Properties

Label 275.3.d.c.274.11
Level $275$
Weight $3$
Character 275.274
Analytic conductor $7.493$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(274,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.274"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 32 x^{14} - 54 x^{13} + 51 x^{12} - 118 x^{11} + 770 x^{10} - 1222 x^{9} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{22} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.11
Root \(-0.333846 + 0.333846i\) of defining polynomial
Character \(\chi\) \(=\) 275.274
Dual form 275.3.d.c.274.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.66769 q^{2} -2.79505i q^{3} -1.21881 q^{4} -4.66128i q^{6} -6.72266 q^{7} -8.70336 q^{8} +1.18769 q^{9} +(-6.62122 - 8.78404i) q^{11} +3.40663i q^{12} +2.91291 q^{13} -11.2113 q^{14} -9.63929 q^{16} -30.9615 q^{17} +1.98069 q^{18} -4.49991i q^{19} +18.7902i q^{21} +(-11.0422 - 14.6491i) q^{22} -13.0410i q^{23} +24.3263i q^{24} +4.85783 q^{26} -28.4751i q^{27} +8.19362 q^{28} +44.8359i q^{29} +26.1730 q^{31} +18.7381 q^{32} +(-24.5519 + 18.5067i) q^{33} -51.6342 q^{34} -1.44756 q^{36} -28.8149i q^{37} -7.50446i q^{38} -8.14172i q^{39} -24.6573i q^{41} +31.3362i q^{42} +2.28690 q^{43} +(8.06999 + 10.7060i) q^{44} -21.7484i q^{46} -2.33270i q^{47} +26.9423i q^{48} -3.80580 q^{49} +86.5390i q^{51} -3.55027 q^{52} -93.1057i q^{53} -47.4877i q^{54} +58.5097 q^{56} -12.5775 q^{57} +74.7724i q^{58} +108.616 q^{59} -54.7958i q^{61} +43.6485 q^{62} -7.98441 q^{63} +69.8065 q^{64} +(-40.9449 + 30.8634i) q^{66} +9.01793i q^{67} +37.7361 q^{68} -36.4504 q^{69} -1.24936 q^{71} -10.3369 q^{72} -24.1060 q^{73} -48.0543i q^{74} +5.48452i q^{76} +(44.5123 + 59.0522i) q^{77} -13.5779i q^{78} -108.479i q^{79} -68.9002 q^{81} -41.1207i q^{82} -8.27453 q^{83} -22.9016i q^{84} +3.81384 q^{86} +125.319 q^{87} +(57.6269 + 76.4507i) q^{88} -84.8892 q^{89} -19.5825 q^{91} +15.8945i q^{92} -73.1549i q^{93} -3.89022i q^{94} -52.3739i q^{96} +160.450i q^{97} -6.34690 q^{98} +(-7.86394 - 10.4327i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 56 q^{4} + 8 q^{9} + 16 q^{11} + 176 q^{16} - 200 q^{26} + 72 q^{31} - 160 q^{34} - 432 q^{36} - 24 q^{44} - 344 q^{49} - 160 q^{56} + 32 q^{59} + 1176 q^{64} + 360 q^{66} - 16 q^{69} + 552 q^{71}+ \cdots + 368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.66769 0.833846 0.416923 0.908942i \(-0.363109\pi\)
0.416923 + 0.908942i \(0.363109\pi\)
\(3\) 2.79505i 0.931684i −0.884868 0.465842i \(-0.845752\pi\)
0.884868 0.465842i \(-0.154248\pi\)
\(4\) −1.21881 −0.304701
\(5\) 0 0
\(6\) 4.66128i 0.776881i
\(7\) −6.72266 −0.960380 −0.480190 0.877164i \(-0.659432\pi\)
−0.480190 + 0.877164i \(0.659432\pi\)
\(8\) −8.70336 −1.08792
\(9\) 1.18769 0.131965
\(10\) 0 0
\(11\) −6.62122 8.78404i −0.601929 0.798549i
\(12\) 3.40663i 0.283885i
\(13\) 2.91291 0.224070 0.112035 0.993704i \(-0.464263\pi\)
0.112035 + 0.993704i \(0.464263\pi\)
\(14\) −11.2113 −0.800809
\(15\) 0 0
\(16\) −9.63929 −0.602456
\(17\) −30.9615 −1.82127 −0.910633 0.413217i \(-0.864405\pi\)
−0.910633 + 0.413217i \(0.864405\pi\)
\(18\) 1.98069 0.110039
\(19\) 4.49991i 0.236837i −0.992964 0.118419i \(-0.962217\pi\)
0.992964 0.118419i \(-0.0377825\pi\)
\(20\) 0 0
\(21\) 18.7902i 0.894771i
\(22\) −11.0422 14.6491i −0.501916 0.665867i
\(23\) 13.0410i 0.567002i −0.958972 0.283501i \(-0.908504\pi\)
0.958972 0.283501i \(-0.0914959\pi\)
\(24\) 24.3263i 1.01360i
\(25\) 0 0
\(26\) 4.85783 0.186840
\(27\) 28.4751i 1.05463i
\(28\) 8.19362 0.292629
\(29\) 44.8359i 1.54607i 0.634366 + 0.773033i \(0.281261\pi\)
−0.634366 + 0.773033i \(0.718739\pi\)
\(30\) 0 0
\(31\) 26.1730 0.844290 0.422145 0.906528i \(-0.361277\pi\)
0.422145 + 0.906528i \(0.361277\pi\)
\(32\) 18.7381 0.585565
\(33\) −24.5519 + 18.5067i −0.743996 + 0.560808i
\(34\) −51.6342 −1.51865
\(35\) 0 0
\(36\) −1.44756 −0.0402100
\(37\) 28.8149i 0.778781i −0.921073 0.389390i \(-0.872686\pi\)
0.921073 0.389390i \(-0.127314\pi\)
\(38\) 7.50446i 0.197486i
\(39\) 8.14172i 0.208762i
\(40\) 0 0
\(41\) 24.6573i 0.601397i −0.953719 0.300698i \(-0.902780\pi\)
0.953719 0.300698i \(-0.0972197\pi\)
\(42\) 31.3362i 0.746101i
\(43\) 2.28690 0.0531837 0.0265919 0.999646i \(-0.491535\pi\)
0.0265919 + 0.999646i \(0.491535\pi\)
\(44\) 8.06999 + 10.7060i 0.183409 + 0.243319i
\(45\) 0 0
\(46\) 21.7484i 0.472792i
\(47\) 2.33270i 0.0496319i −0.999692 0.0248159i \(-0.992100\pi\)
0.999692 0.0248159i \(-0.00789997\pi\)
\(48\) 26.9423i 0.561298i
\(49\) −3.80580 −0.0776694
\(50\) 0 0
\(51\) 86.5390i 1.69684i
\(52\) −3.55027 −0.0682744
\(53\) 93.1057i 1.75671i −0.478009 0.878355i \(-0.658641\pi\)
0.478009 0.878355i \(-0.341359\pi\)
\(54\) 47.4877i 0.879402i
\(55\) 0 0
\(56\) 58.5097 1.04482
\(57\) −12.5775 −0.220658
\(58\) 74.7724i 1.28918i
\(59\) 108.616 1.84095 0.920473 0.390805i \(-0.127803\pi\)
0.920473 + 0.390805i \(0.127803\pi\)
\(60\) 0 0
\(61\) 54.7958i 0.898292i −0.893458 0.449146i \(-0.851728\pi\)
0.893458 0.449146i \(-0.148272\pi\)
\(62\) 43.6485 0.704008
\(63\) −7.98441 −0.126737
\(64\) 69.8065 1.09073
\(65\) 0 0
\(66\) −40.9449 + 30.8634i −0.620377 + 0.467627i
