Properties

Label 55.3.c.a.21.6
Level $55$
Weight $3$
Character 55.21
Analytic conductor $1.499$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [55,3,Mod(21,55)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(55, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("55.21"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 30x^{6} + 280x^{4} + 890x^{2} + 895 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 21.6
Root \(1.66769i\) of defining polynomial
Character \(\chi\) \(=\) 55.21
Dual form 55.3.c.a.21.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.66769i q^{2} +2.79505 q^{3} +1.21881 q^{4} -2.23607 q^{5} +4.66128i q^{6} -6.72266i q^{7} +8.70336i q^{8} -1.18769 q^{9} -3.72907i q^{10} +(-6.62122 + 8.78404i) q^{11} +3.40663 q^{12} -2.91291i q^{13} +11.2113 q^{14} -6.24993 q^{15} -9.63929 q^{16} -30.9615i q^{17} -1.98069i q^{18} -4.49991i q^{19} -2.72533 q^{20} -18.7902i q^{21} +(-14.6491 - 11.0422i) q^{22} +13.0410 q^{23} +24.3263i q^{24} +5.00000 q^{25} +4.85783 q^{26} -28.4751 q^{27} -8.19362i q^{28} +44.8359i q^{29} -10.4229i q^{30} +26.1730 q^{31} +18.7381i q^{32} +(-18.5067 + 24.5519i) q^{33} +51.6342 q^{34} +15.0323i q^{35} -1.44756 q^{36} -28.8149 q^{37} +7.50446 q^{38} -8.14172i q^{39} -19.4613i q^{40} +24.6573i q^{41} +31.3362 q^{42} -2.28690i q^{43} +(-8.06999 + 10.7060i) q^{44} +2.65575 q^{45} +21.7484i q^{46} -2.33270 q^{47} -26.9423 q^{48} +3.80580 q^{49} +8.33846i q^{50} -86.5390i q^{51} -3.55027i q^{52} +93.1057 q^{53} -47.4877i q^{54} +(14.8055 - 19.6417i) q^{55} +58.5097 q^{56} -12.5775i q^{57} -74.7724 q^{58} -108.616 q^{59} -7.61745 q^{60} +54.7958i q^{61} +43.6485i q^{62} +7.98441i q^{63} -69.8065 q^{64} +6.51346i q^{65} +(-40.9449 - 30.8634i) q^{66} +9.01793 q^{67} -37.7361i q^{68} +36.4504 q^{69} -25.0693 q^{70} -1.24936 q^{71} -10.3369i q^{72} +24.1060i q^{73} -48.0543i q^{74} +13.9753 q^{75} -5.48452i q^{76} +(59.0522 + 44.5123i) q^{77} +13.5779 q^{78} -108.479i q^{79} +21.5541 q^{80} -68.9002 q^{81} -41.1207 q^{82} +8.27453i q^{83} -22.9016i q^{84} +69.2320i q^{85} +3.81384 q^{86} +125.319i q^{87} +(-76.4507 - 57.6269i) q^{88} +84.8892 q^{89} +4.42897i q^{90} -19.5825 q^{91} +15.8945 q^{92} +73.1549 q^{93} -3.89022i q^{94} +10.0621i q^{95} +52.3739i q^{96} +160.450 q^{97} +6.34690i q^{98} +(7.86394 - 10.4327i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} - 28 q^{4} - 4 q^{9} + 8 q^{11} - 48 q^{12} + 20 q^{15} + 88 q^{16} - 20 q^{20} + 80 q^{22} + 8 q^{23} + 40 q^{25} - 100 q^{26} - 16 q^{27} + 36 q^{31} - 152 q^{33} + 80 q^{34} - 216 q^{36}+ \cdots - 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.66769i 0.833846i 0.908942 + 0.416923i \(0.136891\pi\)
−0.908942 + 0.416923i \(0.863109\pi\)
\(3\) 2.79505 0.931684 0.465842 0.884868i \(-0.345752\pi\)
0.465842 + 0.884868i \(0.345752\pi\)
\(4\) 1.21881 0.304701
\(5\) −2.23607 −0.447214
\(6\) 4.66128i 0.776881i
\(7\) 6.72266i 0.960380i −0.877164 0.480190i \(-0.840568\pi\)
0.877164 0.480190i \(-0.159432\pi\)
\(8\) 8.70336i 1.08792i
\(9\) −1.18769 −0.131965
\(10\) 3.72907i 0.372907i
\(11\) −6.62122 + 8.78404i −0.601929 + 0.798549i
\(12\) 3.40663 0.283885
\(13\) 2.91291i 0.224070i −0.993704 0.112035i \(-0.964263\pi\)
0.993704 0.112035i \(-0.0357368\pi\)
\(14\) 11.2113 0.800809
\(15\) −6.24993 −0.416662
\(16\) −9.63929 −0.602456
\(17\) 30.9615i 1.82127i −0.413217 0.910633i \(-0.635595\pi\)
0.413217 0.910633i \(-0.364405\pi\)
\(18\) 1.98069i 0.110039i
\(19\) 4.49991i 0.236837i −0.992964 0.118419i \(-0.962217\pi\)
0.992964 0.118419i \(-0.0377825\pi\)
\(20\) −2.72533 −0.136267
\(21\) 18.7902i 0.894771i
\(22\) −14.6491 11.0422i −0.665867 0.501916i
\(23\) 13.0410 0.567002 0.283501 0.958972i \(-0.408504\pi\)
0.283501 + 0.958972i \(0.408504\pi\)
\(24\) 24.3263i 1.01360i
\(25\) 5.00000 0.200000
\(26\) 4.85783 0.186840
\(27\) −28.4751 −1.05463
\(28\) 8.19362i 0.292629i
\(29\) 44.8359i 1.54607i 0.634366 + 0.773033i \(0.281261\pi\)
−0.634366 + 0.773033i \(0.718739\pi\)
\(30\) 10.4229i 0.347432i
\(31\) 26.1730 0.844290 0.422145 0.906528i \(-0.361277\pi\)
0.422145 + 0.906528i \(0.361277\pi\)
\(32\) 18.7381i 0.585565i
\(33\) −18.5067 + 24.5519i −0.560808 + 0.743996i
\(34\) 51.6342 1.51865
\(35\) 15.0323i 0.429495i
\(36\) −1.44756 −0.0402100
\(37\) −28.8149 −0.778781 −0.389390 0.921073i \(-0.627314\pi\)
−0.389390 + 0.921073i \(0.627314\pi\)
\(38\) 7.50446 0.197486
\(39\) 8.14172i 0.208762i
\(40\) 19.4613i 0.486532i
\(41\) 24.6573i 0.601397i 0.953719 + 0.300698i \(0.0972197\pi\)
−0.953719 + 0.300698i \(0.902780\pi\)
\(42\) 31.3362 0.746101
\(43\) 2.28690i 0.0531837i −0.999646 0.0265919i \(-0.991535\pi\)
0.999646 0.0265919i \(-0.00846545\pi\)
\(44\) −8.06999 + 10.7060i −0.183409 + 0.243319i
\(45\) 2.65575 0.0590166
\(46\) 21.7484i 0.472792i
\(47\) −2.33270 −0.0496319 −0.0248159 0.999692i \(-0.507900\pi\)
−0.0248159 + 0.999692i \(0.507900\pi\)
\(48\) −26.9423 −0.561298
\(49\) 3.80580 0.0776694
\(50\) 8.33846i 0.166769i
\(51\) 86.5390i 1.69684i
\(52\) 3.55027i 0.0682744i
\(53\) 93.1057 1.75671 0.878355 0.478009i \(-0.158641\pi\)
0.878355 + 0.478009i \(0.158641\pi\)
\(54\) 47.4877i 0.879402i
\(55\) 14.8055 19.6417i 0.269191 0.357122i
\(56\) 58.5097 1.04482
\(57\) 12.5775i 0.220658i
\(58\) −74.7724 −1.28918
\(59\) −108.616 −1.84095 −0.920473 0.390805i \(-0.872197\pi\)
−0.920473 + 0.390805i \(0.872197\pi\)
\(60\) −7.61745 −0.126957
\(61\) 54.7958i 0.898292i 0.893458 + 0.449146i \(0.148272\pi\)
−0.893458 + 0.449146i \(0.851728\pi\)
\(62\) 43.6485i 0.704008i
\(63\) 7.98441i 0.126737i
\(64\) −69.8065 −1.09073
\(65\) 6.51346i 0.100207i
