.689093
\(134\) 130.110 + 42.2753i 0.970969 + 0.315487i
\(135\) −27.7877 + 20.1890i −0.205835 + 0.149548i
\(136\) −82.6484 60.0476i −0.607709 0.441526i
\(137\) 64.7239 + 199.200i 0.472437 + 1.45401i 0.849383 + 0.527777i \(0.176974\pi\)
−0.376946 + 0.926235i \(0.623026\pi\)
\(138\) −6.38197 + 2.07363i −0.0462461 + 0.0150263i
\(139\) −4.72136 + 6.49839i −0.0339666 + 0.0467510i −0.825663 0.564164i \(-0.809198\pi\)
0.791696 + 0.610915i \(0.209198\pi\)
\(140\) 78.0902 + 107.482i 0.557787 + 0.767728i
\(141\) 50.0263 153.965i 0.354797 1.09195i
\(142\) 161.493i 1.13727i
\(143\) −99.6443 76.3620i −0.696814 0.534000i
\(144\) −97.9230 −0.680021
\(145\) −35.0000 11.3722i −0.241379 0.0784289i
\(146\) −196.213 + 142.557i −1.34393 + 0.976420i
\(147\) 257.372 + 186.992i 1.75083 + 1.27205i
\(148\) −15.0081 46.1903i −0.101406 0.312096i
\(149\) −44.3951 + 14.4248i −0.297954 + 0.0968111i −0.454179 0.890910i \(-0.650067\pi\)
0.156225 + 0.987721i \(0.450067\pi\)
\(150\) 41.7705 57.4922i 0.278470 0.383281i
\(151\) 44.1459 + 60.7616i 0.292357 + 0.402395i 0.929778 0.368121i \(-0.119999\pi\)
−0.637421 + 0.770516i \(0.719999\pi\)
\(152\) −11.8181 + 36.3724i −0.0777507 + 0.239292i
\(153\) 277.930i 1.81654i
\(154\) 352.379 104.616i 2.28817 0.679326i
\(155\) 72.1115 0.465235
\(156\) 274.289 + 89.1218i 1.75826 + 0.571294i
\(157\) 29.9311 21.7462i 0.190644 0.138511i −0.488369 0.872637i \(-0.662408\pi\)
0.679013 + 0.734126i \(0.262408\pi\)
\(158\) −317.177 230.443i −2.00745 1.45850i
\(159\) 48.0050 + 147.744i 0.301918 + 0.929209i
\(160\) 90.5370 29.4172i 0.565856 0.183858i
\(161\) 3.01316 4.14725i 0.0187153 0.0257593i
\(162\) 72.3607 + 99.5959i 0.446671 + 0.614790i
\(163\) 14.5263 44.7074i 0.0891185 0.274278i −0.896558 0.442927i \(-0.853940\pi\)
0.985676 + 0.168648i \(0.0539402\pi\)
\(164\) 145.141i 0.885004i
\(165\) −64.3951 93.5716i −0.390273 0.567101i
\(166\) 115.297 0.694559
\(167\) 45.2786 + 14.7119i 0.271130 + 0.0880953i 0.441426 0.897297i \(-0.354473\pi\)
−0.170297 + 0.985393i \(0.554473\pi\)
\(168\) −183.790 + 133.531i −1.09399 + 0.794830i
\(169\) −31.3500 22.7771i −0.185503 0.134776i
\(170\) −47.9508 147.578i −0.282064 0.868103i
\(171\) 98.9534 32.1519i 0.578675 0.188023i
\(172\) −160.935 + 221.507i −0.935666 + 1.28783i
\(173\) −112.207 154.439i −0.648593 0.892712i 0.350444 0.936584i \(-0.386031\pi\)
−0.999037 + 0.0438716i \(0.986031\pi\)
\(174\) 72.2837 222.466i 0.415423 1.27854i
\(175\) 54.2882i 0.310219i
\(176\) 2.23356 87.3584i 0.0126907 0.496355i
\(177\) −510.702 −2.88532
\(178\) 317.076 + 103.024i 1.78133 + 0.578789i
\(179\) −208.919 + 151.788i −1.16714 + 0.847980i −0.990664 0.136324i \(-0.956471\pi\)
−0.176480 + 0.984304i \(0.556471\pi\)
\(180\) 122.020 + 88.6525i 0.677887 + 0.492514i
\(181\) −50.8115 156.382i −0.280727 0.863988i −0.987647 0.156695i \(-0.949916\pi\)
0.706920 0.707293i \(-0.250084\pi\)
\(182\) −362.705 + 117.850i −1.99289 + 0.647528i
\(183\) 203.867 280.599i 1.11403 1.53333i
\(184\) 1.25735 + 1.73060i 0.00683345 + 0.00940543i
\(185\) 6.13274 18.8746i 0.0331500 0.102025i
\(186\) 458.353i 2.46426i
\(187\) −247.945 6.33939i −1.32591 0.0339005i
\(188\) −191.830 −1.02037
\(189\) 158.618 + 51.5381i 0.839249 + 0.272688i
\(190\) −46.9959 + 34.1445i −0.247347 + 0.179708i
\(191\) 30.7426 + 22.3358i 0.160956 + 0.116942i 0.665348 0.746533i \(-0.268283\pi\)
−0.504392 + 0.863475i \(0.668283\pi\)
\(192\) 141.634 + 435.904i 0.737676 + 2.27033i
\(193\) 4.47214 1.45309i 0.0231717 0.00752894i −0.297408 0.954750i \(-0.596122\pi\)
0.320580 + 0.947221i \(0.396122\pi\)
\(194\) 111.818 153.904i 0.576382 0.793322i
\(195\) 69.2705 + 95.3427i 0.355233 + 0.488937i
\(196\) 116.489 358.517i 0.594333 1.82917i
\(197\) 107.254i 0.544439i −0.962235 0.272219i \(-0.912242\pi\)
0.962235 0.272219i \(-0.0877576\pi\)
\(198\) 343.761 236.573i 1.73617 1.19481i
\(199\) 18.5936 0.0934354 0.0467177 0.998908i \(-0.485124\pi\)
0.0467177 + 0.998908i \(0.485124\pi\)
\(200\) −21.5451 7.00042i −0.107725 0.0350021i
\(201\) −166.071 + 120.658i −0.826226 + 0.600288i
\(202\) 143.589 + 104.323i 0.710835 + 0.516452i
\(203\) 55.2198 + 169.949i 0.272019 + 0.837188i
\(204\) 541.908 176.076i 2.65641 0.863120i
\(205\) −34.8607 + 47.9816i −0.170052 + 0.234057i
\(206\) −198.838 273.677i −0.965232 1.32853i
\(207\) 1.79837 5.53483i 0.00868780 0.0267383i
\(208\) 90.6654i 0.435891i
\(209\) 26.4261 + 89.0110i 0.126441 + 0.425890i
\(210\) −345.066 −1.64317
\(211\) −92.8829 30.1795i −0.440203 0.143031i 0.0805260 0.996753i \(-0.474340\pi\)
−0.520729 + 0.853722i \(0.674340\pi\)
\(212\) 148.923 108.199i 0.702467 0.510372i
\(213\) 196.039 + 142.431i 0.920373 + 0.668690i
\(214\) 53.3632 + 164.235i 0.249361 + 0.767453i
\(215\) −106.406 + 34.5733i −0.494911 + 0.160806i
\(216\) −40.9073 + 56.3041i −0.189386 + 0.260667i
\(217\) −205.813 283.278i −0.948449 1.30543i
\(218\) −61.1033 + 188.057i −0.280290 + 0.862645i
\(219\) 363.918i 1.66173i
\(220\) −81.8713 + 106.833i −0.372142 + 0.485606i
\(221\) 257.331 1.16439
\(222\) 119.971 + 38.9808i 0.540408 + 0.175589i
\(223\) 306.920 222.990i 1.37632 0.999957i 0.379109 0.925352i \(-0.376230\pi\)
0.997213 0.0746047i \(-0.0237695\pi\)
\(224\) −373.962 271.700i −1.66948 1.21294i
\(225\) 19.0451 + 58.6147i 0.0846448 + 0.260510i
\(226\) −26.2426 + 8.52675i −0.116118 + 0.0377290i
\(227\) 122.513 168.624i 0.539703 0.742837i −0.448867 0.893598i \(-0.648172\pi\)
0.988570 + 0.150761i \(0.0481724\pi\)
\(228\) −125.379 172.570i −0.549910 0.756886i
\(229\) −19.2179 + 59.1466i −0.0839209 + 0.258282i −0.984208 0.177014i \(-0.943356\pi\)
0.900287 + 0.435296i \(0.143356\pi\)
\(230\) 3.24920i 0.0141269i
\(231\) −183.790 + 520.028i −0.795629 + 2.25121i
\(232\) −74.5673 −0.321411
\(233\) 263.488 + 85.6124i 1.13085 + 0.367435i 0.813899 0.581007i \(-0.197341\pi\)
0.316950 + 0.948442i \(0.397341\pi\)
\(234\) −350.267 + 254.484i −1.49687 + 1.08754i
\(235\) −63.4164 46.0747i −0.269857 0.196063i
\(236\) 187.003 + 575.538i 0.792388 + 2.43872i
\(237\) 559.479 181.786i 2.36067 0.767029i
\(238\) −442.877 + 609.568i −1.86083 + 2.56121i
\(239\) −87.2179 120.045i −0.364928 0.502281i 0.586585 0.809888i \(-0.300472\pi\)