\(67\) 9.01793i 0.134596i 0.997733 + 0.0672980i \(0.0214378\pi\)
−0.997733 + 0.0672980i \(0.978562\pi\)
\(68\) 37.7361 0.554942
\(69\) −36.4504 −0.528266
\(70\) 0 0
\(71\) −1.24936 −0.0175966 −0.00879832 0.999961i \(-0.502801\pi\)
−0.00879832 + 0.999961i \(0.502801\pi\)
\(72\) −10.3369 −0.143567
\(73\) −24.1060 −0.330220 −0.165110 0.986275i \(-0.552798\pi\)
−0.165110 + 0.986275i \(0.552798\pi\)
\(74\) 48.0543i 0.649383i
\(75\) 0 0
\(76\) 5.48452i 0.0721647i
\(77\) 44.5123 + 59.0522i 0.578081 + 0.766911i
\(78\) 13.5779i 0.174075i
\(79\) 108.479i 1.37315i −0.727060 0.686574i \(-0.759114\pi\)
0.727060 0.686574i \(-0.240886\pi\)
\(80\) 0 0
\(81\) −68.9002 −0.850620
\(82\) 41.1207i 0.501472i
\(83\) −8.27453 −0.0996931 −0.0498466 0.998757i \(-0.515873\pi\)
−0.0498466 + 0.998757i \(0.515873\pi\)
\(84\) 22.9016i 0.272638i
\(85\) 0 0
\(86\) 3.81384 0.0443470
\(87\) 125.319 1.44044
\(88\) 57.6269 + 76.4507i 0.654851 + 0.868757i
\(89\) −84.8892 −0.953811 −0.476906 0.878954i \(-0.658242\pi\)
−0.476906 + 0.878954i \(0.658242\pi\)
\(90\) 0 0
\(91\) −19.5825 −0.215192
\(92\) 15.8945i 0.172766i
\(93\) 73.1549i 0.786611i
\(94\) 3.89022i 0.0413853i
\(95\) 0 0
\(96\) 52.3739i 0.545561i
\(97\) 160.450i 1.65413i 0.562109 + 0.827063i \(0.309990\pi\)
−0.562109 + 0.827063i \(0.690010\pi\)
\(98\) −6.34690 −0.0647643
\(99\) −7.86394 10.4327i −0.0794337 0.105381i
\(100\) 0 0
\(101\) 38.1687i 0.377908i 0.981986 + 0.188954i \(0.0605098\pi\)
−0.981986 + 0.188954i \(0.939490\pi\)
\(102\) 144.320i 1.41491i
\(103\) 34.4787i 0.334744i −0.985894 0.167372i \(-0.946472\pi\)
0.985894 0.167372i \(-0.0535282\pi\)
\(104\) −25.3521 −0.243770
\(105\) 0 0
\(106\) 155.271i 1.46483i
\(107\) −132.298 −1.23643 −0.618214 0.786009i \(-0.712144\pi\)
−0.618214 + 0.786009i \(0.712144\pi\)
\(108\) 34.7056i 0.321348i
\(109\) 174.238i 1.59851i 0.600992 + 0.799255i \(0.294772\pi\)
−0.600992 + 0.799255i \(0.705228\pi\)
\(110\) 0 0
\(111\) −80.5391 −0.725577
\(112\) 64.8017 0.578587
\(113\) 104.085i 0.921104i 0.887633 + 0.460552i \(0.152349\pi\)
−0.887633 + 0.460552i \(0.847651\pi\)
\(114\) −20.9754 −0.183994
\(115\) 0 0
\(116\) 54.6462i 0.471088i
\(117\) 3.45962 0.0295694
\(118\) 181.138 1.53507
\(119\) 208.144 1.74911
\(120\) 0 0
\(121\) −33.3188 + 116.322i −0.275362 + 0.961341i
\(122\) 91.3825i 0.749037i
\(123\) −68.9183 −0.560312
\(124\) −31.8998 −0.257256
\(125\) 0 0
\(126\) −13.3155 −0.105679
\(127\) 32.2445 0.253894 0.126947 0.991910i \(-0.459482\pi\)
0.126947 + 0.991910i \(0.459482\pi\)
\(128\) 41.4634 0.323933
\(129\) 6.39201i 0.0495504i
\(130\) 0 0
\(131\) 253.053i 1.93170i 0.259093 + 0.965852i \(0.416577\pi\)
−0.259093 + 0.965852i \(0.583423\pi\)
\(132\) 29.9239 22.5560i 0.226697 0.170879i
\(133\) 30.2514i 0.227454i
\(134\) 15.0391i 0.112232i
\(135\) 0 0
\(136\) 269.469 1.98139
\(137\) 200.242i 1.46162i −0.682580 0.730811i \(-0.739142\pi\)
0.682580 0.730811i \(-0.260858\pi\)
\(138\) −60.7880 −0.440492
\(139\) 199.124i 1.43255i −0.697821 0.716273i \(-0.745847\pi\)
0.697821 0.716273i \(-0.254153\pi\)
\(140\) 0 0
\(141\) −6.52001 −0.0462412
\(142\) −2.08355 −0.0146729
\(143\) −19.2870 25.5871i −0.134874 0.178931i
\(144\) −11.4485 −0.0795031
\(145\) 0 0
\(146\) −40.2014 −0.275352
\(147\) 10.6374i 0.0723634i
\(148\) 35.1197i 0.237296i
\(149\) 42.5232i 0.285391i −0.989767 0.142695i \(-0.954423\pi\)
0.989767 0.142695i \(-0.0455769\pi\)
\(150\) 0 0
\(151\) 225.857i 1.49574i −0.663845 0.747870i \(-0.731077\pi\)
0.663845 0.747870i \(-0.268923\pi\)
\(152\) 39.1643i 0.257660i
\(153\) −36.7726 −0.240344
\(154\) 74.2327 + 98.4808i 0.482030 + 0.639486i
\(155\) 0 0
\(156\) 9.92318i 0.0636101i
\(157\) 121.955i 0.776782i −0.921495 0.388391i \(-0.873031\pi\)
0.921495 0.388391i \(-0.126969\pi\)
\(158\) 180.909i 1.14499i
\(159\) −260.235 −1.63670
\(160\) 0 0
\(161\) 87.6705i 0.544537i
\(162\) −114.904 −0.709286
\(163\) 88.1904i 0.541046i 0.962714 + 0.270523i \(0.0871966\pi\)
−0.962714 + 0.270523i \(0.912803\pi\)
\(164\) 30.0524i 0.183246i
\(165\) 0 0
\(166\) −13.7994 −0.0831287
\(167\) −155.562 −0.931508 −0.465754 0.884914i \(-0.654217\pi\)
−0.465754 + 0.884914i \(0.654217\pi\)
\(168\) 163.538i 0.973439i
\(169\) −160.515 −0.949793
\(170\) 0 0
\(171\) 5.34448i 0.0312543i
\(172\) −2.78729 −0.0162052
\(173\) −214.864 −1.24199 −0.620995 0.783815i \(-0.713271\pi\)
−0.620995 + 0.783815i \(0.713271\pi\)
\(174\) 208.993 1.20111
\(175\) 0 0
\(176\) 63.8239 + 84.6719i 0.362636 + 0.481090i
\(177\) 303.587i 1.71518i
\(178\) −141.569 −0.795331
\(179\) 155.650 0.869555 0.434778 0.900538i \(-0.356827\pi\)
0.434778 + 0.900538i \(0.356827\pi\)
\(180\) 0 0
\(181\) 189.154 1.04505 0.522525 0.852624i \(-0.324990\pi\)
0.522525 + 0.852624i \(0.324990\pi\)
\(182\) −32.6575 −0.179437
\(183\) −153.157 −0.836924
\(184\) 113.501i 0.616852i
\(185\) 0 0
\(186\) 122.000i 0.655913i
\(187\) 205.003 + 271.967i 1.09627 + 1.45437i
\(188\) 2.84311i 0.0151229i
\(189\) 191.429i 1.01285i
\(190\) 0 0
\(191\) −123.993 −0.649180 −0.324590 0.945855i \(-0.605226\pi\)
−0.324590 + 0.945855i \(0.605226\pi\)
\(192\) 195.113i 1.01621i
\(193\) 234.124 1.21308 0.606538 0.795054i \(-0.292558\pi\)