\(66\) −40.9449 30.8634i −0.620377 0.467627i
\(67\) 9.01793 0.134596 0.0672980 0.997733i \(-0.478562\pi\)
0.0672980 + 0.997733i \(0.478562\pi\)
\(68\) 37.7361i 0.554942i
\(69\) 36.4504 0.528266
\(70\) −25.0693 −0.358133
\(71\) −1.24936 −0.0175966 −0.00879832 0.999961i \(-0.502801\pi\)
−0.00879832 + 0.999961i \(0.502801\pi\)
\(72\) 10.3369i 0.143567i
\(73\) 24.1060i 0.330220i 0.986275 + 0.165110i \(0.0527979\pi\)
−0.986275 + 0.165110i \(0.947202\pi\)
\(74\) 48.0543i 0.649383i
\(75\) 13.9753 0.186337
\(76\) 5.48452i 0.0721647i
\(77\) 59.0522 + 44.5123i 0.766911 + 0.578081i
\(78\) 13.5779 0.174075
\(79\) 108.479i 1.37315i −0.727060 0.686574i \(-0.759114\pi\)
0.727060 0.686574i \(-0.240886\pi\)
\(80\) 21.5541 0.269426
\(81\) −68.9002 −0.850620
\(82\) −41.1207 −0.501472
\(83\) 8.27453i 0.0996931i 0.998757 + 0.0498466i \(0.0158732\pi\)
−0.998757 + 0.0498466i \(0.984127\pi\)
\(84\) 22.9016i 0.272638i
\(85\) 69.2320i 0.814495i
\(86\) 3.81384 0.0443470
\(87\) 125.319i 1.44044i
\(88\) −76.4507 57.6269i −0.868757 0.654851i
\(89\) 84.8892 0.953811 0.476906 0.878954i \(-0.341758\pi\)
0.476906 + 0.878954i \(0.341758\pi\)
\(90\) 4.42897i 0.0492107i
\(91\) −19.5825 −0.215192
\(92\) 15.8945 0.172766
\(93\) 73.1549 0.786611
\(94\) 3.89022i 0.0413853i
\(95\) 10.0621i 0.105917i
\(96\) 52.3739i 0.545561i
\(97\) 160.450 1.65413 0.827063 0.562109i \(-0.190010\pi\)
0.827063 + 0.562109i \(0.190010\pi\)
\(98\) 6.34690i 0.0647643i
\(99\) 7.86394 10.4327i 0.0794337 0.105381i
\(100\) 6.09403 0.0609403
\(101\) 38.1687i 0.377908i −0.981986 0.188954i \(-0.939490\pi\)
0.981986 0.188954i \(-0.0605098\pi\)
\(102\) 144.320 1.41491
\(103\) 34.4787 0.334744 0.167372 0.985894i \(-0.446472\pi\)
0.167372 + 0.985894i \(0.446472\pi\)
\(104\) 25.3521 0.243770
\(105\) 42.0161i 0.400154i
\(106\) 155.271i 1.46483i
\(107\) 132.298i 1.23643i −0.786009 0.618214i \(-0.787856\pi\)
0.786009 0.618214i \(-0.212144\pi\)
\(108\) −34.7056 −0.321348
\(109\) 174.238i 1.59851i 0.600992 + 0.799255i \(0.294772\pi\)
−0.600992 + 0.799255i \(0.705228\pi\)
\(110\) 32.7563 + 24.6910i 0.297785 + 0.224464i
\(111\) −80.5391 −0.725577
\(112\) 64.8017i 0.578587i
\(113\) −104.085 −0.921104 −0.460552 0.887633i \(-0.652349\pi\)
−0.460552 + 0.887633i \(0.652349\pi\)
\(114\) 20.9754 0.183994
\(115\) −29.1606 −0.253571
\(116\) 54.6462i 0.471088i
\(117\) 3.45962i 0.0295694i
\(118\) 181.138i 1.53507i
\(119\) −208.144 −1.74911
\(120\) 54.3953i 0.453294i
\(121\) −33.3188 116.322i −0.275362 0.961341i
\(122\) −91.3825 −0.749037
\(123\) 68.9183i 0.560312i
\(124\) 31.8998 0.257256
\(125\) −11.1803 −0.0894427
\(126\) −13.3155 −0.105679
\(127\) 32.2445i 0.253894i 0.991910 + 0.126947i \(0.0405178\pi\)
−0.991910 + 0.126947i \(0.959482\pi\)
\(128\) 41.4634i 0.323933i
\(129\) 6.39201i 0.0495504i
\(130\) −10.8624 −0.0835572
\(131\) 253.053i 1.93170i −0.259093 0.965852i \(-0.583423\pi\)
0.259093 0.965852i \(-0.416577\pi\)
\(132\) −22.5560 + 29.9239i −0.170879 + 0.226697i
\(133\) −30.2514 −0.227454
\(134\) 15.0391i 0.112232i
\(135\) 63.6723 0.471647
\(136\) 269.469 1.98139
\(137\) −200.242 −1.46162 −0.730811 0.682580i \(-0.760858\pi\)
−0.730811 + 0.682580i \(0.760858\pi\)
\(138\) 60.7880i 0.440492i
\(139\) 199.124i 1.43255i −0.697821 0.716273i \(-0.745847\pi\)
0.697821 0.716273i \(-0.254153\pi\)
\(140\) 18.3215i 0.130868i
\(141\) −6.52001 −0.0462412
\(142\) 2.08355i 0.0146729i
\(143\) 25.5871 + 19.2870i 0.178931 + 0.134874i
\(144\) 11.4485 0.0795031
\(145\) 100.256i 0.691421i
\(146\) −40.2014 −0.275352
\(147\) 10.6374 0.0723634
\(148\) −35.1197 −0.237296
\(149\) 42.5232i 0.285391i −0.989767 0.142695i \(-0.954423\pi\)
0.989767 0.142695i \(-0.0455769\pi\)
\(150\) 23.3064i 0.155376i
\(151\) 225.857i 1.49574i 0.663845 + 0.747870i \(0.268923\pi\)
−0.663845 + 0.747870i \(0.731077\pi\)
\(152\) 39.1643 0.257660
\(153\) 36.7726i 0.240344i
\(154\) −74.2327 + 98.4808i −0.482030 + 0.639486i
\(155\) −58.5246 −0.377578
\(156\) 9.92318i 0.0636101i
\(157\) −121.955 −0.776782 −0.388391 0.921495i \(-0.626969\pi\)
−0.388391 + 0.921495i \(0.626969\pi\)
\(158\) 180.909 1.14499
\(159\) 260.235 1.63670
\(160\) 41.8996i 0.261872i
\(161\) 87.6705i 0.544537i
\(162\) 114.904i 0.709286i
\(163\) −88.1904 −0.541046 −0.270523 0.962714i \(-0.587197\pi\)
−0.270523 + 0.962714i \(0.587197\pi\)
\(164\) 30.0524i 0.183246i
\(165\) 41.3822 54.8996i 0.250801 0.332725i
\(166\) −13.7994 −0.0831287
\(167\) 155.562i 0.931508i −0.884914 0.465754i \(-0.845783\pi\)
0.884914 0.465754i \(-0.154217\pi\)
\(168\) 163.538 0.973439
\(169\) 160.515 0.949793
\(170\) −115.458 −0.679163
\(171\) 5.34448i 0.0312543i
\(172\) 2.78729i 0.0162052i
\(173\) 214.864i 1.24199i 0.783815 + 0.620995i \(0.213271\pi\)
−0.783815 + 0.620995i \(0.786729\pi\)
\(174\) −208.993 −1.20111
\(175\) 33.6133i 0.192076i
\(176\) 63.8239 84.6719i 0.362636 0.481090i
\(177\) −303.587 −1.71518
\(178\) 141.569i 0.795331i
\(179\) −155.650 −0.869555 −0.434778 0.900538i \(-0.643173\pi\)
−0.434778 + 0.900538i \(0.643173\pi\)
\(180\) 3.23684 0.0179824
\(181\) 189.154 1.04505 0.522525 0.852624i \(-0.324990\pi\)
0.522525 + 0.852624i \(0.324990\pi\)
\(182\) 32.6575i 0.179437i
\(183\) 153.157i 0.836924i
\(184\) 113.501i 0.616852i
\(185\) 64.4320 0.348281
\(186\) 122.000i 0.655913i
\(187\) 271.967 + 205.003i 1.45437 + 1.09627i
\(188\) −2.84311 −0.0151229
\(189\) 191.429i 1.01285i
\(190\) −16.7805 −0.0883184
\(191\) −123.993 −0.649180 −0.324590 0.945855i \(-0.605226\pi\)
−0.324590 + 0.945855i \(0.605226\pi\)
\(192\) −195.113 −1.01621
\(193\) 234.124i 1.21308i −0.795054 0.606538i \(-0.792558\pi\)