−0.951514 + 0.307607i \(0.900472\pi\)
\(240\) −25.3500 + 78.0194i −0.105625 + 0.325081i
\(241\) 413.928i 1.71754i −0.512358 0.858772i \(-0.671228\pi\)
0.512358 0.858772i \(-0.328772\pi\)
\(242\) 203.209 + 312.070i 0.839707 + 1.28954i
\(243\) −322.967 −1.32908
\(244\) −390.872 127.002i −1.60194 0.520500i
\(245\) 124.621 90.5421i 0.508655 0.369560i
\(246\) −304.980 221.581i −1.23975 0.900735i
\(247\) −29.7690 91.6194i −0.120522 0.370929i
\(248\) 138.962 45.1516i 0.560332 0.182063i
\(249\) −101.688 + 139.961i −0.408385 + 0.562094i
\(250\) −20.2254 27.8379i −0.0809017 0.111352i
\(251\) 115.281 354.797i 0.459285 1.41353i −0.406745 0.913542i \(-0.633336\pi\)
0.866030 0.499992i \(-0.166664\pi\)
\(252\) 732.358i 2.90618i
\(253\) 4.89667 + 1.73060i 0.0193544 + 0.00684031i
\(254\) 464.010 1.82681
\(255\) 221.439 + 71.9498i 0.868387 + 0.282156i
\(256\) 15.3713 11.1679i 0.0600442 0.0436247i
\(257\) −165.102 119.953i −0.642419 0.466745i 0.218261 0.975890i \(-0.429962\pi\)
−0.860681 + 0.509145i \(0.829962\pi\)
\(258\) −219.754 676.334i −0.851761 2.62145i
\(259\) −91.6494 + 29.7787i −0.353859 + 0.114976i
\(260\) 82.0820 112.976i 0.315700 0.434524i
\(261\) 119.241 + 164.121i 0.456862 + 0.628817i
\(262\) 92.3460 284.212i 0.352466 1.08478i
\(263\) 64.2788i 0.244406i 0.992505 + 0.122203i \(0.0389959\pi\)
−0.992505 + 0.122203i \(0.961004\pi\)
\(264\) −182.681 139.997i −0.691975 0.530292i
\(265\) 75.2198 0.283848
\(266\) 268.262 + 87.1637i 1.00851 + 0.327683i
\(267\) −404.714 + 294.042i −1.51578 + 1.10128i
\(268\) 196.786 + 142.974i 0.734277 + 0.533483i
\(269\) −69.0050 212.376i −0.256524 0.789500i −0.993526 0.113609i \(-0.963759\pi\)
0.737001 0.675891i \(-0.236241\pi\)
\(270\) −100.537 + 32.6664i −0.372359 + 0.120987i
\(271\) −165.220 + 227.406i −0.609667 + 0.839135i −0.996550 0.0829940i \(-0.973552\pi\)
0.386883 + 0.922129i \(0.373552\pi\)
\(272\) 105.288 + 144.916i 0.387087 + 0.532780i
\(273\) 176.833 544.235i 0.647739 1.99354i
\(274\) 644.623i 2.35264i
\(275\) −52.7254 + 15.6534i −0.191729 + 0.0569215i
\(276\) −11.9311 −0.0432287
\(277\) 114.538 + 37.2156i 0.413494 + 0.134352i 0.508374 0.861136i \(-0.330247\pi\)
−0.0948799 + 0.995489i \(0.530247\pi\)
\(278\) −20.0000 + 14.5309i −0.0719424 + 0.0522692i
\(279\) −321.594 233.651i −1.15267 0.837460i
\(280\) 33.9919 + 104.616i 0.121400 + 0.373629i
\(281\) −385.665 + 125.310i −1.37247 + 0.445944i −0.900188 0.435502i \(-0.856571\pi\)
−0.472286 + 0.881446i \(0.656571\pi\)
\(282\) 292.859 403.086i 1.03851 1.42938i
\(283\) 324.259 + 446.305i 1.14579 + 1.57705i 0.753834 + 0.657065i \(0.228202\pi\)
0.391959 + 0.919983i \(0.371798\pi\)
\(284\) 88.7295 273.081i 0.312428 0.961554i
\(285\) 87.1637i 0.305838i
\(286\) −219.039 318.283i −0.765872 1.11288i
\(287\) 287.984 1.00343
\(288\) −499.081 162.161i −1.73292 0.563060i
\(289\) 177.503 128.963i 0.614196 0.446239i
\(290\) −91.6312 66.5740i −0.315970 0.229565i
\(291\) 88.2082 + 271.477i 0.303121 + 0.932910i
\(292\) −410.119 + 133.256i −1.40452 + 0.456355i
\(293\) −189.259 + 260.493i −0.645936 + 0.889055i −0.998915 0.0465766i \(-0.985169\pi\)
0.352979 + 0.935631i \(0.385169\pi\)
\(294\) 575.502 + 792.110i 1.95749 + 2.69425i
\(295\) −76.4149 + 235.181i −0.259033 + 0.797223i
\(296\) 40.2123i 0.135852i
\(297\) −4.31870 + 168.912i −0.0145411 + 0.568728i
\(298\) −143.666 −0.482099
\(299\) −5.12461 1.66509i −0.0171392 0.00556885i
\(300\) 102.221 74.2682i 0.340738 0.247561i
\(301\) 439.508 + 319.322i 1.46016 + 1.06087i
\(302\) 71.4296 + 219.838i 0.236522 + 0.727939i
\(303\) −253.281 + 82.2958i −0.835909 + 0.271603i
\(304\) 39.4154 54.2507i 0.129656 0.178456i
\(305\) −98.7132 135.867i −0.323650 0.445466i
\(306\) −264.327 + 813.515i −0.863814 + 2.65855i
\(307\) 100.126i 0.326143i 0.986614 + 0.163072i \(0.0521401\pi\)
−0.986614 + 0.163072i \(0.947860\pi\)
\(308\) 653.346 + 16.7046i 2.12125 + 0.0542356i
\(309\) 507.591 1.64269
\(310\) 211.074 + 68.5821i 0.680884 + 0.221232i
\(311\) 159.456 115.851i 0.512720 0.372513i −0.301135 0.953582i \(-0.597365\pi\)
0.813854 + 0.581069i \(0.197365\pi\)
\(312\) 193.185 + 140.357i 0.619184 + 0.449863i
\(313\) −75.0886 231.099i −0.239900 0.738335i −0.996434 0.0843809i \(-0.973109\pi\)
0.756534 0.653955i \(-0.226891\pi\)
\(314\) 108.292 35.1861i 0.344878 0.112058i
\(315\) 175.902 242.108i 0.558418 0.768597i
\(316\) −409.728 563.943i −1.29661 1.78463i
\(317\) −174.790 + 537.949i −0.551389 + 1.69700i 0.153906 + 0.988086i \(0.450815\pi\)
−0.705294 + 0.708915i \(0.749185\pi\)
\(318\) 478.111i 1.50349i
\(319\) −149.135 + 102.633i −0.467507 + 0.321734i
\(320\) 221.928 0.693525
\(321\) −246.433 80.0709i −0.767704 0.249442i
\(322\) 12.7639 9.27354i 0.0396395 0.0287998i
\(323\) −153.977 111.871i −0.476709 0.346350i
\(324\) 67.6393 + 208.172i 0.208763 + 0.642507i
\(325\) 54.2705 17.6336i 0.166986 0.0542571i
\(326\) 85.0385 117.045i 0.260854 0.359035i
\(327\) −174.395 240.034i −0.533318 0.734050i
\(328\) −37.1353 + 114.291i −0.113217 + 0.348447i
\(329\) 380.623i 1.15691i
\(330\) −99.4959 335.132i −0.301503 1.01555i
\(331\) −144.353 −0.436110 −0.218055 0.975936i \(-0.569971\pi\)
−0.218055 + 0.975936i \(0.569971\pi\)
\(332\) 194.965 + 63.3480i 0.587244 + 0.190807i
\(333\) −88.5066 + 64.3038i −0.265786 + 0.193104i
\(334\) 118.541 + 86.1251i 0.354913 + 0.257860i
\(335\) 30.7148 + 94.5304i 0.0916859 + 0.282180i
\(336\) 378.838 123.092i 1.12749 0.366345i
\(337\) −113.715 + 156.516i −0.337434 + 0.464439i −0.943690 0.330831i \(-0.892671\pi\)
0.606256 + 0.795270i \(0.292671\pi\)
\(338\) −70.1008 96.4855i −0.207399 0.285460i
\(339\) 12.7943 39.3768i 0.0377413 0.116156i
\(340\) 275.897i 0.811462i
\(341\) 215.779 281.569i 0.632783 0.825715i
\(342\) 320.220 0.936315
\(343\) −205.374 66.7300i −0.598758 0.194548i
\(344\) −183.402 + 133.249i −0.533144 + 0.387352i
\(345\) −3.94427 2.86568i −0.0114327 0.00830632i
\(346\) −181.554 558.766i −0.524723 1.61493i
\(347\) −249.410 + 81.0382i −0.718760 + 0.233539i −0.645486 0.763772i \(-0.723345\pi\)
−0.0732747 + 0.997312i \(0.523345\pi\)
\(348\) 244.461 336.472i 0.702474 0.966872i