0.606538 + 0.795054i \(0.292558\pi\)
\(194\) 267.582i 1.37929i
\(195\) 0 0
\(196\) 4.63853 0.0236660
\(197\) −218.949 −1.11142 −0.555709 0.831377i \(-0.687553\pi\)
−0.555709 + 0.831377i \(0.687553\pi\)
\(198\) −13.1146 17.3985i −0.0662354 0.0878712i
\(199\) −127.963 −0.643028 −0.321514 0.946905i \(-0.604192\pi\)
−0.321514 + 0.946905i \(0.604192\pi\)
\(200\) 0 0
\(201\) 25.2056 0.125401
\(202\) 63.6537i 0.315117i
\(203\) 301.417i 1.48481i
\(204\) 105.474i 0.517031i
\(205\) 0 0
\(206\) 57.4998i 0.279125i
\(207\) 15.4887i 0.0748244i
\(208\) −28.0783 −0.134992
\(209\) −39.5274 + 29.7949i −0.189126 + 0.142559i
\(210\) 0 0
\(211\) 224.173i 1.06243i −0.847237 0.531215i \(-0.821736\pi\)
0.847237 0.531215i \(-0.178264\pi\)
\(212\) 113.478i 0.535272i
\(213\) 3.49203i 0.0163945i
\(214\) −220.632 −1.03099
\(215\) 0 0
\(216\) 247.829i 1.14736i
\(217\) −175.952 −0.810840
\(218\) 290.575i 1.33291i
\(219\) 67.3776i 0.307660i
\(220\) 0 0
\(221\) −90.1880 −0.408090
\(222\) −134.314 −0.605020
\(223\) 267.394i 1.19908i 0.800346 + 0.599538i \(0.204649\pi\)
−0.800346 + 0.599538i \(0.795351\pi\)
\(224\) −125.970 −0.562365
\(225\) 0 0
\(226\) 173.581i 0.768059i
\(227\) 157.636 0.694431 0.347216 0.937785i \(-0.387127\pi\)
0.347216 + 0.937785i \(0.387127\pi\)
\(228\) 15.3295 0.0672347
\(229\) −43.2374 −0.188810 −0.0944049 0.995534i \(-0.530095\pi\)
−0.0944049 + 0.995534i \(0.530095\pi\)
\(230\) 0 0
\(231\) 165.054 124.414i 0.714519 0.538589i
\(232\) 390.223i 1.68199i
\(233\) 213.611 0.916784 0.458392 0.888750i \(-0.348426\pi\)
0.458392 + 0.888750i \(0.348426\pi\)
\(234\) 5.76958 0.0246563
\(235\) 0 0
\(236\) −132.382 −0.560939
\(237\) −303.204 −1.27934
\(238\) 347.120 1.45849
\(239\) 277.630i 1.16163i −0.814035 0.580816i \(-0.802733\pi\)
0.814035 0.580816i \(-0.197267\pi\)
\(240\) 0 0
\(241\) 39.3269i 0.163182i −0.996666 0.0815910i \(-0.974000\pi\)
0.996666 0.0815910i \(-0.0260001\pi\)
\(242\) −55.5655 + 193.990i −0.229609 + 0.801610i
\(243\) 63.6963i 0.262125i
\(244\) 66.7855i 0.273711i
\(245\) 0 0
\(246\) −114.934 −0.467213
\(247\) 13.1078i 0.0530681i
\(248\) −227.793 −0.918520
\(249\) 23.1277i 0.0928825i
\(250\) 0 0
\(251\) −348.287 −1.38760 −0.693800 0.720168i \(-0.744065\pi\)
−0.693800 + 0.720168i \(0.744065\pi\)
\(252\) 9.73145 0.0386169
\(253\) −114.553 + 86.3476i −0.452779 + 0.341295i
\(254\) 53.7739 0.211708
\(255\) 0 0
\(256\) −210.078 −0.820616
\(257\) 213.878i 0.832211i −0.909316 0.416105i \(-0.863395\pi\)
0.909316 0.416105i \(-0.136605\pi\)
\(258\) 10.6599i 0.0413174i
\(259\) 193.713i 0.747926i
\(260\) 0 0
\(261\) 53.2510i 0.204027i
\(262\) 422.015i 1.61074i
\(263\) 164.115 0.624012 0.312006 0.950080i \(-0.398999\pi\)
0.312006 + 0.950080i \(0.398999\pi\)
\(264\) 213.684 161.070i 0.809407 0.610114i
\(265\) 0 0
\(266\) 50.4500i 0.189662i
\(267\) 237.270i 0.888651i
\(268\) 10.9911i 0.0410116i
\(269\) −375.819 −1.39710 −0.698549 0.715562i \(-0.746171\pi\)
−0.698549 + 0.715562i \(0.746171\pi\)
\(270\) 0 0
\(271\) 163.935i 0.604928i −0.953161 0.302464i \(-0.902191\pi\)
0.953161 0.302464i \(-0.0978092\pi\)
\(272\) 298.447 1.09723
\(273\) 54.7341i 0.200491i
\(274\) 333.942i 1.21877i
\(275\) 0 0
\(276\) 44.4259 0.160963
\(277\) 336.063 1.21323 0.606613 0.794998i \(-0.292528\pi\)
0.606613 + 0.794998i \(0.292528\pi\)
\(278\) 332.077i 1.19452i
\(279\) 31.0853 0.111417
\(280\) 0 0
\(281\) 383.397i 1.36440i −0.731164 0.682202i \(-0.761023\pi\)
0.731164 0.682202i \(-0.238977\pi\)
\(282\) −10.8734 −0.0385580
\(283\) 31.1879 0.110204 0.0551022 0.998481i \(-0.482452\pi\)
0.0551022 + 0.998481i \(0.482452\pi\)
\(284\) 1.52273 0.00536172
\(285\) 0 0
\(286\) −32.1648 42.6714i −0.112464 0.149201i
\(287\) 165.762i 0.577570i
\(288\) 22.2549 0.0772741
\(289\) 669.615 2.31701
\(290\) 0 0
\(291\) 448.467 1.54112
\(292\) 29.3806 0.100618
\(293\) −175.574 −0.599229 −0.299614 0.954060i \(-0.596858\pi\)
−0.299614 + 0.954060i \(0.596858\pi\)
\(294\) 17.7399i 0.0603399i
\(295\) 0 0
\(296\) 250.786i 0.847251i
\(297\) −250.127 + 188.540i −0.842177 + 0.634815i
\(298\) 70.9156i 0.237972i
\(299\) 37.9873i 0.127048i
\(300\) 0 0
\(301\) −15.3741 −0.0510766
\(302\) 376.659i 1.24722i
\(303\) 106.684 0.352091
\(304\) 43.3759i 0.142684i
\(305\) 0 0
\(306\) −61.3253 −0.200409
\(307\) 515.038 1.67765 0.838825 0.544402i \(-0.183243\pi\)
0.838825 + 0.544402i \(0.183243\pi\)
\(308\) −54.2518 71.9731i −0.176142 0.233679i
\(309\) −96.3697 −0.311876
\(310\) 0 0
\(311\) 419.087 1.34755 0.673774 0.738937i \(-0.264672\pi\)
0.673774 + 0.738937i \(0.264672\pi\)
\(312\) 70.8603i 0.227116i
\(313\) 82.3366i 0.263056i 0.991312 + 0.131528i \(0.0419884\pi\)
−0.991312 + 0.131528i \(0.958012\pi\)
\(314\) 203.383i 0.647716i
\(315\) 0 0
\(316\) 132.215i 0.418400i
\(317\) 373.069i 1.17687i 0.808543 + 0.588437i \(0.200257\pi\)
−0.808543 + 0.588437i \(0.799743\pi\)
\(318\) −433.992 −1.36475
\(319\) 393.840 296.868i 1.23461 0.930622i
\(320\) 0 0
\(321\) 369.779i 1.15196i
\(322\) 146.207i 0.454060i
\(323\) 139.324i 0.431344i
\(324\) 83.9760 0.259185
\(325\) 0 0
\(326\) 147.074i 0.451149i
\(327\) 487.003 1.48931
\(328\) 214.601i 0.654271i
