Properties

Label 275.3.x.a.101.1
Level $275$
Weight $3$
Character 275.101
Analytic conductor $7.493$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(51,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.x (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-5,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 101.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 275.101
Dual form 275.3.x.a.226.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.92705 - 0.951057i) q^{2} +(3.73607 - 2.71441i) q^{3} +(4.42705 + 3.21644i) q^{4} +(-13.5172 + 4.39201i) q^{6} +(-6.38197 + 8.78402i) q^{7} +(-2.66312 - 3.66547i) q^{8} +(3.80902 - 11.7229i) q^{9} +(10.3713 + 3.66547i) q^{11} +25.2705 q^{12} +(10.8541 + 3.52671i) q^{13} +(27.0344 - 19.6417i) q^{14} +(-2.45492 - 7.55545i) q^{16} +(21.4443 - 6.96767i) q^{17} +(-22.2984 + 30.6911i) q^{18} +(4.96149 + 6.82891i) q^{19} +50.1410i q^{21} +(-26.8713 - 20.5927i) q^{22} -0.472136 q^{23} +(-19.8992 - 6.46564i) q^{24} +(-28.4164 - 20.6457i) q^{26} +(-4.74671 - 14.6089i) q^{27} +(-56.5066 + 18.3601i) q^{28} +(-9.67376 + 13.3148i) q^{29} +(9.96556 - 30.6708i) q^{31} +42.5730i q^{32} +(48.6976 - 14.4576i) q^{33} -69.3951 q^{34} +(54.5689 - 39.6466i) q^{36} +(7.18034 + 5.21682i) q^{37} +(-8.02786 - 24.7072i) q^{38} +(50.1246 - 16.2865i) q^{39} +(15.5902 + 21.4580i) q^{41} +(47.6869 - 146.765i) q^{42} -50.0350i q^{43} +(34.1246 + 49.5860i) q^{44} +(1.38197 + 0.449028i) q^{46} +(28.3607 - 20.6052i) q^{47} +(-29.6803 - 21.5640i) q^{48} +(-21.2877 - 65.5169i) q^{49} +(61.2041 - 84.2403i) q^{51} +(36.7082 + 50.5245i) q^{52} +(-10.3951 + 31.9929i) q^{53} +47.2753i q^{54} +49.1935 q^{56} +(37.0729 + 12.0457i) q^{57} +(40.9787 - 29.7728i) q^{58} +(89.4681 + 65.0024i) q^{59} +(-71.4296 + 23.2089i) q^{61} +(-58.3394 + 80.2973i) q^{62} +(78.6656 + 108.274i) q^{63} +(30.6697 - 94.3916i) q^{64} +(-156.290 - 3.99598i) q^{66} -44.4508 q^{67} +(117.346 + 38.1280i) q^{68} +(-1.76393 + 1.28157i) q^{69} +(-16.2148 - 49.9040i) q^{71} +(-53.1140 + 17.2578i) q^{72} +(46.3197 - 63.7535i) q^{73} +(-16.0557 - 22.0988i) q^{74} +46.1903i q^{76} +(-98.3870 + 67.7090i) q^{77} -162.207 q^{78} +(-121.151 - 39.3643i) q^{79} +(32.3607 + 23.5114i) q^{81} +(-25.2254 - 77.6359i) q^{82} +(-35.6287 + 11.5765i) q^{83} +(-161.276 + 221.977i) q^{84} +(-47.5861 + 146.455i) q^{86} +76.0035i q^{87} +(-14.1844 - 47.7773i) q^{88} +108.326 q^{89} +(-100.249 + 72.8353i) q^{91} +(-2.09017 - 1.51860i) q^{92} +(-46.0213 - 141.639i) q^{93} +(-102.610 + 33.3400i) q^{94} +(115.561 + 159.056i) q^{96} +(-19.1008 + 58.7863i) q^{97} +212.017i q^{98} +(82.4746 - 107.621i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{2} + 6 q^{3} + 11 q^{4} - 25 q^{6} - 30 q^{7} + 5 q^{8} + 13 q^{9} - q^{11} + 34 q^{12} + 30 q^{13} + 50 q^{14} - 21 q^{16} + 50 q^{17} - 40 q^{18} - 45 q^{19} - 65 q^{22} + 16 q^{23} - 55 q^{24}+ \cdots + 113 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.92705 0.951057i −1.46353 0.475528i −0.534381 0.845244i \(-0.679455\pi\)
−0.929145 + 0.369716i \(0.879455\pi\)
\(3\) 3.73607 2.71441i 1.24536 0.904804i 0.247413 0.968910i \(-0.420420\pi\)
0.997943 + 0.0641060i \(0.0204196\pi\)
\(4\) 4.42705 + 3.21644i 1.10676 + 0.804110i
\(5\) 0 0
\(6\) −13.5172 + 4.39201i −2.25287 + 0.732002i
\(7\) −6.38197 + 8.78402i −0.911709 + 1.25486i 0.0548701 + 0.998494i \(0.482526\pi\)
−0.966580 + 0.256367i \(0.917474\pi\)
\(8\) −2.66312 3.66547i −0.332890 0.458184i
\(9\) 3.80902 11.7229i 0.423224 1.30255i
\(10\) 0 0
\(11\) 10.3713 + 3.66547i 0.942848 + 0.333224i
\(12\) 25.2705 2.10588
\(13\) 10.8541 + 3.52671i 0.834931 + 0.271286i 0.695121 0.718893i \(-0.255351\pi\)
0.139810 + 0.990178i \(0.455351\pi\)
\(14\) 27.0344 19.6417i 1.93103 1.40298i
\(15\) 0 0
\(16\) −2.45492 7.55545i −0.153432 0.472216i
\(17\) 21.4443 6.96767i 1.26143 0.409863i 0.399425 0.916766i \(-0.369210\pi\)
0.862003 + 0.506903i \(0.169210\pi\)
\(18\) −22.2984 + 30.6911i −1.23880 + 1.70506i
\(19\) 4.96149 + 6.82891i 0.261131 + 0.359416i 0.919371 0.393392i \(-0.128699\pi\)
−0.658239 + 0.752809i \(0.728699\pi\)
\(20\) 0 0
\(21\) 50.1410i 2.38767i
\(22\) −26.8713 20.5927i −1.22142 0.936033i
\(23\) −0.472136 −0.0205277 −0.0102638 0.999947i \(-0.503267\pi\)
−0.0102638 + 0.999947i \(0.503267\pi\)
\(24\) −19.8992 6.46564i −0.829133 0.269402i
\(25\) 0 0
\(26\) −28.4164 20.6457i −1.09294 0.794066i
\(27\) −4.74671 14.6089i −0.175804 0.541069i
\(28\) −56.5066 + 18.3601i −2.01809 + 0.655718i
\(29\) −9.67376 + 13.3148i −0.333578 + 0.459131i −0.942552 0.334059i \(-0.891581\pi\)
0.608974 + 0.793190i \(0.291581\pi\)
\(30\) 0 0
\(31\) 9.96556 30.6708i 0.321470 0.989382i −0.651539 0.758615i \(-0.725876\pi\)
0.973009 0.230767i \(-0.0741235\pi\)
\(32\) 42.5730i 1.33041i
\(33\) 48.6976 14.4576i 1.47568 0.438109i
\(34\) −69.3951 −2.04103
\(35\) 0 0
\(36\) 54.5689 39.6466i 1.51580 1.10129i
\(37\) 7.18034 + 5.21682i 0.194063 + 0.140995i 0.680574 0.732679i \(-0.261731\pi\)
−0.486511 + 0.873675i \(0.661731\pi\)
\(38\) −8.02786 24.7072i −0.211260 0.650190i
\(39\) 50.1246 16.2865i 1.28525 0.417602i
\(40\) 0 0
\(41\) 15.5902 + 21.4580i 0.380248 + 0.523367i 0.955650 0.294504i \(-0.0951545\pi\)
−0.575402 + 0.817871i \(0.695154\pi\)
\(42\) 47.6869 146.765i 1.13540 3.49441i
\(43\) 50.0350i 1.16360i −0.813330 0.581802i \(-0.802348\pi\)
0.813330 0.581802i \(-0.197652\pi\)
\(44\) 34.1246 + 49.5860i 0.775559 + 1.12695i
\(45\) 0 0
\(46\) 1.38197 + 0.449028i 0.0300427 + 0.00976148i
\(47\) 28.3607 20.6052i 0.603419 0.438409i −0.243672 0.969858i \(-0.578352\pi\)
0.847091 + 0.531448i \(0.178352\pi\)
\(48\) −29.6803 21.5640i −0.618340 0.449251i
\(49\) −21.2877 65.5169i −0.434443 1.33708i
\(50\) 0 0
\(51\) 61.2041 84.2403i 1.20008 1.65177i
\(52\) 36.7082 + 50.5245i 0.705927 + 0.971625i
\(53\) −10.3951 + 31.9929i −0.196134 + 0.603640i 0.803827 + 0.594863i \(0.202794\pi\)
−0.999961 + 0.00877654i \(0.997206\pi\)
\(54\) 47.2753i 0.875469i
\(55\) 0 0
\(56\) 49.1935 0.878455
\(57\) 37.0729 + 12.0457i 0.650403 + 0.211329i
\(58\) 40.9787 29.7728i 0.706530 0.513324i
\(59\) 89.4681 + 65.0024i 1.51641 + 1.10173i 0.963232 + 0.268670i \(0.0865842\pi\)
0.553176 + 0.833065i \(0.313416\pi\)
\(60\) 0 0
\(61\) −71.4296 + 23.2089i −1.17098 + 0.380473i −0.829007 0.559238i \(-0.811094\pi\)
−0.341969 + 0.939711i \(0.611094\pi\)
\(62\) −58.3394 + 80.2973i −0.940958 + 1.29512i
\(63\) 78.6656 + 108.274i 1.24866 + 1.71863i
\(64\) 30.6697 94.3916i 0.479214 1.47487i
\(65\) 0 0
\(66\) −156.290 3.99598i −2.36803 0.0605452i
\(67\) −44.4508 −0.663446 −0.331723 0.943377i \(-0.607630\pi\)
−0.331723 + 0.943377i \(0.607630\pi\)
\(68\) 117.346 + 38.1280i 1.72568 + 0.560706i