0.795054 0.606538i \(-0.207442\pi\)
\(194\) 267.582i 1.37929i
\(195\) 18.2054i 0.0933613i
\(196\) 4.63853 0.0236660
\(197\) 218.949i 1.11142i −0.831377 0.555709i \(-0.812447\pi\)
0.831377 0.555709i \(-0.187553\pi\)
\(198\) 17.3985 + 13.1146i 0.0878712 + 0.0662354i
\(199\) 127.963 0.643028 0.321514 0.946905i \(-0.395808\pi\)
0.321514 + 0.946905i \(0.395808\pi\)
\(200\) 43.5168i 0.217584i
\(201\) 25.2056 0.125401
\(202\) 63.6537 0.315117
\(203\) 301.417 1.48481
\(204\) 105.474i 0.517031i
\(205\) 55.1353i 0.268953i
\(206\) 57.4998i 0.279125i
\(207\) −15.4887 −0.0748244
\(208\) 28.0783i 0.134992i
\(209\) 39.5274 + 29.7949i 0.189126 + 0.142559i
\(210\) −70.0700 −0.333666
\(211\) 224.173i 1.06243i 0.847237 + 0.531215i \(0.178264\pi\)
−0.847237 + 0.531215i \(0.821736\pi\)
\(212\) 113.478 0.535272
\(213\) −3.49203 −0.0163945
\(214\) 220.632 1.03099
\(215\) 5.11367i 0.0237845i
\(216\) 247.829i 1.14736i
\(217\) 175.952i 0.810840i
\(218\) −290.575 −1.33291
\(219\) 67.3776i 0.307660i
\(220\) 18.0450 23.9394i 0.0820229 0.108816i
\(221\) −90.1880 −0.408090
\(222\) 134.314i 0.605020i
\(223\) −267.394 −1.19908 −0.599538 0.800346i \(-0.704649\pi\)
−0.599538 + 0.800346i \(0.704649\pi\)
\(224\) 125.970 0.562365
\(225\) −5.93843 −0.0263930
\(226\) 173.581i 0.768059i
\(227\) 157.636i 0.694431i 0.937785 + 0.347216i \(0.112873\pi\)
−0.937785 + 0.347216i \(0.887127\pi\)
\(228\) 15.3295i 0.0672347i
\(229\) 43.2374 0.188810 0.0944049 0.995534i \(-0.469905\pi\)
0.0944049 + 0.995534i \(0.469905\pi\)
\(230\) 48.6309i 0.211439i
\(231\) 165.054 + 124.414i 0.714519 + 0.538589i
\(232\) −390.223 −1.68199
\(233\) 213.611i 0.916784i −0.888750 0.458392i \(-0.848426\pi\)
0.888750 0.458392i \(-0.151574\pi\)
\(234\) −5.76958 −0.0246563
\(235\) 5.21607 0.0221960
\(236\) −132.382 −0.560939
\(237\) 303.204i 1.27934i
\(238\) 347.120i 1.45849i
\(239\) 277.630i 1.16163i −0.814035 0.580816i \(-0.802733\pi\)
0.814035 0.580816i \(-0.197267\pi\)
\(240\) 60.2448 0.251020
\(241\) 39.3269i 0.163182i 0.996666 + 0.0815910i \(0.0260001\pi\)
−0.996666 + 0.0815910i \(0.974000\pi\)
\(242\) 193.990 55.5655i 0.801610 0.229609i
\(243\) 63.6963 0.262125
\(244\) 66.7855i 0.273711i
\(245\) −8.51003 −0.0347348
\(246\) −114.934 −0.467213
\(247\) −13.1078 −0.0530681
\(248\) 227.793i 0.918520i
\(249\) 23.1277i 0.0928825i
\(250\) 18.6454i 0.0745814i
\(251\) −348.287 −1.38760 −0.693800 0.720168i \(-0.744065\pi\)
−0.693800 + 0.720168i \(0.744065\pi\)
\(252\) 9.73145i 0.0386169i
\(253\) −86.3476 + 114.553i −0.341295 + 0.452779i
\(254\) −53.7739 −0.211708
\(255\) 193.507i 0.758852i
\(256\) −210.078 −0.820616
\(257\) −213.878 −0.832211 −0.416105 0.909316i \(-0.636605\pi\)
−0.416105 + 0.909316i \(0.636605\pi\)
\(258\) 10.6599 0.0413174
\(259\) 193.713i 0.747926i
\(260\) 7.93864i 0.0305332i
\(261\) 53.2510i 0.204027i
\(262\) 422.015 1.61074
\(263\) 164.115i 0.624012i −0.950080 0.312006i \(-0.898999\pi\)
0.950080 0.312006i \(-0.101001\pi\)
\(264\) −213.684 161.070i −0.809407 0.610114i
\(265\) −208.191 −0.785625
\(266\) 50.4500i 0.189662i
\(267\) 237.270 0.888651
\(268\) 10.9911 0.0410116
\(269\) 375.819 1.39710 0.698549 0.715562i \(-0.253829\pi\)
0.698549 + 0.715562i \(0.253829\pi\)
\(270\) 106.186i 0.393280i
\(271\) 163.935i 0.604928i 0.953161 + 0.302464i \(0.0978092\pi\)
−0.953161 + 0.302464i \(0.902191\pi\)
\(272\) 298.447i 1.09723i
\(273\) −54.7341 −0.200491
\(274\) 333.942i 1.21877i
\(275\) −33.1061 + 43.9202i −0.120386 + 0.159710i
\(276\) 44.4259 0.160963
\(277\) 336.063i 1.21323i 0.794998 + 0.606613i \(0.207472\pi\)
−0.794998 + 0.606613i \(0.792528\pi\)
\(278\) 332.077 1.19452
\(279\) −31.0853 −0.111417
\(280\) −130.832 −0.467256
\(281\) 383.397i 1.36440i 0.731164 + 0.682202i \(0.238977\pi\)
−0.731164 + 0.682202i \(0.761023\pi\)
\(282\) 10.8734i 0.0385580i
\(283\) 31.1879i 0.110204i −0.998481 0.0551022i \(-0.982452\pi\)
0.998481 0.0551022i \(-0.0175485\pi\)
\(284\) −1.52273 −0.00536172
\(285\) 28.1241i 0.0986811i
\(286\) −32.1648 + 42.6714i −0.112464 + 0.149201i
\(287\) 165.762 0.577570
\(288\) 22.2549i 0.0772741i
\(289\) −669.615 −2.31701
\(290\) 167.196 0.576539
\(291\) 448.467 1.54112
\(292\) 29.3806i 0.100618i
\(293\) 175.574i 0.599229i 0.954060 + 0.299614i \(0.0968580\pi\)
−0.954060 + 0.299614i \(0.903142\pi\)
\(294\) 17.7399i 0.0603399i
\(295\) 242.872 0.823296
\(296\) 250.786i 0.847251i
\(297\) 188.540 250.127i 0.634815 0.842177i
\(298\) 70.9156 0.237972
\(299\) 37.9873i 0.127048i
\(300\) 17.0331 0.0567771
\(301\) −15.3741 −0.0510766
\(302\) −376.659 −1.24722
\(303\) 106.684i 0.352091i
\(304\) 43.3759i 0.142684i
\(305\) 122.527i 0.401728i
\(306\) −61.3253 −0.200409
\(307\) 515.038i 1.67765i 0.544402 + 0.838825i \(0.316757\pi\)
−0.544402 + 0.838825i \(0.683243\pi\)
\(308\) 71.9731 + 54.2518i 0.233679 + 0.176142i
\(309\) 96.3697 0.311876
\(310\) 97.6010i 0.314842i
\(311\) 419.087 1.34755 0.673774 0.738937i \(-0.264672\pi\)
0.673774 + 0.738937i \(0.264672\pi\)
\(312\) 70.8603 0.227116
\(313\) −82.3366 −0.263056 −0.131528 0.991312i \(-0.541988\pi\)
−0.131528 + 0.991312i \(0.541988\pi\)
\(314\) 203.383i 0.647716i
\(315\) 17.8537i 0.0566784i
\(316\) 132.215i 0.418400i
\(317\) 373.069 1.17687 0.588437 0.808543i \(-0.299743\pi\)
0.588437 + 0.808543i \(0.299743\pi\)
\(318\) 433.992i 1.36475i
\(319\) −393.840 296.868i −1.23461 0.930622i
\(320\) 156.092 0.487788
\(321\) 369.779i 1.15196i
\(322\) 146.207 0.454060
\(323\) −139.324 −0.431344
\(324\) −83.9760 −0.259185
\(325\) 14.5645i 0.0448139i
\(326\) 147.074i 0.451149i
\(327\) 487.003i 1.48931i
\(328\) −214.601 −0.654271
