Properties

Label 275.3.bk.c.82.9
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.9
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.166354 - 0.326489i) q^{2} +(-0.928883 + 0.147121i) q^{3} +(2.27222 + 3.12744i) q^{4} +(-0.106490 + 0.327744i) q^{6} +(10.4047 + 1.64794i) q^{7} +(2.84673 - 0.450878i) q^{8} +(-7.71833 + 2.50784i) q^{9} +(-8.46786 + 7.02107i) q^{11} +(-2.57074 - 2.57074i) q^{12} +(2.61803 + 1.33395i) q^{13} +(2.26890 - 3.12287i) q^{14} +(-4.45195 + 13.7017i) q^{16} +(14.2681 - 7.26994i) q^{17} +(-0.465197 + 2.93714i) q^{18} +(8.60484 - 11.8435i) q^{19} -9.90719 q^{21} +(0.883634 + 3.93264i) q^{22} +(-28.3868 + 28.3868i) q^{23} +(-2.57795 + 0.837625i) q^{24} +(0.871040 - 0.632848i) q^{26} +(14.3421 - 7.30766i) q^{27} +(18.4879 + 36.2846i) q^{28} +(18.1268 + 24.9494i) q^{29} +(16.2065 + 49.8786i) q^{31} +(11.8850 + 11.8850i) q^{32} +(6.83271 - 7.76755i) q^{33} -5.86775i q^{34} +(-25.3809 - 18.4403i) q^{36} +(18.0590 + 2.86026i) q^{37} +(-2.43533 - 4.77961i) q^{38} +(-2.62809 - 0.853920i) q^{39} +(-27.3139 - 19.8447i) q^{41} +(-1.64810 + 3.23459i) q^{42} +(47.0885 - 47.0885i) q^{43} +(-41.1988 - 10.5293i) q^{44} +(4.54571 + 13.9903i) q^{46} +(-4.87237 - 30.7629i) q^{47} +(2.11954 - 13.3822i) q^{48} +(58.9402 + 19.1508i) q^{49} +(-12.1838 + 8.85205i) q^{51} +(1.77688 + 11.2188i) q^{52} +(-21.6991 - 11.0563i) q^{53} -5.89819i q^{54} +30.3624 q^{56} +(-6.25046 + 12.2672i) q^{57} +(11.1612 - 1.76775i) q^{58} +(2.90572 + 3.99938i) q^{59} +(21.4090 - 65.8900i) q^{61} +(18.9808 + 3.00627i) q^{62} +(-84.4396 + 13.3739i) q^{63} +(-48.9493 + 15.9046i) q^{64} +(-1.39937 - 3.52297i) q^{66} +(-31.7791 - 31.7791i) q^{67} +(55.1565 + 28.1036i) q^{68} +(22.1918 - 30.5443i) q^{69} +(8.18581 - 25.1933i) q^{71} +(-20.8413 + 10.6192i) q^{72} +(-2.01349 + 12.7127i) q^{73} +(3.93804 - 5.42024i) q^{74} +56.5921 q^{76} +(-99.6758 + 59.0975i) q^{77} +(-0.715990 + 0.715990i) q^{78} +(-74.0458 + 24.0589i) q^{79} +(46.8434 - 34.0337i) q^{81} +(-11.0228 + 5.61642i) q^{82} +(-32.6366 - 64.0530i) q^{83} +(-22.5113 - 30.9842i) q^{84} +(-7.54048 - 23.2072i) q^{86} +(-20.5082 - 20.5082i) q^{87} +(-20.9401 + 23.8050i) q^{88} -43.9843i q^{89} +(25.0415 + 18.1937i) q^{91} +(-153.279 - 24.2771i) q^{92} +(-22.3922 - 43.9471i) q^{93} +(-10.8543 - 3.52677i) q^{94} +(-12.7883 - 9.29123i) q^{96} +(57.0567 - 111.980i) q^{97} +(16.0575 - 16.0575i) q^{98} +(47.7500 - 75.4269i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.166354 0.326489i 0.0831771 0.163244i −0.845672 0.533704i \(-0.820800\pi\)
0.928849 + 0.370459i \(0.120800\pi\)
\(3\) −0.928883 + 0.147121i −0.309628 + 0.0490402i −0.309315 0.950960i \(-0.600100\pi\)
−0.000313023 1.00000i \(0.500100\pi\)
\(4\) 2.27222 + 3.12744i 0.568055 + 0.781861i
\(5\) 0 0
\(6\) −0.106490 + 0.327744i −0.0177484 + 0.0546240i
\(7\) 10.4047 + 1.64794i 1.48638 + 0.235420i 0.846227 0.532823i \(-0.178869\pi\)
0.640158 + 0.768243i \(0.278869\pi\)
\(8\) 2.84673 0.450878i 0.355841 0.0563597i
\(9\) −7.71833 + 2.50784i −0.857592 + 0.278649i
\(10\) 0 0
\(11\) −8.46786 + 7.02107i −0.769805 + 0.638279i
\(12\) −2.57074 2.57074i −0.214228 0.214228i
\(13\) 2.61803 + 1.33395i 0.201387 + 0.102612i 0.551776 0.833993i \(-0.313951\pi\)
−0.350389 + 0.936604i \(0.613951\pi\)
\(14\) 2.26890 3.12287i 0.162064 0.223062i
\(15\) 0 0
\(16\) −4.45195 + 13.7017i −0.278247 + 0.856355i
\(17\) 14.2681 7.26994i 0.839298 0.427644i 0.0191647 0.999816i \(-0.493899\pi\)
0.820133 + 0.572173i \(0.193899\pi\)
\(18\) −0.465197 + 2.93714i −0.0258443 + 0.163174i
\(19\) 8.60484 11.8435i 0.452886 0.623344i −0.520128 0.854088i \(-0.674116\pi\)
0.973015 + 0.230744i \(0.0741159\pi\)
\(20\) 0 0
\(21\) −9.90719 −0.471771
\(22\) 0.883634 + 3.93264i 0.0401652 + 0.178757i
\(23\) −28.3868 + 28.3868i −1.23421 + 1.23421i −0.271878 + 0.962332i \(0.587645\pi\)
−0.962332 + 0.271878i \(0.912355\pi\)
\(24\) −2.57795 + 0.837625i −0.107414 + 0.0349011i
\(25\) 0 0
\(26\) 0.871040 0.632848i 0.0335016 0.0243403i
\(27\) 14.3421 7.30766i 0.531188 0.270654i
\(28\) 18.4879 + 36.2846i 0.660283 + 1.29588i
\(29\) 18.1268 + 24.9494i 0.625062 + 0.860324i 0.997709 0.0676492i \(-0.0215499\pi\)
−0.372647 + 0.927973i \(0.621550\pi\)
\(30\) 0 0
\(31\) 16.2065 + 49.8786i 0.522792 + 1.60899i 0.768642 + 0.639680i \(0.220933\pi\)
−0.245850 + 0.969308i \(0.579067\pi\)
\(32\) 11.8850 + 11.8850i 0.371406 + 0.371406i
\(33\) 6.83271 7.76755i 0.207052 0.235380i
\(34\) 5.86775i 0.172581i
\(35\) 0 0
\(36\) −25.3809 18.4403i −0.705024 0.512230i
\(37\) 18.0590 + 2.86026i 0.488081 + 0.0773045i 0.395625 0.918412i \(-0.370528\pi\)
0.0924564 + 0.995717i \(0.470528\pi\)
\(38\) −2.43533 4.77961i −0.0640877 0.125779i
\(39\) −2.62809 0.853920i −0.0673870 0.0218954i
\(40\) 0 0
\(41\) −27.3139 19.8447i −0.666192 0.484016i 0.202557 0.979271i \(-0.435075\pi\)
−0.868748 + 0.495254i \(0.835075\pi\)
\(42\) −1.64810 + 3.23459i −0.0392406 + 0.0770139i
\(43\) 47.0885 47.0885i 1.09508 1.09508i 0.100104 0.994977i \(-0.468083\pi\)
0.994977 0.100104i \(-0.0319175\pi\)
\(44\) −41.1988 10.5293i −0.936337 0.239303i
\(45\) 0 0
\(46\) 4.54571 + 13.9903i 0.0988197 + 0.304136i
\(47\) −4.87237 30.7629i −0.103667 0.654530i −0.983727 0.179668i \(-0.942498\pi\)
0.880060 0.474863i \(-0.157502\pi\)
\(48\) 2.11954 13.3822i 0.0441570 0.278797i
\(49\) 58.9402 + 19.1508i 1.20286 + 0.390833i
\(50\) 0 0
\(51\) −12.1838 + 8.85205i −0.238898 + 0.173570i
\(52\) 1.77688 + 11.2188i 0.0341707 + 0.215745i