\(349\) 70.2310 + 96.6647i 0.201235 + 0.276976i 0.897693 0.440621i \(-0.145242\pi\)
−0.696458 + 0.717597i \(0.745242\pi\)
\(350\) −51.6312 + 158.904i −0.147518 + 0.454013i
\(351\) 175.306i 0.499449i
\(352\) 156.050 441.539i 0.443324 1.25437i
\(353\) 150.674 0.426838 0.213419 0.976961i \(-0.431540\pi\)
0.213419 + 0.976961i \(0.431540\pi\)
\(354\) −1494.85 485.706i −4.22274 1.37205i
\(355\) 94.9230 68.9656i 0.267389 0.194269i
\(356\) 479.566 + 348.425i 1.34709 + 0.978722i
\(357\) −349.366 1075.24i −0.978615 3.01187i
\(358\) −755.876 + 245.599i −2.11138 + 0.686031i
\(359\) 160.143 220.418i 0.446080 0.613977i −0.525470 0.850812i \(-0.676110\pi\)
0.971550 + 0.236836i \(0.0761103\pi\)
\(360\) 73.4017 + 101.029i 0.203894 + 0.280635i
\(361\) 89.5375 275.568i 0.248026 0.763347i
\(362\) 506.062i 1.39796i
\(363\) −558.052 28.5549i −1.53733 0.0786636i
\(364\) −678.079 −1.86285
\(365\) −167.586 54.4520i −0.459140 0.149184i
\(366\) 863.596 627.439i 2.35955 1.71431i
\(367\) 523.912 + 380.644i 1.42755 + 1.03718i 0.990466 + 0.137758i \(0.0439897\pi\)
0.437087 + 0.899419i \(0.356010\pi\)
\(368\) −1.15905 3.56720i −0.00314960 0.00969348i
\(369\) 310.935 101.029i 0.842641 0.273791i
\(370\) 35.9017 49.4145i 0.0970316 0.133553i
\(371\) −214.685 295.489i −0.578666 0.796465i
\(372\) −251.835 + 775.068i −0.676975 + 2.08352i
\(373\) 402.936i 1.08026i −0.841583 0.540129i \(-0.818376\pi\)
0.841583 0.540129i \(-0.181624\pi\)
\(374\) −719.719 254.366i −1.92438 0.680122i
\(375\) 51.6312 0.137683
\(376\) −151.056 49.0810i −0.401744 0.130535i
\(377\) 151.957 110.404i 0.403070 0.292848i
\(378\) 415.267 + 301.709i 1.09859 + 0.798173i
\(379\) 41.9023 + 128.962i 0.110560 + 0.340269i 0.990995 0.133898i \(-0.0427494\pi\)
−0.880435 + 0.474167i \(0.842749\pi\)
\(380\) −98.2295 + 31.9167i −0.258499 + 0.0839913i
\(381\) −409.241 + 563.272i −1.07412 + 1.47840i
\(382\) 68.7426 + 94.6161i 0.179955 + 0.247686i
\(383\) −170.833 + 525.769i −0.446039 + 1.37277i 0.435302 + 0.900285i \(0.356642\pi\)
−0.881341 + 0.472481i \(0.843358\pi\)
\(384\) 624.199i 1.62552i
\(385\) 211.976 + 162.447i 0.550586 + 0.421939i
\(386\) 14.4721 0.0374926
\(387\) 586.558 + 190.584i 1.51565 + 0.492465i
\(388\) 273.643 198.813i 0.705265 0.512405i
\(389\) 107.164 + 77.8593i 0.275486 + 0.200152i 0.716946 0.697129i \(-0.245539\pi\)
−0.441460 + 0.897281i \(0.645539\pi\)
\(390\) 112.082 + 344.953i 0.287390 + 0.884495i
\(391\) −10.1246 + 3.28969i −0.0258941 + 0.00841352i
\(392\) 183.458 252.509i 0.468006 0.644155i
\(393\) 263.565 + 362.766i 0.670648 + 0.923068i
\(394\) 102.005 313.939i 0.258896 0.796800i
\(395\) 284.843i 0.721121i
\(396\) 711.275 211.167i 1.79615 0.533251i
\(397\) −110.721 −0.278895 −0.139448 0.990229i \(-0.544533\pi\)
−0.139448 + 0.990229i \(0.544533\pi\)
\(398\) 54.4245 + 17.6836i 0.136745 + 0.0444312i
\(399\) −342.408 + 248.774i −0.858166 + 0.623494i
\(400\) 32.1353 + 23.3476i 0.0803381 + 0.0583691i
\(401\) 9.64494 + 29.6841i 0.0240522 + 0.0740251i 0.962362 0.271770i \(-0.0876091\pi\)
−0.938310 + 0.345795i \(0.887609\pi\)
\(402\) −600.852 + 195.229i −1.49466 + 0.485643i
\(403\) −216.334 + 297.759i −0.536810 + 0.738855i
\(404\) 185.487 + 255.301i 0.459127 + 0.631934i
\(405\) −27.6393 + 85.0651i −0.0682452 + 0.210037i
\(406\) 549.967i 1.35460i
\(407\) −55.3475 80.4247i −0.135989 0.197604i
\(408\) 471.774 1.15631
\(409\) 436.217 + 141.735i 1.06654 + 0.346541i 0.789141 0.614212i \(-0.210526\pi\)
0.277404 + 0.960753i \(0.410526\pi\)
\(410\) −147.672 + 107.290i −0.360176 + 0.261683i
\(411\) −782.523 568.536i −1.90395 1.38330i
\(412\) −185.864 572.031i −0.451127 1.38842i
\(413\) 1141.96 371.047i 2.76505 0.898418i
\(414\) 10.5279 14.4904i 0.0254296 0.0350009i
\(415\) 49.2376 + 67.7698i 0.118645 + 0.163301i
\(416\) −150.143 + 462.092i −0.360920 + 1.11080i
\(417\) 37.0942i 0.0889548i
\(418\) −7.30399 + 285.672i −0.0174737 + 0.683427i
\(419\) −47.0476 −0.112285 −0.0561427 0.998423i \(-0.517880\pi\)
−0.0561427 + 0.998423i \(0.517880\pi\)
\(420\) −583.500 189.591i −1.38929 0.451407i
\(421\) 122.931 89.3147i 0.291998 0.212149i −0.432136 0.901809i \(-0.642240\pi\)
0.724134 + 0.689660i \(0.242240\pi\)
\(422\) −243.171 176.674i −0.576234 0.418658i
\(423\) 133.528 + 410.957i 0.315669 + 0.971528i
\(424\) 144.952 47.0979i 0.341869 0.111080i
\(425\) 66.2664 91.2079i 0.155921 0.214607i
\(426\) 438.358 + 603.347i 1.02901 + 1.41631i
\(427\) −251.994 + 775.557i −0.590149 + 1.81629i
\(428\) 307.038i 0.717379i
\(429\) 579.556 + 14.8179i 1.35095 + 0.0345406i
\(430\) −344.336 −0.800782
\(431\) −492.254 159.943i −1.14212 0.371098i −0.323951 0.946074i \(-0.605011\pi\)
−0.818170 + 0.574976i \(0.805011\pi\)
\(432\) 98.7239 71.7271i 0.228527 0.166035i
\(433\) −336.791 244.693i −0.777809 0.565111i 0.126512 0.991965i \(-0.459622\pi\)
−0.904321 + 0.426854i \(0.859622\pi\)
\(434\) −333.013 1024.91i −0.767311 2.36154i
\(435\) 161.631 52.5172i 0.371566 0.120729i
\(436\) −206.649 + 284.428i −0.473966 + 0.652359i
\(437\) 2.34250 + 3.22417i 0.00536041 + 0.00737797i
\(438\) 346.107 1065.21i 0.790198 2.43198i
\(439\) 685.921i 1.56246i −0.624242 0.781231i \(-0.714592\pi\)
0.624242 0.781231i \(-0.285408\pi\)
\(440\) −91.8034 + 63.1783i −0.208644 + 0.143587i
\(441\) −849.137 −1.92548
\(442\) 753.222 + 244.737i 1.70412 + 0.553703i
\(443\) 468.163 340.140i 1.05680 0.767810i 0.0833065 0.996524i \(-0.473452\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(444\) 181.451 + 131.832i 0.408673 + 0.296918i
\(445\) 74.8516 + 230.370i 0.168206 + 0.517684i
\(446\) 1110.45 360.806i 2.48979 0.808982i
\(447\) 126.708 174.399i 0.283464 0.390154i
\(448\) −633.405 871.807i −1.41385 1.94600i
\(449\) −262.733 + 808.609i −0.585151 + 1.80091i 0.0135103 + 0.999909i \(0.495699\pi\)
−0.598662 + 0.801002i \(0.704301\pi\)
\(450\) 189.681i 0.421514i
\(451\) 83.0370 + 279.693i 0.184117 + 0.620163i
\(452\) −49.0608 −0.108541
\(453\) −329.864 107.179i −0.728177 0.236599i
\(454\) 518.972 377.055i 1.14311 0.830517i
\(455\) −224.164 162.865i −0.492668 0.357944i
\(456\) −54.5764 167.969i −0.119685 0.368353i