\(69\) −1.76393 + 1.28157i −0.0255642 + 0.0185735i
\(70\) 0 0
\(71\) −16.2148 49.9040i −0.228377 0.702873i −0.997931 0.0642910i \(-0.979521\pi\)
0.769554 0.638582i \(-0.220479\pi\)
\(72\) −53.1140 + 17.2578i −0.737694 + 0.239691i
\(73\) 46.3197 63.7535i 0.634516 0.873336i −0.363792 0.931480i \(-0.618518\pi\)
0.998308 + 0.0581439i \(0.0185182\pi\)
\(74\) −16.0557 22.0988i −0.216969 0.298633i
\(75\) 0 0
\(76\) 46.1903i 0.607767i
\(77\) −98.3870 + 67.7090i −1.27775 + 0.879338i
\(78\) −162.207 −2.07957
\(79\) −121.151 39.3643i −1.53356 0.498283i −0.583966 0.811778i \(-0.698500\pi\)
−0.949590 + 0.313495i \(0.898500\pi\)
\(80\) 0 0
\(81\) 32.3607 + 23.5114i 0.399515 + 0.290264i
\(82\) −25.2254 77.6359i −0.307627 0.946779i
\(83\) −35.6287 + 11.5765i −0.429261 + 0.139475i −0.515676 0.856784i \(-0.672459\pi\)
0.0864145 + 0.996259i \(0.472459\pi\)
\(84\) −161.276 + 221.977i −1.91995 + 2.64258i
\(85\) 0 0
\(86\) −47.5861 + 146.455i −0.553327 + 1.70296i
\(87\) 76.0035i 0.873604i
\(88\) −14.1844 47.7773i −0.161186 0.542924i
\(89\) 108.326 1.21715 0.608574 0.793497i \(-0.291742\pi\)
0.608574 + 0.793497i \(0.291742\pi\)
\(90\) 0 0
\(91\) −100.249 + 72.8353i −1.10164 + 0.800388i
\(92\) −2.09017 1.51860i −0.0227192 0.0165065i
\(93\) −46.0213 141.639i −0.494853 1.52300i
\(94\) −102.610 + 33.3400i −1.09159 + 0.354681i
\(95\) 0 0
\(96\) 115.561 + 159.056i 1.20376 + 1.65683i
\(97\) −19.1008 + 58.7863i −0.196916 + 0.606044i 0.803033 + 0.595934i \(0.203218\pi\)
−0.999949 + 0.0101097i \(0.996782\pi\)
\(98\) 212.017i 2.16344i
\(99\) 82.4746 107.621i 0.833077 1.08708i
\(100\) 0 0
\(101\) 54.8460 + 17.8205i 0.543029 + 0.176441i 0.567671 0.823255i \(-0.307845\pi\)
−0.0246418 + 0.999696i \(0.507845\pi\)
\(102\) −259.265 + 188.367i −2.54181 + 1.84673i
\(103\) 88.9230 + 64.6063i 0.863330 + 0.627246i 0.928789 0.370609i \(-0.120851\pi\)
−0.0654589 + 0.997855i \(0.520851\pi\)
\(104\) −15.9787 49.1774i −0.153641 0.472860i
\(105\) 0 0
\(106\) 60.8541 83.7585i 0.574095 0.790174i
\(107\) −32.9803 45.3934i −0.308227 0.424238i 0.626600 0.779341i \(-0.284446\pi\)
−0.934827 + 0.355103i \(0.884446\pi\)
\(108\) 25.9746 79.9417i 0.240506 0.740201i
\(109\) 64.2478i 0.589430i 0.955585 + 0.294715i \(0.0952247\pi\)
−0.955585 + 0.294715i \(0.904775\pi\)
\(110\) 0 0
\(111\) 40.9868 0.369251
\(112\) 82.0344 + 26.6546i 0.732450 + 0.237988i
\(113\) 7.25329 5.26982i 0.0641884 0.0466356i −0.555228 0.831698i \(-0.687369\pi\)
0.619417 + 0.785062i \(0.287369\pi\)
\(114\) −97.0582 70.5169i −0.851388 0.618570i
\(115\) 0 0
\(116\) −85.6525 + 27.8302i −0.738383 + 0.239915i
\(117\) 82.6869 113.809i 0.706726 0.972725i
\(118\) −200.057 275.354i −1.69540 2.33351i
\(119\) −75.6525 + 232.834i −0.635735 + 1.95659i
\(120\) 0 0
\(121\) 94.1287 + 76.0315i 0.777923 + 0.628360i
\(122\) 231.151 1.89468
\(123\) 116.492 + 37.8505i 0.947088 + 0.307728i
\(124\) 142.769 103.728i 1.15136 0.836514i
\(125\) 0 0
\(126\) −127.284 391.739i −1.01019 3.10904i
\(127\) −143.387 + 46.5893i −1.12903 + 0.366845i −0.813208 0.581973i \(-0.802281\pi\)
−0.315824 + 0.948818i \(0.602281\pi\)
\(128\) −79.4483 + 109.351i −0.620690 + 0.854307i
\(129\) −135.816 186.934i −1.05283 1.44910i
\(130\) 0 0
\(131\) 97.0983i 0.741208i −0.928791 0.370604i \(-0.879151\pi\)
0.928791 0.370604i \(-0.120849\pi\)
\(132\) 262.089 + 92.6283i 1.98552 + 0.701729i
\(133\) −91.6494 −0.689093
\(134\) 130.110 + 42.2753i 0.970969 + 0.315487i
\(135\) 0 0
\(136\) −82.6484 60.0476i −0.607709 0.441526i
\(137\) −64.7239 199.200i −0.472437 1.45401i −0.849383 0.527777i \(-0.823026\pi\)
0.376946 0.926235i \(-0.376974\pi\)
\(138\) 6.38197 2.07363i 0.0462461 0.0150263i
\(139\) −4.72136 + 6.49839i −0.0339666 + 0.0467510i −0.825663 0.564164i \(-0.809198\pi\)
0.791696 + 0.610915i \(0.209198\pi\)
\(140\) 0 0
\(141\) 50.0263 153.965i 0.354797 1.09195i
\(142\) 161.493i 1.13727i
\(143\) 99.6443 + 76.3620i 0.696814 + 0.534000i
\(144\) −97.9230 −0.680021
\(145\) 0 0
\(146\) −196.213 + 142.557i −1.34393 + 0.976420i
\(147\) −257.372 186.992i −1.75083 1.27205i
\(148\) 15.0081 + 46.1903i 0.101406 + 0.312096i
\(149\) −44.3951 + 14.4248i −0.297954 + 0.0968111i −0.454179 0.890910i \(-0.650067\pi\)
0.156225 + 0.987721i \(0.450067\pi\)
\(150\) 0 0
\(151\) 44.1459 + 60.7616i 0.292357 + 0.402395i 0.929778 0.368121i \(-0.119999\pi\)
−0.637421 + 0.770516i \(0.719999\pi\)
\(152\) 11.8181 36.3724i 0.0777507 0.239292i
\(153\) 277.930i 1.81654i
\(154\) 352.379 104.616i 2.28817 0.679326i
\(155\) 0 0
\(156\) 274.289 + 89.1218i 1.75826 + 0.571294i
\(157\) −29.9311 + 21.7462i −0.190644 + 0.138511i −0.679013 0.734126i \(-0.737592\pi\)
0.488369 + 0.872637i \(0.337592\pi\)
\(158\) 317.177 + 230.443i 2.00745 + 1.45850i
\(159\) 48.0050 + 147.744i 0.301918 + 0.929209i
\(160\) 0 0
\(161\) 3.01316 4.14725i 0.0187153 0.0257593i
\(162\) −72.3607 99.5959i −0.446671 0.614790i
\(163\) −14.5263 + 44.7074i −0.0891185 + 0.274278i −0.985676 0.168648i \(-0.946060\pi\)
0.896558 + 0.442927i \(0.146060\pi\)
\(164\) 145.141i 0.885004i
\(165\) 0 0
\(166\) 115.297 0.694559
\(167\) −45.2786 14.7119i −0.271130 0.0880953i 0.170297 0.985393i \(-0.445527\pi\)
−0.441426 + 0.897297i \(0.645527\pi\)
\(168\) 183.790 133.531i 1.09399 0.794830i
\(169\) −31.3500 22.7771i −0.185503 0.134776i
\(170\) 0 0
\(171\) 98.9534 32.1519i 0.578675 0.188023i
\(172\) 160.935 221.507i 0.935666 1.28783i
\(173\) 112.207 + 154.439i 0.648593 + 0.892712i 0.999037 0.0438716i \(-0.0139692\pi\)
−0.350444 + 0.936584i \(0.613969\pi\)
\(174\) 72.2837 222.466i 0.415423 1.27854i
\(175\) 0 0
\(176\) 2.23356 87.3584i 0.0126907 0.496355i
\(177\) 510.702 2.88532
\(178\) −317.076 103.024i −1.78133 0.578789i
\(179\) −208.919 + 151.788i −1.16714 + 0.847980i −0.990664 0.136324i \(-0.956471\pi\)
−0.176480 + 0.984304i \(0.556471\pi\)
\(180\) 0 0
\(181\) −50.8115 156.382i −0.280727 0.863988i −0.987647 0.156695i \(-0.949916\pi\)
0.706920 0.707293i \(-0.250084\pi\)
\(182\) 362.705 117.850i 1.99289 0.647528i
\(183\) −203.867 + 280.599i −1.11403 + 1.53333i
\(184\) 1.25735 + 1.73060i 0.00683345 + 0.00940543i
\(185\) 0 0
\(186\) 458.353i 2.46426i
\(187\) 247.945 + 6.33939i 1.32591 + 0.0339005i
\(188\) 191.830 1.02037
\(189\) 158.618 + 51.5381i 0.839249 + 0.272688i
\(190\) 0 0
\(191\) 30.7426 + 22.3358i 0.160956 + 0.116942i 0.665348 0.746533i \(-0.268283\pi\)
−0.504392 + 0.863475i \(0.668283\pi\)
\(192\) −141.634 435.904i −0.737676 2.27033i
\(193\) −4.47214 + 1.45309i −0.0231717 + 0.00752894i −0.320580 0.947221i \(-0.603878\pi\)
0.297408 + 0.954750i \(0.403878\pi\)
\(194\) 111.818 153.904i 0.576382 0.793322i
\(195\) 0 0
\(196\) 116.489 358.517i 0.594333 1.82917i