\(53\) −21.6991 11.0563i −0.409418 0.208609i 0.237137 0.971476i \(-0.423791\pi\)
−0.646555 + 0.762867i \(0.723791\pi\)
\(54\) 5.89819i 0.109226i
\(55\) 0 0
\(56\) 30.3624 0.542185
\(57\) −6.25046 + 12.2672i −0.109657 + 0.215214i
\(58\) 11.1612 1.76775i 0.192434 0.0304785i
\(59\) 2.90572 + 3.99938i 0.0492495 + 0.0677862i 0.832931 0.553376i \(-0.186661\pi\)
−0.783682 + 0.621162i \(0.786661\pi\)
\(60\) 0 0
\(61\) 21.4090 65.8900i 0.350967 1.08016i −0.607345 0.794438i \(-0.707765\pi\)
0.958311 0.285726i \(-0.0922346\pi\)
\(62\) 18.9808 + 3.00627i 0.306142 + 0.0484882i
\(63\) −84.4396 + 13.3739i −1.34031 + 0.212284i
\(64\) −48.9493 + 15.9046i −0.764833 + 0.248509i
\(65\) 0 0
\(66\) −1.39937 3.52297i −0.0212025 0.0533783i
\(67\) −31.7791 31.7791i −0.474314 0.474314i 0.428993 0.903308i \(-0.358868\pi\)
−0.903308 + 0.428993i \(0.858868\pi\)
\(68\) 55.1565 + 28.1036i 0.811125 + 0.413289i
\(69\) 22.1918 30.5443i 0.321620 0.442672i
\(70\) 0 0
\(71\) 8.18581 25.1933i 0.115293 0.354836i −0.876715 0.481010i \(-0.840270\pi\)
0.992008 + 0.126175i \(0.0402700\pi\)
\(72\) −20.8413 + 10.6192i −0.289462 + 0.147488i
\(73\) −2.01349 + 12.7127i −0.0275821 + 0.174147i −0.997634 0.0687521i \(-0.978098\pi\)
0.970052 + 0.242899i \(0.0780983\pi\)
\(74\) 3.93804 5.42024i 0.0532167 0.0732465i
\(75\) 0 0
\(76\) 56.5921 0.744633
\(77\) −99.6758 + 59.0975i −1.29449 + 0.767500i
\(78\) −0.715990 + 0.715990i −0.00917936 + 0.00917936i
\(79\) −74.0458 + 24.0589i −0.937288 + 0.304543i −0.737540 0.675304i \(-0.764012\pi\)
−0.199748 + 0.979847i \(0.564012\pi\)
\(80\) 0 0
\(81\) 46.8434 34.0337i 0.578314 0.420170i
\(82\) −11.0228 + 5.61642i −0.134425 + 0.0684929i
\(83\) −32.6366 64.0530i −0.393212 0.771723i 0.606515 0.795072i \(-0.292567\pi\)
−0.999727 + 0.0233493i \(0.992567\pi\)
\(84\) −22.5113 30.9842i −0.267992 0.368859i
\(85\) 0 0
\(86\) −7.54048 23.2072i −0.0876800 0.269851i
\(87\) −20.5082 20.5082i −0.235727 0.235727i
\(88\) −20.9401 + 23.8050i −0.237955 + 0.270512i
\(89\) 43.9843i 0.494205i −0.968989 0.247103i \(-0.920522\pi\)
0.968989 0.247103i \(-0.0794785\pi\)
\(90\) 0 0
\(91\) 25.0415 + 18.1937i 0.275181 + 0.199931i
\(92\) −153.279 24.2771i −1.66608 0.263881i
\(93\) −22.3922 43.9471i −0.240776 0.472549i
\(94\) −10.8543 3.52677i −0.115471 0.0375189i
\(95\) 0 0
\(96\) −12.7883 9.29123i −0.133211 0.0967837i
\(97\) 57.0567 111.980i 0.588213 1.15443i −0.384652 0.923062i \(-0.625679\pi\)
0.972865 0.231372i \(-0.0743214\pi\)
\(98\) 16.0575 16.0575i 0.163852 0.163852i
\(99\) 47.7500 75.4269i 0.482324 0.761888i
\(100\) 0 0
\(101\) −21.5112 66.2046i −0.212982 0.655491i −0.999291 0.0376575i \(-0.988010\pi\)
0.786309 0.617834i \(-0.211990\pi\)
\(102\) 0.863267 + 5.45045i 0.00846340 + 0.0534358i
\(103\) 25.6654 162.045i 0.249178 1.57325i −0.472696 0.881225i \(-0.656719\pi\)
0.721875 0.692024i \(-0.243281\pi\)
\(104\) 8.05427 + 2.61699i 0.0774449 + 0.0251634i
\(105\) 0 0
\(106\) −7.21949 + 5.24527i −0.0681084 + 0.0494836i
\(107\) 19.2927 + 121.810i 0.180306 + 1.13841i 0.897331 + 0.441359i \(0.145503\pi\)
−0.717025 + 0.697048i \(0.754497\pi\)
\(108\) 55.4427 + 28.2494i 0.513358 + 0.261569i
\(109\) 79.0032i 0.724800i 0.932023 + 0.362400i \(0.118043\pi\)
−0.932023 + 0.362400i \(0.881957\pi\)
\(110\) 0 0
\(111\) −17.1955 −0.154914
\(112\) −68.9007 + 135.225i −0.615185 + 1.20737i
\(113\) −92.0678 + 14.5821i −0.814759 + 0.129045i −0.549888 0.835238i \(-0.685330\pi\)
−0.264872 + 0.964284i \(0.585330\pi\)
\(114\) 2.96532 + 4.08141i 0.0260115 + 0.0358018i
\(115\) 0 0
\(116\) −36.8397 + 113.381i −0.317584 + 0.977422i
\(117\) −23.5521 3.73029i −0.201300 0.0318828i
\(118\) 1.78913 0.283371i 0.0151621 0.00240145i
\(119\) 160.435 52.1286i 1.34820 0.438055i
\(120\) 0 0
\(121\) 22.4093 118.907i 0.185201 0.982701i
\(122\) −17.9509 17.9509i −0.147138 0.147138i
\(123\) 28.2909 + 14.4150i 0.230008 + 0.117195i
\(124\) −119.168 + 164.020i −0.961030 + 1.32274i
\(125\) 0 0
\(126\) −9.68046 + 29.7934i −0.0768290 + 0.236455i
\(127\) 66.8213 34.0472i 0.526152 0.268088i −0.170675 0.985327i \(-0.554595\pi\)
0.696827 + 0.717240i \(0.254595\pi\)
\(128\) −13.4676 + 85.0311i −0.105216 + 0.664305i
\(129\) −36.8120 + 50.6674i −0.285364 + 0.392770i
\(130\) 0 0
\(131\) 252.393 1.92667 0.963334 0.268306i \(-0.0864639\pi\)
0.963334 + 0.268306i \(0.0864639\pi\)
\(132\) 39.8180 + 3.71933i 0.301651 + 0.0281767i
\(133\) 109.048 109.048i 0.819911 0.819911i
\(134\) −15.6621 + 5.08892i −0.116881 + 0.0379770i
\(135\) 0 0
\(136\) 37.3395 27.1287i 0.274555 0.199476i
\(137\) 109.777 55.9341i 0.801291 0.408278i −0.00485985 0.999988i \(-0.501547\pi\)
0.806151 + 0.591710i \(0.201547\pi\)
\(138\) −6.28069 12.3265i −0.0455122 0.0893228i
\(139\) 47.1210 + 64.8564i 0.339000 + 0.466593i 0.944149 0.329519i \(-0.106887\pi\)
−0.605149 + 0.796112i \(0.706887\pi\)
\(140\) 0 0
\(141\) 9.05172 + 27.8583i 0.0641966 + 0.197577i
\(142\) −6.86359 6.86359i −0.0483352 0.0483352i
\(143\) −31.5349 + 7.08563i −0.220523 + 0.0495499i
\(144\) 116.919i 0.811937i
\(145\) 0 0
\(146\) 3.81560 + 2.77220i 0.0261342 + 0.0189876i
\(147\) −57.5660 9.11756i −0.391606 0.0620242i
\(148\) 32.0887 + 62.9776i 0.216816 + 0.425525i
\(149\) −19.5223 6.34317i −0.131022 0.0425716i 0.242772 0.970083i \(-0.421943\pi\)
−0.373794 + 0.927512i \(0.621943\pi\)
\(150\) 0 0
\(151\) −147.152 106.912i −0.974515 0.708026i −0.0180387 0.999837i \(-0.505742\pi\)
−0.956476 + 0.291811i \(0.905742\pi\)
