Properties

Label 55.3.c
Level $55$
Weight $3$
Character orbit 55.c
Rep. character $\chi_{55}(21,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(55, [\chi])\).

Total New Old
Modular forms 14 8 6
Cusp forms 10 8 2
Eisenstein series 4 0 4

Trace form

\( 8 q + 8 q^{3} - 28 q^{4} - 4 q^{9} + 8 q^{11} - 48 q^{12} + 20 q^{15} + 88 q^{16} - 20 q^{20} + 80 q^{22} + 8 q^{23} + 40 q^{25} - 100 q^{26} - 16 q^{27} + 36 q^{31} - 152 q^{33} + 80 q^{34} - 216 q^{36}+ \cdots - 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(55, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
55.3.c.a 55.c 11.b $8$ $1.499$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 55.3.c.a \(0\) \(8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(1+\beta _{3})q^{3}+(-4+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(55, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(55, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(11, [\chi])\)\(^{\oplus 2}\)