\(197\) 107.254i 0.544439i 0.962235 + 0.272219i \(0.0877576\pi\)
−0.962235 + 0.272219i \(0.912242\pi\)
\(198\) −343.761 + 236.573i −1.73617 + 1.19481i
\(199\) 18.5936 0.0934354 0.0467177 0.998908i \(-0.485124\pi\)
0.0467177 + 0.998908i \(0.485124\pi\)
\(200\) 0 0
\(201\) −166.071 + 120.658i −0.826226 + 0.600288i
\(202\) −143.589 104.323i −0.710835 0.516452i
\(203\) −55.2198 169.949i −0.272019 0.837188i
\(204\) 541.908 176.076i 2.65641 0.863120i
\(205\) 0 0
\(206\) −198.838 273.677i −0.965232 1.32853i
\(207\) −1.79837 + 5.53483i −0.00868780 + 0.0267383i
\(208\) 90.6654i 0.435891i
\(209\) 26.4261 + 89.0110i 0.126441 + 0.425890i
\(210\) 0 0
\(211\) −92.8829 30.1795i −0.440203 0.143031i 0.0805260 0.996753i \(-0.474340\pi\)
−0.520729 + 0.853722i \(0.674340\pi\)
\(212\) −148.923 + 108.199i −0.702467 + 0.510372i
\(213\) −196.039 142.431i −0.920373 0.668690i
\(214\) 53.3632 + 164.235i 0.249361 + 0.767453i
\(215\) 0 0
\(216\) −40.9073 + 56.3041i −0.189386 + 0.260667i
\(217\) 205.813 + 283.278i 0.948449 + 1.30543i
\(218\) 61.1033 188.057i 0.280290 0.862645i
\(219\) 363.918i 1.66173i
\(220\) 0 0
\(221\) 257.331 1.16439
\(222\) −119.971 38.9808i −0.540408 0.175589i
\(223\) −306.920 + 222.990i −1.37632 + 0.999957i −0.379109 + 0.925352i \(0.623770\pi\)
−0.997213 + 0.0746047i \(0.976230\pi\)
\(224\) −373.962 271.700i −1.66948 1.21294i
\(225\) 0 0
\(226\) −26.2426 + 8.52675i −0.116118 + 0.0377290i
\(227\) −122.513 + 168.624i −0.539703 + 0.742837i −0.988570 0.150761i \(-0.951828\pi\)
0.448867 + 0.893598i \(0.351828\pi\)
\(228\) 125.379 + 172.570i 0.549910 + 0.756886i
\(229\) −19.2179 + 59.1466i −0.0839209 + 0.258282i −0.984208 0.177014i \(-0.943356\pi\)
0.900287 + 0.435296i \(0.143356\pi\)
\(230\) 0 0
\(231\) −183.790 + 520.028i −0.795629 + 2.25121i
\(232\) 74.5673 0.321411
\(233\) −263.488 85.6124i −1.13085 0.367435i −0.316950 0.948442i \(-0.602659\pi\)
−0.813899 + 0.581007i \(0.802659\pi\)
\(234\) −350.267 + 254.484i −1.49687 + 1.08754i
\(235\) 0 0
\(236\) 187.003 + 575.538i 0.792388 + 2.43872i
\(237\) −559.479 + 181.786i −2.36067 + 0.767029i
\(238\) 442.877 609.568i 1.86083 2.56121i
\(239\) −87.2179 120.045i −0.364928 0.502281i 0.586585 0.809888i \(-0.300472\pi\)
−0.951514 + 0.307607i \(0.900472\pi\)
\(240\) 0 0
\(241\) 413.928i 1.71754i −0.512358 0.858772i \(-0.671228\pi\)
0.512358 0.858772i \(-0.328772\pi\)
\(242\) −203.209 312.070i −0.839707 1.28954i
\(243\) 322.967 1.32908
\(244\) −390.872 127.002i −1.60194 0.520500i
\(245\) 0 0
\(246\) −304.980 221.581i −1.23975 0.900735i
\(247\) 29.7690 + 91.6194i 0.120522 + 0.370929i
\(248\) −138.962 + 45.1516i −0.560332 + 0.182063i
\(249\) −101.688 + 139.961i −0.408385 + 0.562094i
\(250\) 0 0
\(251\) 115.281 354.797i 0.459285 1.41353i −0.406745 0.913542i \(-0.633336\pi\)
0.866030 0.499992i \(-0.166664\pi\)
\(252\) 732.358i 2.90618i
\(253\) −4.89667 1.73060i −0.0193544 0.00684031i
\(254\) 464.010 1.82681
\(255\) 0 0
\(256\) 15.3713 11.1679i 0.0600442 0.0436247i
\(257\) 165.102 + 119.953i 0.642419 + 0.466745i 0.860681 0.509145i \(-0.170038\pi\)
−0.218261 + 0.975890i \(0.570038\pi\)
\(258\) 219.754 + 676.334i 0.851761 + 2.62145i
\(259\) −91.6494 + 29.7787i −0.353859 + 0.114976i
\(260\) 0 0
\(261\) 119.241 + 164.121i 0.456862 + 0.628817i
\(262\) −92.3460 + 284.212i −0.352466 + 1.08478i
\(263\) 64.2788i 0.244406i −0.992505 0.122203i \(-0.961004\pi\)
0.992505 0.122203i \(-0.0389959\pi\)
\(264\) −182.681 139.997i −0.691975 0.530292i
\(265\) 0 0
\(266\) 268.262 + 87.1637i 1.00851 + 0.327683i
\(267\) 404.714 294.042i 1.51578 1.10128i
\(268\) −196.786 142.974i −0.734277 0.533483i
\(269\) −69.0050 212.376i −0.256524 0.789500i −0.993526 0.113609i \(-0.963759\pi\)
0.737001 0.675891i \(-0.236241\pi\)
\(270\) 0 0
\(271\) −165.220 + 227.406i −0.609667 + 0.839135i −0.996550 0.0829940i \(-0.973552\pi\)
0.386883 + 0.922129i \(0.373552\pi\)
\(272\) −105.288 144.916i −0.387087 0.532780i
\(273\) −176.833 + 544.235i −0.647739 + 1.99354i
\(274\) 644.623i 2.35264i
\(275\) 0 0
\(276\) −11.9311 −0.0432287
\(277\) −114.538 37.2156i −0.413494 0.134352i 0.0948799 0.995489i \(-0.469753\pi\)
−0.508374 + 0.861136i \(0.669753\pi\)
\(278\) 20.0000 14.5309i 0.0719424 0.0522692i
\(279\) −321.594 233.651i −1.15267 0.837460i
\(280\) 0 0
\(281\) −385.665 + 125.310i −1.37247 + 0.445944i −0.900188 0.435502i \(-0.856571\pi\)
−0.472286 + 0.881446i \(0.656571\pi\)
\(282\) −292.859 + 403.086i −1.03851 + 1.42938i
\(283\) −324.259 446.305i −1.14579 1.57705i −0.753834 0.657065i \(-0.771798\pi\)
−0.391959 0.919983i \(-0.628202\pi\)
\(284\) 88.7295 273.081i 0.312428 0.961554i
\(285\) 0 0
\(286\) −219.039 318.283i −0.765872 1.11288i
\(287\) −287.984 −1.00343
\(288\) 499.081 + 162.161i 1.73292 + 0.563060i
\(289\) 177.503 128.963i 0.614196 0.446239i
\(290\) 0 0
\(291\) 88.2082 + 271.477i 0.303121 + 0.932910i
\(292\) 410.119 133.256i 1.40452 0.456355i
\(293\) 189.259 260.493i 0.645936 0.889055i −0.352979 0.935631i \(-0.614831\pi\)
0.998915 + 0.0465766i \(0.0148312\pi\)
\(294\) 575.502 + 792.110i 1.95749 + 2.69425i
\(295\) 0 0
\(296\) 40.2123i 0.135852i
\(297\) 4.31870 168.912i 0.0145411 0.568728i
\(298\) 143.666 0.482099
\(299\) −5.12461 1.66509i −0.0171392 0.00556885i
\(300\) 0 0
\(301\) 439.508 + 319.322i 1.46016 + 1.06087i
\(302\) −71.4296 219.838i −0.236522 0.727939i
\(303\) 253.281 82.2958i 0.835909 0.271603i
\(304\) 39.4154 54.2507i 0.129656 0.178456i
\(305\) 0 0
\(306\) −264.327 + 813.515i −0.863814 + 2.65855i
\(307\) 100.126i 0.326143i −0.986614 0.163072i \(-0.947860\pi\)
0.986614 0.163072i \(-0.0521401\pi\)
\(308\) −653.346 16.7046i −2.12125 0.0542356i
\(309\) 507.591 1.64269
\(310\) 0 0
\(311\) 159.456 115.851i 0.512720 0.372513i −0.301135 0.953582i \(-0.597365\pi\)
0.813854 + 0.581069i \(0.197365\pi\)
\(312\) −193.185 140.357i −0.619184 0.449863i
\(313\) 75.0886 + 231.099i 0.239900 + 0.738335i 0.996434 + 0.0843809i \(0.0268913\pi\)
−0.756534 + 0.653955i \(0.773109\pi\)
\(314\) 108.292 35.1861i 0.344878 0.112058i
\(315\) 0 0
\(316\) −409.728 563.943i −1.29661 1.78463i
\(317\) 174.790 537.949i 0.551389 1.69700i −0.153906 0.988086i \(-0.549185\pi\)
0.705294 0.708915i \(-0.250815\pi\)
\(318\) 478.111i 1.50349i
\(319\) −149.135 + 102.633i −0.467507 + 0.321734i
\(320\) 0 0
\(321\) −246.433 80.0709i −0.767704 0.249442i
\(322\) −12.7639 + 9.27354i −0.0396395 + 0.0287998i
\(323\) 153.977 + 111.871i 0.476709 + 0.346350i
\(324\) 67.6393 + 208.172i 0.208763 + 0.642507i
\(325\) 0 0
\(326\) 85.0385 117.045i 0.260854 0.359035i
\(327\) 174.395 + 240.034i 0.533318 + 0.734050i
\(328\) 37.1353 114.291i 0.113217 0.348447i
\(329\) 380.623i 1.15691i
\(330\) 0 0
\(331\) −144.353 −0.436110 −0.218055 0.975936i \(-0.569971\pi\)