\(329\) 15.6819i 0.0476655i
\(330\) 91.5556 + 69.0127i 0.277441 + 0.209129i
\(331\) 179.066 0.540986 0.270493 0.962722i \(-0.412813\pi\)
0.270493 + 0.962722i \(0.412813\pi\)
\(332\) 10.0850i 0.0303766i
\(333\) 34.2230 0.102772
\(334\) 259.429 0.776734
\(335\) −20.1647 −0.0601931
\(336\) 181.124i 0.539060i
\(337\) 187.268i 0.555693i −0.960626 0.277846i \(-0.910379\pi\)
0.960626 0.277846i \(-0.0896206\pi\)
\(338\) 267.689i 0.791981i
\(339\) −290.922 −0.858178
\(340\) 84.3804i 0.248178i
\(341\) −173.297 + 229.905i −0.508203 + 0.674207i
\(342\) −8.91295 −0.0260613
\(343\) 354.996i 1.03497i
\(344\) 19.9037 0.0578596
\(345\) −81.5055 −0.236248
\(346\) −358.327 −1.03563
\(347\) 388.617i 1.11993i 0.828515 + 0.559967i \(0.189186\pi\)
−0.828515 + 0.559967i \(0.810814\pi\)
\(348\) 152.739i 0.438905i
\(349\) 73.9677i 0.211942i 0.994369 + 0.105971i \(0.0337950\pi\)
−0.994369 + 0.105971i \(0.966205\pi\)
\(350\) 56.0566 0.160162
\(351\) 82.9453i 0.236311i
\(352\) −164.596 124.069i −0.467602 0.352469i
\(353\) 208.797 0.591492 0.295746 0.955267i \(-0.404432\pi\)
0.295746 + 0.955267i \(0.404432\pi\)
\(354\) 506.289i 1.43020i
\(355\) 2.79366 0.00786945
\(356\) 103.463 0.290628
\(357\) −581.773 −1.62962
\(358\) 259.577i 0.725075i
\(359\) 32.9550i 0.0917967i −0.998946 0.0458984i \(-0.985385\pi\)
0.998946 0.0458984i \(-0.0146150\pi\)
\(360\) 23.1139i 0.0642053i
\(361\) 340.751 0.943908
\(362\) 315.450i 0.871410i
\(363\) −93.1278 325.127i −0.256550 0.895666i
\(364\) −23.8672 −0.0655694
\(365\) 53.9028i 0.147679i
\(366\) −255.419 −0.697866
\(367\) −29.7192 −0.0809788 −0.0404894 0.999180i \(-0.512892\pi\)
−0.0404894 + 0.999180i \(0.512892\pi\)
\(368\) −125.706 −0.341593
\(369\) 29.2851i 0.0793634i
\(370\) 107.453i 0.290413i
\(371\) 625.918i 1.68711i
\(372\) 89.1616 0.239682
\(373\) 436.560i 1.17040i −0.810889 0.585201i \(-0.801016\pi\)
0.810889 0.585201i \(-0.198984\pi\)
\(374\) −341.882 + 453.557i −0.914123 + 1.21272i
\(375\) −31.2496 −0.0833323
\(376\) 20.3023i 0.0539955i
\(377\) 130.603 0.346426
\(378\) −319.244 −0.844560
\(379\) 74.5391 0.196673 0.0983366 0.995153i \(-0.468648\pi\)
0.0983366 + 0.995153i \(0.468648\pi\)
\(380\) 12.2638i 0.0322730i
\(381\) 90.1251i 0.236549i
\(382\) 206.783i 0.541316i
\(383\) −496.956 −1.29754 −0.648768 0.760986i \(-0.724715\pi\)
−0.648768 + 0.760986i \(0.724715\pi\)
\(384\) 115.892i 0.301803i
\(385\) −132.045 99.5324i −0.342973 0.258526i
\(386\) 390.446 1.01152
\(387\) 2.71612i 0.00701840i
\(388\) 195.558 0.504015
\(389\) 6.51617 0.0167511 0.00837554 0.999965i \(-0.497334\pi\)
0.00837554 + 0.999965i \(0.497334\pi\)
\(390\) −30.3611 −0.0778489
\(391\) 403.770i 1.03266i
\(392\) 33.1233i 0.0844981i
\(393\) 707.297i 1.79974i
\(394\) 365.140 0.926751
\(395\) 242.566i 0.614091i
\(396\) 9.58461 12.7154i 0.0242036 0.0321096i
\(397\) −59.6577 −0.150271 −0.0751357 0.997173i \(-0.523939\pi\)
−0.0751357 + 0.997173i \(0.523939\pi\)
\(398\) 213.402i 0.536186i
\(399\) −84.5542 −0.211915
\(400\) −48.1964 −0.120491
\(401\) −298.153 −0.743524 −0.371762 0.928328i \(-0.621246\pi\)
−0.371762 + 0.928328i \(0.621246\pi\)
\(402\) 42.0351i 0.104565i
\(403\) 76.2395i 0.189180i
\(404\) 46.5203i 0.115149i
\(405\) 154.066 0.380409
\(406\) 502.670i 1.23810i
\(407\) 190.790 253.111i 0.468771 0.621895i
\(408\) 753.180 1.84603
\(409\) 170.539i 0.416967i 0.978026 + 0.208483i \(0.0668528\pi\)
−0.978026 + 0.208483i \(0.933147\pi\)
\(410\) 91.9487 0.224265
\(411\) −559.687 −1.36177
\(412\) 42.0228 0.101997
\(413\) 730.188i 1.76801i
\(414\) 25.8303i 0.0623920i
\(415\) 18.5024i 0.0445841i
\(416\) 54.5822 0.131207
\(417\) 556.561i 1.33468i
\(418\) −49.6887 + 65.9195i −0.118873 + 0.157702i
\(419\) 547.949 1.30775 0.653877 0.756601i \(-0.273141\pi\)
0.653877 + 0.756601i \(0.273141\pi\)
\(420\) 51.2095i 0.121927i
\(421\) 375.189 0.891185 0.445593 0.895236i \(-0.352993\pi\)
0.445593 + 0.895236i \(0.352993\pi\)
\(422\) −373.851 −0.885902
\(423\) 2.77051 0.00654968
\(424\) 810.332i 1.91116i
\(425\) 154.808i 0.364253i
\(426\) 5.82363i 0.0136705i
\(427\) 368.374 0.862702
\(428\) 161.245i 0.376742i
\(429\) 71.5172 + 53.9082i 0.166707 + 0.125660i
\(430\) −8.52802 −0.0198326
\(431\) 405.352i 0.940493i 0.882535 + 0.470246i \(0.155835\pi\)
−0.882535 + 0.470246i \(0.844165\pi\)
\(432\) 274.480 0.635370
\(433\) −122.182 −0.282175 −0.141088 0.989997i \(-0.545060\pi\)
−0.141088 + 0.989997i \(0.545060\pi\)
\(434\) 293.434 0.676115
\(435\) 280.221i 0.644186i
\(436\) 212.362i 0.487068i
\(437\) 58.6835i 0.134287i
\(438\) −112.365 −0.256541
\(439\) 125.331i 0.285492i 0.989759 + 0.142746i \(0.0455931\pi\)
−0.989759 + 0.142746i \(0.954407\pi\)
\(440\) 170.949 + 128.858i 0.388520 + 0.292858i
\(441\) −4.52010 −0.0102497
\(442\) 150.406i 0.340284i
\(443\) −66.9517 −0.151133 −0.0755663 0.997141i \(-0.524076\pi\)
−0.0755663 + 0.997141i \(0.524076\pi\)
\(444\) −98.1615 −0.221084
\(445\) −189.818 −0.426557
\(446\) 445.931i 0.999845i
\(447\) 118.855i 0.265894i
\(448\) 469.285i 1.04751i
\(449\) 227.828 0.507413 0.253706 0.967281i \(-0.418350\pi\)
0.253706 + 0.967281i \(0.418350\pi\)
\(450\) 9.90347i 0.0220077i
\(451\) −216.590 163.261i −0.480245 0.361998i
\(452\) −126.859 −0.280662
\(453\) 631.281i 1.39356i
\(454\) −262.888 −0.579049
\(455\) 43.7878 0.0962369
\(456\) 109.466 0.240058
\(457\) 328.089i 0.717919i 0.933353 + 0.358959i \(0.116868\pi\)
−0.933353 + 0.358959i \(0.883132\pi\)
\(458\) 72.1067i 0.157438i
\(459\) 881.632i 1.92077i
\(460\) −35.5412 −0.0772634
\(461\) 634.564i 1.37649i 0.725476 + 0.688247i \(0.241619\pi\)
−0.725476 + 0.688247i \(0.758381\pi\)
