Properties

Label 275.3.d.c
Level $275$
Weight $3$
Character orbit 275.d
Analytic conductor $7.493$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(274,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.274"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 32 x^{14} - 54 x^{13} + 51 x^{12} - 118 x^{11} + 770 x^{10} - 1222 x^{9} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{22} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{6} + \beta_{4}) q^{3} + ( - \beta_{2} + 3) q^{4} + (\beta_{8} - \beta_{5}) q^{6} - \beta_{10} q^{7} + ( - \beta_{13} + \beta_{11} + \cdots - 4 \beta_1) q^{8} + ( - \beta_{7} + \beta_{2} + 1) q^{9}+ \cdots + ( - 2 \beta_{15} - 3 \beta_{14} + \cdots + 23) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 56 q^{4} + 8 q^{9} + 16 q^{11} + 176 q^{16} - 200 q^{26} + 72 q^{31} - 160 q^{34} - 432 q^{36} - 24 q^{44} - 344 q^{49} - 160 q^{56} + 32 q^{59} + 1176 q^{64} + 360 q^{66} - 16 q^{69} + 552 q^{71}+ \cdots + 368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 8 x^{15} + 32 x^{14} - 54 x^{13} + 51 x^{12} - 118 x^{11} + 770 x^{10} - 1222 x^{9} + \cdots + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 27\!\cdots\!69 \nu^{15} + \cdots - 11\!\cdots\!44 ) / 79\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 29\!\cdots\!93 \nu^{15} + \cdots + 15\!\cdots\!20 ) / 30\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 17\!\cdots\!99 \nu^{15} + \cdots - 96\!\cdots\!04 ) / 60\!\cdots\!72 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 54\!\cdots\!83 \nu^{15} + \cdots - 48\!\cdots\!56 ) / 15\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 49\!\cdots\!89 \nu^{15} + \cdots + 47\!\cdots\!84 ) / 12\!\cdots\!44 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 27\!\cdots\!93 \nu^{15} + \cdots + 20\!\cdots\!48 ) / 31\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 35\!\cdots\!07 \nu^{15} + \cdots - 12\!\cdots\!28 ) / 30\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 30\!\cdots\!27 \nu^{15} + \cdots + 24\!\cdots\!56 ) / 24\!\cdots\!88 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 44\!\cdots\!65 \nu^{15} + \cdots + 41\!\cdots\!44 ) / 31\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 30\!\cdots\!15 \nu^{15} + \cdots - 10\!\cdots\!36 ) / 16\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 16\!\cdots\!65 \nu^{15} + \cdots - 16\!\cdots\!96 ) / 79\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 10\!\cdots\!03 \nu^{15} + \cdots - 81\!\cdots\!60 ) / 31\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 31\!\cdots\!23 \nu^{15} + \cdots - 10\!\cdots\!80 ) / 79\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 11\!\cdots\!67 \nu^{15} + \cdots - 85\!\cdots\!12 ) / 24\!\cdots\!88 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 94\!\cdots\!13 \nu^{15} + \cdots - 81\!\cdots\!48 ) / 12\!\cdots\!44 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + 2\beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{9} + \beta_{6} + 2\beta_{5} + 9\beta_{4} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{15} - \beta_{14} - 2 \beta_{13} + 2 \beta_{11} + 2 \beta_{10} + 3 \beta_{9} - \beta_{8} + \cdots - 44 ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -2\beta_{13} + 2\beta_{11} + 2\beta_{10} + 2\beta_{3} + 11\beta_{2} - 26\beta _1 - 60 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 13 \beta_{15} + 15 \beta_{14} - 30 \beta_{13} - 10 \beta_{12} + 26 \beta_{11} + 34 \beta_{10} + \cdots - 456 ) / 8 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 29 \beta_{15} + 35 \beta_{14} - 40 \beta_{12} - 121 \beta_{9} + 47 \beta_{8} - 249 \beta_{6} + \cdots - 731 \beta_{4} ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 75 \beta_{15} + 98 \beta_{14} + 198 \beta_{13} - 105 \beta_{12} - 150 \beta_{11} - 248 \beta_{10} + \cdots + 2466 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 484\beta_{13} - 348\beta_{11} - 628\beta_{10} + 58\beta_{7} - 678\beta_{3} - 1355\beta_{2} + 3468\beta _1 + 5942 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 1703 \beta_{15} - 2451 \beta_{14} + 5034 \beta_{13} + 3228 \beta_{12} - 3406 \beta_{11} - 6794 \beta_{10} + \cdots + 54748 ) / 8 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 4027 \beta_{15} - 6015 \beta_{14} + 8650 \beta_{12} + 15420 \beta_{9} - 10831 \beta_{8} + \cdots + 91776 \beta_{4} ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 19447 \beta_{15} - 30085 \beta_{14} - 62770 \beta_{13} + 44330 \beta_{12} + 38894 \beta_{11} + \cdots - 618504 ) / 8 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 38836 \beta_{13} + 23240 \beta_{11} + 56286 \beta_{10} - 8473 \beta_{7} + 65538 \beta_{3} + \cdots - 370595 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 112088 \beta_{15} + 182895 \beta_{14} - 386444 \beta_{13} - 288535 \beta_{12} + 224176 \beta_{11} + \cdots - 3540210 ) / 4 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 539346 \beta_{15} + 898688 \beta_{14} - 1456766 \beta_{12} - 2066971 \beta_{9} + \cdots - 12514365 \beta_{4} ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 2606317 \beta_{15} + 4422425 \beta_{14} + 9432910 \beta_{13} - 7292660 \beta_{12} - 5212634 \beta_{11} + \cdots + 81892508 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