\(457\) −387.747 + 125.987i −0.848462 + 0.275682i −0.700802 0.713356i \(-0.747174\pi\)
−0.147660 + 0.989038i \(0.547174\pi\)
\(458\) −112.503 + 154.848i −0.245641 + 0.338096i
\(459\) −203.580 280.203i −0.443528 0.610464i
\(460\) −1.78522 + 5.49434i −0.00388091 + 0.0119442i
\(461\) 721.774i 1.56567i 0.622229 + 0.782835i \(0.286227\pi\)
−0.622229 + 0.782835i \(0.713773\pi\)
\(462\) −1032.54 + 1347.35i −2.23493 + 2.91635i
\(463\) 775.669 1.67531 0.837656 0.546198i \(-0.183925\pi\)
0.837656 + 0.546198i \(0.183925\pi\)
\(464\) 124.348 + 40.4030i 0.267990 + 0.0870753i
\(465\) −269.413 + 195.740i −0.579383 + 0.420947i
\(466\) 689.820 + 501.184i 1.48030 + 1.07550i
\(467\) 144.385 + 444.372i 0.309176 + 0.951545i 0.978086 + 0.208202i \(0.0667611\pi\)
−0.668910 + 0.743343i \(0.733239\pi\)
\(468\) −732.118 + 237.880i −1.56436 + 0.508290i
\(469\) 283.684 390.457i 0.604870 0.832531i
\(470\) −141.803 195.176i −0.301709 0.415267i
\(471\) −52.7965 + 162.491i −0.112094 + 0.344991i
\(472\) 501.051i 1.06155i
\(473\) −183.402 + 518.929i −0.387741 + 1.09710i
\(474\) 1810.51 3.81965
\(475\) −40.1393 13.0421i −0.0845038 0.0274570i
\(476\) −1083.82 + 787.438i −2.27692 + 1.65428i
\(477\) −335.456 243.723i −0.703262 0.510950i
\(478\) −141.122 434.327i −0.295233 0.908635i
\(479\) −8.26238 + 2.68461i −0.0172492 + 0.00560461i −0.317629 0.948215i \(-0.602887\pi\)
0.300380 + 0.953820i \(0.402887\pi\)
\(480\) −258.402 + 355.659i −0.538337 + 0.740957i
\(481\) 59.5379 + 81.9469i 0.123779 + 0.170368i
\(482\) 393.669 1211.59i 0.816741 2.51367i
\(483\) 23.6734i 0.0490132i
\(484\) 172.162 + 639.355i 0.355706 + 1.32098i
\(485\) 138.215 0.284979
\(486\) −945.342 307.160i −1.94515 0.632017i
\(487\) 645.822 469.217i 1.32612 0.963484i 0.326288 0.945270i \(-0.394202\pi\)
0.999834 0.0182139i \(-0.00579800\pi\)
\(488\) −275.297 200.015i −0.564133 0.409866i
\(489\) 67.0830 + 206.460i 0.137184 + 0.422209i
\(490\) 450.881 146.500i 0.920166 0.298980i
\(491\) −87.5364 + 120.483i −0.178282 + 0.245384i −0.888800 0.458295i \(-0.848460\pi\)
0.710519 + 0.703678i \(0.248460\pi\)
\(492\) −393.972 542.255i −0.800755 1.10214i
\(493\) 114.674 352.930i 0.232604 0.715881i
\(494\) 296.487i 0.600176i
\(495\) 285.858 + 101.029i 0.577490 + 0.204099i
\(496\) −256.197 −0.516525
\(497\) −541.840 176.054i −1.09022 0.354234i
\(498\) −430.757 + 312.963i −0.864973 + 0.628440i
\(499\) −493.030 358.207i −0.988036 0.717850i −0.0285456 0.999592i \(-0.509088\pi\)
−0.959490 + 0.281743i \(0.909088\pi\)
\(500\) −18.9058 58.1860i −0.0378115 0.116372i
\(501\) −209.098 + 67.9402i −0.417362 + 0.135609i
\(502\) 674.864 928.871i 1.34435 1.85034i
\(503\) −88.0720 121.221i −0.175093 0.240995i 0.712446 0.701727i \(-0.247587\pi\)
−0.887540 + 0.460731i \(0.847587\pi\)
\(504\) 187.379 576.693i 0.371783 1.14423i
\(505\) 128.951i 0.255348i
\(506\) 12.6869 + 9.72257i 0.0250730 + 0.0192146i
\(507\) 178.952 0.352963
\(508\) 784.633 + 254.943i 1.54455 + 0.501856i
\(509\) −256.395 + 186.282i −0.503723 + 0.365976i −0.810437 0.585825i \(-0.800770\pi\)
0.306714 + 0.951802i \(0.400770\pi\)
\(510\) 579.734 + 421.201i 1.13673 + 0.825885i
\(511\) 264.402 + 813.746i 0.517421 + 1.59246i
\(512\) −458.586 + 149.004i −0.895677 + 0.291023i
\(513\) −76.2119 + 104.897i −0.148561 + 0.204477i
\(514\) −369.179 508.131i −0.718247 0.988582i
\(515\) 75.9493 233.748i 0.147474 0.453879i
\(516\) 1264.41i 2.45041i
\(517\) −369.666 + 109.748i −0.715021 + 0.212279i
\(518\) −296.584 −0.572555
\(519\) 838.423 + 272.420i 1.61546 + 0.524895i
\(520\) 93.5410 67.9615i 0.179887 0.130695i
\(521\) −298.555 216.913i −0.573042 0.416340i 0.263167 0.964750i \(-0.415233\pi\)
−0.836209 + 0.548411i \(0.815233\pi\)
\(522\) 192.936 + 593.796i 0.369609 + 1.13754i
\(523\) 466.990 151.734i 0.892907 0.290123i 0.173601 0.984816i \(-0.444460\pi\)
0.719306 + 0.694693i \(0.244460\pi\)
\(524\) 312.311 429.859i 0.596013 0.820342i
\(525\) −147.361 202.825i −0.280687 0.386333i
\(526\) −61.1327 + 188.147i −0.116222 + 0.357694i
\(527\) 727.150i 1.37979i
\(528\) 228.782 + 332.440i 0.433299 + 0.629621i
\(529\) −528.777 −0.999579
\(530\) 220.172 + 71.5383i 0.415419 + 0.134978i
\(531\) 1102.80 801.235i 2.07685 1.50892i
\(532\) 405.736 + 294.785i 0.762662 + 0.554107i
\(533\) −93.5410 287.890i −0.175499 0.540131i
\(534\) −1464.27 + 475.770i −2.74208 + 0.890955i
\(535\) −73.7461 + 101.503i −0.137843 + 0.189725i
\(536\) 118.378 + 162.933i 0.220854 + 0.303980i
\(537\) 368.519 1134.18i 0.686255 2.11207i
\(538\) 687.262i 1.27744i
\(539\) 19.3682 757.526i 0.0359336 1.40543i
\(540\) −187.954 −0.348064
\(541\) −418.618 136.017i −0.773786 0.251418i −0.104601 0.994514i \(-0.533357\pi\)
−0.669185 + 0.743096i \(0.733357\pi\)
\(542\) −699.882 + 508.494i −1.29130 + 0.938181i
\(543\) 614.320 + 446.330i 1.13134 + 0.821970i
\(544\) 296.635 + 912.948i 0.545284 + 1.67821i
\(545\) −136.631 + 44.3942i −0.250699 + 0.0814572i
\(546\) 1035.20 1424.83i 1.89597 2.60957i
\(547\) 350.478 + 482.392i 0.640728 + 0.881886i 0.998654 0.0518636i \(-0.0165161\pi\)
−0.357926 + 0.933750i \(0.616516\pi\)
\(548\) −354.178 + 1090.05i −0.646310 + 1.98914i
\(549\) 925.768i 1.68628i
\(550\) −169.217 4.32650i −0.307668 0.00786636i
\(551\) −138.922 −0.252127
\(552\) −9.39512 3.05266i −0.0170201 0.00553018i
\(553\) −1118.96 + 812.971i −2.02343 + 1.47011i
\(554\) 299.864 + 217.864i 0.541271 + 0.393256i
\(555\) 28.3212 + 87.1637i 0.0510292 + 0.157052i
\(556\) −41.8034 + 13.5827i −0.0751860 + 0.0244294i
\(557\) −352.889 + 485.709i −0.633552 + 0.872010i −0.998251 0.0591158i \(-0.981172\pi\)
0.364699 + 0.931125i \(0.381172\pi\)
\(558\) −719.105 989.763i −1.28872 1.77377i
\(559\) 176.459 543.085i 0.315669 0.971529i
\(560\) 192.875i 0.344419i
\(561\) 943.548 649.341i 1.68190 1.15747i
\(562\) −1248.04 −2.22071
\(563\) −632.047 205.365i −1.12264 0.364768i −0.311866 0.950126i \(-0.600954\pi\)
−0.810775 + 0.585358i \(0.800954\pi\)
\(564\) 716.689 520.705i 1.27072 0.923236i
\(565\) −16.2188 11.7837i −0.0287059 0.0208561i
\(566\) 524.663 + 1614.75i 0.926966 + 2.85291i
\(567\) 413.050 134.208i 0.728482 0.236698i
\(568\) 139.740 192.335i 0.246020 0.338618i