−0.218055 + 0.975936i \(0.569971\pi\)
\(332\) −194.965 63.3480i −0.587244 0.190807i
\(333\) 88.5066 64.3038i 0.265786 0.193104i
\(334\) 118.541 + 86.1251i 0.354913 + 0.257860i
\(335\) 0 0
\(336\) 378.838 123.092i 1.12749 0.366345i
\(337\) 113.715 156.516i 0.337434 0.464439i −0.606256 0.795270i \(-0.707329\pi\)
0.943690 + 0.330831i \(0.107329\pi\)
\(338\) 70.1008 + 96.4855i 0.207399 + 0.285460i
\(339\) 12.7943 39.3768i 0.0377413 0.116156i
\(340\) 0 0
\(341\) 215.779 281.569i 0.632783 0.825715i
\(342\) −320.220 −0.936315
\(343\) 205.374 + 66.7300i 0.598758 + 0.194548i
\(344\) −183.402 + 133.249i −0.533144 + 0.387352i
\(345\) 0 0
\(346\) −181.554 558.766i −0.524723 1.61493i
\(347\) 249.410 81.0382i 0.718760 0.233539i 0.0732747 0.997312i \(-0.476655\pi\)
0.645486 + 0.763772i \(0.276655\pi\)
\(348\) −244.461 + 336.472i −0.702474 + 0.966872i
\(349\) 70.2310 + 96.6647i 0.201235 + 0.276976i 0.897693 0.440621i \(-0.145242\pi\)
−0.696458 + 0.717597i \(0.745242\pi\)
\(350\) 0 0
\(351\) 175.306i 0.499449i
\(352\) −156.050 + 441.539i −0.443324 + 1.25437i
\(353\) −150.674 −0.426838 −0.213419 0.976961i \(-0.568460\pi\)
−0.213419 + 0.976961i \(0.568460\pi\)
\(354\) −1494.85 485.706i −4.22274 1.37205i
\(355\) 0 0
\(356\) 479.566 + 348.425i 1.34709 + 0.978722i
\(357\) 349.366 + 1075.24i 0.978615 + 3.01187i
\(358\) 755.876 245.599i 2.11138 0.686031i
\(359\) 160.143 220.418i 0.446080 0.613977i −0.525470 0.850812i \(-0.676110\pi\)
0.971550 + 0.236836i \(0.0761103\pi\)
\(360\) 0 0
\(361\) 89.5375 275.568i 0.248026 0.763347i
\(362\) 506.062i 1.39796i
\(363\) 558.052 + 28.5549i 1.53733 + 0.0786636i
\(364\) −678.079 −1.86285
\(365\) 0 0
\(366\) 863.596 627.439i 2.35955 1.71431i
\(367\) −523.912 380.644i −1.42755 1.03718i −0.990466 0.137758i \(-0.956010\pi\)
−0.437087 0.899419i \(-0.643990\pi\)
\(368\) 1.15905 + 3.56720i 0.00314960 + 0.00969348i
\(369\) 310.935 101.029i 0.842641 0.273791i
\(370\) 0 0
\(371\) −214.685 295.489i −0.578666 0.796465i
\(372\) 251.835 775.068i 0.676975 2.08352i
\(373\) 402.936i 1.08026i 0.841583 + 0.540129i \(0.181624\pi\)
−0.841583 + 0.540129i \(0.818376\pi\)
\(374\) −719.719 254.366i −1.92438 0.680122i
\(375\) 0 0
\(376\) −151.056 49.0810i −0.401744 0.130535i
\(377\) −151.957 + 110.404i −0.403070 + 0.292848i
\(378\) −415.267 301.709i −1.09859 0.798173i
\(379\) 41.9023 + 128.962i 0.110560 + 0.340269i 0.990995 0.133898i \(-0.0427494\pi\)
−0.880435 + 0.474167i \(0.842749\pi\)
\(380\) 0 0
\(381\) −409.241 + 563.272i −1.07412 + 1.47840i
\(382\) −68.7426 94.6161i −0.179955 0.247686i
\(383\) 170.833 525.769i 0.446039 1.37277i −0.435302 0.900285i \(-0.643358\pi\)
0.881341 0.472481i \(-0.156642\pi\)
\(384\) 624.199i 1.62552i
\(385\) 0 0
\(386\) 14.4721 0.0374926
\(387\) −586.558 190.584i −1.51565 0.492465i
\(388\) −273.643 + 198.813i −0.705265 + 0.512405i
\(389\) 107.164 + 77.8593i 0.275486 + 0.200152i 0.716946 0.697129i \(-0.245539\pi\)
−0.441460 + 0.897281i \(0.645539\pi\)
\(390\) 0 0
\(391\) −10.1246 + 3.28969i −0.0258941 + 0.00841352i
\(392\) −183.458 + 252.509i −0.468006 + 0.644155i
\(393\) −263.565 362.766i −0.670648 0.923068i
\(394\) 102.005 313.939i 0.258896 0.796800i
\(395\) 0 0
\(396\) 711.275 211.167i 1.79615 0.533251i
\(397\) 110.721 0.278895 0.139448 0.990229i \(-0.455467\pi\)
0.139448 + 0.990229i \(0.455467\pi\)
\(398\) −54.4245 17.6836i −0.136745 0.0444312i
\(399\) −342.408 + 248.774i −0.858166 + 0.623494i
\(400\) 0 0
\(401\) 9.64494 + 29.6841i 0.0240522 + 0.0740251i 0.962362 0.271770i \(-0.0876091\pi\)
−0.938310 + 0.345795i \(0.887609\pi\)
\(402\) 600.852 195.229i 1.49466 0.485643i
\(403\) 216.334 297.759i 0.536810 0.738855i
\(404\) 185.487 + 255.301i 0.459127 + 0.631934i
\(405\) 0 0
\(406\) 549.967i 1.35460i
\(407\) 55.3475 + 80.4247i 0.135989 + 0.197604i
\(408\) −471.774 −1.15631
\(409\) 436.217 + 141.735i 1.06654 + 0.346541i 0.789141 0.614212i \(-0.210526\pi\)
0.277404 + 0.960753i \(0.410526\pi\)
\(410\) 0 0
\(411\) −782.523 568.536i −1.90395 1.38330i
\(412\) 185.864 + 572.031i 0.451127 + 1.38842i
\(413\) −1141.96 + 371.047i −2.76505 + 0.898418i
\(414\) 10.5279 14.4904i 0.0254296 0.0350009i
\(415\) 0 0
\(416\) −150.143 + 462.092i −0.360920 + 1.11080i
\(417\) 37.0942i 0.0889548i
\(418\) 7.30399 285.672i 0.0174737 0.683427i
\(419\) −47.0476 −0.112285 −0.0561427 0.998423i \(-0.517880\pi\)
−0.0561427 + 0.998423i \(0.517880\pi\)
\(420\) 0 0
\(421\) 122.931 89.3147i 0.291998 0.212149i −0.432136 0.901809i \(-0.642240\pi\)
0.724134 + 0.689660i \(0.242240\pi\)
\(422\) 243.171 + 176.674i 0.576234 + 0.418658i
\(423\) −133.528 410.957i −0.315669 0.971528i
\(424\) 144.952 47.0979i 0.341869 0.111080i
\(425\) 0 0
\(426\) 438.358 + 603.347i 1.02901 + 1.41631i
\(427\) 251.994 775.557i 0.590149 1.81629i
\(428\) 307.038i 0.717379i
\(429\) 579.556 + 14.8179i 1.35095 + 0.0345406i
\(430\) 0 0
\(431\) −492.254 159.943i −1.14212 0.371098i −0.323951 0.946074i \(-0.605011\pi\)
−0.818170 + 0.574976i \(0.805011\pi\)
\(432\) −98.7239 + 71.7271i −0.228527 + 0.166035i
\(433\) 336.791 + 244.693i 0.777809 + 0.565111i 0.904321 0.426854i \(-0.140378\pi\)
−0.126512 + 0.991965i \(0.540378\pi\)
\(434\) −333.013 1024.91i −0.767311 2.36154i
\(435\) 0 0
\(436\) −206.649 + 284.428i −0.473966 + 0.652359i
\(437\) −2.34250 3.22417i −0.00536041 0.00737797i
\(438\) −346.107 + 1065.21i −0.790198 + 2.43198i
\(439\) 685.921i 1.56246i −0.624242 0.781231i \(-0.714592\pi\)
0.624242 0.781231i \(-0.285408\pi\)
\(440\) 0 0
\(441\) −849.137 −1.92548
\(442\) −753.222 244.737i −1.70412 0.553703i
\(443\) −468.163 + 340.140i −1.05680 + 0.767810i −0.973494 0.228714i \(-0.926548\pi\)
−0.0833065 + 0.996524i \(0.526548\pi\)
\(444\) 181.451 + 131.832i 0.408673 + 0.296918i
\(445\) 0 0
\(446\) 1110.45 360.806i 2.48979 0.808982i
\(447\) −126.708 + 174.399i −0.283464 + 0.390154i
\(448\) 633.405 + 871.807i 1.41385 + 1.94600i
\(449\) −262.733 + 808.609i −0.585151 + 1.80091i 0.0135103 + 0.999909i \(0.495699\pi\)
−0.598662 + 0.801002i \(0.704301\pi\)
\(450\) 0 0
\(451\) 83.0370 + 279.693i 0.184117 + 0.620163i
\(452\) 49.0608 0.108541
\(453\) 329.864 + 107.179i 0.728177 + 0.236599i
\(454\) 518.972 377.055i 1.14311 0.830517i
\(455\) 0 0
\(456\) −54.5764 167.969i −0.119685 0.368353i
\(457\) 387.747 125.987i 0.848462 0.275682i 0.147660 0.989038i \(-0.452826\pi\)
0.700802 + 0.713356i \(0.252826\pi\)
\(458\) 112.503 154.848i 0.245641 0.338096i
\(459\) −203.580 280.203i −0.443528 0.610464i
\(460\) 0 0
\(461\) 721.774i 1.56567i 0.622229 + 0.782835i \(0.286227\pi\)
−0.622229 + 0.782835i \(0.713773\pi\)
\(462\) 1032.54 1347.35i 2.23493 2.91635i
\(463\) −775.669 −1.67531 −0.837656 0.546198i \(-0.816075\pi\)