\(462\) −207.484 + 275.259i −0.449100 + 0.595798i
\(463\) −39.8190 −0.0860022 −0.0430011 0.999075i \(-0.513692\pi\)
−0.0430011 + 0.999075i \(0.513692\pi\)
\(464\) 432.186i 0.931436i
\(465\) −163.579 −0.351783
\(466\) 356.237 0.764456
\(467\) −120.629 −0.258307 −0.129153 0.991625i \(-0.541226\pi\)
−0.129153 + 0.991625i \(0.541226\pi\)
\(468\) 4.21660i 0.00900984i
\(469\) 60.6245i 0.129263i
\(470\) 8.69880i 0.0185081i
\(471\) −340.870 −0.723715
\(472\) 945.323i 2.00280i
\(473\) 20.0882 + 15.1421i 0.0424698 + 0.0320129i
\(474\) 505.650 1.06677
\(475\) 22.4996i 0.0473675i
\(476\) −253.687 −0.532956
\(477\) −110.580 −0.231825
\(478\) 463.002 0.968623
\(479\) 611.310i 1.27622i −0.769945 0.638110i \(-0.779716\pi\)
0.769945 0.638110i \(-0.220284\pi\)
\(480\) 117.112i 0.243982i
\(481\) 83.9351i 0.174501i
\(482\) −65.5851 −0.136069
\(483\) 245.044i 0.507337i
\(484\) −40.6092 141.774i −0.0839032 0.292922i
\(485\) −358.778 −0.739748
\(486\) 106.226i 0.218572i
\(487\) −386.421 −0.793472 −0.396736 0.917933i \(-0.629857\pi\)
−0.396736 + 0.917933i \(0.629857\pi\)
\(488\) −476.908 −0.977270
\(489\) −246.497 −0.504083
\(490\) 14.1921i 0.0289635i
\(491\) 699.750i 1.42515i 0.701594 + 0.712577i \(0.252472\pi\)
−0.701594 + 0.712577i \(0.747528\pi\)
\(492\) 83.9981i 0.170728i
\(493\) 1388.19 2.81580
\(494\) 21.8598i 0.0442506i
\(495\) −17.5843 + 23.3282i −0.0355238 + 0.0471277i
\(496\) −252.289 −0.508647
\(497\) 8.39903i 0.0168995i
\(498\) −38.5699 −0.0774496
\(499\) −243.340 −0.487654 −0.243827 0.969819i \(-0.578403\pi\)
−0.243827 + 0.969819i \(0.578403\pi\)
\(500\) −13.6267 −0.0272533
\(501\) 434.803i 0.867871i
\(502\) 580.836i 1.15704i
\(503\) 90.1999i 0.179324i −0.995972 0.0896620i \(-0.971421\pi\)
0.995972 0.0896620i \(-0.0285787\pi\)
\(504\) −69.4912 −0.137879
\(505\) 85.3479i 0.169006i
\(506\) −191.039 144.001i −0.377548 0.284587i
\(507\) 448.648 0.884907
\(508\) 39.2998i 0.0773619i
\(509\) 629.870 1.23746 0.618732 0.785602i \(-0.287647\pi\)
0.618732 + 0.785602i \(0.287647\pi\)
\(510\) −322.710 −0.632765
\(511\) 162.057 0.317137
\(512\) 516.198i 1.00820i
\(513\) 128.135i 0.249777i
\(514\) 356.683i 0.693935i
\(515\) −77.0967 −0.149702
\(516\) 7.79061i 0.0150981i
\(517\) 15.4453 20.4905i 0.0298749 0.0396335i
\(518\) −323.053 −0.623655
\(519\) 600.556i 1.15714i
\(520\) −56.6889 −0.109017
\(521\) −355.136 −0.681643 −0.340822 0.940128i \(-0.610705\pi\)
−0.340822 + 0.940128i \(0.610705\pi\)
\(522\) 88.8062 0.170127
\(523\) 107.213i 0.204996i −0.994733 0.102498i \(-0.967317\pi\)
0.994733 0.102498i \(-0.0326835\pi\)
\(524\) 308.423i 0.588593i
\(525\) 93.9510i 0.178954i
\(526\) 273.693 0.520330
\(527\) 810.355i 1.53768i
\(528\) 178.391 236.662i 0.337862 0.448224i
\(529\) −358.931 −0.678509
\(530\) 347.198i 0.655090i
\(531\) 129.002 0.242941
\(532\) −36.8706 −0.0693056
\(533\) 71.8243 0.134755
\(534\) 395.693i 0.740998i
\(535\) 295.827i 0.552948i
\(536\) 78.4862i 0.146430i
\(537\) −435.051 −0.810151
\(538\) 626.750i 1.16496i
\(539\) −25.1991 + 33.4303i −0.0467515 + 0.0620229i
\(540\) 77.6041 0.143711
\(541\) 365.120i 0.674899i −0.941344 0.337449i \(-0.890436\pi\)
0.941344 0.337449i \(-0.109564\pi\)
\(542\) −273.394 −0.504417
\(543\) 528.695 0.973656
\(544\) 580.159 1.06647
\(545\) 389.607i 0.714876i
\(546\) 91.2795i 0.167179i
\(547\) 384.034i 0.702074i 0.936362 + 0.351037i \(0.114171\pi\)
−0.936362 + 0.351037i \(0.885829\pi\)
\(548\) −244.056 −0.445358
\(549\) 65.0802i 0.118543i
\(550\) −73.2454 55.2108i −0.133173 0.100383i
\(551\) 201.758 0.366166
\(552\) 317.241i 0.574711i
\(553\) −729.266 −1.31874
\(554\) −560.450 −1.01164
\(555\) 180.091 0.324488
\(556\) 242.693i 0.436499i
\(557\) 93.3430i 0.167582i −0.996483 0.0837908i \(-0.973297\pi\)
0.996483 0.0837908i \(-0.0267028\pi\)
\(558\) 51.8407i 0.0929045i
\(559\) −6.66153 −0.0119169
\(560\) 144.901i 0.258752i
\(561\) 760.163 + 572.994i 1.35501 + 1.02138i
\(562\) −639.388 −1.13770
\(563\) 325.624i 0.578373i −0.957273 0.289187i \(-0.906615\pi\)
0.957273 0.289187i \(-0.0933848\pi\)
\(564\) −7.94663 −0.0140898
\(565\) 232.741 0.411930
\(566\) 52.0117 0.0918935
\(567\) 463.193i 0.816919i
\(568\) 10.8736i 0.0191437i
\(569\) 409.067i 0.718923i 0.933160 + 0.359461i \(0.117040\pi\)
−0.933160 + 0.359461i \(0.882960\pi\)
\(570\) −46.9023 −0.0822848
\(571\) 395.169i 0.692065i −0.938223 0.346032i \(-0.887529\pi\)
0.938223 0.346032i \(-0.112471\pi\)
\(572\) 31.1857 + 23.5071i 0.0545205 + 0.0410963i
\(573\) −346.568 −0.604830
\(574\) 276.441i 0.481604i
\(575\) 65.2052 0.113400
\(576\) 82.9082 0.143938
\(577\) −432.156 −0.748971 −0.374485 0.927233i \(-0.622181\pi\)
−0.374485 + 0.927233i \(0.622181\pi\)
\(578\) 1116.71i 1.93203i
\(579\) 654.388i 1.13020i
\(580\) 122.193i 0.210677i
\(581\) 55.6269 0.0957433
\(582\) 747.904i 1.28506i
\(583\) −616.473 + 817.844i −1.05742 + 1.40282i
\(584\) −209.804 −0.359253
\(585\) 7.73594i 0.0132238i
\(586\) −292.803 −0.499664
\(587\) −1.36709 −0.00232895 −0.00116447 0.999999i \(-0.500371\pi\)
−0.00116447 + 0.999999i \(0.500371\pi\)
\(588\) 12.9649 0.0220492
\(589\) 117.776i 0.199960i
\(590\) 405.036i 0.686502i
\(591\) 611.974i 1.03549i
\(592\) 277.755 0.469181
\(593\) 232.591i 0.392228i 0.980581 + 0.196114i \(0.0628323\pi\)
−0.980581 + 0.196114i \(0.937168\pi\)
\(594\) 417.134 + 314.427i 0.702246 + 0.529338i
\(595\) 465.424 0.782225
\(596\) 51.8275i 0.0869590i
\(597\) 357.662 0.599099
\(598\) 63.3511 0.105938
\(599\) −291.349 −0.486392 −0.243196 0.969977i \(-0.578196\pi\)
−0.243196 + 0.969977i \(0.578196\pi\)
\(600\) 121.632i 0.202719i