274.1
2.44303 2.44303i
2.44303 + 2.44303i
2.07977 + 2.07977i
2.07977 2.07977i
1.33385 1.33385i
1.33385 + 1.33385i
1.23052 1.23052i
1.23052 + 1.23052i
−0.230520 + 0.230520i
−0.230520 0.230520i
−0.333846 + 0.333846i
−0.333846 0.333846i
−1.07977 1.07977i
−1.07977 + 1.07977i
−1.44303 + 1.44303i
−1.44303 1.44303i
−3.88606 4.12151i 11.1014 0 16.0164i 3.44089 −27.5966 −7.98688 0
274.2 −3.88606 4.12151i 11.1014 0 16.0164i 3.44089 −27.5966 −7.98688 0
274.3 −3.15955 3.03112i 5.98274 0 9.57697i −5.67155 −6.26455 −0.187686 0
274.4 −3.15955 3.03112i 5.98274 0 9.57697i −5.67155 −6.26455 −0.187686 0
274.5 −1.66769 2.79505i −1.21881 0 4.66128i 6.72266 8.70336 1.18769 0
274.6 −1.66769 2.79505i −1.21881 0 4.66128i 6.72266 8.70336 1.18769 0
274.7 −1.46104 0.114554i −1.86536 0 0.167368i −4.56066 8.56953 8.98688 0
274.8 −1.46104 0.114554i −1.86536 0 0.167368i −4.56066 8.56953 8.98688 0
274.9 1.46104 0.114554i −1.86536 0 0.167368i 4.56066 −8.56953 8.98688 0
274.10 1.46104 0.114554i −1.86536 0 0.167368i 4.56066 −8.56953 8.98688 0
274.11 1.66769 2.79505i −1.21881 0 4.66128i −6.72266 −8.70336 1.18769 0
274.12 1.66769 2.79505i −1.21881 0 4.66128i −6.72266 −8.70336 1.18769 0
274.13 3.15955 3.03112i 5.98274 0 9.57697i 5.67155 6.26455 −0.187686 0
274.14 3.15955 3.03112i 5.98274 0 9.57697i 5.67155 6.26455 −0.187686 0
274.15 3.88606 4.12151i 11.1014 0 16.0164i −3.44089 27.5966 −7.98688 0
274.16 3.88606 4.12151i 11.1014 0 16.0164i −3.44089 27.5966 −7.98688 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 274.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
11.b odd 2 1 inner
55.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.3.d.c 16
5.b even 2 1 inner 275.3.d.c 16
5.c odd 4 1 55.3.c.a 8
5.c odd 4 1 275.3.c.f 8
11.b odd 2 1 inner 275.3.d.c 16
15.e even 4 1 495.3.b.a 8
20.e even 4 1 880.3.j.a 8
55.d odd 2 1 inner 275.3.d.c 16
55.e even 4 1 55.3.c.a 8
55.e even 4 1 275.3.c.f 8
165.l odd 4 1 495.3.b.a 8
220.i odd 4 1 880.3.j.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.3.c.a 8 5.c odd 4 1
55.3.c.a 8 55.e even 4 1
275.3.c.f 8 5.c odd 4 1
275.3.c.f 8 55.e even 4 1
275.3.d.c 16 1.a even 1 1 trivial
275.3.d.c 16 5.b even 2 1 inner
275.3.d.c 16 11.b odd 2 1 inner
275.3.d.c 16 55.d odd 2 1 inner
495.3.b.a 8 15.e even 4 1
495.3.b.a 8 165.l odd 4 1
880.3.j.a 8 20.e even 4 1
880.3.j.a 8 220.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 30T_{2}^{6} + 280T_{2}^{4} - 890T_{2}^{2} + 895 \) acting on \(S_{3}^{\mathrm{new}}(275, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} - 30 T^{6} + \cdots + 895)^{2} \) Copy content Toggle raw display
$3$ \( (T^{8} + 34 T^{6} + \cdots + 16)^{2} \) Copy content Toggle raw display
$5$ \( T^{16} \) Copy content Toggle raw display
$7$ \( (T^{8} - 110 T^{6} + \cdots + 358000)^{2} \) Copy content Toggle raw display
$11$ \( (T^{8} - 8 T^{7} + \cdots + 214358881)^{2} \) Copy content Toggle raw display
$13$ \( (T^{8} - 620 T^{6} + \cdots + 27723520)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} - 1270 T^{6} + \cdots + 1732720)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} + 2090 T^{6} + \cdots + 3931928320)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} + 1304 T^{6} + \cdots + 760877056)^{2} \) Copy content Toggle raw display
$29$ \( (T^{8} + 4850 T^{6} + \cdots + 27723520)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 18 T^{3} + \cdots + 178076)^{4} \) Copy content Toggle raw display
$37$ \( (T^{8} + \cdots + 1000408041616)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + \cdots + 5420634603520)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} - 4180 T^{6} + \cdots + 91648000)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + 1784 T^{6} + \cdots + 498896896)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} + \cdots + 198845082347536)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 8 T^{3} + \cdots - 465344)^{4} \) Copy content Toggle raw display
$61$ \( (T^{8} + \cdots + 44785710872320)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} + \cdots + 12232198471936)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 138 T^{3} + \cdots - 22924)^{4} \) Copy content Toggle raw display
$73$ \( (T^{8} + \cdots + 15327220913920)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} + \cdots + 67909027102720)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} + \cdots + 26187838846720)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 222 T^{3} + \cdots - 1268884)^{4} \) Copy content Toggle raw display
$97$ \( (T^{8} + \cdots + 444790799524096)^{2} \) Copy content Toggle raw display
show more
show less