−0.837656 + 0.546198i \(0.816075\pi\)
\(464\) 124.348 + 40.4030i 0.267990 + 0.0870753i
\(465\) 0 0
\(466\) 689.820 + 501.184i 1.48030 + 1.07550i
\(467\) −144.385 444.372i −0.309176 0.951545i −0.978086 0.208202i \(-0.933239\pi\)
0.668910 0.743343i \(-0.266761\pi\)
\(468\) 732.118 237.880i 1.56436 0.508290i
\(469\) 283.684 390.457i 0.604870 0.832531i
\(470\) 0 0
\(471\) −52.7965 + 162.491i −0.112094 + 0.344991i
\(472\) 501.051i 1.06155i
\(473\) 183.402 518.929i 0.387741 1.09710i
\(474\) 1810.51 3.81965
\(475\) 0 0
\(476\) −1083.82 + 787.438i −2.27692 + 1.65428i
\(477\) 335.456 + 243.723i 0.703262 + 0.510950i
\(478\) 141.122 + 434.327i 0.295233 + 0.908635i
\(479\) −8.26238 + 2.68461i −0.0172492 + 0.00560461i −0.317629 0.948215i \(-0.602887\pi\)
0.300380 + 0.953820i \(0.402887\pi\)
\(480\) 0 0
\(481\) 59.5379 + 81.9469i 0.123779 + 0.170368i
\(482\) −393.669 + 1211.59i −0.816741 + 2.51367i
\(483\) 23.6734i 0.0490132i
\(484\) 172.162 + 639.355i 0.355706 + 1.32098i
\(485\) 0 0
\(486\) −945.342 307.160i −1.94515 0.632017i
\(487\) −645.822 + 469.217i −1.32612 + 0.963484i −0.326288 + 0.945270i \(0.605798\pi\)
−0.999834 + 0.0182139i \(0.994202\pi\)
\(488\) 275.297 + 200.015i 0.564133 + 0.409866i
\(489\) 67.0830 + 206.460i 0.137184 + 0.422209i
\(490\) 0 0
\(491\) −87.5364 + 120.483i −0.178282 + 0.245384i −0.888800 0.458295i \(-0.848460\pi\)
0.710519 + 0.703678i \(0.248460\pi\)
\(492\) 393.972 + 542.255i 0.800755 + 1.10214i
\(493\) −114.674 + 352.930i −0.232604 + 0.715881i
\(494\) 296.487i 0.600176i
\(495\) 0 0
\(496\) −256.197 −0.516525
\(497\) 541.840 + 176.054i 1.09022 + 0.354234i
\(498\) 430.757 312.963i 0.864973 0.628440i
\(499\) −493.030 358.207i −0.988036 0.717850i −0.0285456 0.999592i \(-0.509088\pi\)
−0.959490 + 0.281743i \(0.909088\pi\)
\(500\) 0 0
\(501\) −209.098 + 67.9402i −0.417362 + 0.135609i
\(502\) −674.864 + 928.871i −1.34435 + 1.85034i
\(503\) 88.0720 + 121.221i 0.175093 + 0.240995i 0.887540 0.460731i \(-0.152413\pi\)
−0.712446 + 0.701727i \(0.752413\pi\)
\(504\) 187.379 576.693i 0.371783 1.14423i
\(505\) 0 0
\(506\) 12.6869 + 9.72257i 0.0250730 + 0.0192146i
\(507\) −178.952 −0.352963
\(508\) −784.633 254.943i −1.54455 0.501856i
\(509\) −256.395 + 186.282i −0.503723 + 0.365976i −0.810437 0.585825i \(-0.800770\pi\)
0.306714 + 0.951802i \(0.400770\pi\)
\(510\) 0 0
\(511\) 264.402 + 813.746i 0.517421 + 1.59246i
\(512\) 458.586 149.004i 0.895677 0.291023i
\(513\) 76.2119 104.897i 0.148561 0.204477i
\(514\) −369.179 508.131i −0.718247 0.988582i
\(515\) 0 0
\(516\) 1264.41i 2.45041i
\(517\) 369.666 109.748i 0.715021 0.212279i
\(518\) 296.584 0.572555
\(519\) 838.423 + 272.420i 1.61546 + 0.524895i
\(520\) 0 0
\(521\) −298.555 216.913i −0.573042 0.416340i 0.263167 0.964750i \(-0.415233\pi\)
−0.836209 + 0.548411i \(0.815233\pi\)
\(522\) −192.936 593.796i −0.369609 1.13754i
\(523\) −466.990 + 151.734i −0.892907 + 0.290123i −0.719306 0.694693i \(-0.755540\pi\)
−0.173601 + 0.984816i \(0.555540\pi\)
\(524\) 312.311 429.859i 0.596013 0.820342i
\(525\) 0 0
\(526\) −61.1327 + 188.147i −0.116222 + 0.357694i
\(527\) 727.150i 1.37979i
\(528\) −228.782 332.440i −0.433299 0.629621i
\(529\) −528.777 −0.999579
\(530\) 0 0
\(531\) 1102.80 801.235i 2.07685 1.50892i
\(532\) −405.736 294.785i −0.762662 0.554107i
\(533\) 93.5410 + 287.890i 0.175499 + 0.540131i
\(534\) −1464.27 + 475.770i −2.74208 + 0.890955i
\(535\) 0 0
\(536\) 118.378 + 162.933i 0.220854 + 0.303980i
\(537\) −368.519 + 1134.18i −0.686255 + 2.11207i
\(538\) 687.262i 1.27744i
\(539\) 19.3682 757.526i 0.0359336 1.40543i
\(540\) 0 0
\(541\) −418.618 136.017i −0.773786 0.251418i −0.104601 0.994514i \(-0.533357\pi\)
−0.669185 + 0.743096i \(0.733357\pi\)
\(542\) 699.882 508.494i 1.29130 0.938181i
\(543\) −614.320 446.330i −1.13134 0.821970i
\(544\) 296.635 + 912.948i 0.545284 + 1.67821i
\(545\) 0 0
\(546\) 1035.20 1424.83i 1.89597 2.60957i
\(547\) −350.478 482.392i −0.640728 0.881886i 0.357926 0.933750i \(-0.383484\pi\)
−0.998654 + 0.0518636i \(0.983484\pi\)
\(548\) 354.178 1090.05i 0.646310 1.98914i
\(549\) 925.768i 1.68628i
\(550\) 0 0
\(551\) −138.922 −0.252127
\(552\) 9.39512 + 3.05266i 0.0170201 + 0.00553018i
\(553\) 1118.96 812.971i 2.02343 1.47011i
\(554\) 299.864 + 217.864i 0.541271 + 0.393256i
\(555\) 0 0
\(556\) −41.8034 + 13.5827i −0.0751860 + 0.0244294i
\(557\) 352.889 485.709i 0.633552 0.872010i −0.364699 0.931125i \(-0.618828\pi\)
0.998251 + 0.0591158i \(0.0188281\pi\)
\(558\) 719.105 + 989.763i 1.28872 + 1.77377i
\(559\) 176.459 543.085i 0.315669 0.971529i
\(560\) 0 0
\(561\) 943.548 649.341i 1.68190 1.15747i
\(562\) 1248.04 2.22071
\(563\) 632.047 + 205.365i 1.12264 + 0.364768i 0.810775 0.585358i \(-0.199046\pi\)
0.311866 + 0.950126i \(0.399046\pi\)
\(564\) 716.689 520.705i 1.27072 0.923236i
\(565\) 0 0
\(566\) 524.663 + 1614.75i 0.926966 + 2.85291i
\(567\) −413.050 + 134.208i −0.728482 + 0.236698i
\(568\) −139.740 + 192.335i −0.246020 + 0.338618i
\(569\) −255.449 351.595i −0.448943 0.617917i 0.523227 0.852193i \(-0.324728\pi\)
−0.972170 + 0.234276i \(0.924728\pi\)
\(570\) 0 0
\(571\) 807.082i 1.41345i −0.707487 0.706727i \(-0.750171\pi\)
0.707487 0.706727i \(-0.249829\pi\)
\(572\) 195.517 + 658.559i 0.341812 + 1.15133i
\(573\) 175.485 0.306257
\(574\) 842.943 + 273.889i 1.46854 + 0.477158i
\(575\) 0 0
\(576\) −989.727 719.079i −1.71828 1.24840i
\(577\) 224.288 + 690.288i 0.388715 + 1.19634i 0.933750 + 0.357927i \(0.116516\pi\)
−0.545035 + 0.838413i \(0.683484\pi\)
\(578\) −642.210 + 208.667i −1.11109 + 0.361015i
\(579\) −12.7639 + 17.5680i −0.0220448 + 0.0303420i
\(580\) 0 0
\(581\) 125.693 386.844i 0.216339 0.665824i
\(582\) 878.518i 1.50948i
\(583\) −225.080 + 293.706i −0.386072 + 0.503783i
\(584\) −357.041 −0.611372
\(585\) 0 0
\(586\) −801.715 + 582.480i −1.36811 + 0.993993i
\(587\) −153.232 111.330i −0.261043 0.189659i 0.449564 0.893248i \(-0.351579\pi\)
−0.710607 + 0.703590i \(0.751579\pi\)
\(588\) −537.952 1655.65i −0.914884 2.81572i
\(589\) 258.892 84.1192i 0.439546 0.142817i
\(590\) 0 0
\(591\) 291.133 + 400.710i 0.492610 + 0.678020i
\(592\) 21.7883 67.0576i 0.0368046 0.113273i
\(593\) 216.058i 0.364348i −0.983266 0.182174i \(-0.941687\pi\)
0.983266 0.182174i \(-0.0583134\pi\)
\(594\) −173.286 + 490.308i −0.291728 + 0.825434i
\(595\) 0 0
\(596\) −242.936 78.9347i −0.407611 0.132441i
\(597\) 69.4671 50.4708i 0.116360 0.0845407i
\(598\) 13.4164 + 9.74759i 0.0224355 + 0.0163003i
\(599\) −309.617 952.903i −0.516890 1.59082i −0.779817 0.626007i \(-0.784688\pi\)
0.262928 0.964815i \(-0.415312\pi\)
\(600\) 0 0
\(601\) 230.744 317.592i 0.383934 0.528440i −0.572688 0.819774i \(-0.694099\pi\)