\(601\) 160.437i 0.266951i 0.991052 + 0.133475i \(0.0426137\pi\)
−0.991052 + 0.133475i \(0.957386\pi\)
\(602\) 25.6392i 0.0425900i
\(603\) −10.7105 −0.0177620
\(604\) 275.275i 0.455754i
\(605\) 74.5031 + 260.104i 0.123146 + 0.429925i
\(606\) 177.915 0.293590
\(607\) 107.785i 0.177571i −0.996051 0.0887854i \(-0.971701\pi\)
0.996051 0.0887854i \(-0.0282985\pi\)
\(608\) 84.3197 0.138684
\(609\) 842.475 1.38337
\(610\) 204.337 0.334979
\(611\) 6.79493i 0.0111210i
\(612\) 44.8186i 0.0732330i
\(613\) 552.780i 0.901761i 0.892584 + 0.450881i \(0.148890\pi\)
−0.892584 + 0.450881i \(0.851110\pi\)
\(614\) −858.925 −1.39890
\(615\) 154.106i 0.250579i
\(616\) −387.406 + 513.952i −0.628906 + 0.834338i
\(617\) 21.9153 0.0355192 0.0177596 0.999842i \(-0.494347\pi\)
0.0177596 + 0.999842i \(0.494347\pi\)
\(618\) 160.715i 0.260056i
\(619\) 205.700 0.332310 0.166155 0.986100i \(-0.446865\pi\)
0.166155 + 0.986100i \(0.446865\pi\)
\(620\) −71.3301 −0.115049
\(621\) −371.345 −0.597979
\(622\) 698.909i 1.12365i
\(623\) 570.682i 0.916022i
\(624\) 78.4804i 0.125770i
\(625\) 25.0000 0.0400000
\(626\) 137.312i 0.219348i
\(627\) 110.481 + 83.2783i 0.176206 + 0.132820i
\(628\) −148.639 −0.236687
\(629\) 892.152i 1.41837i
\(630\) 29.7744 0.0472610
\(631\) 859.961 1.36285 0.681427 0.731886i \(-0.261360\pi\)
0.681427 + 0.731886i \(0.261360\pi\)
\(632\) 944.129 1.49388
\(633\) 626.574i 0.989848i
\(634\) 622.164i 0.981331i
\(635\) 72.1010i 0.113545i
\(636\) 317.176 0.498705
\(637\) 11.0859i 0.0174034i
\(638\) 495.085 656.804i 0.775995 1.02947i
\(639\) 1.48385 0.00232214
\(640\) 92.7149i 0.144867i
\(641\) 794.780 1.23991 0.619953 0.784639i \(-0.287152\pi\)
0.619953 + 0.784639i \(0.287152\pi\)
\(642\) 616.678 0.960558
\(643\) −25.5239 −0.0396951 −0.0198475 0.999803i \(-0.506318\pi\)
−0.0198475 + 0.999803i \(0.506318\pi\)
\(644\) 106.853i 0.165921i
\(645\) 14.2930i 0.0221596i
\(646\) 232.350i 0.359674i
\(647\) −681.121 −1.05274 −0.526368 0.850257i \(-0.676447\pi\)
−0.526368 + 0.850257i \(0.676447\pi\)
\(648\) 599.663i 0.925406i
\(649\) 719.170 954.086i 1.10812 1.47009i
\(650\) 24.2891 0.0373679
\(651\) 491.796i 0.755446i
\(652\) −107.487 −0.164857
\(653\) 913.057 1.39825 0.699124 0.715000i \(-0.253573\pi\)
0.699124 + 0.715000i \(0.253573\pi\)
\(654\) −812.171 −1.24185
\(655\) 565.844i 0.863885i
\(656\) 237.678i 0.362315i
\(657\) 28.6304i 0.0435775i
\(658\) −26.1526 −0.0397457
\(659\) 126.800i 0.192413i −0.995361 0.0962065i \(-0.969329\pi\)
0.995361 0.0962065i \(-0.0306709\pi\)
\(660\) 50.4368 66.9120i 0.0764194 0.101382i
\(661\) −736.664 −1.11447 −0.557235 0.830355i \(-0.688138\pi\)
−0.557235 + 0.830355i \(0.688138\pi\)
\(662\) 298.627i 0.451099i
\(663\) −252.080 −0.380211
\(664\) −72.0162 −0.108458
\(665\) 67.6442 0.101721
\(666\) 57.0735i 0.0856959i
\(667\) 584.706i 0.876621i
\(668\) 189.600i 0.283832i
\(669\) −747.380 −1.11716
\(670\) 33.6285i 0.0501918i
\(671\) −481.329 362.815i −0.717331 0.540708i
\(672\) 352.092 0.523946
\(673\) 225.017i 0.334349i −0.985927 0.167174i \(-0.946536\pi\)
0.985927 0.167174i \(-0.0534643\pi\)
\(674\) 312.306 0.463362
\(675\) −142.376 −0.210927
\(676\) 195.637 0.289403
\(677\) 109.258i 0.161386i −0.996739 0.0806931i \(-0.974287\pi\)
0.996739 0.0806931i \(-0.0257134\pi\)
\(678\) 485.169i 0.715588i
\(679\) 1078.65i 1.58859i
\(680\) −602.551 −0.886105
\(681\) 440.601i 0.646991i
\(682\) −383.410 289.006i −0.562185 0.423763i
\(683\) −1080.61 −1.58215 −0.791075 0.611719i \(-0.790478\pi\)
−0.791075 + 0.611719i \(0.790478\pi\)
\(684\) 6.51389i 0.00952323i
\(685\) 447.755 0.653657
\(686\) 592.023 0.863007
\(687\) 120.851 0.175911
\(688\) 22.0441i 0.0320408i
\(689\) 271.208i 0.393626i
\(690\) 135.926i 0.196994i
\(691\) −1170.13 −1.69339 −0.846695 0.532078i \(-0.821411\pi\)
−0.846695 + 0.532078i \(0.821411\pi\)
\(692\) 261.878i 0.378436i
\(693\) −70.1354 52.8666i −0.101206 0.0762866i
\(694\) −648.093 −0.933852
\(695\) 445.254i 0.640654i
\(696\) −1090.69 −1.56709
\(697\) 763.426 1.09530
\(698\) −123.355 −0.176727
\(699\) 597.053i 0.854153i
\(700\) 40.9681i 0.0585259i
\(701\) 328.408i 0.468485i 0.972178 + 0.234242i \(0.0752609\pi\)
−0.972178 + 0.234242i \(0.924739\pi\)
\(702\) −138.327 −0.197047
\(703\) 129.664i 0.184444i
\(704\) 462.204 613.183i 0.656540 0.870999i
\(705\) 14.5792 0.0206797
\(706\) 348.208i 0.493213i
\(707\) −256.596 −0.362936
\(708\) −370.014 −0.522618
\(709\) −705.817 −0.995511 −0.497756 0.867317i \(-0.665842\pi\)
−0.497756 + 0.867317i \(0.665842\pi\)
\(710\) 4.65896i 0.00656191i
\(711\) 128.839i 0.181208i
\(712\) 738.821i 1.03767i
\(713\) 341.323 0.478714
\(714\) 970.217i 1.35885i
\(715\) −57.2145 43.1270i −0.0800202 0.0603175i
\(716\) −189.708 −0.264955
\(717\) 775.991i 1.08227i
\(718\) 54.9588 0.0765443
\(719\) −584.645 −0.813137 −0.406568 0.913620i \(-0.633275\pi\)
−0.406568 + 0.913620i \(0.633275\pi\)
\(720\) −25.5995 −0.0355549
\(721\) 231.789i 0.321482i
\(722\) 568.267i 0.787074i
\(723\) 109.921i 0.152034i
\(724\) 230.542 0.318428
\(725\) 224.179i 0.309213i
\(726\) 542.211 155.308i 0.746847 0.213923i
\(727\) 370.464 0.509579 0.254790 0.966997i \(-0.417994\pi\)
0.254790 + 0.966997i \(0.417994\pi\)
\(728\) 170.433i 0.234112i
\(729\) 798.136 1.09484
\(730\) 89.8932 0.123141
\(731\) −70.8059 −0.0968617
\(732\) 186.669i 0.255012i
\(733\) 407.221i 0.555554i 0.960646 + 0.277777i \(0.0895977\pi\)
−0.960646 + 0.277777i \(0.910402\pi\)
\(734\) 49.5625i 0.0675238i
\(735\) −23.7860 −0.0323619
\(736\) 244.364i 0.332016i
\(737\) −59.7097 + 79.2138i −0.0810172 + 0.107481i
\(738\) 48.8385 0.0661768
\(739\) 1382.44i 1.87069i −0.353731 0.935347i \(-0.615087\pi\)
