Properties

Label 2-275-55.54-c2-0-30
Degree $2$
Conductor $275$
Sign $-0.983 + 0.181i$
Analytic cond. $7.49320$
Root an. cond. $2.73737$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.66·2-s − 2.79i·3-s − 1.21·4-s − 4.66i·6-s − 6.72·7-s − 8.70·8-s + 1.18·9-s + (−6.62 − 8.78i)11-s + 3.40i·12-s + 2.91·13-s − 11.2·14-s − 9.63·16-s − 30.9·17-s + 1.98·18-s − 4.49i·19-s + ⋯
L(s)  = 1  + 0.833·2-s − 0.931i·3-s − 0.304·4-s − 0.776i·6-s − 0.960·7-s − 1.08·8-s + 0.131·9-s + (−0.601 − 0.798i)11-s + 0.283i·12-s + 0.224·13-s − 0.800·14-s − 0.602·16-s − 1.82·17-s + 0.110·18-s − 0.236i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.983 + 0.181i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.983 + 0.181i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $-0.983 + 0.181i$
Analytic conductor: \(7.49320\)
Root analytic conductor: \(2.73737\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{275} (274, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :1),\ -0.983 + 0.181i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0818965 - 0.896152i\)
\(L(\frac12)\) \(\approx\) \(0.0818965 - 0.896152i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + (6.62 + 8.78i)T \)
good2 \( 1 - 1.66T + 4T^{2} \)
3 \( 1 + 2.79iT - 9T^{2} \)
7 \( 1 + 6.72T + 49T^{2} \)
13 \( 1 - 2.91T + 169T^{2} \)
17 \( 1 + 30.9T + 289T^{2} \)
19 \( 1 + 4.49iT - 361T^{2} \)
23 \( 1 + 13.0iT - 529T^{2} \)
29 \( 1 - 44.8iT - 841T^{2} \)
31 \( 1 - 26.1T + 961T^{2} \)
37 \( 1 + 28.8iT - 1.36e3T^{2} \)
41 \( 1 + 24.6iT - 1.68e3T^{2} \)
43 \( 1 - 2.28T + 1.84e3T^{2} \)
47 \( 1 + 2.33iT - 2.20e3T^{2} \)
53 \( 1 + 93.1iT - 2.80e3T^{2} \)
59 \( 1 - 108.T + 3.48e3T^{2} \)
61 \( 1 + 54.7iT - 3.72e3T^{2} \)
67 \( 1 - 9.01iT - 4.48e3T^{2} \)
71 \( 1 + 1.24T + 5.04e3T^{2} \)
73 \( 1 + 24.1T + 5.32e3T^{2} \)
79 \( 1 + 108. iT - 6.24e3T^{2} \)
83 \( 1 + 8.27T + 6.88e3T^{2} \)
89 \( 1 + 84.8T + 7.92e3T^{2} \)
97 \( 1 - 160. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.52510553951838244286588236098, −10.39992165242319005535676500586, −9.131769334207694981124526241251, −8.356945204115947523839703596257, −6.86191579351028613533686218728, −6.31276940410074096412042064919, −5.06222159509695116332396391741, −3.77956873197969127295121412126, −2.52974850334629476591426333383, −0.33262634963906608868709399160, 2.75465699422453379407047507988, 4.07425000618941614971917336043, 4.61998705727396300448059226787, 5.86385426467432522285736743037, 6.91667728748341508033817771967, 8.485430788713509622830128752777, 9.583989065195657670794823358049, 9.973285636153647444860952316607, 11.20725352173549654495959964227, 12.33214257643929452398503731810

Graph of the $Z$-function along the critical line