\(152\) 19.1557 37.5951i 0.126024 0.247336i
\(153\) −91.8938 + 91.8938i −0.600613 + 0.600613i
\(154\) 2.71317 + 42.3741i 0.0176180 + 0.275157i
\(155\) 0 0
\(156\) −3.30102 10.1595i −0.0211604 0.0651250i
\(157\) 16.8286 + 106.251i 0.107188 + 0.676760i 0.981510 + 0.191413i \(0.0613069\pi\)
−0.874321 + 0.485347i \(0.838693\pi\)
\(158\) −4.46286 + 28.1774i −0.0282460 + 0.178338i
\(159\) 21.7826 + 7.07758i 0.136997 + 0.0445131i
\(160\) 0 0
\(161\) −342.136 + 248.576i −2.12507 + 1.54395i
\(162\) −3.31903 20.9555i −0.0204878 0.129355i
\(163\) 188.851 + 96.2244i 1.15860 + 0.590334i 0.924238 0.381817i \(-0.124701\pi\)
0.234357 + 0.972151i \(0.424701\pi\)
\(164\) 130.514i 0.795817i
\(165\) 0 0
\(166\) −26.3418 −0.158686
\(167\) 134.458 263.889i 0.805140 1.58018i −0.00932044 0.999957i \(-0.502967\pi\)
0.814460 0.580219i \(-0.197033\pi\)
\(168\) −28.2031 + 4.46693i −0.167876 + 0.0265889i
\(169\) −94.2611 129.739i −0.557758 0.767688i
\(170\) 0 0
\(171\) −36.7133 + 112.992i −0.214698 + 0.660771i
\(172\) 254.262 + 40.2711i 1.47827 + 0.234134i
\(173\) −202.597 + 32.0882i −1.17108 + 0.185481i −0.711520 0.702666i \(-0.751993\pi\)
−0.459560 + 0.888147i \(0.651993\pi\)
\(174\) −10.1073 + 3.28407i −0.0580882 + 0.0188740i
\(175\) 0 0
\(176\) −58.5020 147.281i −0.332398 0.836826i
\(177\) −3.28747 3.28747i −0.0185733 0.0185733i
\(178\) −14.3604 7.31697i −0.0806762 0.0411066i
\(179\) 94.6411 130.262i 0.528721 0.727722i −0.458214 0.888842i \(-0.651511\pi\)
0.986935 + 0.161120i \(0.0515105\pi\)
\(180\) 0 0
\(181\) −53.1406 + 163.550i −0.293595 + 0.903592i 0.690095 + 0.723719i \(0.257569\pi\)
−0.983690 + 0.179873i \(0.942431\pi\)
\(182\) 10.1058 5.14917i 0.0555264 0.0282921i
\(183\) −10.1926 + 64.3538i −0.0556975 + 0.351660i
\(184\) −68.0107 + 93.6086i −0.369623 + 0.508743i
\(185\) 0 0
\(186\) −18.0733 −0.0971681
\(187\) −69.7772 + 161.738i −0.373140 + 0.864908i
\(188\) 85.1382 85.1382i 0.452863 0.452863i
\(189\) 161.268 52.3990i 0.853268 0.277244i
\(190\) 0 0
\(191\) 37.4498 27.2089i 0.196072 0.142455i −0.485418 0.874282i \(-0.661332\pi\)
0.681490 + 0.731828i \(0.261332\pi\)
\(192\) 43.1283 21.9750i 0.224627 0.114453i
\(193\) 26.3850 + 51.7834i 0.136710 + 0.268308i 0.949204 0.314661i \(-0.101891\pi\)
−0.812494 + 0.582969i \(0.801891\pi\)
\(194\) −27.0686 37.2567i −0.139529 0.192045i
\(195\) 0 0
\(196\) 74.0319 + 227.847i 0.377714 + 1.16248i
\(197\) −62.4136 62.4136i −0.316820 0.316820i 0.530724 0.847544i \(-0.321920\pi\)
−0.847544 + 0.530724i \(0.821920\pi\)
\(198\) −16.6826 28.1374i −0.0842556 0.142108i
\(199\) 235.857i 1.18521i 0.805492 + 0.592606i \(0.201901\pi\)
−0.805492 + 0.592606i \(0.798099\pi\)
\(200\) 0 0
\(201\) 34.1944 + 24.8437i 0.170121 + 0.123600i
\(202\) −25.1935 3.99026i −0.124720 0.0197538i
\(203\) 147.489 + 289.463i 0.726545 + 1.42592i
\(204\) −55.3686 17.9903i −0.271415 0.0881879i
\(205\) 0 0
\(206\) −48.6362 35.3363i −0.236098 0.171535i
\(207\) 147.909 290.288i 0.714538 1.40236i
\(208\) −29.9327 + 29.9327i −0.143907 + 0.143907i
\(209\) 10.2897 + 160.705i 0.0492332 + 0.768921i
\(210\) 0 0
\(211\) 6.32918 + 19.4792i 0.0299961 + 0.0923186i 0.964934 0.262494i \(-0.0845448\pi\)
−0.934938 + 0.354812i \(0.884545\pi\)
\(212\) −14.7274 92.9850i −0.0694688 0.438609i
\(213\) −3.89720 + 24.6060i −0.0182967 + 0.115521i
\(214\) 42.9789 + 13.9647i 0.200836 + 0.0652555i
\(215\) 0 0
\(216\) 37.5332 27.2695i 0.173765 0.126248i
\(217\) 86.4271 + 545.679i 0.398282 + 2.51465i
\(218\) 25.7937 + 13.1425i 0.118320 + 0.0602868i
\(219\) 12.1048i 0.0552732i
\(220\) 0 0
\(221\) 47.0519 0.212905
\(222\) −2.86055 + 5.61414i −0.0128853 + 0.0252889i
\(223\) 153.277 24.2766i 0.687339 0.108864i 0.197010 0.980401i \(-0.436877\pi\)
0.490329 + 0.871538i \(0.336877\pi\)
\(224\) 104.074 + 143.245i 0.464615 + 0.639488i
\(225\) 0 0
\(226\) −10.5550 + 32.4849i −0.0467035 + 0.143738i
\(227\) 329.555 + 52.1964i 1.45178 + 0.229940i 0.831975 0.554812i \(-0.187210\pi\)
0.619809 + 0.784753i \(0.287210\pi\)
\(228\) −52.5674 + 8.32586i −0.230559 + 0.0365169i
\(229\) −144.163 + 46.8414i −0.629533 + 0.204548i −0.606368 0.795184i \(-0.707374\pi\)
−0.0231646 + 0.999732i \(0.507374\pi\)
\(230\) 0 0
\(231\) 83.8927 69.5590i 0.363172 0.301121i
\(232\) 62.8512 + 62.8512i 0.270910 + 0.270910i
\(233\) −290.281 147.905i −1.24584 0.634787i −0.298315 0.954468i \(-0.596424\pi\)
−0.947525 + 0.319680i \(0.896424\pi\)
\(234\) −5.13590 + 7.06896i −0.0219483 + 0.0302092i
\(235\) 0 0
\(236\) −5.90540 + 18.1750i −0.0250229 + 0.0770125i
\(237\) 65.2403 33.2416i 0.275275 0.140260i
\(238\) 9.66970 61.0521i 0.0406290 0.256521i
\(239\) 4.37606 6.02313i 0.0183099 0.0252014i −0.799764 0.600315i \(-0.795042\pi\)
0.818074 + 0.575113i \(0.195042\pi\)
\(240\) 0 0
\(241\) −79.0071 −0.327830 −0.163915 0.986474i \(-0.552412\pi\)
−0.163915 + 0.986474i \(0.552412\pi\)
\(242\) −35.0938 27.0970i −0.145016 0.111971i
\(243\) −140.943 + 140.943i −0.580010 + 0.580010i
\(244\) 254.713 82.7613i 1.04391 0.339186i
\(245\) 0 0
\(246\) 9.41264 6.83868i 0.0382628 0.0277995i
\(247\) 38.3264 19.5283i 0.155168 0.0790619i
\(248\) 68.6248 + 134.684i 0.276713 + 0.543080i
\(249\) 39.7391 + 54.6962i 0.159595 + 0.219664i
\(250\) 0 0
\(251\) 129.811 + 399.517i 0.517174 + 1.59170i 0.779290 + 0.626663i \(0.215580\pi\)
−0.262116 + 0.965036i \(0.584420\pi\)
\(252\) −233.692 233.692i −0.927348 0.927348i
\(253\) 41.0699 439.681i 0.162332 1.73787i
\(254\) 27.4803i 0.108190i
\(255\) 0 0