\(569\) −255.449 351.595i −0.448943 0.617917i 0.523227 0.852193i \(-0.324728\pi\)
−0.972170 + 0.234276i \(0.924728\pi\)
\(570\) 82.8976 255.133i 0.145434 0.447601i
\(571\) 807.082i 1.41345i −0.707487 0.706727i \(-0.750171\pi\)
0.707487 0.706727i \(-0.249829\pi\)
\(572\) −195.517 658.559i −0.341812 1.15133i
\(573\) −175.485 −0.306257
\(574\) 842.943 + 273.889i 1.46854 + 0.477158i
\(575\) −1.90983 + 1.38757i −0.00332144 + 0.00241317i
\(576\) −989.727 719.079i −1.71828 1.24840i
\(577\) −224.288 690.288i −0.388715 1.19634i −0.933750 0.357927i \(-0.883484\pi\)
0.545035 0.838413i \(-0.316516\pi\)
\(578\) 642.210 208.667i 1.11109 0.361015i
\(579\) −12.7639 + 17.5680i −0.0220448 + 0.0303420i
\(580\) −118.369 162.921i −0.204084 0.280898i
\(581\) 125.693 386.844i 0.216339 0.665824i
\(582\) 878.518i 1.50948i
\(583\) 225.080 293.706i 0.386072 0.503783i
\(584\) −357.041 −0.611372
\(585\) −299.164 97.2043i −0.511392 0.166161i
\(586\) −801.715 + 582.480i −1.36811 + 0.993993i
\(587\) 153.232 + 111.330i 0.261043 + 0.189659i 0.710607 0.703590i \(-0.248421\pi\)
−0.449564 + 0.893248i \(0.648421\pi\)
\(588\) 537.952 + 1655.65i 0.914884 + 2.81572i
\(589\) 258.892 84.1192i 0.439546 0.142817i
\(590\) −447.340 + 615.711i −0.758204 + 1.04358i
\(591\) 291.133 + 400.710i 0.492610 + 0.678020i
\(592\) −21.7883 + 67.0576i −0.0368046 + 0.113273i
\(593\) 216.058i 0.364348i 0.983266 + 0.182174i \(0.0583134\pi\)
−0.983266 + 0.182174i \(0.941687\pi\)
\(594\) −173.286 + 490.308i −0.291728 + 0.825434i
\(595\) −547.426 −0.920044
\(596\) −242.936 78.9347i −0.407611 0.132441i
\(597\) −69.4671 + 50.4708i −0.116360 + 0.0845407i
\(598\) −13.4164 9.74759i −0.0224355 0.0163003i
\(599\) −309.617 952.903i −0.516890 1.59082i −0.779817 0.626007i \(-0.784688\pi\)
0.262928 0.964815i \(-0.415312\pi\)
\(600\) 99.4959 32.3282i 0.165827 0.0538803i
\(601\) 230.744 317.592i 0.383934 0.528440i −0.572688 0.819774i \(-0.694099\pi\)
0.956621 + 0.291334i \(0.0940992\pi\)
\(602\) 982.771 + 1352.67i 1.63251 + 2.24696i
\(603\) 169.314 521.095i 0.280786 0.864171i
\(604\) 410.987i 0.680443i
\(605\) −96.6494 + 252.713i −0.159751 + 0.417708i
\(606\) −819.633 −1.35253
\(607\) −501.620 162.986i −0.826392 0.268511i −0.134867 0.990864i \(-0.543061\pi\)
−0.691525 + 0.722353i \(0.743061\pi\)
\(608\) 290.727 211.226i 0.478170 0.347411i
\(609\) −667.617 485.052i −1.09625 0.796473i
\(610\) −159.721 491.572i −0.261838 0.805855i
\(611\) 380.498 123.631i 0.622747 0.202343i
\(612\) −893.946 + 1230.41i −1.46070 + 2.01047i
\(613\) 157.852 + 217.265i 0.257508 + 0.354429i 0.918123 0.396296i \(-0.129705\pi\)
−0.660615 + 0.750725i \(0.729705\pi\)
\(614\) −95.2254 + 293.074i −0.155090 + 0.477319i
\(615\) 273.889i 0.445348i
\(616\) 510.202 + 180.317i 0.828249 + 0.292723i
\(617\) 623.989 1.01133 0.505664 0.862731i \(-0.331248\pi\)
0.505664 + 0.862731i \(0.331248\pi\)
\(618\) 1485.74 + 482.747i 2.40412 + 0.781144i
\(619\) −727.247 + 528.376i −1.17487 + 0.853596i −0.991584 0.129463i \(-0.958675\pi\)
−0.183290 + 0.983059i \(0.558675\pi\)
\(620\) 319.241 + 231.942i 0.514905 + 0.374100i
\(621\) 2.24109 + 6.89737i 0.00360885 + 0.0111069i
\(622\) 576.917 187.452i 0.927519 0.301369i
\(623\) 691.334 951.540i 1.10969 1.52735i
\(624\) −246.103 338.732i −0.394396 0.542840i
\(625\) 7.72542 23.7764i 0.0123607 0.0380423i
\(626\) 747.852i 1.19465i
\(627\) −340.342 260.820i −0.542811 0.415981i
\(628\) 202.452 0.322376
\(629\) 190.326 + 61.8407i 0.302585 + 0.0983160i
\(630\) 745.132 541.370i 1.18275 0.859317i
\(631\) 861.325 + 625.789i 1.36502 + 0.991742i 0.998108 + 0.0614849i \(0.0195836\pi\)
0.366908 + 0.930257i \(0.380416\pi\)
\(632\) −178.351 548.907i −0.282200 0.868523i
\(633\) 428.937 139.370i 0.677625 0.220174i
\(634\) −1023.24 + 1408.37i −1.61394 + 2.22140i
\(635\) 198.156 + 272.738i 0.312057 + 0.429509i
\(636\) −262.690 + 808.477i −0.413035 + 1.27119i
\(637\) 786.203i 1.23423i
\(638\) −534.135 + 158.577i −0.837202 + 0.248553i
\(639\) −646.784 −1.01218
\(640\) 287.447 + 93.3971i 0.449136 + 0.145933i
\(641\) 717.550 521.330i 1.11942 0.813308i 0.135301 0.990805i \(-0.456800\pi\)
0.984121 + 0.177497i \(0.0568000\pi\)
\(642\) −645.170 468.743i −1.00494 0.730130i
\(643\) −323.852 996.713i −0.503657 1.55010i −0.803016 0.595957i \(-0.796773\pi\)
0.299359 0.954141i \(-0.403227\pi\)
\(644\) 26.6788 8.66846i 0.0414267 0.0134603i
\(645\) 303.693 417.997i 0.470842 0.648058i
\(646\) −344.303 473.893i −0.532977 0.733580i
\(647\) 388.461 1195.56i 0.600403 1.84785i 0.0746578 0.997209i \(-0.476214\pi\)
0.525745 0.850642i \(-0.323786\pi\)
\(648\) 181.231i 0.279677i
\(649\) 689.638 + 1002.10i 1.06262 + 1.54407i
\(650\) 175.623 0.270189
\(651\) 1537.87 + 499.683i 2.36231 + 0.767562i
\(652\) 208.107 151.199i 0.319183 0.231900i
\(653\) 139.031 + 101.012i 0.212912 + 0.154689i 0.689130 0.724638i \(-0.257993\pi\)
−0.476218 + 0.879327i \(0.657993\pi\)
\(654\) −282.177 868.452i −0.431464 1.32791i
\(655\) 206.492 67.0933i 0.315255 0.102432i
\(656\) 123.853 170.468i 0.188800 0.259860i
\(657\) 570.947 + 785.841i 0.869022 + 1.19611i
\(658\) −361.994 + 1114.10i −0.550143 + 1.69316i
\(659\) 719.550i 1.09188i 0.837824 + 0.545941i \(0.183828\pi\)
−0.837824 + 0.545941i \(0.816172\pi\)
\(660\) 15.8870 621.369i 0.0240712 0.941469i
\(661\) 655.240 0.991286 0.495643 0.868526i \(-0.334932\pi\)
0.495643 + 0.868526i \(0.334932\pi\)
\(662\) −422.527 137.287i −0.638259 0.207383i
\(663\) −961.407 + 698.503i −1.45009 + 1.05355i
\(664\) 137.317 + 99.7663i 0.206802 + 0.150250i
\(665\) 63.3282 + 194.904i 0.0952303 + 0.293089i
\(666\) −320.220 + 104.046i −0.480811 + 0.156225i
\(667\) −4.56733 + 6.28639i −0.00684757 + 0.00942488i
\(668\) 153.131 + 210.766i 0.229238 + 0.315519i
\(669\) −541.386 + 1666.21i −0.809246 + 2.49060i
\(670\) 305.907i 0.456577i
\(671\) −825.890 21.1161i −1.23084 0.0314696i
\(672\) 2134.65 3.17657
\(673\) −650.235 211.274i −0.966173 0.313929i −0.216903 0.976193i \(-0.569596\pi\)
−0.749270 + 0.662264i \(0.769596\pi\)
\(674\) −481.706 + 349.980i −0.714697 + 0.519258i
\(675\) −62.1353 45.1439i −0.0920522 0.0668799i
\(676\) −65.5269 201.671i −0.0969333 0.298330i