0.353731 0.935347i \(-0.384913\pi\)
\(740\) 78.5301 0.106122
\(741\) −36.6370 −0.0494427
\(742\) 1043.84 1.40679
\(743\) 748.989i 1.00806i 0.863686 + 0.504030i \(0.168150\pi\)
−0.863686 + 0.504030i \(0.831850\pi\)
\(744\) 636.693i 0.855770i
\(745\) 95.0848i 0.127631i
\(746\) 728.047 0.975934
\(747\) 9.82754i 0.0131560i
\(748\) 331.475 + 249.859i 0.443149 + 0.334036i
\(749\) −889.394 −1.18744
\(750\) 52.1147i 0.0694863i
\(751\) −532.843 −0.709512 −0.354756 0.934959i \(-0.615436\pi\)
−0.354756 + 0.934959i \(0.615436\pi\)
\(752\) 22.4856 0.0299010
\(753\) −973.481 −1.29280
\(754\) 217.805i 0.288866i
\(755\) 505.031i 0.668915i
\(756\) 233.314i 0.308617i
\(757\) −610.182 −0.806052 −0.403026 0.915188i \(-0.632042\pi\)
−0.403026 + 0.915188i \(0.632042\pi\)
\(758\) 124.308i 0.163995i
\(759\) −241.346 + 320.182i −0.317979 + 0.421847i
\(760\) −87.5741 −0.115229
\(761\) 180.435i 0.237102i −0.992948 0.118551i \(-0.962175\pi\)
0.992948 0.118551i \(-0.0378249\pi\)
\(762\) −150.301 −0.197245
\(763\) 1171.34 1.53518
\(764\) −151.124 −0.197806
\(765\) 82.2260i 0.107485i
\(766\) 828.769i 1.08194i
\(767\) 316.388i 0.412500i
\(768\) −587.178 −0.764555
\(769\) 559.139i 0.727099i 0.931575 + 0.363550i \(0.118435\pi\)
−0.931575 + 0.363550i \(0.881565\pi\)
\(770\) 165.989 220.210i 0.215571 0.285987i
\(771\) −597.800 −0.775357
\(772\) 285.351i 0.369626i
\(773\) 272.373 0.352358 0.176179 0.984358i \(-0.443626\pi\)
0.176179 + 0.984358i \(0.443626\pi\)
\(774\) −4.52965 −0.00585226
\(775\) 130.865 0.168858
\(776\) 1396.46i 1.79956i
\(777\) 541.437i 0.696830i
\(778\) 10.8670i 0.0139678i
\(779\) 110.956 0.142433
\(780\) 22.1889i 0.0284473i
\(781\) 8.27230 10.9744i 0.0105919 0.0140518i
\(782\) 673.364 0.861079
\(783\) 1276.71i 1.63053i
\(784\) −36.6852 −0.0467924
\(785\) 272.699 0.347387
\(786\) 1179.55 1.50070
\(787\) 1415.45i 1.79854i −0.437398 0.899268i \(-0.644100\pi\)
0.437398 0.899268i \(-0.355900\pi\)
\(788\) 266.857i 0.338651i
\(789\) 458.710i 0.581382i
\(790\) −404.525 −0.512057
\(791\) 699.727i 0.884610i
\(792\) 90.7994 + 68.4426i 0.114646 + 0.0864175i
\(793\) 159.615 0.201280
\(794\) 99.4906i 0.125303i
\(795\) −581.903 −0.731954
\(796\) 155.961 0.195932
\(797\) 960.746 1.20545 0.602726 0.797948i \(-0.294081\pi\)
0.602726 + 0.797948i \(0.294081\pi\)
\(798\) 141.010i 0.176705i
\(799\) 72.2239i 0.0903928i
\(800\) 93.6904i 0.117113i
\(801\) −100.822 −0.125870
\(802\) 497.227i 0.619984i
\(803\) −211.749 159.611i −0.263697 0.198769i
\(804\) 30.7207 0.0382098
\(805\) 196.037i 0.243524i
\(806\) 127.144 0.157747
\(807\) 1050.43 1.30165
\(808\) 332.196 0.411134
\(809\) 850.203i 1.05093i 0.850815 + 0.525465i \(0.176109\pi\)
−0.850815 + 0.525465i \(0.823891\pi\)
\(810\) 256.934i 0.317202i
\(811\) 316.974i 0.390843i −0.980719 0.195422i \(-0.937392\pi\)
0.980719 0.195422i \(-0.0626075\pi\)
\(812\) 367.368 0.452424
\(813\) 458.208i 0.563602i
\(814\) 422.111 + 318.178i 0.518564 + 0.390883i
\(815\) 197.200 0.241963
\(816\) 834.175i 1.02227i
\(817\) −10.2909 −0.0125959
\(818\) −284.407 −0.347686
\(819\) 23.2578 0.0283979
\(820\) 67.1993i 0.0819503i
\(821\) 1214.62i 1.47944i −0.672915 0.739720i \(-0.734958\pi\)
0.672915 0.739720i \(-0.265042\pi\)
\(822\) 933.385i 1.13550i
\(823\) 1210.57 1.47093 0.735464 0.677564i \(-0.236964\pi\)
0.735464 + 0.677564i \(0.236964\pi\)
\(824\) 300.080i 0.364175i
\(825\) −92.5333 + 122.759i −0.112162 + 0.148799i
\(826\) −1217.73 −1.47425
\(827\) 305.273i 0.369133i 0.982820 + 0.184566i \(0.0590881\pi\)
−0.982820 + 0.184566i \(0.940912\pi\)
\(828\) −18.8777 −0.0227991
\(829\) −225.488 −0.272000 −0.136000 0.990709i \(-0.543425\pi\)
−0.136000 + 0.990709i \(0.543425\pi\)
\(830\) 30.8563 0.0371763
\(831\) 939.315i 1.13034i
\(832\) 203.340i 0.244399i
\(833\) 117.833i 0.141457i
\(834\) 928.172 1.11292
\(835\) 347.847i 0.416583i
\(836\) 48.1762 + 36.3142i 0.0576271 + 0.0434381i
\(837\) −745.279 −0.890417
\(838\) 913.810i 1.09047i
\(839\) 405.279 0.483050 0.241525 0.970395i \(-0.422352\pi\)
0.241525 + 0.970395i \(0.422352\pi\)
\(840\) −365.681 −0.435335
\(841\) −1169.26 −1.39032
\(842\) 625.699i 0.743111i
\(843\) 1071.62i 1.27119i
\(844\) 273.223i 0.323724i
\(845\) −358.922 −0.424760
\(846\) 4.62036i 0.00546142i
\(847\) −781.995 + 223.991i −0.923253 + 0.264452i
\(848\) −897.472 −1.05834
\(849\) 87.1717i 0.102676i
\(850\) 258.171 0.303731
\(851\) −375.776 −0.441570
\(852\) −4.25610 −0.00499543
\(853\) 788.482i 0.924364i −0.886785 0.462182i \(-0.847067\pi\)
0.886785 0.462182i \(-0.152933\pi\)
\(854\) 614.334i 0.719360i
\(855\) 11.9506i 0.0139773i
\(856\) 1151.44 1.34514
\(857\) 1365.13i 1.59292i 0.604691 + 0.796460i \(0.293297\pi\)
−0.604691 + 0.796460i \(0.706703\pi\)
\(858\) −89.9022 + 119.269i −0.104781 + 0.139008i
\(859\) 519.889 0.605226 0.302613 0.953113i \(-0.402141\pi\)
0.302613 + 0.953113i \(0.402141\pi\)
\(860\) 6.23257i 0.00724717i
\(861\) 463.315 0.538112
\(862\) −676.003 −0.784226
\(863\) 1082.06 1.25384 0.626919 0.779085i \(-0.284316\pi\)
0.626919 + 0.779085i \(0.284316\pi\)
\(864\) 533.569i 0.617556i
\(865\) 480.451i 0.555434i
\(866\) 203.762i 0.235291i
\(867\) −1871.61 −2.15872
\(868\) 214.452i 0.247064i
\(869\) 952.882 + 718.262i 1.09653 + 0.826538i
\(870\) 467.322 0.537152
\(871\) 26.2684i 0.0301589i
\(872\) −1516.45 −1.73905
\(873\) −190.565 −0.218287
\(874\) 97.8660 0.111975
\(875\) 75.1617i 0.0858990i
\(876\) 82.1203i 0.0937446i
\(877\) 819.535i 0.934475i −0.884132 0.467238i \(-0.845249\pi\)
0.884132 0.467238i \(-0.154751\pi\)
\(878\) −209.013 −0.238056
\(879\) 490.738i 0.558292i