\(256\) −141.034 102.467i −0.550913 0.400262i
\(257\) −402.884 63.8105i −1.56764 0.248290i −0.688638 0.725105i \(-0.741791\pi\)
−0.879004 + 0.476815i \(0.841791\pi\)
\(258\) 10.4185 + 20.4474i 0.0403817 + 0.0792536i
\(259\) 183.185 + 59.5204i 0.707277 + 0.229808i
\(260\) 0 0
\(261\) −202.478 147.109i −0.775776 0.563634i
\(262\) 41.9867 82.4036i 0.160255 0.314518i
\(263\) 191.700 191.700i 0.728899 0.728899i −0.241501 0.970400i \(-0.577640\pi\)
0.970400 + 0.241501i \(0.0776398\pi\)
\(264\) 15.9487 25.1928i 0.0604116 0.0954274i
\(265\) 0 0
\(266\) −17.4624 53.7436i −0.0656480 0.202044i
\(267\) 6.47099 + 40.8562i 0.0242359 + 0.153020i
\(268\) 27.1782 171.596i 0.101411 0.640285i
\(269\) −467.686 151.961i −1.73861 0.564909i −0.743963 0.668221i \(-0.767056\pi\)
−0.994649 + 0.103312i \(0.967056\pi\)
\(270\) 0 0
\(271\) −53.5655 + 38.9176i −0.197659 + 0.143607i −0.682212 0.731154i \(-0.738982\pi\)
0.484554 + 0.874762i \(0.338982\pi\)
\(272\) 36.0898 + 227.862i 0.132683 + 0.837728i
\(273\) −25.9373 13.2157i −0.0950084 0.0484092i
\(274\) 45.1458i 0.164766i
\(275\) 0 0
\(276\) 145.950 0.528805
\(277\) −99.0065 + 194.311i −0.357424 + 0.701485i −0.997780 0.0665937i \(-0.978787\pi\)
0.640356 + 0.768078i \(0.278787\pi\)
\(278\) 29.0137 4.59531i 0.104366 0.0165299i
\(279\) −250.175 344.336i −0.896684 1.23418i
\(280\) 0 0
\(281\) 113.903 350.558i 0.405349 1.24754i −0.515255 0.857037i \(-0.672303\pi\)
0.920604 0.390499i \(-0.127697\pi\)
\(282\) 10.6012 + 1.67907i 0.0375930 + 0.00595415i
\(283\) 120.984 19.1620i 0.427506 0.0677103i 0.0610260 0.998136i \(-0.480563\pi\)
0.366480 + 0.930426i \(0.380563\pi\)
\(284\) 97.3907 31.6441i 0.342925 0.111423i
\(285\) 0 0
\(286\) −2.93258 + 11.4745i −0.0102538 + 0.0401206i
\(287\) −251.489 251.489i −0.876270 0.876270i
\(288\) −121.538 61.9266i −0.422006 0.215023i
\(289\) −19.1444 + 26.3500i −0.0662435 + 0.0911763i
\(290\) 0 0
\(291\) −36.5244 + 112.411i −0.125513 + 0.386291i
\(292\) −44.3333 + 22.5890i −0.151827 + 0.0773595i
\(293\) −82.6474 + 521.815i −0.282073 + 1.78094i 0.286271 + 0.958149i \(0.407584\pi\)
−0.568344 + 0.822791i \(0.692416\pi\)
\(294\) −12.5531 + 17.2779i −0.0426977 + 0.0587684i
\(295\) 0 0
\(296\) 52.6987 0.178036
\(297\) −70.1392 + 162.577i −0.236159 + 0.547397i
\(298\) −5.31858 + 5.31858i −0.0178476 + 0.0178476i
\(299\) −112.184 + 36.4509i −0.375198 + 0.121909i
\(300\) 0 0
\(301\) 567.540 412.342i 1.88552 1.36991i
\(302\) −59.3849 + 30.2581i −0.196639 + 0.100192i
\(303\) 29.7214 + 58.3316i 0.0980906 + 0.192514i
\(304\) 123.968 + 170.628i 0.407790 + 0.561275i
\(305\) 0 0
\(306\) 14.7154 + 45.2892i 0.0480894 + 0.148004i
\(307\) −316.814 316.814i −1.03197 1.03197i −0.999472 0.0324958i \(-0.989654\pi\)
−0.0324958 0.999472i \(-0.510346\pi\)
\(308\) −411.309 177.448i −1.33542 0.576129i
\(309\) 154.296i 0.499341i
\(310\) 0 0
\(311\) 24.6102 + 17.8803i 0.0791324 + 0.0574931i 0.626648 0.779302i \(-0.284426\pi\)
−0.547516 + 0.836795i \(0.684426\pi\)
\(312\) −7.86649 1.24593i −0.0252131 0.00399336i
\(313\) 88.1780 + 173.059i 0.281719 + 0.552904i 0.987894 0.155133i \(-0.0495807\pi\)
−0.706175 + 0.708038i \(0.749581\pi\)
\(314\) 37.4894 + 12.1810i 0.119393 + 0.0387931i
\(315\) 0 0
\(316\) −243.491 176.907i −0.770542 0.559831i
\(317\) −100.794 + 197.819i −0.317961 + 0.624034i −0.993569 0.113227i \(-0.963881\pi\)
0.675608 + 0.737261i \(0.263881\pi\)
\(318\) 5.93437 5.93437i 0.0186616 0.0186616i
\(319\) −328.666 83.9985i −1.03030 0.263318i
\(320\) 0 0
\(321\) −35.8414 110.308i −0.111655 0.343640i
\(322\) 24.2416 + 153.055i 0.0752844 + 0.475327i
\(323\) 36.6725 231.541i 0.113537 0.716845i
\(324\) 212.877 + 69.1679i 0.657028 + 0.213481i
\(325\) 0 0
\(326\) 62.8324 45.6504i 0.192737 0.140032i
\(327\) −11.6230 73.3847i −0.0355443 0.224418i
\(328\) −86.7027 44.1772i −0.264337 0.134687i
\(329\) 328.108i 0.997290i
\(330\) 0 0
\(331\) 589.908 1.78220 0.891099 0.453809i \(-0.149935\pi\)
0.891099 + 0.453809i \(0.149935\pi\)
\(332\) 126.164 247.612i 0.380013 0.745818i
\(333\) −146.558 + 23.2126i −0.440115 + 0.0697074i
\(334\) −63.7892 87.7983i −0.190986 0.262869i
\(335\) 0 0
\(336\) 44.1063 135.745i 0.131269 0.404004i
\(337\) 59.4025 + 9.40843i 0.176269 + 0.0279182i 0.243945 0.969789i \(-0.421558\pi\)
−0.0676761 + 0.997707i \(0.521558\pi\)
\(338\) −58.0391 + 9.19249i −0.171713 + 0.0271967i
\(339\) 83.3749 27.0902i 0.245944 0.0799120i
\(340\) 0 0
\(341\) −487.436 308.578i −1.42943 0.904920i
\(342\) 30.7832 + 30.7832i 0.0900092 + 0.0900092i
\(343\) 121.771 + 62.0453i 0.355017 + 0.180890i
\(344\) 112.817 155.279i 0.327956 0.451393i
\(345\) 0 0
\(346\) −23.2264 + 71.4836i −0.0671284 + 0.206600i
\(347\) −22.5648 + 11.4973i −0.0650281 + 0.0331335i −0.486202 0.873846i \(-0.661618\pi\)
0.421174 + 0.906980i \(0.361618\pi\)
\(348\) 17.5391 110.738i 0.0503997 0.318211i
\(349\) −204.827 + 281.920i −0.586898 + 0.807795i −0.994430 0.105395i \(-0.966389\pi\)
0.407533 + 0.913191i \(0.366389\pi\)
\(350\) 0 0
\(351\) 47.2961 0.134747
\(352\) −184.086 17.1951i −0.522970 0.0488498i
\(353\) 313.352 313.352i 0.887684 0.887684i −0.106617 0.994300i \(-0.534002\pi\)
0.994300 + 0.106617i \(0.0340017\pi\)
\(354\) −1.62021 + 0.526437i −0.00457685 + 0.00148711i
\(355\) 0 0
\(356\) 137.558 99.9419i 0.386399 0.280736i
\(357\) −141.356 + 72.0247i −0.395956 + 0.201750i
\(358\) −26.7852 52.5689i −0.0748190 0.146841i
\(359\) −110.962 152.726i −0.309086 0.425421i 0.626010 0.779815i \(-0.284687\pi\)