\(677\) −719.490 + 233.777i −1.06276 + 0.345313i −0.787665 0.616104i \(-0.788710\pi\)
−0.275098 + 0.961416i \(0.588710\pi\)
\(678\) 74.8992 103.090i 0.110471 0.152050i
\(679\) −394.479 542.954i −0.580971 0.799638i
\(680\) 70.5902 217.254i 0.103809 0.319491i
\(681\) 962.541i 1.41342i
\(682\) 899.384 618.948i 1.31874 0.907548i
\(683\) −781.639 −1.14442 −0.572210 0.820107i \(-0.693914\pi\)
−0.572210 + 0.820107i \(0.693914\pi\)
\(684\) 541.486 + 175.940i 0.791647 + 0.257222i
\(685\) −378.900 + 275.287i −0.553139 + 0.401879i
\(686\) −537.676 390.644i −0.783784 0.569452i
\(687\) −88.7489 273.141i −0.129183 0.397585i
\(688\) 378.037 122.832i 0.549472 0.178534i
\(689\) −225.659 + 310.594i −0.327517 + 0.450789i
\(690\) −8.81966 12.1392i −0.0127821 0.0175931i
\(691\) −290.643 + 894.507i −0.420612 + 1.29451i 0.486522 + 0.873668i \(0.338265\pi\)
−0.907134 + 0.420842i \(0.861735\pi\)
\(692\) 1044.62i 1.50956i
\(693\) −418.992 1411.29i −0.604606 2.03649i
\(694\) −807.107 −1.16298
\(695\) −17.0820 5.55029i −0.0245785 0.00798603i
\(696\) 278.589 202.406i 0.400271 0.290814i
\(697\) −483.832 351.525i −0.694164 0.504340i
\(698\) 113.636 + 349.736i 0.162803 + 0.501055i
\(699\) −1216.80 + 395.361i −1.74077 + 0.565609i
\(700\) −174.615 + 240.337i −0.249450 + 0.343338i
\(701\) −3.94427 5.42882i −0.00562664 0.00774440i 0.806194 0.591651i \(-0.201524\pi\)
−0.811821 + 0.583906i \(0.801524\pi\)
\(702\) 166.726 513.131i 0.237502 0.730956i
\(703\) 74.9171i 0.106568i
\(704\) 664.075 866.547i 0.943288 1.23089i
\(705\) 361.994 0.513466
\(706\) 441.030 + 143.299i 0.624688 + 0.202973i
\(707\) 506.561 368.038i 0.716494 0.520563i
\(708\) −2260.90 1642.64i −3.19337 2.32012i
\(709\) −307.854 947.478i −0.434209 1.33636i −0.893895 0.448276i \(-0.852038\pi\)
0.459686 0.888081i \(-0.347962\pi\)
\(710\) 343.435 111.589i 0.483711 0.157167i
\(711\) −922.932 + 1270.31i −1.29808 + 1.78665i
\(712\) 288.486 + 397.066i 0.405176 + 0.557678i
\(713\) 4.70510 14.4808i 0.00659902 0.0203097i
\(714\) 3479.54i 4.87331i
\(715\) 93.5410 264.671i 0.130827 0.370170i
\(716\) −1413.11 −1.97362
\(717\) 651.704 + 211.751i 0.908932 + 0.295330i
\(718\) 678.376 492.869i 0.944813 0.686447i
\(719\) 478.315 + 347.516i 0.665250 + 0.483333i 0.868432 0.495808i \(-0.165128\pi\)
−0.203182 + 0.979141i \(0.565128\pi\)
\(720\) −67.6631 208.246i −0.0939766 0.289230i
\(721\) −1135.01 + 368.786i −1.57421 + 0.511493i
\(722\) 524.162 721.447i 0.725986 0.999234i
\(723\) 1123.57 + 1546.46i 1.55404 + 2.13895i
\(724\) 278.048 855.743i 0.384044 1.18196i
\(725\) 82.2899i 0.113503i
\(726\) −1606.29 614.321i −2.21252 0.846172i
\(727\) −1276.13 −1.75534 −0.877670 0.479266i \(-0.840903\pi\)
−0.877670 + 0.479266i \(0.840903\pi\)
\(728\) −533.951 173.491i −0.733449 0.238312i
\(729\) 915.382 665.064i 1.25567 0.912297i
\(730\) −438.746 318.768i −0.601022 0.436668i
\(731\) −348.627 1072.96i −0.476918 1.46780i
\(732\) 1805.06 586.500i 2.46593 0.801230i
\(733\) 19.8208 27.2811i 0.0270407 0.0372184i −0.795283 0.606239i \(-0.792678\pi\)
0.822323 + 0.569021i \(0.192678\pi\)
\(734\) 1171.50 + 1612.43i 1.59605 + 2.19678i
\(735\) −219.822 + 676.543i −0.299078 + 0.920467i
\(736\) 20.1003i 0.0273101i
\(737\) 461.014 + 162.933i 0.625528 + 0.221076i
\(738\) 1006.21 1.36342
\(739\) 1127.54 + 366.361i 1.52577 + 0.495752i 0.947408 0.320028i \(-0.103692\pi\)
0.578361 + 0.815781i \(0.303692\pi\)
\(740\) 87.8591 63.8334i 0.118729 0.0862613i
\(741\) 359.912 + 261.491i 0.485711 + 0.352890i
\(742\) −347.368 1069.09i −0.468150 1.44082i
\(743\) −1302.85 + 423.321i −1.75350 + 0.569746i −0.996494 0.0836663i \(-0.973337\pi\)
−0.757003 + 0.653412i \(0.773337\pi\)
\(744\) −396.613 + 545.891i −0.533082 + 0.733724i
\(745\) −61.3525 84.4445i −0.0823524 0.113348i
\(746\) 383.215 1179.41i 0.513693 1.58098i
\(747\) 461.768i 0.618163i
\(748\) −1077.28 825.566i −1.44021 1.10370i
\(749\) 609.216 0.813372
\(750\) 151.127 + 49.1042i 0.201503 + 0.0654722i
\(751\) 316.835 230.194i 0.421884 0.306517i −0.356512 0.934291i \(-0.616034\pi\)
0.778395 + 0.627774i \(0.216034\pi\)
\(752\) 225.305 + 163.694i 0.299608 + 0.217678i
\(753\) 532.370 + 1638.46i 0.706998 + 2.17592i
\(754\) 549.787 178.637i 0.729161 0.236919i
\(755\) −98.7132 + 135.867i −0.130746 + 0.179956i
\(756\) 536.441 + 738.347i 0.709578 + 0.976650i
\(757\) −73.9880 + 227.712i −0.0977385 + 0.300808i −0.987958 0.154724i \(-0.950551\pi\)
0.890219 + 0.455532i \(0.150551\pi\)
\(758\) 417.330i 0.550567i
\(759\) −22.9919 + 6.82596i −0.0302923 + 0.00899335i
\(760\) −85.5166 −0.112522
\(761\) 31.0228 + 10.0799i 0.0407659 + 0.0132456i 0.329329 0.944215i \(-0.393177\pi\)
−0.288563 + 0.957461i \(0.593177\pi\)
\(762\) −1733.57 + 1259.51i −2.27503 + 1.65291i
\(763\) 564.354 + 410.028i 0.739652 + 0.537389i
\(764\) 64.2574 + 197.764i 0.0841065 + 0.258853i
\(765\) −591.054 + 192.045i −0.772619 + 0.251039i
\(766\) −1000.07 + 1376.48i −1.30558 + 1.79697i
\(767\) −741.851 1021.07i −0.967211 1.33125i
\(768\) −27.1140 + 83.4482i −0.0353046 + 0.108657i
\(769\) 80.9870i 0.105315i −0.998613 0.0526573i \(-0.983231\pi\)
0.998613 0.0526573i \(-0.0167691\pi\)
\(770\) 465.967 + 677.090i 0.605153 + 0.879338i
\(771\) 942.435 1.22235
\(772\) 24.4721 + 7.95148i 0.0316997 + 0.0102998i
\(773\) −232.654 + 169.033i −0.300976 + 0.218672i −0.728015 0.685561i \(-0.759557\pi\)
0.427039 + 0.904233i \(0.359557\pi\)
\(774\) 1535.63 + 1115.70i 1.98402 + 1.44147i
\(775\) 49.8278 + 153.354i 0.0642939 + 0.197876i
\(776\) 266.347 86.5414i 0.343231 0.111522i
\(777\) 261.577 360.029i 0.336649 0.463358i
\(778\) 239.626 + 329.817i 0.308003 + 0.423929i
\(779\) −69.1844 + 212.928i −0.0888118 + 0.273335i
\(780\) 644.891i 0.826784i
\(781\) 14.7527 577.005i 0.0188895 0.738803i
\(782\) −32.7639 −0.0418976
\(783\) −240.433 78.1213i −0.307066 0.0997718i
\(784\) −442.750 + 321.677i −0.564732 + 0.410302i
\(785\) 66.9280 + 48.6260i 0.0852586 + 0.0619440i
\(786\) 426.457 + 1312.50i 0.542566 + 1.66985i
\(787\) −75.9709 + 24.6845i −0.0965323 + 0.0313653i −0.356885 0.934148i \(-0.616161\pi\)
0.260353 + 0.965514i \(0.416161\pi\)
\(788\) 344.978 474.821i 0.437789 0.602565i