0.956621 + 0.291334i \(0.0940992\pi\)
\(602\) −982.771 1352.67i −1.63251 2.24696i
\(603\) −169.314 + 521.095i −0.280786 + 0.864171i
\(604\) 410.987i 0.680443i
\(605\) 0 0
\(606\) −819.633 −1.35253
\(607\) 501.620 + 162.986i 0.826392 + 0.268511i 0.691525 0.722353i \(-0.256939\pi\)
0.134867 + 0.990864i \(0.456939\pi\)
\(608\) −290.727 + 211.226i −0.478170 + 0.347411i
\(609\) −667.617 485.052i −1.09625 0.796473i
\(610\) 0 0
\(611\) 380.498 123.631i 0.622747 0.202343i
\(612\) 893.946 1230.41i 1.46070 2.01047i
\(613\) −157.852 217.265i −0.257508 0.354429i 0.660615 0.750725i \(-0.270295\pi\)
−0.918123 + 0.396296i \(0.870295\pi\)
\(614\) −95.2254 + 293.074i −0.155090 + 0.477319i
\(615\) 0 0
\(616\) 510.202 + 180.317i 0.828249 + 0.292723i
\(617\) −623.989 −1.01133 −0.505664 0.862731i \(-0.668752\pi\)
−0.505664 + 0.862731i \(0.668752\pi\)
\(618\) −1485.74 482.747i −2.40412 0.781144i
\(619\) −727.247 + 528.376i −1.17487 + 0.853596i −0.991584 0.129463i \(-0.958675\pi\)
−0.183290 + 0.983059i \(0.558675\pi\)
\(620\) 0 0
\(621\) 2.24109 + 6.89737i 0.00360885 + 0.0111069i
\(622\) −576.917 + 187.452i −0.927519 + 0.301369i
\(623\) −691.334 + 951.540i −1.10969 + 1.52735i
\(624\) −246.103 338.732i −0.394396 0.542840i
\(625\) 0 0
\(626\) 747.852i 1.19465i
\(627\) 340.342 + 260.820i 0.542811 + 0.415981i
\(628\) −202.452 −0.322376
\(629\) 190.326 + 61.8407i 0.302585 + 0.0983160i
\(630\) 0 0
\(631\) 861.325 + 625.789i 1.36502 + 0.991742i 0.998108 + 0.0614849i \(0.0195836\pi\)
0.366908 + 0.930257i \(0.380416\pi\)
\(632\) 178.351 + 548.907i 0.282200 + 0.868523i
\(633\) −428.937 + 139.370i −0.677625 + 0.220174i
\(634\) −1023.24 + 1408.37i −1.61394 + 2.22140i
\(635\) 0 0
\(636\) −262.690 + 808.477i −0.413035 + 1.27119i
\(637\) 786.203i 1.23423i
\(638\) 534.135 158.577i 0.837202 0.248553i
\(639\) −646.784 −1.01218
\(640\) 0 0
\(641\) 717.550 521.330i 1.11942 0.813308i 0.135301 0.990805i \(-0.456800\pi\)
0.984121 + 0.177497i \(0.0568000\pi\)
\(642\) 645.170 + 468.743i 1.00494 + 0.730130i
\(643\) 323.852 + 996.713i 0.503657 + 1.55010i 0.803016 + 0.595957i \(0.203227\pi\)
−0.299359 + 0.954141i \(0.596773\pi\)
\(644\) 26.6788 8.66846i 0.0414267 0.0134603i
\(645\) 0 0
\(646\) −344.303 473.893i −0.532977 0.733580i
\(647\) −388.461 + 1195.56i −0.600403 + 1.84785i −0.0746578 + 0.997209i \(0.523786\pi\)
−0.525745 + 0.850642i \(0.676214\pi\)
\(648\) 181.231i 0.279677i
\(649\) 689.638 + 1002.10i 1.06262 + 1.54407i
\(650\) 0 0
\(651\) 1537.87 + 499.683i 2.36231 + 0.767562i
\(652\) −208.107 + 151.199i −0.319183 + 0.231900i
\(653\) −139.031 101.012i −0.212912 0.154689i 0.476218 0.879327i \(-0.342007\pi\)
−0.689130 + 0.724638i \(0.742007\pi\)
\(654\) −282.177 868.452i −0.431464 1.32791i
\(655\) 0 0
\(656\) 123.853 170.468i 0.188800 0.259860i
\(657\) −570.947 785.841i −0.869022 1.19611i
\(658\) 361.994 1114.10i 0.550143 1.69316i
\(659\) 719.550i 1.09188i 0.837824 + 0.545941i \(0.183828\pi\)
−0.837824 + 0.545941i \(0.816172\pi\)
\(660\) 0 0
\(661\) 655.240 0.991286 0.495643 0.868526i \(-0.334932\pi\)
0.495643 + 0.868526i \(0.334932\pi\)
\(662\) 422.527 + 137.287i 0.638259 + 0.207383i
\(663\) 961.407 698.503i 1.45009 1.05355i
\(664\) 137.317 + 99.7663i 0.206802 + 0.150250i
\(665\) 0 0
\(666\) −320.220 + 104.046i −0.480811 + 0.156225i
\(667\) 4.56733 6.28639i 0.00684757 0.00942488i
\(668\) −153.131 210.766i −0.229238 0.315519i
\(669\) −541.386 + 1666.21i −0.809246 + 2.49060i
\(670\) 0 0
\(671\) −825.890 21.1161i −1.23084 0.0314696i
\(672\) −2134.65 −3.17657
\(673\) 650.235 + 211.274i 0.966173 + 0.313929i 0.749270 0.662264i \(-0.230404\pi\)
0.216903 + 0.976193i \(0.430404\pi\)
\(674\) −481.706 + 349.980i −0.714697 + 0.519258i
\(675\) 0 0
\(676\) −65.5269 201.671i −0.0969333 0.298330i
\(677\) 719.490 233.777i 1.06276 0.345313i 0.275098 0.961416i \(-0.411290\pi\)
0.787665 + 0.616104i \(0.211290\pi\)
\(678\) −74.8992 + 103.090i −0.110471 + 0.152050i
\(679\) −394.479 542.954i −0.580971 0.799638i
\(680\) 0 0
\(681\) 962.541i 1.41342i
\(682\) −899.384 + 618.948i −1.31874 + 0.907548i
\(683\) 781.639 1.14442 0.572210 0.820107i \(-0.306086\pi\)
0.572210 + 0.820107i \(0.306086\pi\)
\(684\) 541.486 + 175.940i 0.791647 + 0.257222i
\(685\) 0 0
\(686\) −537.676 390.644i −0.783784 0.569452i
\(687\) 88.7489 + 273.141i 0.129183 + 0.397585i
\(688\) −378.037 + 122.832i −0.549472 + 0.178534i
\(689\) −225.659 + 310.594i −0.327517 + 0.450789i
\(690\) 0 0
\(691\) −290.643 + 894.507i −0.420612 + 1.29451i 0.486522 + 0.873668i \(0.338265\pi\)
−0.907134 + 0.420842i \(0.861735\pi\)
\(692\) 1044.62i 1.50956i
\(693\) 418.992 + 1411.29i 0.604606 + 2.03649i
\(694\) −807.107 −1.16298
\(695\) 0 0
\(696\) 278.589 202.406i 0.400271 0.290814i
\(697\) 483.832 + 351.525i 0.694164 + 0.504340i
\(698\) −113.636 349.736i −0.162803 0.501055i
\(699\) −1216.80 + 395.361i −1.74077 + 0.565609i
\(700\) 0 0
\(701\) −3.94427 5.42882i −0.00562664 0.00774440i 0.806194 0.591651i \(-0.201524\pi\)
−0.811821 + 0.583906i \(0.801524\pi\)
\(702\) −166.726 + 513.131i −0.237502 + 0.730956i
\(703\) 74.9171i 0.106568i
\(704\) 664.075 866.547i 0.943288 1.23089i
\(705\) 0 0
\(706\) 441.030 + 143.299i 0.624688 + 0.202973i
\(707\) −506.561 + 368.038i −0.716494 + 0.520563i
\(708\) 2260.90 + 1642.64i 3.19337 + 2.32012i
\(709\) −307.854 947.478i −0.434209 1.33636i −0.893895 0.448276i \(-0.852038\pi\)
0.459686 0.888081i \(-0.347962\pi\)
\(710\) 0 0
\(711\) −922.932 + 1270.31i −1.29808 + 1.78665i
\(712\) −288.486 397.066i −0.405176 0.557678i
\(713\) −4.70510 + 14.4808i −0.00659902 + 0.0203097i
\(714\) 3479.54i 4.87331i
\(715\) 0 0
\(716\) −1413.11 −1.97362
\(717\) −651.704 211.751i −0.908932 0.295330i
\(718\) −678.376 + 492.869i −0.944813 + 0.686447i
\(719\) 478.315 + 347.516i 0.665250 + 0.483333i 0.868432 0.495808i \(-0.165128\pi\)
−0.203182 + 0.979141i \(0.565128\pi\)
\(720\) 0 0
\(721\) −1135.01 + 368.786i −1.57421 + 0.511493i
\(722\) −524.162 + 721.447i −0.725986 + 0.999234i
\(723\) −1123.57 1546.46i −1.55404 2.13895i
\(724\) 278.048 855.743i 0.384044 1.18196i
\(725\) 0 0
\(726\) −1606.29 614.321i −2.21252 0.846172i
\(727\) 1276.13 1.75534 0.877670 0.479266i \(-0.159097\pi\)
0.877670 + 0.479266i \(0.159097\pi\)
\(728\) 533.951 + 173.491i 0.733449 + 0.238312i
\(729\) 915.382 665.064i 1.25567 0.912297i
\(730\) 0 0
\(731\) −348.627 1072.96i −0.476918 1.46780i
\(732\) −1805.06 + 586.500i −2.46593 + 0.801230i
\(733\) −19.8208 + 27.2811i −0.0270407 + 0.0372184i −0.822323 0.569021i \(-0.807322\pi\)
0.795283 + 0.606239i \(0.207322\pi\)
\(734\) 1171.50 + 1612.43i 1.59605 + 2.19678i
\(735\) 0 0
\(736\) 20.1003i 0.0273101i
\(737\) −461.014 162.933i −0.625528 0.221076i