\(329\) 15.6819i 0.0476655i
\(330\) 0 0
\(331\) 179.066 0.540986 0.270493 0.962722i \(-0.412813\pi\)
0.270493 + 0.962722i \(0.412813\pi\)
\(332\) 10.0850 0.0303766
\(333\) 34.2230i 0.102772i
\(334\) −259.429 −0.776734
\(335\) 0 0
\(336\) 181.124i 0.539060i
\(337\) −187.268 −0.555693 −0.277846 0.960626i \(-0.589621\pi\)
−0.277846 + 0.960626i \(0.589621\pi\)
\(338\) −267.689 −0.791981
\(339\) 290.922 0.858178
\(340\) 0 0
\(341\) −173.297 229.905i −0.508203 0.674207i
\(342\) 8.91295i 0.0260613i
\(343\) 354.996 1.03497
\(344\) −19.9037 −0.0578596
\(345\) 0 0
\(346\) −358.327 −1.03563
\(347\) 388.617 1.11993 0.559967 0.828515i \(-0.310814\pi\)
0.559967 + 0.828515i \(0.310814\pi\)
\(348\) −152.739 −0.438905
\(349\) 73.9677i 0.211942i 0.994369 + 0.105971i \(0.0337950\pi\)
−0.994369 + 0.105971i \(0.966205\pi\)
\(350\) 0 0
\(351\) 82.9453i 0.236311i
\(352\) −124.069 164.596i −0.352469 0.467602i
\(353\) 208.797i 0.591492i −0.955267 0.295746i \(-0.904432\pi\)
0.955267 0.295746i \(-0.0955681\pi\)
\(354\) 506.289i 1.43020i
\(355\) 0 0
\(356\) 103.463 0.290628
\(357\) 581.773i 1.62962i
\(358\) 259.577 0.725075
\(359\) 32.9550i 0.0917967i −0.998946 0.0458984i \(-0.985385\pi\)
0.998946 0.0458984i \(-0.0146150\pi\)
\(360\) 0 0
\(361\) 340.751 0.943908
\(362\) 315.450 0.871410
\(363\) 325.127 + 93.1278i 0.895666 + 0.256550i
\(364\) 23.8672 0.0655694
\(365\) 0 0
\(366\) −255.419 −0.697866
\(367\) 29.7192i 0.0809788i −0.999180 0.0404894i \(-0.987108\pi\)
0.999180 0.0404894i \(-0.0128917\pi\)
\(368\) 125.706i 0.341593i
\(369\) 29.2851i 0.0793634i
\(370\) 0 0
\(371\) 625.918i 1.68711i
\(372\) 89.1616i 0.239682i
\(373\) 436.560 1.17040 0.585201 0.810889i \(-0.301016\pi\)
0.585201 + 0.810889i \(0.301016\pi\)
\(374\) 341.882 + 453.557i 0.914123 + 1.21272i
\(375\) 0 0
\(376\) 20.3023i 0.0539955i
\(377\) 130.603i 0.346426i
\(378\) 319.244i 0.844560i
\(379\) −74.5391 −0.196673 −0.0983366 0.995153i \(-0.531352\pi\)
−0.0983366 + 0.995153i \(0.531352\pi\)
\(380\) 0 0
\(381\) 90.1251i 0.236549i
\(382\) −206.783 −0.541316
\(383\) 496.956i 1.29754i 0.760986 + 0.648768i \(0.224715\pi\)
−0.760986 + 0.648768i \(0.775285\pi\)
\(384\) 115.892i 0.301803i
\(385\) 0 0
\(386\) 390.446 1.01152
\(387\) 2.71612 0.00701840
\(388\) 195.558i 0.504015i
\(389\) −6.51617 −0.0167511 −0.00837554 0.999965i \(-0.502666\pi\)
−0.00837554 + 0.999965i \(0.502666\pi\)
\(390\) 0 0
\(391\) 403.770i 1.03266i
\(392\) 33.1233 0.0844981
\(393\) 707.297 1.79974
\(394\) −365.140 −0.926751
\(395\) 0 0
\(396\) 9.58461 + 12.7154i 0.0242036 + 0.0321096i
\(397\) 59.6577i 0.150271i −0.997173 0.0751357i \(-0.976061\pi\)
0.997173 0.0751357i \(-0.0239390\pi\)
\(398\) −213.402 −0.536186
\(399\) 84.5542 0.211915
\(400\) 0 0
\(401\) −298.153 −0.743524 −0.371762 0.928328i \(-0.621246\pi\)
−0.371762 + 0.928328i \(0.621246\pi\)
\(402\) 42.0351 0.104565
\(403\) 76.2395 0.189180
\(404\) 46.5203i 0.115149i
\(405\) 0 0
\(406\) 502.670i 1.23810i
\(407\) −253.111 + 190.790i −0.621895 + 0.468771i
\(408\) 753.180i 1.84603i
\(409\) 170.539i 0.416967i 0.978026 + 0.208483i \(0.0668528\pi\)
−0.978026 + 0.208483i \(0.933147\pi\)
\(410\) 0 0
\(411\) −559.687 −1.36177
\(412\) 42.0228i 0.101997i
\(413\) −730.188 −1.76801
\(414\) 25.8303i 0.0623920i
\(415\) 0 0
\(416\) 54.5822 0.131207
\(417\) −556.561 −1.33468
\(418\) −65.9195 + 49.6887i −0.157702 + 0.118873i
\(419\) −547.949 −1.30775 −0.653877 0.756601i \(-0.726859\pi\)
−0.653877 + 0.756601i \(0.726859\pi\)
\(420\) 0 0
\(421\) 375.189 0.891185 0.445593 0.895236i \(-0.352993\pi\)
0.445593 + 0.895236i \(0.352993\pi\)
\(422\) 373.851i 0.885902i
\(423\) 2.77051i 0.00654968i
\(424\) 810.332i 1.91116i
\(425\) 0 0
\(426\) 5.82363i 0.0136705i
\(427\) 368.374i 0.862702i
\(428\) 161.245 0.376742
\(429\) −71.5172 + 53.9082i −0.166707 + 0.125660i
\(430\) 0 0
\(431\) 405.352i 0.940493i −0.882535 0.470246i \(-0.844165\pi\)
0.882535 0.470246i \(-0.155835\pi\)
\(432\) 274.480i 0.635370i
\(433\) 122.182i 0.282175i 0.989997 + 0.141088i \(0.0450599\pi\)
−0.989997 + 0.141088i \(0.954940\pi\)
\(434\) −293.434 −0.676115
\(435\) 0 0
\(436\) 212.362i 0.487068i
\(437\) −58.6835 −0.134287
\(438\) 112.365i 0.256541i
\(439\) 125.331i 0.285492i 0.989759 + 0.142746i \(0.0455931\pi\)
−0.989759 + 0.142746i \(0.954407\pi\)
\(440\) 0 0
\(441\) −4.52010 −0.0102497
\(442\) −150.406 −0.340284
\(443\) 66.9517i 0.151133i 0.997141 + 0.0755663i \(0.0240765\pi\)
−0.997141 + 0.0755663i \(0.975924\pi\)
\(444\) 98.1615 0.221084
\(445\) 0 0
\(446\) 445.931i 0.999845i
\(447\) −118.855 −0.265894
\(448\) −469.285 −1.04751
\(449\) −227.828 −0.507413 −0.253706 0.967281i \(-0.581650\pi\)
−0.253706 + 0.967281i \(0.581650\pi\)
\(450\) 0 0
\(451\) −216.590 + 163.261i −0.480245 + 0.361998i
\(452\) 126.859i 0.280662i
\(453\) −631.281 −1.39356
\(454\) 262.888 0.579049
\(455\) 0 0
\(456\) 109.466 0.240058
\(457\) 328.089 0.717919 0.358959 0.933353i \(-0.383132\pi\)
0.358959 + 0.933353i \(0.383132\pi\)
\(458\) −72.1067 −0.157438
\(459\) 881.632i 1.92077i
\(460\) 0 0
\(461\) 634.564i 1.37649i −0.725476 0.688247i \(-0.758381\pi\)
0.725476 0.688247i \(-0.241619\pi\)