−0.935096 + 0.354394i \(0.884687\pi\)
\(360\) 0 0
\(361\) 45.3289 + 139.508i 0.125565 + 0.386449i
\(362\) 44.5571 + 44.5571i 0.123086 + 0.123086i
\(363\) −3.32196 + 113.747i −0.00915141 + 0.313354i
\(364\) 119.656i 0.328725i
\(365\) 0 0
\(366\) 19.3152 + 14.0333i 0.0527738 + 0.0383424i
\(367\) −435.592 68.9910i −1.18690 0.187986i −0.468402 0.883516i \(-0.655170\pi\)
−0.718498 + 0.695529i \(0.755170\pi\)
\(368\) −262.571 515.324i −0.713507 1.40034i
\(369\) 260.585 + 84.6690i 0.706191 + 0.229455i
\(370\) 0 0
\(371\) −207.553 150.796i −0.559441 0.406458i
\(372\) 86.5621 169.888i 0.232694 0.456687i
\(373\) 315.552 315.552i 0.845985 0.845985i −0.143645 0.989629i \(-0.545882\pi\)
0.989629 + 0.143645i \(0.0458822\pi\)
\(374\) 41.1978 + 49.6873i 0.110155 + 0.132854i
\(375\) 0 0
\(376\) −27.7406 85.3769i −0.0737783 0.227066i
\(377\) 14.1752 + 89.4985i 0.0375999 + 0.237396i
\(378\) 9.71987 61.3689i 0.0257140 0.162352i
\(379\) 63.3937 + 20.5979i 0.167266 + 0.0543480i 0.391453 0.920198i \(-0.371973\pi\)
−0.224187 + 0.974546i \(0.571973\pi\)
\(380\) 0 0
\(381\) −57.0602 + 41.4566i −0.149764 + 0.108810i
\(382\) −2.65345 16.7532i −0.00694621 0.0438567i
\(383\) 172.822 + 88.0570i 0.451231 + 0.229914i 0.664811 0.747012i \(-0.268512\pi\)
−0.213579 + 0.976926i \(0.568512\pi\)
\(384\) 80.9653i 0.210847i
\(385\) 0 0
\(386\) 21.2960 0.0551709
\(387\) −245.354 + 481.535i −0.633990 + 1.24428i
\(388\) 479.857 76.0018i 1.23674 0.195881i
\(389\) 225.724 + 310.683i 0.580268 + 0.798671i 0.993725 0.111853i \(-0.0356786\pi\)
−0.413456 + 0.910524i \(0.635679\pi\)
\(390\) 0 0
\(391\) −198.654 + 611.396i −0.508068 + 1.56367i
\(392\) 176.421 + 27.9424i 0.450055 + 0.0712817i
\(393\) −234.444 + 37.1323i −0.596550 + 0.0944842i
\(394\) −30.7601 + 9.99456i −0.0780713 + 0.0253669i
\(395\) 0 0
\(396\) 344.392 22.0510i 0.869676 0.0556844i
\(397\) 178.629 + 178.629i 0.449946 + 0.449946i 0.895336 0.445391i \(-0.146935\pi\)
−0.445391 + 0.895336i \(0.646935\pi\)
\(398\) 77.0047 + 39.2359i 0.193479 + 0.0985826i
\(399\) −85.2498 + 117.336i −0.213659 + 0.294076i
\(400\) 0 0
\(401\) 35.7014 109.877i 0.0890308 0.274009i −0.896621 0.442798i \(-0.853986\pi\)
0.985652 + 0.168789i \(0.0539858\pi\)
\(402\) 13.7996 7.03123i 0.0343273 0.0174906i
\(403\) −24.1065 + 152.202i −0.0598176 + 0.377673i
\(404\) 158.173 217.706i 0.391517 0.538877i
\(405\) 0 0
\(406\) 119.042 0.293206
\(407\) −173.003 + 102.573i −0.425069 + 0.252022i
\(408\) −30.6928 + 30.6928i −0.0752275 + 0.0752275i
\(409\) −291.234 + 94.6276i −0.712063 + 0.231363i −0.642579 0.766220i \(-0.722135\pi\)
−0.0694843 + 0.997583i \(0.522135\pi\)
\(410\) 0 0
\(411\) −93.7408 + 68.1067i −0.228080 + 0.165710i
\(412\) 565.103 287.934i 1.37161 0.698869i
\(413\) 23.6424 + 46.4008i 0.0572455 + 0.112351i
\(414\) −70.1705 96.5815i −0.169494 0.233289i
\(415\) 0 0
\(416\) 15.2612 + 46.9692i 0.0366856 + 0.112907i
\(417\) −53.3116 53.3116i −0.127846 0.127846i
\(418\) 54.1800 + 23.3744i 0.129617 + 0.0559196i
\(419\) 209.142i 0.499147i −0.968356 0.249573i \(-0.919710\pi\)
0.968356 0.249573i \(-0.0802904\pi\)
\(420\) 0 0
\(421\) −246.603 179.167i −0.585755 0.425576i 0.255039 0.966931i \(-0.417912\pi\)
−0.840794 + 0.541355i \(0.817912\pi\)
\(422\) 7.41263 + 1.17405i 0.0175655 + 0.00278210i
\(423\) 114.755 + 225.219i 0.271288 + 0.532433i
\(424\) −66.7566 21.6905i −0.157445 0.0511569i
\(425\) 0 0
\(426\) 7.38525 + 5.36570i 0.0173363 + 0.0125955i
\(427\) 331.337 650.285i 0.775964 1.52291i
\(428\) −337.115 + 337.115i −0.787652 + 0.787652i
\(429\) 28.2498 11.2212i 0.0658502 0.0261565i
\(430\) 0 0
\(431\) 112.689 + 346.822i 0.261460 + 0.804692i 0.992488 + 0.122344i \(0.0390411\pi\)
−0.731028 + 0.682348i \(0.760959\pi\)
\(432\) 36.2770 + 229.044i 0.0839746 + 0.530195i
\(433\) −53.2099 + 335.954i −0.122887 + 0.775876i 0.846870 + 0.531800i \(0.178484\pi\)
−0.969756 + 0.244075i \(0.921516\pi\)
\(434\) 192.536 + 62.5586i 0.443630 + 0.144144i
\(435\) 0 0
\(436\) −247.078 + 179.513i −0.566693 + 0.411726i
\(437\) 91.9366 + 580.465i 0.210381 + 1.32829i
\(438\) −3.95209 2.01369i −0.00902304 0.00459747i
\(439\) 745.582i 1.69836i 0.528100 + 0.849182i \(0.322904\pi\)
−0.528100 + 0.849182i \(0.677096\pi\)
\(440\) 0 0
\(441\) −502.947 −1.14047
\(442\) 7.82729 15.3619i 0.0177088 0.0347555i
\(443\) −393.329 + 62.2972i −0.887876 + 0.140626i −0.583680 0.811984i \(-0.698388\pi\)
−0.304196 + 0.952609i \(0.598388\pi\)
\(444\) −39.0720 53.7780i −0.0879999 0.121122i
\(445\) 0 0
\(446\) 17.5722 54.0816i 0.0393995 0.121259i
\(447\) 19.0671 + 3.01993i 0.0426557 + 0.00675600i
\(448\) −535.512 + 84.8168i −1.19534 + 0.189323i
\(449\) 497.787 161.741i 1.10866 0.360224i 0.303228 0.952918i \(-0.401935\pi\)
0.805428 + 0.592694i \(0.201935\pi\)
\(450\) 0 0
\(451\) 370.621 23.7304i 0.821775 0.0526174i
\(452\) −254.803 254.803i −0.563724 0.563724i
\(453\) 152.416 + 77.6597i 0.336459 + 0.171434i
\(454\) 71.8644 98.9129i 0.158292 0.217870i
\(455\) 0 0
\(456\) −12.2624 + 37.7396i −0.0268911 + 0.0827624i
\(457\) 87.9652 44.8205i 0.192484 0.0980755i −0.355092 0.934831i \(-0.615551\pi\)
0.547576 + 0.836756i \(0.315551\pi\)
\(458\) −8.68895 + 54.8599i −0.0189715 + 0.119781i
\(459\) 151.508 208.532i 0.330082 0.454319i
\(460\) 0 0
\(461\) 232.336 0.503983 0.251992 0.967729i \(-0.418914\pi\)
0.251992 + 0.967729i \(0.418914\pi\)
\(462\) −8.75433 38.9615i −0.0189488 0.0843322i
\(463\) −231.578 + 231.578i −0.500168 + 0.500168i −0.911490 0.411322i \(-0.865067\pi\)