\(738\) −1006.21 −1.36342
\(739\) 1127.54 + 366.361i 1.52577 + 0.495752i 0.947408 0.320028i \(-0.103692\pi\)
0.578361 + 0.815781i \(0.303692\pi\)
\(740\) 0 0
\(741\) 359.912 + 261.491i 0.485711 + 0.352890i
\(742\) 347.368 + 1069.09i 0.468150 + 1.44082i
\(743\) 1302.85 423.321i 1.75350 0.569746i 0.757003 0.653412i \(-0.226663\pi\)
0.996494 + 0.0836663i \(0.0266630\pi\)
\(744\) −396.613 + 545.891i −0.533082 + 0.733724i
\(745\) 0 0
\(746\) 383.215 1179.41i 0.513693 1.58098i
\(747\) 461.768i 0.618163i
\(748\) 1077.28 + 825.566i 1.44021 + 1.10370i
\(749\) 609.216 0.813372
\(750\) 0 0
\(751\) 316.835 230.194i 0.421884 0.306517i −0.356512 0.934291i \(-0.616034\pi\)
0.778395 + 0.627774i \(0.216034\pi\)
\(752\) −225.305 163.694i −0.299608 0.217678i
\(753\) −532.370 1638.46i −0.706998 2.17592i
\(754\) 549.787 178.637i 0.729161 0.236919i
\(755\) 0 0
\(756\) 536.441 + 738.347i 0.709578 + 0.976650i
\(757\) 73.9880 227.712i 0.0977385 0.300808i −0.890219 0.455532i \(-0.849449\pi\)
0.987958 + 0.154724i \(0.0494489\pi\)
\(758\) 417.330i 0.550567i
\(759\) −22.9919 + 6.82596i −0.0302923 + 0.00899335i
\(760\) 0 0
\(761\) 31.0228 + 10.0799i 0.0407659 + 0.0132456i 0.329329 0.944215i \(-0.393177\pi\)
−0.288563 + 0.957461i \(0.593177\pi\)
\(762\) 1733.57 1259.51i 2.27503 1.65291i
\(763\) −564.354 410.028i −0.739652 0.537389i
\(764\) 64.2574 + 197.764i 0.0841065 + 0.258853i
\(765\) 0 0
\(766\) −1000.07 + 1376.48i −1.30558 + 1.79697i
\(767\) 741.851 + 1021.07i 0.967211 + 1.33125i
\(768\) 27.1140 83.4482i 0.0353046 0.108657i
\(769\) 80.9870i 0.105315i −0.998613 0.0526573i \(-0.983231\pi\)
0.998613 0.0526573i \(-0.0167691\pi\)
\(770\) 0 0
\(771\) 942.435 1.22235
\(772\) −24.4721 7.95148i −0.0316997 0.0102998i
\(773\) 232.654 169.033i 0.300976 0.218672i −0.427039 0.904233i \(-0.640443\pi\)
0.728015 + 0.685561i \(0.240443\pi\)
\(774\) 1535.63 + 1115.70i 1.98402 + 1.44147i
\(775\) 0 0
\(776\) 266.347 86.5414i 0.343231 0.111522i
\(777\) −261.577 + 360.029i −0.336649 + 0.463358i
\(778\) −239.626 329.817i −0.308003 0.423929i
\(779\) −69.1844 + 212.928i −0.0888118 + 0.273335i
\(780\) 0 0
\(781\) 14.7527 577.005i 0.0188895 0.738803i
\(782\) 32.7639 0.0418976
\(783\) 240.433 + 78.1213i 0.307066 + 0.0997718i
\(784\) −442.750 + 321.677i −0.564732 + 0.410302i
\(785\) 0 0
\(786\) 426.457 + 1312.50i 0.542566 + 1.66985i
\(787\) 75.9709 24.6845i 0.0965323 0.0313653i −0.260353 0.965514i \(-0.583839\pi\)
0.356885 + 0.934148i \(0.383839\pi\)
\(788\) −344.978 + 474.821i −0.437789 + 0.602565i
\(789\) −174.479 240.150i −0.221140 0.304372i
\(790\) 0 0
\(791\) 97.3449i 0.123066i
\(792\) −614.120 15.7016i −0.775404 0.0198253i
\(793\) −857.155 −1.08090
\(794\) −324.087 105.302i −0.408170 0.132623i
\(795\) 0 0
\(796\) 82.3150 + 59.8053i 0.103411 + 0.0751323i
\(797\) −267.409 823.002i −0.335520 1.03262i −0.966465 0.256797i \(-0.917333\pi\)
0.630945 0.775827i \(-0.282667\pi\)
\(798\) 1238.84 402.525i 1.55244 0.504417i
\(799\) 464.604 639.472i 0.581481 0.800341i
\(800\) 0 0
\(801\) 412.616 1269.90i 0.515127 1.58540i
\(802\) 96.0597i 0.119775i
\(803\) 714.083 491.425i 0.889269 0.611987i
\(804\) −1123.30 −1.39713
\(805\) 0 0
\(806\) −916.407 + 665.809i −1.13698 + 0.826065i
\(807\) −834.282 606.142i −1.03381 0.751105i
\(808\) −80.7407 248.494i −0.0999266 0.307543i
\(809\) −164.498 + 53.4487i −0.203335 + 0.0660676i −0.408914 0.912573i \(-0.634092\pi\)
0.205579 + 0.978641i \(0.434092\pi\)
\(810\) 0 0
\(811\) −508.782 700.279i −0.627352 0.863476i 0.370510 0.928828i \(-0.379183\pi\)
−0.997862 + 0.0653524i \(0.979183\pi\)
\(812\) 302.170 929.985i 0.372131 1.14530i
\(813\) 1298.08i 1.59665i
\(814\) −85.5166 288.046i −0.105057 0.353865i
\(815\) 0 0
\(816\) −786.724 255.622i −0.964123 0.313263i
\(817\) 341.684 248.248i 0.418218 0.303853i
\(818\) −1142.03 829.733i −1.39612 1.01434i
\(819\) 471.994 + 1452.65i 0.576305 + 1.77368i
\(820\) 0 0
\(821\) −66.2686 + 91.2109i −0.0807169 + 0.111097i −0.847466 0.530849i \(-0.821873\pi\)
0.766749 + 0.641947i \(0.221873\pi\)
\(822\) 1749.77 + 2408.36i 2.12868 + 2.92987i
\(823\) 123.479 380.030i 0.150035 0.461761i −0.847589 0.530654i \(-0.821947\pi\)
0.997624 + 0.0688924i \(0.0219465\pi\)
\(824\) 497.999i 0.604367i
\(825\) 0 0
\(826\) 3695.47 4.47394
\(827\) −698.603 226.990i −0.844744 0.274474i −0.145501 0.989358i \(-0.546479\pi\)
−0.699243 + 0.714884i \(0.746479\pi\)
\(828\) −25.7639 + 18.7186i −0.0311159 + 0.0226070i
\(829\) 251.233 + 182.531i 0.303055 + 0.220183i 0.728911 0.684609i \(-0.240027\pi\)
−0.425856 + 0.904791i \(0.640027\pi\)
\(830\) 0 0
\(831\) −528.940 + 171.863i −0.636510 + 0.206815i
\(832\) 665.784 916.373i 0.800221 1.10141i
\(833\) −913.000 1256.64i −1.09604 1.50857i
\(834\) 35.2786 108.576i 0.0423005 0.130188i
\(835\) 0 0
\(836\) −169.309 + 479.054i −0.202523 + 0.573031i
\(837\) −495.370 −0.591840
\(838\) 137.711 + 44.7449i 0.164333 + 0.0533949i
\(839\) 534.323 388.208i 0.636857 0.462704i −0.221912 0.975067i \(-0.571230\pi\)
0.858769 + 0.512363i \(0.171230\pi\)
\(840\) 0 0
\(841\) 176.181 + 542.230i 0.209490 + 0.644745i
\(842\) −444.769 + 144.514i −0.528229 + 0.171632i
\(843\) −1100.73 + 1515.02i −1.30573 + 1.79718i
\(844\) −314.127 432.359i −0.372188 0.512273i
\(845\) 0 0
\(846\) 1329.88i 1.57197i
\(847\) −1268.59 + 341.598i −1.49774 + 0.403303i
\(848\) 267.240 0.315141
\(849\) −2422.91 787.251i −2.85384 0.927269i
\(850\) 0 0
\(851\) −3.39010 2.46305i −0.00398366 0.00289430i
\(852\) −409.756 1261.10i −0.480934 1.48016i
\(853\) 464.919 151.061i 0.545040 0.177094i −0.0235392 0.999723i \(-0.507493\pi\)
0.568579 + 0.822629i \(0.307493\pi\)
\(854\) −1475.20 + 2030.43i −1.72740 + 2.37756i
\(855\) 0 0
\(856\) −78.5579 + 241.776i −0.0917732 + 0.282449i
\(857\) 433.345i 0.505653i 0.967512 + 0.252827i \(0.0813602\pi\)
−0.967512 + 0.252827i \(0.918640\pi\)
\(858\) −1682.30 594.563i −1.96072 0.692964i
\(859\) −199.533 −0.232285 −0.116143 0.993233i \(-0.537053\pi\)
−0.116143 + 0.993233i \(0.537053\pi\)
\(860\) 0 0
\(861\) −1075.93 + 781.707i −1.24962 + 0.907905i
\(862\) 1288.74 + 936.323i 1.49506 + 1.08622i
\(863\) 295.364 + 909.036i 0.342252 + 1.05334i 0.963038 + 0.269364i \(0.0868136\pi\)
−0.620786 + 0.783980i \(0.713186\pi\)
\(864\) 621.944 202.082i 0.719843 0.233891i
\(865\) 0 0
\(866\) −753.088 1036.54i −0.869617 1.19692i
\(867\) 313.102 963.630i 0.361133 1.11145i
\(868\) 1916.07i 2.20746i
\(869\) −1112.21 852.335i −1.27987 0.980823i
\(870\) 0 0
\(871\) −482.474 156.765i −0.553931 0.179983i
\(872\) 235.498 171.100i 0.270067 0.196215i
\(873\) 616.393 + 447.836i 0.706063 + 0.512985i
\(874\) 3.79024 + 11.6652i 0.00433666 + 0.0133469i
\(875\) 0 0
\(876\) 1170.52 1611.08i 1.33621 1.83914i