\(462\) 275.259 207.484i 0.595798 0.449100i
\(463\) 39.8190i 0.0860022i 0.999075 + 0.0430011i \(0.0136919\pi\)
−0.999075 + 0.0430011i \(0.986308\pi\)
\(464\) 432.186i 0.931436i
\(465\) 0 0
\(466\) 356.237 0.764456
\(467\) 120.629i 0.258307i −0.991625 0.129153i \(-0.958774\pi\)
0.991625 0.129153i \(-0.0412259\pi\)
\(468\) −4.21660 −0.00900984
\(469\) 60.6245i 0.129263i
\(470\) 0 0
\(471\) −340.870 −0.723715
\(472\) −945.323 −2.00280
\(473\) −15.1421 20.0882i −0.0320129 0.0424698i
\(474\) −505.650 −1.06677
\(475\) 0 0
\(476\) −253.687 −0.532956
\(477\) 110.580i 0.231825i
\(478\) 463.002i 0.968623i
\(479\) 611.310i 1.27622i −0.769945 0.638110i \(-0.779716\pi\)
0.769945 0.638110i \(-0.220284\pi\)
\(480\) 0 0
\(481\) 83.9351i 0.174501i
\(482\) 65.5851i 0.136069i
\(483\) 245.044 0.507337
\(484\) 40.6092 141.774i 0.0839032 0.292922i
\(485\) 0 0
\(486\) 106.226i 0.218572i
\(487\) 386.421i 0.793472i −0.917933 0.396736i \(-0.870143\pi\)
0.917933 0.396736i \(-0.129857\pi\)
\(488\) 476.908i 0.977270i
\(489\) 246.497 0.504083
\(490\) 0 0
\(491\) 699.750i 1.42515i −0.701594 0.712577i \(-0.747528\pi\)
0.701594 0.712577i \(-0.252472\pi\)
\(492\) 83.9981 0.170728
\(493\) 1388.19i 2.81580i
\(494\) 21.8598i 0.0442506i
\(495\) 0 0
\(496\) −252.289 −0.508647
\(497\) 8.39903 0.0168995
\(498\) 38.5699i 0.0774496i
\(499\) 243.340 0.487654 0.243827 0.969819i \(-0.421597\pi\)
0.243827 + 0.969819i \(0.421597\pi\)
\(500\) 0 0
\(501\) 434.803i 0.867871i
\(502\) −580.836 −1.15704
\(503\) 90.1999 0.179324 0.0896620 0.995972i \(-0.471421\pi\)
0.0896620 + 0.995972i \(0.471421\pi\)
\(504\) 69.4912 0.137879
\(505\) 0 0
\(506\) −191.039 + 144.001i −0.377548 + 0.284587i
\(507\) 448.648i 0.884907i
\(508\) −39.2998 −0.0773619
\(509\) −629.870 −1.23746 −0.618732 0.785602i \(-0.712353\pi\)
−0.618732 + 0.785602i \(0.712353\pi\)
\(510\) 0 0
\(511\) 162.057 0.317137
\(512\) −516.198 −1.00820
\(513\) −128.135 −0.249777
\(514\) 356.683i 0.693935i
\(515\) 0 0
\(516\) 7.79061i 0.0150981i
\(517\) −20.4905 + 15.4453i −0.0396335 + 0.0298749i
\(518\) 323.053i 0.623655i
\(519\) 600.556i 1.15714i
\(520\) 0 0
\(521\) −355.136 −0.681643 −0.340822 0.940128i \(-0.610705\pi\)
−0.340822 + 0.940128i \(0.610705\pi\)
\(522\) 88.8062i 0.170127i
\(523\) 107.213 0.204996 0.102498 0.994733i \(-0.467317\pi\)
0.102498 + 0.994733i \(0.467317\pi\)
\(524\) 308.423i 0.588593i
\(525\) 0 0
\(526\) 273.693 0.520330
\(527\) −810.355 −1.53768
\(528\) 236.662 178.391i 0.448224 0.337862i
\(529\) 358.931 0.678509
\(530\) 0 0
\(531\) 129.002 0.242941
\(532\) 36.8706i 0.0693056i
\(533\) 71.8243i 0.134755i
\(534\) 395.693i 0.740998i
\(535\) 0 0
\(536\) 78.4862i 0.146430i
\(537\) 435.051i 0.810151i
\(538\) −626.750 −1.16496
\(539\) 25.1991 + 33.4303i 0.0467515 + 0.0620229i
\(540\) 0 0
\(541\) 365.120i 0.674899i 0.941344 + 0.337449i \(0.109564\pi\)
−0.941344 + 0.337449i \(0.890436\pi\)
\(542\) 273.394i 0.504417i
\(543\) 528.695i 0.973656i
\(544\) −580.159 −1.06647
\(545\) 0 0
\(546\) 91.2795i 0.167179i
\(547\) 384.034 0.702074 0.351037 0.936362i \(-0.385829\pi\)
0.351037 + 0.936362i \(0.385829\pi\)
\(548\) 244.056i 0.445358i
\(549\) 65.0802i 0.118543i
\(550\) 0 0
\(551\) 201.758 0.366166
\(552\) 317.241 0.574711
\(553\) 729.266i 1.31874i
\(554\) 560.450 1.01164
\(555\) 0 0
\(556\) 242.693i 0.436499i
\(557\) −93.3430 −0.167582 −0.0837908 0.996483i \(-0.526703\pi\)
−0.0837908 + 0.996483i \(0.526703\pi\)
\(558\) 51.8407 0.0929045
\(559\) 6.66153 0.0119169
\(560\) 0 0
\(561\) 760.163 572.994i 1.35501 1.02138i
\(562\) 639.388i 1.13770i
\(563\) 325.624 0.578373 0.289187 0.957273i \(-0.406615\pi\)
0.289187 + 0.957273i \(0.406615\pi\)
\(564\) 7.94663 0.0140898
\(565\) 0 0
\(566\) 52.0117 0.0918935
\(567\) 463.193 0.816919
\(568\) 10.8736 0.0191437
\(569\) 409.067i 0.718923i 0.933160 + 0.359461i \(0.117040\pi\)
−0.933160 + 0.359461i \(0.882960\pi\)
\(570\) 0 0
\(571\) 395.169i 0.692065i 0.938223 + 0.346032i \(0.112471\pi\)
−0.938223 + 0.346032i \(0.887529\pi\)
\(572\) 23.5071 + 31.1857i 0.0410963 + 0.0545205i
\(573\) 346.568i 0.604830i
\(574\) 276.441i 0.481604i
\(575\) 0 0
\(576\) 82.9082 0.143938
\(577\) 432.156i 0.748971i −0.927233 0.374485i \(-0.877819\pi\)
0.927233 0.374485i \(-0.122181\pi\)
\(578\) 1116.71 1.93203
\(579\) 654.388i 1.13020i
\(580\) 0 0
\(581\) 55.6269 0.0957433
\(582\) 747.904 1.28506
\(583\) −817.844 + 616.473i −1.40282 + 1.05742i
\(584\) 209.804 0.359253
\(585\) 0 0
\(586\) −292.803 −0.499664
\(587\) 1.36709i 0.00232895i −0.999999 0.00116447i \(-0.999629\pi\)
0.999999 0.00116447i \(-0.000370664\pi\)
\(588\) 12.9649i 0.0220492i
\(589\) 117.776i 0.199960i
\(590\) 0 0
\(591\) 611.974i 1.03549i
\(592\) 277.755i 0.469181i
\(593\) −232.591 −0.392228 −0.196114 0.980581i \(-0.562832\pi\)
−0.196114 + 0.980581i \(0.562832\pi\)
\(594\) −417.134 + 314.427i −0.702246 + 0.529338i
\(595\) 0 0
\(596\) 51.8275i 0.0869590i
\(597\) 357.662i 0.599099i
\(598\) 63.3511i 0.105938i
\(599\) 291.349 0.486392 0.243196 0.969977i \(-0.421804\pi\)
0.243196 + 0.969977i \(0.421804\pi\)
\(600\) 0 0
\(601\) 160.437i 0.266951i −0.991052 0.133475i \(-0.957386\pi\)