0.411322 + 0.911490i \(0.365067\pi\)
\(464\) −422.548 + 137.294i −0.910664 + 0.295893i
\(465\) 0 0
\(466\) −96.5789 + 70.1687i −0.207251 + 0.150577i
\(467\) 622.555 317.208i 1.33309 0.679245i 0.365277 0.930899i \(-0.380974\pi\)
0.967817 + 0.251654i \(0.0809743\pi\)
\(468\) −41.8494 82.1340i −0.0894217 0.175500i
\(469\) −278.281 383.022i −0.593351 0.816677i
\(470\) 0 0
\(471\) −31.2635 96.2192i −0.0663769 0.204287i
\(472\) 10.0750 + 10.0750i 0.0213454 + 0.0213454i
\(473\) −68.1273 + 729.350i −0.144032 + 1.54197i
\(474\) 26.8301i 0.0566036i
\(475\) 0 0
\(476\) 527.573 + 383.304i 1.10835 + 0.805261i
\(477\) 195.208 + 30.9180i 0.409242 + 0.0648175i
\(478\) −1.23851 2.43071i −0.00259102 0.00508516i
\(479\) −499.509 162.300i −1.04282 0.338832i −0.262971 0.964804i \(-0.584702\pi\)
−0.779846 + 0.625972i \(0.784702\pi\)
\(480\) 0 0
\(481\) 43.4635 + 31.5781i 0.0903607 + 0.0656509i
\(482\) −13.1432 + 25.7949i −0.0272680 + 0.0535164i
\(483\) 281.234 281.234i 0.582264 0.582264i
\(484\) 422.793 200.099i 0.873539 0.413427i
\(485\) 0 0
\(486\) 22.5697 + 69.4625i 0.0464398 + 0.142927i
\(487\) −90.6289 572.208i −0.186096 1.17497i −0.887020 0.461730i \(-0.847229\pi\)
0.700924 0.713236i \(-0.252771\pi\)
\(488\) 31.2372 197.224i 0.0640106 0.404147i
\(489\) −189.577 61.5974i −0.387683 0.125966i
\(490\) 0 0
\(491\) −669.637 + 486.520i −1.36382 + 0.990876i −0.365632 + 0.930759i \(0.619147\pi\)
−0.998191 + 0.0601162i \(0.980853\pi\)
\(492\) 19.2013 + 121.232i 0.0390270 + 0.246407i
\(493\) 440.015 + 224.199i 0.892525 + 0.454764i
\(494\) 15.7618i 0.0319064i
\(495\) 0 0
\(496\) −755.572 −1.52333
\(497\) 126.688 248.639i 0.254905 0.500280i
\(498\) 24.4685 3.87543i 0.0491335 0.00778198i
\(499\) 203.530 + 280.135i 0.407876 + 0.561393i 0.962699 0.270576i \(-0.0872141\pi\)
−0.554823 + 0.831968i \(0.687214\pi\)
\(500\) 0 0
\(501\) −86.0725 + 264.904i −0.171801 + 0.528750i
\(502\) 152.032 + 24.0795i 0.302853 + 0.0479672i
\(503\) 296.726 46.9968i 0.589913 0.0934330i 0.145660 0.989335i \(-0.453469\pi\)
0.444252 + 0.895902i \(0.353469\pi\)
\(504\) −234.347 + 76.1439i −0.464974 + 0.151079i
\(505\) 0 0
\(506\) −136.719 86.5518i −0.270195 0.171051i
\(507\) 106.645 + 106.645i 0.210345 + 0.210345i
\(508\) 258.313 + 131.617i 0.508491 + 0.259089i
\(509\) −63.4809 + 87.3740i −0.124717 + 0.171658i −0.866810 0.498639i \(-0.833833\pi\)
0.742093 + 0.670297i \(0.233833\pi\)
\(510\) 0 0
\(511\) −41.8996 + 128.954i −0.0819953 + 0.252355i
\(512\) −363.746 + 185.338i −0.710442 + 0.361988i
\(513\) 36.8628 232.742i 0.0718572 0.453689i
\(514\) −87.8549 + 120.922i −0.170924 + 0.235257i
\(515\) 0 0
\(516\) −242.104 −0.469194
\(517\) 257.247 + 226.287i 0.497577 + 0.437692i
\(518\) 49.9063 49.9063i 0.0963442 0.0963442i
\(519\) 183.468 59.6123i 0.353503 0.114860i
\(520\) 0 0
\(521\) −203.745 + 148.030i −0.391066 + 0.284126i −0.765892 0.642969i \(-0.777702\pi\)
0.374826 + 0.927095i \(0.377702\pi\)
\(522\) −81.7123 + 41.6345i −0.156537 + 0.0797596i
\(523\) −192.760 378.312i −0.368565 0.723350i 0.630017 0.776581i \(-0.283048\pi\)
−0.998582 + 0.0532315i \(0.983048\pi\)
\(524\) 573.493 + 789.346i 1.09445 + 1.50639i
\(525\) 0 0
\(526\) −30.6978 94.4782i −0.0583609 0.179616i
\(527\) 593.851 + 593.851i 1.12685 + 1.12685i
\(528\) 76.0096 + 128.200i 0.143958 + 0.242804i
\(529\) 1082.62i 2.04655i
\(530\) 0 0
\(531\) −32.4571 23.5815i −0.0611245 0.0444096i
\(532\) 588.823 + 93.2604i 1.10681 + 0.175302i
\(533\) −45.0366 88.3893i −0.0844964 0.165834i
\(534\) 14.4156 + 4.68390i 0.0269955 + 0.00877136i
\(535\) 0 0
\(536\) −104.795 76.1380i −0.195513 0.142048i
\(537\) −68.7463 + 134.922i −0.128019 + 0.251252i
\(538\) −127.415 + 127.415i −0.236831 + 0.236831i
\(539\) −633.556 + 251.656i −1.17543 + 0.466895i
\(540\) 0 0
\(541\) 69.7357 + 214.624i 0.128901 + 0.396718i 0.994592 0.103862i \(-0.0331201\pi\)
−0.865690 + 0.500580i \(0.833120\pi\)
\(542\) 3.79531 + 23.9626i 0.00700242 + 0.0442115i
\(543\) 25.2999 159.737i 0.0465927 0.294175i
\(544\) 255.979 + 83.1725i 0.470549 + 0.152891i
\(545\) 0 0
\(546\) −8.62956 + 6.26975i −0.0158051 + 0.0114831i
\(547\) −131.660 831.270i −0.240695 1.51969i −0.751350 0.659904i \(-0.770597\pi\)
0.510655 0.859786i \(-0.329403\pi\)
\(548\) 424.368 + 216.226i 0.774394 + 0.394573i
\(549\) 562.251i 1.02414i
\(550\) 0 0
\(551\) 451.467 0.819360
\(552\) 49.4022 96.9572i 0.0894967 0.175647i
\(553\) −810.071 + 128.303i −1.46487 + 0.232012i
\(554\) 46.9703 + 64.6490i 0.0847839 + 0.116695i
\(555\) 0 0
\(556\) −95.7656 + 294.736i −0.172240 + 0.530101i
\(557\) 607.711 + 96.2519i 1.09104 + 0.172804i 0.675930 0.736966i \(-0.263742\pi\)
0.415113 + 0.909770i \(0.363742\pi\)
\(558\) −154.040 + 24.3975i −0.276057 + 0.0437231i
\(559\) 186.093 60.4652i 0.332903 0.108167i
\(560\) 0 0
\(561\) 41.0199 160.501i 0.0731193 0.286098i
\(562\) −95.5048 95.5048i −0.169937 0.169937i
\(563\) 225.168 + 114.729i 0.399943 + 0.203781i 0.642381 0.766386i \(-0.277947\pi\)
−0.242437 + 0.970167i \(0.577947\pi\)
\(564\) −66.5578 + 91.6090i −0.118010 + 0.162427i
\(565\) 0 0
\(566\) 13.8701 42.6877i 0.0245054 0.0754199i
\(567\) 543.477 276.915i 0.958513 0.488387i
\(568\) 11.9437 75.4094i 0.0210276 0.132763i
\(569\) −168.013 + 231.250i −0.295278 + 0.406415i −0.930719 0.365734i \(-0.880818\pi\)
0.635442 + 0.772149i \(0.280818\pi\)
\(570\) 0 0
\(571\) 496.264 0.869114 0.434557 0.900644i \(-0.356905\pi\)
0.434557 + 0.900644i \(0.356905\pi\)