\(789\) −174.479 240.150i −0.221140 0.304372i
\(790\) 270.902 833.750i 0.342914 1.05538i
\(791\) 97.3449i 0.123066i
\(792\) 614.120 + 15.7016i 0.775404 + 0.0198253i
\(793\) 857.155 1.08090
\(794\) −324.087 105.302i −0.408170 0.132623i
\(795\) −281.026 + 204.178i −0.353492 + 0.256827i
\(796\) 82.3150 + 59.8053i 0.103411 + 0.0751323i
\(797\) 267.409 + 823.002i 0.335520 + 1.03262i 0.966465 + 0.256797i \(0.0826672\pi\)
−0.630945 + 0.775827i \(0.717333\pi\)
\(798\) −1238.84 + 402.525i −1.55244 + 0.504417i
\(799\) 464.604 639.472i 0.581481 0.800341i
\(800\) 125.119 + 172.212i 0.156399 + 0.215264i
\(801\) 412.616 1269.90i 0.515127 1.58540i
\(802\) 96.0597i 0.119775i
\(803\) −714.083 + 491.425i −0.889269 + 0.611987i
\(804\) −1123.30 −1.39713
\(805\) 10.9017 + 3.54218i 0.0135425 + 0.00440022i
\(806\) −916.407 + 665.809i −1.13698 + 0.826065i
\(807\) 834.282 + 606.142i 1.03381 + 0.751105i
\(808\) 80.7407 + 248.494i 0.0999266 + 0.307543i
\(809\) −164.498 + 53.4487i −0.203335 + 0.0660676i −0.408914 0.912573i \(-0.634092\pi\)
0.205579 + 0.978641i \(0.434092\pi\)
\(810\) −161.803 + 222.703i −0.199757 + 0.274942i
\(811\) −508.782 700.279i −0.627352 0.863476i 0.370510 0.928828i \(-0.379183\pi\)
−0.997862 + 0.0653524i \(0.979183\pi\)
\(812\) −302.170 + 929.985i −0.372131 + 1.14530i
\(813\) 1298.08i 1.59665i
\(814\) −85.5166 288.046i −0.105057 0.353865i
\(815\) 105.113 0.128973
\(816\) −786.724 255.622i −0.964123 0.313263i
\(817\) −341.684 + 248.248i −0.418218 + 0.303853i
\(818\) 1142.03 + 829.733i 1.39612 + 1.01434i
\(819\) 471.994 + 1452.65i 0.576305 + 1.77368i
\(820\) −308.660 + 100.290i −0.376415 + 0.122305i
\(821\) −66.2686 + 91.2109i −0.0807169 + 0.111097i −0.847466 0.530849i \(-0.821873\pi\)
0.766749 + 0.641947i \(0.221873\pi\)
\(822\) −1749.77 2408.36i −2.12868 2.92987i
\(823\) −123.479 + 380.030i −0.150035 + 0.461761i −0.997624 0.0688924i \(-0.978053\pi\)
0.847589 + 0.530654i \(0.178053\pi\)
\(824\) 497.999i 0.604367i
\(825\) 154.496 201.601i 0.187268 0.244365i
\(826\) 3695.47 4.47394
\(827\) 698.603 + 226.990i 0.844744 + 0.274474i 0.699243 0.714884i \(-0.253521\pi\)
0.145501 + 0.989358i \(0.453521\pi\)
\(828\) 25.7639 18.7186i 0.0311159 0.0226070i
\(829\) 251.233 + 182.531i 0.303055 + 0.220183i 0.728911 0.684609i \(-0.240027\pi\)
−0.425856 + 0.904791i \(0.640027\pi\)
\(830\) 79.6681 + 245.193i 0.0959857 + 0.295414i
\(831\) −528.940 + 171.863i −0.636510 + 0.206815i
\(832\) −665.784 + 916.373i −0.800221 + 1.10141i
\(833\) 913.000 + 1256.64i 1.09604 + 1.50857i
\(834\) 35.2786 108.576i 0.0423005 0.130188i
\(835\) 106.456i 0.127493i
\(836\) −169.309 + 479.054i −0.202523 + 0.573031i
\(837\) 495.370 0.591840
\(838\) −137.711 44.7449i −0.164333 0.0533949i
\(839\) 534.323 388.208i 0.636857 0.462704i −0.221912 0.975067i \(-0.571230\pi\)
0.858769 + 0.512363i \(0.171230\pi\)
\(840\) −410.967 298.585i −0.489247 0.355459i
\(841\) 176.181 + 542.230i 0.209490 + 0.644745i
\(842\) 444.769 144.514i 0.528229 0.171632i
\(843\) 1100.73 1515.02i 1.30573 1.79718i
\(844\) −314.127 432.359i −0.372188 0.512273i
\(845\) 26.7761 82.4084i 0.0316877 0.0975248i
\(846\) 1329.88i 1.57197i
\(847\) 1268.59 341.598i 1.49774 0.403303i
\(848\) −267.240 −0.315141
\(849\) −2422.91 787.251i −2.85384 0.927269i
\(850\) 280.709 203.947i 0.330246 0.239938i
\(851\) −3.39010 2.46305i −0.00398366 0.00289430i
\(852\) 409.756 + 1261.10i 0.480934 + 1.48016i
\(853\) −464.919 + 151.061i −0.545040 + 0.177094i −0.568579 0.822629i \(-0.692507\pi\)
0.0235392 + 0.999723i \(0.492507\pi\)
\(854\) −1475.20 + 2030.43i −1.72740 + 2.37756i
\(855\) 136.750 + 188.220i 0.159942 + 0.220141i
\(856\) −78.5579 + 241.776i −0.0917732 + 0.282449i
\(857\) 433.345i 0.505653i −0.967512 0.252827i \(-0.918640\pi\)
0.967512 0.252827i \(-0.0813602\pi\)
\(858\) 1682.30 + 594.563i 1.96072 + 0.692964i
\(859\) −199.533 −0.232285 −0.116143 0.993233i \(-0.537053\pi\)
−0.116143 + 0.993233i \(0.537053\pi\)
\(860\) −582.267 189.190i −0.677054 0.219988i
\(861\) −1075.93 + 781.707i −1.24962 + 0.907905i
\(862\) −1288.74 936.323i −1.49506 1.08622i
\(863\) −295.364 909.036i −0.342252 1.05334i −0.963038 0.269364i \(-0.913186\pi\)
0.620786 0.783980i \(-0.286814\pi\)
\(864\) 621.944 202.082i 0.719843 0.233891i
\(865\) 250.902 345.337i 0.290060 0.399233i
\(866\) −753.088 1036.54i −0.869617 1.19692i
\(867\) −313.102 + 963.630i −0.361133 + 1.11145i
\(868\) 1916.07i 2.20746i
\(869\) −1112.21 852.335i −1.27987 0.980823i
\(870\) 523.050 0.601206
\(871\) −482.474 156.765i −0.553931 0.179983i
\(872\) −235.498 + 171.100i −0.270067 + 0.196215i
\(873\) −616.393 447.836i −0.706063 0.512985i
\(874\) 3.79024 + 11.6652i 0.00433666 + 0.0133469i
\(875\) −115.451 + 37.5123i −0.131944 + 0.0428711i
\(876\) 1170.52 1611.08i 1.33621 1.83914i
\(877\) 184.805 + 254.363i 0.210724 + 0.290037i 0.901276 0.433246i \(-0.142632\pi\)
−0.690551 + 0.723284i \(0.742632\pi\)
\(878\) 652.349 2007.73i 0.742995 2.28670i
\(879\) 1486.95i 1.69164i
\(880\) 187.322 55.6133i 0.212866 0.0631969i
\(881\) 330.178 0.374777 0.187388 0.982286i \(-0.439998\pi\)
0.187388 + 0.982286i \(0.439998\pi\)
\(882\) −2485.47 807.577i −2.81799 0.915620i
\(883\) 817.950 594.275i 0.926330 0.673018i −0.0187613 0.999824i \(-0.505972\pi\)
0.945092 + 0.326806i \(0.105972\pi\)
\(884\) 1139.22 + 827.691i 1.28871 + 0.936302i
\(885\) −352.886 1086.07i −0.398742 1.22720i
\(886\) 1693.83 550.358i 1.91177 0.621172i
\(887\) −135.458 + 186.442i −0.152715 + 0.210194i −0.878519 0.477708i \(-0.841468\pi\)
0.725804 + 0.687901i \(0.241468\pi\)
\(888\) 109.153 + 150.236i 0.122920 + 0.169185i
\(889\) 505.850 1556.85i 0.569010 1.75123i
\(890\) 745.491i 0.837631i
\(891\) 249.443 + 362.461i 0.279958 + 0.406803i
\(892\) 2075.99 2.32734
\(893\) −281.423 91.4398i −0.315143 0.102396i
\(894\) 536.745 389.968i 0.600385 0.436206i
\(895\) −467.157 339.409i −0.521963 0.379228i
\(896\) −453.507 1395.75i −0.506147 1.55776i
\(897\) 23.6656 7.68943i 0.0263831 0.00857239i
\(898\) −1538.07 + 2116.97i −1.71277 + 2.35742i
\(899\) 311.971 + 429.392i 0.347020 + 0.477633i
\(900\) −104.217 + 320.748i −0.115797 + 0.356387i