0.991052 0.133475i \(-0.0426137\pi\)
\(602\) −25.6392 −0.0425900
\(603\) 10.7105i 0.0177620i
\(604\) 275.275i 0.455754i
\(605\) 0 0
\(606\) 177.915 0.293590
\(607\) −107.785 −0.177571 −0.0887854 0.996051i \(-0.528299\pi\)
−0.0887854 + 0.996051i \(0.528299\pi\)
\(608\) 84.3197i 0.138684i
\(609\) −842.475 −1.38337
\(610\) 0 0
\(611\) 6.79493i 0.0111210i
\(612\) 44.8186 0.0732330
\(613\) −552.780 −0.901761 −0.450881 0.892584i \(-0.648890\pi\)
−0.450881 + 0.892584i \(0.648890\pi\)
\(614\) 858.925 1.39890
\(615\) 0 0
\(616\) −387.406 513.952i −0.628906 0.834338i
\(617\) 21.9153i 0.0355192i 0.999842 + 0.0177596i \(0.00565335\pi\)
−0.999842 + 0.0177596i \(0.994347\pi\)
\(618\) −160.715 −0.260056
\(619\) −205.700 −0.332310 −0.166155 0.986100i \(-0.553135\pi\)
−0.166155 + 0.986100i \(0.553135\pi\)
\(620\) 0 0
\(621\) −371.345 −0.597979
\(622\) 698.909 1.12365
\(623\) 570.682 0.916022
\(624\) 78.4804i 0.125770i
\(625\) 0 0
\(626\) 137.312i 0.219348i
\(627\) 83.2783 + 110.481i 0.132820 + 0.176206i
\(628\) 148.639i 0.236687i
\(629\) 892.152i 1.41837i
\(630\) 0 0
\(631\) 859.961 1.36285 0.681427 0.731886i \(-0.261360\pi\)
0.681427 + 0.731886i \(0.261360\pi\)
\(632\) 944.129i 1.49388i
\(633\) −626.574 −0.989848
\(634\) 622.164i 0.981331i
\(635\) 0 0
\(636\) 317.176 0.498705
\(637\) −11.0859 −0.0174034
\(638\) 656.804 495.085i 1.02947 0.775995i
\(639\) −1.48385 −0.00232214
\(640\) 0 0
\(641\) 794.780 1.23991 0.619953 0.784639i \(-0.287152\pi\)
0.619953 + 0.784639i \(0.287152\pi\)
\(642\) 616.678i 0.960558i
\(643\) 25.5239i 0.0396951i 0.999803 + 0.0198475i \(0.00631808\pi\)
−0.999803 + 0.0198475i \(0.993682\pi\)
\(644\) 106.853i 0.165921i
\(645\) 0 0
\(646\) 232.350i 0.359674i
\(647\) 681.121i 1.05274i −0.850257 0.526368i \(-0.823553\pi\)
0.850257 0.526368i \(-0.176447\pi\)
\(648\) 599.663 0.925406
\(649\) −719.170 954.086i −1.10812 1.47009i
\(650\) 0 0
\(651\) 491.796i 0.755446i
\(652\) 107.487i 0.164857i
\(653\) 913.057i 1.39825i −0.715000 0.699124i \(-0.753573\pi\)
0.715000 0.699124i \(-0.246427\pi\)
\(654\) 812.171 1.24185
\(655\) 0 0
\(656\) 237.678i 0.362315i
\(657\) −28.6304 −0.0435775
\(658\) 26.1526i 0.0397457i
\(659\) 126.800i 0.192413i −0.995361 0.0962065i \(-0.969329\pi\)
0.995361 0.0962065i \(-0.0306709\pi\)
\(660\) 0 0
\(661\) −736.664 −1.11447 −0.557235 0.830355i \(-0.688138\pi\)
−0.557235 + 0.830355i \(0.688138\pi\)
\(662\) 298.627 0.451099
\(663\) 252.080i 0.380211i
\(664\) 72.0162 0.108458
\(665\) 0 0
\(666\) 57.0735i 0.0856959i
\(667\) 584.706 0.876621
\(668\) 189.600 0.283832
\(669\) 747.380 1.11716
\(670\) 0 0
\(671\) −481.329 + 362.815i −0.717331 + 0.540708i
\(672\) 352.092i 0.523946i
\(673\) 225.017 0.334349 0.167174 0.985927i \(-0.446536\pi\)
0.167174 + 0.985927i \(0.446536\pi\)
\(674\) −312.306 −0.463362
\(675\) 0 0
\(676\) 195.637 0.289403
\(677\) −109.258 −0.161386 −0.0806931 0.996739i \(-0.525713\pi\)
−0.0806931 + 0.996739i \(0.525713\pi\)
\(678\) 485.169 0.715588
\(679\) 1078.65i 1.58859i
\(680\) 0 0
\(681\) 440.601i 0.646991i
\(682\) −289.006 383.410i −0.423763 0.562185i
\(683\) 1080.61i 1.58215i 0.611719 + 0.791075i \(0.290478\pi\)
−0.611719 + 0.791075i \(0.709522\pi\)
\(684\) 6.51389i 0.00952323i
\(685\) 0 0
\(686\) 592.023 0.863007
\(687\) 120.851i 0.175911i
\(688\) −22.0441 −0.0320408
\(689\) 271.208i 0.393626i
\(690\) 0 0
\(691\) −1170.13 −1.69339 −0.846695 0.532078i \(-0.821411\pi\)
−0.846695 + 0.532078i \(0.821411\pi\)
\(692\) 261.878 0.378436
\(693\) 52.8666 + 70.1354i 0.0762866 + 0.101206i
\(694\) 648.093 0.933852
\(695\) 0 0
\(696\) −1090.69 −1.56709
\(697\) 763.426i 1.09530i
\(698\) 123.355i 0.176727i
\(699\) 597.053i 0.854153i
\(700\) 0 0
\(701\) 328.408i 0.468485i −0.972178 0.234242i \(-0.924739\pi\)
0.972178 0.234242i \(-0.0752609\pi\)
\(702\) 138.327i 0.197047i
\(703\) −129.664 −0.184444
\(704\) −462.204 613.183i −0.656540 0.870999i
\(705\) 0 0
\(706\) 348.208i 0.493213i
\(707\) 256.596i 0.362936i
\(708\) 370.014i 0.522618i
\(709\) 705.817 0.995511 0.497756 0.867317i \(-0.334158\pi\)
0.497756 + 0.867317i \(0.334158\pi\)
\(710\) 0 0
\(711\) 128.839i 0.181208i
\(712\) 738.821 1.03767
\(713\) 341.323i 0.478714i
\(714\) 970.217i 1.35885i
\(715\) 0 0
\(716\) −189.708 −0.264955
\(717\) −775.991 −1.08227
\(718\) 54.9588i 0.0765443i
\(719\) 584.645 0.813137 0.406568 0.913620i \(-0.366725\pi\)
0.406568 + 0.913620i \(0.366725\pi\)
\(720\) 0 0
\(721\) 231.789i 0.321482i
\(722\) 568.267 0.787074
\(723\) −109.921 −0.152034
\(724\) −230.542 −0.318428
\(725\) 0 0
\(726\) 542.211 + 155.308i 0.746847 + 0.213923i
\(727\) 370.464i 0.509579i 0.966997 + 0.254790i \(0.0820062\pi\)
−0.966997 + 0.254790i \(0.917994\pi\)
\(728\) 170.433 0.234112
\(729\) −798.136 −1.09484
\(730\) 0 0
\(731\) −70.8059 −0.0968617
\(732\) 186.669 0.255012
\(733\) −407.221 −0.555554 −0.277777 0.960646i \(-0.589598\pi\)
−0.277777 + 0.960646i \(0.589598\pi\)
\(734\) 49.5625i 0.0675238i
\(735\) 0 0
\(736\) 244.364i 0.332016i
\(737\) 79.2138 59.7097i 0.107481 0.0810172i
\(738\) 48.8385i 0.0661768i
\(739\) 1382.44i 1.87069i −0.353731 0.935347i \(-0.615087\pi\)
0.353731 0.935347i \(-0.384913\pi\)