\(572\) −93.8140 82.5233i −0.164011 0.144272i
\(573\) −30.7835 + 30.7835i −0.0537234 + 0.0537234i
\(574\) −123.945 + 40.2721i −0.215932 + 0.0701605i
\(575\) 0 0
\(576\) 337.921 245.514i 0.586668 0.426239i
\(577\) −836.096 + 426.012i −1.44904 + 0.738323i −0.988769 0.149455i \(-0.952248\pi\)
−0.460272 + 0.887778i \(0.652248\pi\)
\(578\) 5.41822 + 10.6338i 0.00937408 + 0.0183977i
\(579\) −32.1270 44.2190i −0.0554870 0.0763713i
\(580\) 0 0
\(581\) −234.019 720.235i −0.402786 1.23965i
\(582\) 30.6248 + 30.6248i 0.0526199 + 0.0526199i
\(583\) 261.372 58.7282i 0.448322 0.100734i
\(584\) 37.0975i 0.0635231i
\(585\) 0 0
\(586\) 156.618 + 113.790i 0.267266 + 0.194180i
\(587\) −52.6972 8.34641i −0.0897737 0.0142188i 0.111386 0.993777i \(-0.464471\pi\)
−0.201160 + 0.979558i \(0.564471\pi\)
\(588\) −102.288 200.752i −0.173959 0.341414i
\(589\) 730.194 + 237.254i 1.23972 + 0.402809i
\(590\) 0 0
\(591\) 67.1572 + 48.7926i 0.113633 + 0.0825593i
\(592\) −119.588 + 234.705i −0.202007 + 0.396461i
\(593\) 71.7371 71.7371i 0.120973 0.120973i −0.644028 0.765002i \(-0.722738\pi\)
0.765002 + 0.644028i \(0.222738\pi\)
\(594\) 41.4116 + 49.9450i 0.0697165 + 0.0840826i
\(595\) 0 0
\(596\) −24.5210 75.4678i −0.0411426 0.126624i
\(597\) −34.6995 219.084i −0.0581231 0.366975i
\(598\) −6.76153 + 42.6906i −0.0113069 + 0.0713890i
\(599\) 488.511 + 158.727i 0.815544 + 0.264986i 0.686944 0.726710i \(-0.258952\pi\)
0.128600 + 0.991697i \(0.458952\pi\)
\(600\) 0 0
\(601\) 752.121 546.448i 1.25145 0.909231i 0.253144 0.967429i \(-0.418535\pi\)
0.998305 + 0.0581972i \(0.0185352\pi\)
\(602\) −40.2123 253.890i −0.0667978 0.421745i
\(603\) 324.978 + 165.585i 0.538935 + 0.274601i
\(604\) 703.136i 1.16413i
\(605\) 0 0
\(606\) 23.9889 0.0395857
\(607\) −295.091 + 579.149i −0.486147 + 0.954117i 0.509461 + 0.860494i \(0.329845\pi\)
−0.995608 + 0.0936234i \(0.970155\pi\)
\(608\) 243.029 38.4919i 0.399718 0.0633091i
\(609\) −179.586 247.178i −0.294886 0.405876i
\(610\) 0 0
\(611\) 28.2803 87.0377i 0.0462852 0.142451i
\(612\) −496.195 78.5896i −0.810777 0.128414i
\(613\) −453.468 + 71.8222i −0.739751 + 0.117165i −0.514927 0.857234i \(-0.672181\pi\)
−0.224825 + 0.974399i \(0.572181\pi\)
\(614\) −156.140 + 50.7328i −0.254299 + 0.0826268i
\(615\) 0 0
\(616\) −257.104 + 213.176i −0.417377 + 0.346065i
\(617\) −292.953 292.953i −0.474803 0.474803i 0.428662 0.903465i \(-0.358985\pi\)
−0.903465 + 0.428662i \(0.858985\pi\)
\(618\) 50.3760 + 25.6679i 0.0815146 + 0.0415338i
\(619\) 178.737 246.011i 0.288752 0.397433i −0.639856 0.768495i \(-0.721006\pi\)
0.928608 + 0.371062i \(0.121006\pi\)
\(620\) 0 0
\(621\) −199.685 + 614.568i −0.321554 + 0.989642i
\(622\) 9.93174 5.06047i 0.0159674 0.00813581i
\(623\) 72.4835 457.643i 0.116346 0.734579i
\(624\) 23.4003 32.2077i 0.0375004 0.0516149i
\(625\) 0 0
\(626\) 71.1706 0.113691
\(627\) −33.2009 147.762i −0.0529520 0.235665i
\(628\) −294.057 + 294.057i −0.468243 + 0.468243i
\(629\) 278.461 90.4774i 0.442704 0.143843i
\(630\) 0 0
\(631\) −118.262 + 85.9222i −0.187420 + 0.136168i −0.677539 0.735487i \(-0.736953\pi\)
0.490119 + 0.871656i \(0.336953\pi\)
\(632\) −199.941 + 101.875i −0.316362 + 0.161194i
\(633\) −8.74487 17.1628i −0.0138150 0.0271134i
\(634\) 47.8181 + 65.8160i 0.0754229 + 0.103811i
\(635\) 0 0
\(636\) 27.3600 + 84.2055i 0.0430189 + 0.132399i
\(637\) 128.761 + 128.761i 0.202136 + 0.202136i
\(638\) −82.0996 + 93.3324i −0.128683 + 0.146289i
\(639\) 214.979i 0.336431i
\(640\) 0 0
\(641\) −701.684 509.804i −1.09467 0.795325i −0.114489 0.993424i \(-0.536523\pi\)
−0.980182 + 0.198099i \(0.936523\pi\)
\(642\) −41.9768 6.64848i −0.0653845 0.0103559i
\(643\) −122.204 239.840i −0.190054 0.373001i 0.776243 0.630434i \(-0.217123\pi\)
−0.966296 + 0.257433i \(0.917123\pi\)
\(644\) −1554.82 505.191i −2.41431 0.784458i
\(645\) 0 0
\(646\) −69.4949 50.4910i −0.107577 0.0781595i
\(647\) −208.492 + 409.189i −0.322244 + 0.632440i −0.994127 0.108217i \(-0.965486\pi\)
0.671883 + 0.740657i \(0.265486\pi\)
\(648\) 118.005 118.005i 0.182107 0.182107i
\(649\) −52.6852 13.4649i −0.0811790 0.0207472i
\(650\) 0 0
\(651\) −160.561 494.157i −0.246638 0.759074i
\(652\) 128.175 + 809.264i 0.196587 + 1.24120i
\(653\) 8.27124 52.2225i 0.0126665 0.0799733i −0.980545 0.196293i \(-0.937110\pi\)
0.993212 + 0.116320i \(0.0371097\pi\)
\(654\) −25.8928 8.41309i −0.0395915 0.0128641i
\(655\) 0 0
\(656\) 393.505 285.898i 0.599856 0.435821i
\(657\) −16.3406 103.170i −0.0248715 0.157032i
\(658\) −107.124 54.5822i −0.162802 0.0829517i
\(659\) 164.064i 0.248960i 0.992222 + 0.124480i \(0.0397262\pi\)
−0.992222 + 0.124480i \(0.960274\pi\)
\(660\) 0 0
\(661\) −382.249 −0.578290 −0.289145 0.957285i \(-0.593371\pi\)
−0.289145 + 0.957285i \(0.593371\pi\)
\(662\) 98.1337 192.598i 0.148238 0.290934i
\(663\) −43.7058 + 6.92231i −0.0659212 + 0.0104409i
\(664\) −121.788 167.626i −0.183415 0.252449i
\(665\) 0 0
\(666\) −16.8020 + 51.7112i −0.0252282 + 0.0776444i
\(667\) −1222.80 193.672i −1.83328 0.290363i
\(668\) 1130.82 179.104i 1.69284 0.268120i
\(669\) −138.804 + 45.1003i −0.207480 + 0.0674145i
\(670\) 0 0
\(671\) 281.330 + 708.261i 0.419270 + 1.05553i
\(672\) −117.747 117.747i −0.175218 0.175218i
\(673\) −1011.58 515.427i −1.50309 0.765865i −0.507683 0.861544i \(-0.669498\pi\)
−0.995412 + 0.0956792i \(0.969498\pi\)
\(674\) 12.9536 17.8291i 0.0192190 0.0264527i
\(675\) 0 0
\(676\) 191.570 589.592i 0.283388 0.872178i