\(901\) 758.494i 0.841836i
\(902\) −22.9508 + 897.650i −0.0254444 + 0.995177i
\(903\) −2508.80 −2.77830
\(904\) −38.6327 12.5525i −0.0427353 0.0138856i
\(905\) 297.456 216.114i 0.328681 0.238800i
\(906\) −863.596 627.439i −0.953196 0.692537i
\(907\) 356.661 + 1097.69i 0.393232 + 1.21024i 0.930330 + 0.366723i \(0.119520\pi\)
−0.537099 + 0.843519i \(0.680480\pi\)
\(908\) 1084.74 352.453i 1.19465 0.388164i
\(909\) 417.818 575.078i 0.459646 0.632649i
\(910\) −501.246 689.906i −0.550820 0.758139i
\(911\) 187.421 576.824i 0.205732 0.633177i −0.793951 0.607982i \(-0.791979\pi\)
0.999683 0.0251948i \(-0.00802062\pi\)
\(912\) 309.674i 0.339555i
\(913\) 411.950 + 10.5326i 0.451204 + 0.0115363i
\(914\) −1254.78 −1.37284
\(915\) 737.599 + 239.660i 0.806119 + 0.261924i
\(916\) −275.320 + 200.032i −0.300568 + 0.218375i
\(917\) −852.914 619.678i −0.930113 0.675767i
\(918\) −329.399 1013.78i −0.358822 1.10434i
\(919\) −1094.16 + 355.514i −1.19060 + 0.386849i −0.836294 0.548281i \(-0.815282\pi\)
−0.354304 + 0.935130i \(0.615282\pi\)
\(920\) −2.81153 + 3.86974i −0.00305601 + 0.00420624i
\(921\) −271.783 374.077i −0.295096 0.406164i
\(922\) −686.448 + 2112.67i −0.744520 + 2.29140i
\(923\) 598.848i 0.648806i
\(924\) −2486.29 + 1711.04i −2.69079 + 1.85178i
\(925\) 44.3769 0.0479751
\(926\) 2270.42 + 737.706i 2.45186 + 0.796658i
\(927\) −1096.09 + 796.353i −1.18240 + 0.859065i
\(928\) 566.851 + 411.841i 0.610831 + 0.443795i
\(929\) 444.730 + 1368.74i 0.478719 + 1.47335i 0.840876 + 0.541228i \(0.182040\pi\)
−0.362157 + 0.932117i \(0.617960\pi\)
\(930\) −974.746 + 316.714i −1.04811 + 0.340553i
\(931\) 341.790 470.434i 0.367121 0.505299i
\(932\) 891.107 + 1226.50i 0.956123 + 1.31599i
\(933\) −281.269 + 865.658i −0.301468 + 0.927822i
\(934\) 1438.02i 1.53963i
\(935\) −157.844 531.667i −0.168818 0.568628i
\(936\) −637.368 −0.680948
\(937\) 467.559 + 151.919i 0.498996 + 0.162133i 0.547692 0.836680i \(-0.315507\pi\)
−0.0486963 + 0.998814i \(0.515507\pi\)
\(938\) 1201.70 873.089i 1.28113 0.930799i
\(939\) 907.834 + 659.580i 0.966810 + 0.702428i
\(940\) −132.551 407.950i −0.141012 0.433990i
\(941\) 1702.39 553.141i 1.80913 0.587822i 0.809132 0.587628i \(-0.199938\pi\)
1.00000 0.000194881i \(-6.20325e-5\pi\)
\(942\) −309.076 + 425.406i −0.328106 + 0.451599i
\(943\) 7.36068 + 10.1311i 0.00780560 + 0.0107435i
\(944\) 271.486 835.547i 0.287591 0.885113i
\(945\) 372.933i 0.394638i
\(946\) −1030.36 + 1344.51i −1.08917 + 1.42125i
\(947\) −1111.85 −1.17407 −0.587037 0.809560i \(-0.699706\pi\)
−0.587037 + 0.809560i \(0.699706\pi\)
\(948\) 3061.55 + 994.756i 3.22948 + 1.04932i
\(949\) 727.599 528.631i 0.766700 0.557040i
\(950\) −105.086 76.3495i −0.110617 0.0803679i
\(951\) −807.187 2484.27i −0.848777 2.61227i
\(952\) −1054.92 + 342.764i −1.10811 + 0.360046i
\(953\) 175.776 241.935i 0.184445 0.253867i −0.706775 0.707439i \(-0.749850\pi\)
0.891220 + 0.453572i \(0.149850\pi\)
\(954\) −750.102 1032.43i −0.786271 1.08221i
\(955\) −26.2574 + 80.8118i −0.0274946 + 0.0846197i
\(956\) 811.977i 0.849348i
\(957\) 278.589 788.257i 0.291106 0.823675i
\(958\) −26.7376 −0.0279098
\(959\) 2162.84 + 702.749i 2.25531 + 0.732794i
\(960\) −829.138 + 602.404i −0.863686 + 0.627504i
\(961\) −63.9224 46.4423i −0.0665165 0.0483271i
\(962\) 96.3344 + 296.487i 0.100140 + 0.308198i
\(963\) 657.767 213.722i 0.683040 0.221933i
\(964\) 1331.38 1832.48i 1.38109 1.90091i
\(965\) 6.18034 + 8.50651i 0.00640450 + 0.00881503i
\(966\) −22.5147 + 69.2931i −0.0233072 + 0.0717320i
\(967\) 246.770i 0.255191i −0.991826 0.127596i \(-0.959274\pi\)
0.991826 0.127596i \(-0.0407259\pi\)
\(968\) −28.0153 + 547.507i −0.0289414 + 0.565606i
\(969\) 878.933 0.907052
\(970\) 404.562 + 131.450i 0.417074 + 0.135516i
\(971\) −161.120 + 117.060i −0.165932 + 0.120556i −0.667652 0.744473i \(-0.732701\pi\)
0.501720 + 0.865030i \(0.332701\pi\)
\(972\) −1429.79 1038.81i −1.47098 1.06873i
\(973\) 26.9505 + 82.9451i 0.0276983 + 0.0852467i
\(974\) 2336.60 759.209i 2.39898 0.779475i
\(975\) −154.894 + 213.193i −0.158865 + 0.218659i
\(976\) 350.707 + 482.707i 0.359331 + 0.494577i
\(977\) −72.9462 + 224.505i −0.0746635 + 0.229790i −0.981423 0.191858i \(-0.938549\pi\)
0.906759 + 0.421649i \(0.138549\pi\)
\(978\) 668.119i 0.683149i
\(979\) 1123.49 + 397.066i 1.14759 + 0.405584i
\(980\) 842.925 0.860127
\(981\) 753.174 + 244.721i 0.767762 + 0.249461i
\(982\) −370.810 + 269.409i −0.377607 + 0.274347i
\(983\) −301.034 218.714i −0.306241 0.222497i 0.424041 0.905643i \(-0.360611\pi\)
−0.730282 + 0.683146i \(0.760611\pi\)
\(984\) −171.492 527.798i −0.174280 0.536380i
\(985\) 228.090 74.1110i 0.231564 0.0752396i
\(986\) 671.312 923.982i 0.680844 0.937101i
\(987\) −1033.17 1422.03i −1.04678 1.44076i
\(988\) 162.900 501.354i 0.164878 0.507443i
\(989\) 23.6233i 0.0238861i
\(990\) 740.636 + 567.583i 0.748117 + 0.573316i
\(991\) −759.033 −0.765927 −0.382963 0.923764i \(-0.625096\pi\)
−0.382963 + 0.923764i \(0.625096\pi\)
\(992\) −1305.75 424.264i −1.31628 0.427685i
\(993\) 539.311 391.832i 0.543113 0.394594i
\(994\) −1418.55 1030.64i −1.42712 1.03686i
\(995\) 12.8479 + 39.5417i 0.0129125 + 0.0397404i
\(996\) −900.355 + 292.543i −0.903971 + 0.293718i
\(997\) −415.743 + 572.222i −0.416994 + 0.573944i −0.964907 0.262592i \(-0.915423\pi\)
0.547913 + 0.836536i \(0.315423\pi\)
\(998\) −1102.45 1517.39i −1.10466 1.52043i
\(999\) 42.1289 129.659i 0.0421711 0.129789i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.i.b.46.1 yes 4
5.2 odd 4 275.3.q.a.24.1 8
5.3 odd 4 275.3.q.a.24.2 8
5.4 even 2 275.3.x.a.101.1 4
11.4 even 5 605.3.c.b.241.4 4
11.6 odd 10 inner 55.3.i.b.6.1 4
11.7 odd 10 605.3.c.b.241.1 4
55.17 even 20 275.3.q.a.149.2 8
55.28 even 20 275.3.q.a.149.1 8
55.39 odd 10 275.3.x.a.226.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.b.6.1 4 11.6 odd 10 inner
55.3.i.b.46.1 yes 4 1.1 even 1 trivial
275.3.q.a.24.1 8 5.2 odd 4
275.3.q.a.24.2 8 5.3 odd 4
275.3.q.a.149.1 8 55.28 even 20
275.3.q.a.149.2 8 55.17 even 20
275.3.x.a.101.1 4 5.4 even 2
275.3.x.a.226.1 4 55.39 odd 10
605.3.c.b.241.1 4 11.7 odd 10
605.3.c.b.241.4 4 11.4 even 5