\(740\) 0 0
\(741\) −36.6370 −0.0494427
\(742\) 1043.84i 1.40679i
\(743\) −748.989 −1.00806 −0.504030 0.863686i \(-0.668150\pi\)
−0.504030 + 0.863686i \(0.668150\pi\)
\(744\) 636.693i 0.855770i
\(745\) 0 0
\(746\) 728.047 0.975934
\(747\) −9.82754 −0.0131560
\(748\) −249.859 331.475i −0.334036 0.443149i
\(749\) 889.394 1.18744
\(750\) 0 0
\(751\) −532.843 −0.709512 −0.354756 0.934959i \(-0.615436\pi\)
−0.354756 + 0.934959i \(0.615436\pi\)
\(752\) 22.4856i 0.0299010i
\(753\) 973.481i 1.29280i
\(754\) 217.805i 0.288866i
\(755\) 0 0
\(756\) 233.314i 0.308617i
\(757\) 610.182i 0.806052i −0.915188 0.403026i \(-0.867958\pi\)
0.915188 0.403026i \(-0.132042\pi\)
\(758\) −124.308 −0.163995
\(759\) 241.346 + 320.182i 0.317979 + 0.421847i
\(760\) 0 0
\(761\) 180.435i 0.237102i 0.992948 + 0.118551i \(0.0378249\pi\)
−0.992948 + 0.118551i \(0.962175\pi\)
\(762\) 150.301i 0.197245i
\(763\) 1171.34i 1.53518i
\(764\) 151.124 0.197806
\(765\) 0 0
\(766\) 828.769i 1.08194i
\(767\) 316.388 0.412500
\(768\) 587.178i 0.764555i
\(769\) 559.139i 0.727099i 0.931575 + 0.363550i \(0.118435\pi\)
−0.931575 + 0.363550i \(0.881565\pi\)
\(770\) 0 0
\(771\) −597.800 −0.775357
\(772\) −285.351 −0.369626
\(773\) 272.373i 0.352358i −0.984358 0.176179i \(-0.943626\pi\)
0.984358 0.176179i \(-0.0563737\pi\)
\(774\) 4.52965 0.00585226
\(775\) 0 0
\(776\) 1396.46i 1.79956i
\(777\) 541.437 0.696830
\(778\) −10.8670 −0.0139678
\(779\) −110.956 −0.142433
\(780\) 0 0
\(781\) 8.27230 + 10.9744i 0.0105919 + 0.0140518i
\(782\) 673.364i 0.861079i
\(783\) 1276.71 1.63053
\(784\) 36.6852 0.0467924
\(785\) 0 0
\(786\) 1179.55 1.50070
\(787\) −1415.45 −1.79854 −0.899268 0.437398i \(-0.855900\pi\)
−0.899268 + 0.437398i \(0.855900\pi\)
\(788\) 266.857 0.338651
\(789\) 458.710i 0.581382i
\(790\) 0 0
\(791\) 699.727i 0.884610i
\(792\) 68.4426 + 90.7994i 0.0864175 + 0.114646i
\(793\) 159.615i 0.201280i
\(794\) 99.4906i 0.125303i
\(795\) 0 0
\(796\) 155.961 0.195932
\(797\) 960.746i 1.20545i 0.797948 + 0.602726i \(0.205919\pi\)
−0.797948 + 0.602726i \(0.794081\pi\)
\(798\) 141.010 0.176705
\(799\) 72.2239i 0.0903928i
\(800\) 0 0
\(801\) −100.822 −0.125870
\(802\) −497.227 −0.619984
\(803\) 159.611 + 211.749i 0.198769 + 0.263697i
\(804\) −30.7207 −0.0382098
\(805\) 0 0
\(806\) 127.144 0.157747
\(807\) 1050.43i 1.30165i
\(808\) 332.196i 0.411134i
\(809\) 850.203i 1.05093i 0.850815 + 0.525465i \(0.176109\pi\)
−0.850815 + 0.525465i \(0.823891\pi\)
\(810\) 0 0
\(811\) 316.974i 0.390843i 0.980719 + 0.195422i \(0.0626075\pi\)
−0.980719 + 0.195422i \(0.937392\pi\)
\(812\) 367.368i 0.452424i
\(813\) −458.208 −0.563602
\(814\) −422.111 + 318.178i −0.518564 + 0.390883i
\(815\) 0 0
\(816\) 834.175i 1.02227i
\(817\) 10.2909i 0.0125959i
\(818\) 284.407i 0.347686i
\(819\) −23.2578 −0.0283979
\(820\) 0 0
\(821\) 1214.62i 1.47944i 0.672915 + 0.739720i \(0.265042\pi\)
−0.672915 + 0.739720i \(0.734958\pi\)
\(822\) −933.385 −1.13550
\(823\) 1210.57i 1.47093i −0.677564 0.735464i \(-0.736964\pi\)
0.677564 0.735464i \(-0.263036\pi\)
\(824\) 300.080i 0.364175i
\(825\) 0 0
\(826\) −1217.73 −1.47425
\(827\) 305.273 0.369133 0.184566 0.982820i \(-0.440912\pi\)
0.184566 + 0.982820i \(0.440912\pi\)
\(828\) 18.8777i 0.0227991i
\(829\) 225.488 0.272000 0.136000 0.990709i \(-0.456575\pi\)
0.136000 + 0.990709i \(0.456575\pi\)
\(830\) 0 0
\(831\) 939.315i 1.13034i
\(832\) 203.340 0.244399
\(833\) 117.833 0.141457
\(834\) −928.172 −1.11292
\(835\) 0 0
\(836\) 48.1762 36.3142i 0.0576271 0.0434381i
\(837\) 745.279i 0.890417i
\(838\) −913.810 −1.09047
\(839\) −405.279 −0.483050 −0.241525 0.970395i \(-0.577648\pi\)
−0.241525 + 0.970395i \(0.577648\pi\)
\(840\) 0 0
\(841\) −1169.26 −1.39032
\(842\) 625.699 0.743111
\(843\) −1071.62 −1.27119
\(844\) 273.223i 0.323724i
\(845\) 0 0
\(846\) 4.62036i 0.00546142i
\(847\) 223.991 781.995i 0.264452 0.923253i
\(848\) 897.472i 1.05834i
\(849\) 87.1717i 0.102676i
\(850\) 0 0
\(851\) −375.776 −0.441570
\(852\) 4.25610i 0.00499543i
\(853\) 788.482 0.924364 0.462182 0.886785i \(-0.347067\pi\)
0.462182 + 0.886785i \(0.347067\pi\)
\(854\) 614.334i 0.719360i
\(855\) 0 0
\(856\) 1151.44 1.34514
\(857\) 1365.13 1.59292 0.796460 0.604691i \(-0.206703\pi\)
0.796460 + 0.604691i \(0.206703\pi\)
\(858\) −119.269 + 89.9022i −0.139008 + 0.104781i
\(859\) −519.889 −0.605226 −0.302613 0.953113i \(-0.597859\pi\)
−0.302613 + 0.953113i \(0.597859\pi\)
\(860\) 0 0
\(861\) 463.315 0.538112
\(862\) 676.003i 0.784226i
\(863\) 1082.06i 1.25384i −0.779085 0.626919i \(-0.784316\pi\)
0.779085 0.626919i \(-0.215684\pi\)
\(864\) 533.569i 0.617556i
\(865\) 0 0
\(866\) 203.762i 0.235291i
\(867\) 1871.61i 2.15872i
\(868\) 214.452 0.247064
\(869\) −952.882 + 718.262i −1.09653 + 0.826538i
\(870\) 0 0
\(871\) 26.2684i 0.0301589i
\(872\) 1516.45i 1.73905i
\(873\) 190.565i 0.218287i
\(874\) −97.8660 −0.111975
\(875\) 0 0
\(876\) 82.1203i 0.0937446i
\(877\) −819.535 −0.934475 −0.467238 0.884132i \(-0.654751\pi\)
−0.467238 + 0.884132i \(0.654751\pi\)
\(878\) 209.013i 0.238056i
\(879\) 490.738i 0.558292i
\(880\) 0 0
\(881\) 1482.75 1.68304 0.841518 0.540230i \(-0.181663\pi\)