\(880\) −142.715 + 189.332i −0.162176 + 0.215150i
\(881\) 1482.75 1.68304 0.841518 0.540230i \(-0.181663\pi\)
0.841518 + 0.540230i \(0.181663\pi\)
\(882\) 7.53813i 0.00854663i
\(883\) −503.758 −0.570508 −0.285254 0.958452i \(-0.592078\pi\)
−0.285254 + 0.958452i \(0.592078\pi\)
\(884\) −109.922 −0.124346
\(885\) 678.841 0.767052
\(886\) 111.655i 0.126021i
\(887\) 1653.39i 1.86402i −0.362429 0.932011i \(-0.618053\pi\)
0.362429 0.932011i \(-0.381947\pi\)
\(888\) 700.960i 0.789370i
\(889\) 216.769 0.243835
\(890\) 316.558i 0.355683i
\(891\) 456.204 605.223i 0.512013 0.679262i
\(892\) −325.901 −0.365360
\(893\) 10.4969i 0.0117547i
\(894\) 198.213 0.221714
\(895\) 348.045 0.388877
\(896\) −278.744 −0.311098
\(897\) 106.176i 0.118368i
\(898\) 379.947i 0.423104i
\(899\) 1173.49i 1.30533i
\(900\) −7.23779 −0.00804199
\(901\) 2882.69i 3.19944i
\(902\) 272.269 361.206i 0.301851 0.400450i
\(903\) −42.9713 −0.0475873
\(904\) 905.887i 1.00209i
\(905\) −422.961 −0.467360
\(906\) −1052.78 −1.16201
\(907\) 1620.77 1.78695 0.893477 0.449109i \(-0.148258\pi\)
0.893477 + 0.449109i \(0.148258\pi\)
\(908\) 192.128i 0.211594i
\(909\) 45.3325i 0.0498707i
\(910\) 73.0245i 0.0802467i
\(911\) −111.468 −0.122358 −0.0611791 0.998127i \(-0.519486\pi\)
−0.0611791 + 0.998127i \(0.519486\pi\)
\(912\) 121.238i 0.132936i
\(913\) −72.6838 54.7875i −0.0796099 0.0600082i
\(914\) −547.151 −0.598633
\(915\) 342.470i 0.374284i
\(916\) 52.6980 0.0575306
\(917\) −1701.19 −1.85517
\(918\) −1470.29 −1.60162
\(919\) 664.740i 0.723330i 0.932308 + 0.361665i \(0.117792\pi\)
−0.932308 + 0.361665i \(0.882208\pi\)
\(920\) 253.795i 0.275865i
\(921\) 1439.56i 1.56304i
\(922\) −1058.26 −1.14778
\(923\) 3.63927i 0.00394287i
\(924\) 201.169 + 151.637i 0.217715 + 0.164109i
\(925\) −144.074 −0.155756
\(926\) 66.4058i 0.0717126i
\(927\) −40.9499 −0.0441746
\(928\) −840.138 −0.905321
\(929\) −844.411 −0.908946 −0.454473 0.890760i \(-0.650172\pi\)
−0.454473 + 0.890760i \(0.650172\pi\)
\(930\) 272.800i 0.293333i
\(931\) 17.1258i 0.0183950i
\(932\) 260.350i 0.279345i
\(933\) 1171.37 1.25549
\(934\) 201.172i 0.215388i
\(935\) −608.137 458.401i −0.650414 0.490268i
\(936\) −30.1103 −0.0321691
\(937\) 175.541i 0.187343i 0.995603 + 0.0936716i \(0.0298604\pi\)
−0.995603 + 0.0936716i \(0.970140\pi\)
\(938\) 101.103 0.107786
\(939\) −230.135 −0.245085
\(940\) 6.35738 0.00676317
\(941\) 838.440i 0.891010i −0.895279 0.445505i \(-0.853024\pi\)
0.895279 0.445505i \(-0.146976\pi\)
\(942\) 568.466i 0.603467i
\(943\) 321.556i 0.340993i
\(944\) 1046.98 1.10909
\(945\) 428.047i 0.452960i
\(946\) −25.2523 + 33.5010i −0.0266938 + 0.0354133i
\(947\) 1483.34 1.56636 0.783179 0.621796i \(-0.213597\pi\)
0.783179 + 0.621796i \(0.213597\pi\)
\(948\) 369.546i 0.389817i
\(949\) 70.2186 0.0739922
\(950\) 37.5223 0.0394972
\(951\) 1042.75 1.09647
\(952\) 1811.55i 1.90289i
\(953\) 186.094i 0.195272i −0.995222 0.0976359i \(-0.968872\pi\)
0.995222 0.0976359i \(-0.0311281\pi\)
\(954\) 184.414i 0.193306i
\(955\) 277.258 0.290322
\(956\) 338.377i 0.353951i
\(957\) −1100.80 829.763i −1.15027 0.867046i
\(958\) 1019.48 1.06417
\(959\) 1346.16i 1.40371i
\(960\) 436.285 0.454464
\(961\) −275.974 −0.287174
\(962\) −139.978 −0.145507
\(963\) 157.128i 0.163166i
\(964\) 47.9318i 0.0497218i
\(965\) 523.517i 0.542504i
\(966\) 408.657 0.423040
\(967\) 948.621i 0.980994i 0.871443 + 0.490497i \(0.163185\pi\)
−0.871443 + 0.490497i \(0.836815\pi\)
\(968\) 1012.39 289.986i 1.04586 0.299572i
\(969\) −389.418 −0.401876
\(970\) 598.331i 0.616836i
\(971\) 685.460 0.705932 0.352966 0.935636i \(-0.385173\pi\)
0.352966 + 0.935636i \(0.385173\pi\)
\(972\) 77.6334 0.0798698
\(973\) −1338.64 −1.37579
\(974\) 644.430i 0.661633i
\(975\) 40.7086i 0.0417524i
\(976\) 528.193i 0.541181i
\(977\) 48.0051 0.0491352 0.0245676 0.999698i \(-0.492179\pi\)
0.0245676 + 0.999698i \(0.492179\pi\)
\(978\) 411.081i 0.420328i
\(979\) −562.070 + 745.670i −0.574127 + 0.761665i
\(980\) −10.3721 −0.0105838
\(981\) 206.940i 0.210948i
\(982\) −1166.97 −1.18836
\(983\) 1453.38 1.47851 0.739257 0.673423i \(-0.235177\pi\)
0.739257 + 0.673423i \(0.235177\pi\)
\(984\) −599.821 −0.609574
\(985\) 489.585i 0.497041i
\(986\) 2315.07i 2.34794i
\(987\) 43.8318i 0.0444092i
\(988\) −15.9759 −0.0161699
\(989\) 29.8236i 0.0301553i
\(990\) −38.9042 29.3252i −0.0392972 0.0296214i
\(991\) 1112.63 1.12273 0.561366 0.827568i \(-0.310276\pi\)
0.561366 + 0.827568i \(0.310276\pi\)
\(992\) 490.431i 0.494386i
\(993\) 500.500 0.504028
\(994\) −14.0070 −0.0140915
\(995\) −286.133 −0.287571
\(996\) 28.1882i 0.0283014i
\(997\) 846.960i 0.849508i 0.905309 + 0.424754i \(0.139639\pi\)
−0.905309 + 0.424754i \(0.860361\pi\)
\(998\) 405.815i 0.406629i
\(999\) 820.507 0.821328
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.c.a.21.6 yes 8
3.2 odd 2 495.3.b.a.406.3 8
4.3 odd 2 880.3.j.a.241.4 8
5.2 odd 4 275.3.d.c.274.5 16
5.3 odd 4 275.3.d.c.274.12 16
5.4 even 2 275.3.c.f.76.3 8
11.10 odd 2 inner 55.3.c.a.21.3 8
33.32 even 2 495.3.b.a.406.6 8
44.43 even 2 880.3.j.a.241.3 8
55.32 even 4 275.3.d.c.274.11 16
55.43 even 4 275.3.d.c.274.6 16
55.54 odd 2 275.3.c.f.76.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.c.a.21.3 8 11.10 odd 2 inner
55.3.c.a.21.6 yes 8 1.1 even 1 trivial
275.3.c.f.76.3 8 5.4 even 2
275.3.c.f.76.6 8 55.54 odd 2
275.3.d.c.274.5 16 5.2 odd 4
275.3.d.c.274.6 16 55.43 even 4
275.3.d.c.274.11 16 55.32 even 4
275.3.d.c.274.12 16 5.3 odd 4
495.3.b.a.406.3 8 3.2 odd 2
495.3.b.a.406.6 8 33.32 even 2
880.3.j.a.241.3 8 44.43 even 2
880.3.j.a.241.4 8 4.3 odd 2