\(877\) −184.805 254.363i −0.210724 0.290037i 0.690551 0.723284i \(-0.257368\pi\)
−0.901276 + 0.433246i \(0.857368\pi\)
\(878\) −652.349 + 2007.73i −0.742995 + 2.28670i
\(879\) 1486.95i 1.69164i
\(880\) 0 0
\(881\) 330.178 0.374777 0.187388 0.982286i \(-0.439998\pi\)
0.187388 + 0.982286i \(0.439998\pi\)
\(882\) 2485.47 + 807.577i 2.81799 + 0.915620i
\(883\) −817.950 + 594.275i −0.926330 + 0.673018i −0.945092 0.326806i \(-0.894028\pi\)
0.0187613 + 0.999824i \(0.494028\pi\)
\(884\) 1139.22 + 827.691i 1.28871 + 0.936302i
\(885\) 0 0
\(886\) 1693.83 550.358i 1.91177 0.621172i
\(887\) 135.458 186.442i 0.152715 0.210194i −0.725804 0.687901i \(-0.758532\pi\)
0.878519 + 0.477708i \(0.158532\pi\)
\(888\) −109.153 150.236i −0.122920 0.169185i
\(889\) 505.850 1556.85i 0.569010 1.75123i
\(890\) 0 0
\(891\) 249.443 + 362.461i 0.279958 + 0.406803i
\(892\) −2075.99 −2.32734
\(893\) 281.423 + 91.4398i 0.315143 + 0.102396i
\(894\) 536.745 389.968i 0.600385 0.436206i
\(895\) 0 0
\(896\) −453.507 1395.75i −0.506147 1.55776i
\(897\) −23.6656 + 7.68943i −0.0263831 + 0.00857239i
\(898\) 1538.07 2116.97i 1.71277 2.35742i
\(899\) 311.971 + 429.392i 0.347020 + 0.477633i
\(900\) 0 0
\(901\) 758.494i 0.841836i
\(902\) 22.9508 897.650i 0.0254444 0.995177i
\(903\) 2508.80 2.77830
\(904\) −38.6327 12.5525i −0.0427353 0.0138856i
\(905\) 0 0
\(906\) −863.596 627.439i −0.953196 0.692537i
\(907\) −356.661 1097.69i −0.393232 1.21024i −0.930330 0.366723i \(-0.880480\pi\)
0.537099 0.843519i \(-0.319520\pi\)
\(908\) −1084.74 + 352.453i −1.19465 + 0.388164i
\(909\) 417.818 575.078i 0.459646 0.632649i
\(910\) 0 0
\(911\) 187.421 576.824i 0.205732 0.633177i −0.793951 0.607982i \(-0.791979\pi\)
0.999683 0.0251948i \(-0.00802062\pi\)
\(912\) 309.674i 0.339555i
\(913\) −411.950 10.5326i −0.451204 0.0115363i
\(914\) −1254.78 −1.37284
\(915\) 0 0
\(916\) −275.320 + 200.032i −0.300568 + 0.218375i
\(917\) 852.914 + 619.678i 0.930113 + 0.675767i
\(918\) 329.399 + 1013.78i 0.358822 + 1.10434i
\(919\) −1094.16 + 355.514i −1.19060 + 0.386849i −0.836294 0.548281i \(-0.815282\pi\)
−0.354304 + 0.935130i \(0.615282\pi\)
\(920\) 0 0
\(921\) −271.783 374.077i −0.295096 0.406164i
\(922\) 686.448 2112.67i 0.744520 2.29140i
\(923\) 598.848i 0.648806i
\(924\) −2486.29 + 1711.04i −2.69079 + 1.85178i
\(925\) 0 0
\(926\) 2270.42 + 737.706i 2.45186 + 0.796658i
\(927\) 1096.09 796.353i 1.18240 0.859065i
\(928\) −566.851 411.841i −0.610831 0.443795i
\(929\) 444.730 + 1368.74i 0.478719 + 1.47335i 0.840876 + 0.541228i \(0.182040\pi\)
−0.362157 + 0.932117i \(0.617960\pi\)
\(930\) 0 0
\(931\) 341.790 470.434i 0.367121 0.505299i
\(932\) −891.107 1226.50i −0.956123 1.31599i
\(933\) 281.269 865.658i 0.301468 0.927822i
\(934\) 1438.02i 1.53963i
\(935\) 0 0
\(936\) −637.368 −0.680948
\(937\) −467.559 151.919i −0.498996 0.162133i 0.0486963 0.998814i \(-0.484493\pi\)
−0.547692 + 0.836680i \(0.684493\pi\)
\(938\) −1201.70 + 873.089i −1.28113 + 0.930799i
\(939\) 907.834 + 659.580i 0.966810 + 0.702428i
\(940\) 0 0
\(941\) 1702.39 553.141i 1.80913 0.587822i 0.809132 0.587628i \(-0.199938\pi\)
1.00000 0.000194881i \(-6.20325e-5\pi\)
\(942\) 309.076 425.406i 0.328106 0.451599i
\(943\) −7.36068 10.1311i −0.00780560 0.0107435i
\(944\) 271.486 835.547i 0.287591 0.885113i
\(945\) 0 0
\(946\) −1030.36 + 1344.51i −1.08917 + 1.42125i
\(947\) 1111.85 1.17407 0.587037 0.809560i \(-0.300294\pi\)
0.587037 + 0.809560i \(0.300294\pi\)
\(948\) −3061.55 994.756i −3.22948 1.04932i
\(949\) 727.599 528.631i 0.766700 0.557040i
\(950\) 0 0
\(951\) −807.187 2484.27i −0.848777 2.61227i
\(952\) 1054.92 342.764i 1.10811 0.360046i
\(953\) −175.776 + 241.935i −0.184445 + 0.253867i −0.891220 0.453572i \(-0.850150\pi\)
0.706775 + 0.707439i \(0.250150\pi\)
\(954\) −750.102 1032.43i −0.786271 1.08221i
\(955\) 0 0
\(956\) 811.977i 0.849348i
\(957\) −278.589 + 788.257i −0.291106 + 0.823675i
\(958\) 26.7376 0.0279098
\(959\) 2162.84 + 702.749i 2.25531 + 0.732794i
\(960\) 0 0
\(961\) −63.9224 46.4423i −0.0665165 0.0483271i
\(962\) −96.3344 296.487i −0.100140 0.308198i
\(963\) −657.767 + 213.722i −0.683040 + 0.221933i
\(964\) 1331.38 1832.48i 1.38109 1.90091i
\(965\) 0 0
\(966\) −22.5147 + 69.2931i −0.0233072 + 0.0717320i
\(967\) 246.770i 0.255191i 0.991826 + 0.127596i \(0.0407259\pi\)
−0.991826 + 0.127596i \(0.959274\pi\)
\(968\) 28.0153 547.507i 0.0289414 0.565606i
\(969\) 878.933 0.907052
\(970\) 0 0
\(971\) −161.120 + 117.060i −0.165932 + 0.120556i −0.667652 0.744473i \(-0.732701\pi\)
0.501720 + 0.865030i \(0.332701\pi\)
\(972\) 1429.79 + 1038.81i 1.47098 + 1.06873i
\(973\) −26.9505 82.9451i −0.0276983 0.0852467i
\(974\) 2336.60 759.209i 2.39898 0.779475i
\(975\) 0 0
\(976\) 350.707 + 482.707i 0.359331 + 0.494577i
\(977\) 72.9462 224.505i 0.0746635 0.229790i −0.906759 0.421649i \(-0.861451\pi\)
0.981423 + 0.191858i \(0.0614515\pi\)
\(978\) 668.119i 0.683149i
\(979\) 1123.49 + 397.066i 1.14759 + 0.405584i
\(980\) 0 0
\(981\) 753.174 + 244.721i 0.767762 + 0.249461i
\(982\) 370.810 269.409i 0.377607 0.274347i
\(983\) 301.034 + 218.714i 0.306241 + 0.222497i 0.730282 0.683146i \(-0.239389\pi\)
−0.424041 + 0.905643i \(0.639389\pi\)
\(984\) −171.492 527.798i −0.174280 0.536380i
\(985\) 0 0
\(986\) 671.312 923.982i 0.680844 0.937101i
\(987\) 1033.17 + 1422.03i 1.04678 + 1.44076i
\(988\) −162.900 + 501.354i −0.164878 + 0.507443i
\(989\) 23.6233i 0.0238861i
\(990\) 0 0
\(991\) −759.033 −0.765927 −0.382963 0.923764i \(-0.625096\pi\)
−0.382963 + 0.923764i \(0.625096\pi\)
\(992\) 1305.75 + 424.264i 1.31628 + 0.427685i
\(993\) −539.311 + 391.832i −0.543113 + 0.394594i
\(994\) −1418.55 1030.64i −1.42712 1.03686i
\(995\) 0 0
\(996\) −900.355 + 292.543i −0.903971 + 0.293718i
\(997\) 415.743 572.222i 0.416994 0.573944i −0.547913 0.836536i \(-0.684577\pi\)
0.964907 + 0.262592i \(0.0845774\pi\)
\(998\) 1102.45 + 1517.39i 1.10466 + 1.52043i
\(999\) 42.1289 129.659i 0.0421711 0.129789i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.x.a.101.1 4
5.2 odd 4 275.3.q.a.24.2 8
5.3 odd 4 275.3.q.a.24.1 8
5.4 even 2 55.3.i.b.46.1 yes 4
11.6 odd 10 inner 275.3.x.a.226.1 4
55.4 even 10 605.3.c.b.241.4 4
55.17 even 20 275.3.q.a.149.1 8
55.28 even 20 275.3.q.a.149.2 8
55.29 odd 10 605.3.c.b.241.1 4
55.39 odd 10 55.3.i.b.6.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.b.6.1 4 55.39 odd 10
55.3.i.b.46.1 yes 4 5.4 even 2
275.3.q.a.24.1 8 5.3 odd 4
275.3.q.a.24.2 8 5.2 odd 4
275.3.q.a.149.1 8 55.17 even 20
275.3.q.a.149.2 8 55.28 even 20
275.3.x.a.101.1 4 1.1 even 1 trivial
275.3.x.a.226.1 4 11.6 odd 10 inner
605.3.c.b.241.1 4 55.29 odd 10
605.3.c.b.241.4 4 55.4 even 10