0.841518 + 0.540230i \(0.181663\pi\)
\(882\) −7.53813 −0.00854663
\(883\) 503.758i 0.570508i 0.958452 + 0.285254i \(0.0920779\pi\)
−0.958452 + 0.285254i \(0.907922\pi\)
\(884\) 109.922 0.124346
\(885\) 0 0
\(886\) 111.655i 0.126021i
\(887\) −1653.39 −1.86402 −0.932011 0.362429i \(-0.881947\pi\)
−0.932011 + 0.362429i \(0.881947\pi\)
\(888\) 700.960 0.789370
\(889\) −216.769 −0.243835
\(890\) 0 0
\(891\) 456.204 + 605.223i 0.512013 + 0.679262i
\(892\) 325.901i 0.365360i
\(893\) −10.4969 −0.0117547
\(894\) −198.213 −0.221714
\(895\) 0 0
\(896\) −278.744 −0.311098
\(897\) −106.176 −0.118368
\(898\) −379.947 −0.423104
\(899\) 1173.49i 1.30533i
\(900\) 0 0
\(901\) 2882.69i 3.19944i
\(902\) −361.206 + 272.269i −0.400450 + 0.301851i
\(903\) 42.9713i 0.0475873i
\(904\) 905.887i 1.00209i
\(905\) 0 0
\(906\) −1052.78 −1.16201
\(907\) 1620.77i 1.78695i 0.449109 + 0.893477i \(0.351742\pi\)
−0.449109 + 0.893477i \(0.648258\pi\)
\(908\) −192.128 −0.211594
\(909\) 45.3325i 0.0498707i
\(910\) 0 0
\(911\) −111.468 −0.122358 −0.0611791 0.998127i \(-0.519486\pi\)
−0.0611791 + 0.998127i \(0.519486\pi\)
\(912\) 121.238 0.132936
\(913\) 54.7875 + 72.6838i 0.0600082 + 0.0796099i
\(914\) 547.151 0.598633
\(915\) 0 0
\(916\) 52.6980 0.0575306
\(917\) 1701.19i 1.85517i
\(918\) 1470.29i 1.60162i
\(919\) 664.740i 0.723330i 0.932308 + 0.361665i \(0.117792\pi\)
−0.932308 + 0.361665i \(0.882208\pi\)
\(920\) 0 0
\(921\) 1439.56i 1.56304i
\(922\) 1058.26i 1.14778i
\(923\) −3.63927 −0.00394287
\(924\) −201.169 + 151.637i −0.217715 + 0.164109i
\(925\) 0 0
\(926\) 66.4058i 0.0717126i
\(927\) 40.9499i 0.0441746i
\(928\) 840.138i 0.905321i
\(929\) 844.411 0.908946 0.454473 0.890760i \(-0.349828\pi\)
0.454473 + 0.890760i \(0.349828\pi\)
\(930\) 0 0
\(931\) 17.1258i 0.0183950i
\(932\) −260.350 −0.279345
\(933\) 1171.37i 1.25549i
\(934\) 201.172i 0.215388i
\(935\) 0 0
\(936\) −30.1103 −0.0321691
\(937\) 175.541 0.187343 0.0936716 0.995603i \(-0.470140\pi\)
0.0936716 + 0.995603i \(0.470140\pi\)
\(938\) 101.103i 0.107786i
\(939\) 230.135 0.245085
\(940\) 0 0
\(941\) 838.440i 0.891010i 0.895279 + 0.445505i \(0.146976\pi\)
−0.895279 + 0.445505i \(0.853024\pi\)
\(942\) −568.466 −0.603467
\(943\) −321.556 −0.340993
\(944\) −1046.98 −1.10909
\(945\) 0 0
\(946\) −25.2523 33.5010i −0.0266938 0.0354133i
\(947\) 1483.34i 1.56636i 0.621796 + 0.783179i \(0.286403\pi\)
−0.621796 + 0.783179i \(0.713597\pi\)
\(948\) 369.546 0.389817
\(949\) −70.2186 −0.0739922
\(950\) 0 0
\(951\) 1042.75 1.09647
\(952\) −1811.55 −1.90289
\(953\) 186.094 0.195272 0.0976359 0.995222i \(-0.468872\pi\)
0.0976359 + 0.995222i \(0.468872\pi\)
\(954\) 184.414i 0.193306i
\(955\) 0 0
\(956\) 338.377i 0.353951i
\(957\) −829.763 1100.80i −0.867046 1.15027i
\(958\) 1019.48i 1.06417i
\(959\) 1346.16i 1.40371i
\(960\) 0 0
\(961\) −275.974 −0.287174
\(962\) 139.978i 0.145507i
\(963\) −157.128 −0.163166
\(964\) 47.9318i 0.0497218i
\(965\) 0 0
\(966\) 408.657 0.423040
\(967\) 948.621 0.980994 0.490497 0.871443i \(-0.336815\pi\)
0.490497 + 0.871443i \(0.336815\pi\)
\(968\) 289.986 1012.39i 0.299572 1.04586i
\(969\) 389.418 0.401876
\(970\) 0 0
\(971\) 685.460 0.705932 0.352966 0.935636i \(-0.385173\pi\)
0.352966 + 0.935636i \(0.385173\pi\)
\(972\) 77.6334i 0.0798698i
\(973\) 1338.64i 1.37579i
\(974\) 644.430i 0.661633i
\(975\) 0 0
\(976\) 528.193i 0.541181i
\(977\) 48.0051i 0.0491352i 0.999698 + 0.0245676i \(0.00782089\pi\)
−0.999698 + 0.0245676i \(0.992179\pi\)
\(978\) 411.081 0.420328
\(979\) 562.070 + 745.670i 0.574127 + 0.761665i
\(980\) 0 0
\(981\) 206.940i 0.210948i
\(982\) 1166.97i 1.18836i
\(983\) 1453.38i 1.47851i −0.673423 0.739257i \(-0.735177\pi\)
0.673423 0.739257i \(-0.264823\pi\)
\(984\) 599.821 0.609574
\(985\) 0 0
\(986\) 2315.07i 2.34794i
\(987\) 43.8318 0.0444092
\(988\) 15.9759i 0.0161699i
\(989\) 29.8236i 0.0301553i
\(990\) 0 0
\(991\) 1112.63 1.12273 0.561366 0.827568i \(-0.310276\pi\)
0.561366 + 0.827568i \(0.310276\pi\)
\(992\) 490.431 0.494386
\(993\) 500.500i 0.504028i
\(994\) 14.0070 0.0140915
\(995\) 0 0
\(996\) 28.1882i 0.0283014i
\(997\) 846.960 0.849508 0.424754 0.905309i \(-0.360361\pi\)
0.424754 + 0.905309i \(0.360361\pi\)
\(998\) 405.815 0.406629
\(999\) −820.507 −0.821328
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.d.c.274.11 16
5.2 odd 4 275.3.c.f.76.6 8
5.3 odd 4 55.3.c.a.21.3 8
5.4 even 2 inner 275.3.d.c.274.6 16
11.10 odd 2 inner 275.3.d.c.274.5 16
15.8 even 4 495.3.b.a.406.6 8
20.3 even 4 880.3.j.a.241.3 8
55.32 even 4 275.3.c.f.76.3 8
55.43 even 4 55.3.c.a.21.6 yes 8
55.54 odd 2 inner 275.3.d.c.274.12 16
165.98 odd 4 495.3.b.a.406.3 8
220.43 odd 4 880.3.j.a.241.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.c.a.21.3 8 5.3 odd 4
55.3.c.a.21.6 yes 8 55.43 even 4
275.3.c.f.76.3 8 55.32 even 4
275.3.c.f.76.6 8 5.2 odd 4
275.3.d.c.274.5 16 11.10 odd 2 inner
275.3.d.c.274.6 16 5.4 even 2 inner
275.3.d.c.274.11 16 1.1 even 1 trivial
275.3.d.c.274.12 16 55.54 odd 2 inner
495.3.b.a.406.3 8 165.98 odd 4
495.3.b.a.406.6 8 15.8 even 4
880.3.j.a.241.3 8 20.3 even 4
880.3.j.a.241.4 8 220.43 odd 4