\(677\) −440.725 + 224.561i −0.650997 + 0.331700i −0.748111 0.663574i \(-0.769039\pi\)
0.0971137 + 0.995273i \(0.469039\pi\)
\(678\) 5.02515 31.7275i 0.00741172 0.0467958i
\(679\) 778.194 1071.09i 1.14609 1.57746i
\(680\) 0 0
\(681\) −313.797 −0.460789
\(682\) −181.834 + 107.809i −0.266619 + 0.158078i
\(683\) −152.022 + 152.022i −0.222580 + 0.222580i −0.809584 0.587004i \(-0.800307\pi\)
0.587004 + 0.809584i \(0.300307\pi\)
\(684\) −436.796 + 141.924i −0.638591 + 0.207491i
\(685\) 0 0
\(686\) 40.5142 29.4353i 0.0590586 0.0429086i
\(687\) 127.019 64.7195i 0.184890 0.0942060i
\(688\) 435.556 + 854.827i 0.633076 + 1.24248i
\(689\) −42.0604 57.8912i −0.0610456 0.0840221i
\(690\) 0 0
\(691\) −47.8360 147.224i −0.0692272 0.213059i 0.910458 0.413602i \(-0.135729\pi\)
−0.979685 + 0.200543i \(0.935729\pi\)
\(692\) −560.698 560.698i −0.810258 0.810258i
\(693\) 621.124 706.105i 0.896282 1.01891i
\(694\) 9.27977i 0.0133714i
\(695\) 0 0
\(696\) −67.6281 49.1347i −0.0971669 0.0705959i
\(697\) −533.985 84.5750i −0.766120 0.121341i
\(698\) 57.9700 + 113.772i 0.0830515 + 0.162998i
\(699\) 291.397 + 94.6806i 0.416877 + 0.135451i
\(700\) 0 0
\(701\) 1007.39 + 731.909i 1.43707 + 1.04409i 0.988645 + 0.150272i \(0.0480148\pi\)
0.448425 + 0.893821i \(0.351985\pi\)
\(702\) 7.86790 15.4416i 0.0112078 0.0219966i
\(703\) 189.270 189.270i 0.269232 0.269232i
\(704\) 302.829 478.354i 0.430154 0.679480i
\(705\) 0 0
\(706\) −50.1785 154.434i −0.0710743 0.218744i
\(707\) −114.716 724.288i −0.162257 1.02445i
\(708\) 2.81152 17.7512i 0.00397107 0.0250723i
\(709\) −572.197 185.918i −0.807047 0.262226i −0.123701 0.992320i \(-0.539476\pi\)
−0.683347 + 0.730094i \(0.739476\pi\)
\(710\) 0 0
\(711\) 511.174 371.389i 0.718950 0.522348i
\(712\) −19.8315 125.211i −0.0278533 0.175859i
\(713\) −1875.95 955.843i −2.63106 1.34059i
\(714\) 58.1329i 0.0814186i
\(715\) 0 0
\(716\) 622.433 0.869320
\(717\) −3.17872 + 6.23859i −0.00443336 + 0.00870096i
\(718\) −68.3223 + 10.8212i −0.0951565 + 0.0150713i
\(719\) 367.141 + 505.327i 0.510628 + 0.702819i 0.984025 0.178030i \(-0.0569725\pi\)
−0.473397 + 0.880849i \(0.656973\pi\)
\(720\) 0 0
\(721\) 534.080 1643.73i 0.740749 2.27979i
\(722\) 53.0884 + 8.40838i 0.0735297 + 0.0116460i
\(723\) 73.3883 11.6236i 0.101505 0.0160769i
\(724\) −632.241 + 205.427i −0.873261 + 0.283740i
\(725\) 0 0
\(726\) 36.5846 + 20.0069i 0.0503920 + 0.0275578i
\(727\) 312.563 + 312.563i 0.429936 + 0.429936i 0.888606 0.458671i \(-0.151674\pi\)
−0.458671 + 0.888606i \(0.651674\pi\)
\(728\) 79.4896 + 40.5020i 0.109189 + 0.0556346i
\(729\) −196.120 + 269.936i −0.269026 + 0.370283i
\(730\) 0 0
\(731\) 329.531 1014.19i 0.450795 1.38740i
\(732\) −224.423 + 114.349i −0.306588 + 0.156215i
\(733\) −13.5091 + 85.2930i −0.0184299 + 0.116362i −0.995188 0.0979821i \(-0.968761\pi\)
0.976758 + 0.214344i \(0.0687612\pi\)
\(734\) −94.9874 + 130.739i −0.129411 + 0.178118i
\(735\) 0 0
\(736\) −674.754 −0.916785
\(737\) 492.224 + 45.9778i 0.667875 + 0.0623850i
\(738\) 70.9928 70.9928i 0.0961963 0.0961963i
\(739\) 534.104 173.541i 0.722738 0.234832i 0.0755282 0.997144i \(-0.475936\pi\)
0.647210 + 0.762312i \(0.275936\pi\)
\(740\) 0 0
\(741\) −32.7278 + 23.7781i −0.0441670 + 0.0320892i
\(742\) −83.7605 + 42.6781i −0.112885 + 0.0575176i
\(743\) −194.051 380.846i −0.261172 0.512578i 0.722766 0.691093i \(-0.242871\pi\)
−0.983937 + 0.178515i \(0.942871\pi\)
\(744\) −83.5592 115.009i −0.112311 0.154582i
\(745\) 0 0
\(746\) −50.5308 155.518i −0.0677356 0.208469i
\(747\) 412.535 + 412.535i 0.552255 + 0.552255i
\(748\) −664.375 + 149.280i −0.888202 + 0.199572i
\(749\) 1299.18i 1.73456i
\(750\) 0 0
\(751\) 86.0258 + 62.5014i 0.114548 + 0.0832242i 0.643585 0.765375i \(-0.277446\pi\)
−0.529036 + 0.848599i \(0.677446\pi\)
\(752\) 443.196 + 70.1953i 0.589356 + 0.0933448i
\(753\) −179.356 352.006i −0.238189 0.467472i
\(754\) 31.5783 + 10.2604i 0.0418811 + 0.0136080i
\(755\) 0 0
\(756\) 530.311 + 385.293i 0.701469 + 0.509647i
\(757\) −101.603 + 199.406i −0.134217 + 0.263417i −0.948327 0.317295i \(-0.897226\pi\)
0.814110 + 0.580711i \(0.197226\pi\)
\(758\) 17.2708 17.2708i 0.0227847 0.0227847i
\(759\) 26.5371 + 414.455i 0.0349632 + 0.546054i
\(760\) 0 0
\(761\) 272.671 + 839.195i 0.358306 + 1.10275i 0.954068 + 0.299591i \(0.0968503\pi\)
−0.595762 + 0.803161i \(0.703150\pi\)
\(762\) 4.04292 + 25.5260i 0.00530567 + 0.0334987i
\(763\) −130.193 + 822.004i −0.170633 + 1.07733i
\(764\) 170.188 + 55.2975i 0.222760 + 0.0723790i
\(765\) 0 0
\(766\) 57.4992 41.7756i 0.0750642 0.0545374i
\(767\) 2.27228 + 14.3466i 0.00296255 + 0.0187048i
\(768\) 146.079 + 74.4309i 0.190207 + 0.0969153i
\(769\) 892.786i 1.16097i −0.814271 0.580485i \(-0.802863\pi\)
0.814271 0.580485i \(-0.197137\pi\)
\(770\) 0 0
\(771\) 383.620 0.497562
\(772\) −101.997 + 200.181i −0.132121 + 0.259302i
\(773\) 1073.93 170.093i 1.38929 0.220043i 0.583440 0.812156i \(-0.301706\pi\)
0.805855 + 0.592113i \(0.201706\pi\)
\(774\) 116.400 + 160.211i 0.150387 + 0.206991i
\(775\) 0 0
\(776\) 111.936 344.503i 0.144247 0.443947i
\(777\) −178.914 28.3372i −0.230263 0.0364700i
\(778\) 138.985 22.0130i 0.178644 0.0282944i
\(779\) −470.062 + 152.733i −0.603418 + 0.196062i
\(780\) 0 0
\(781\) 107.568 + 270.807i 0.137731 + 0.346744i
\(782\) 166.567 + 166.567i 0.213001 + 0.213001i
\(783\) 442.298 + 225.362i 0.564876 + 0.287819i
\(784\) −524.797 + 722.321i −0.669384 + 0.921328i
\(785\) 0 0
\(786\) −26.8775 + 82.7204i −0.0341953 + 0.105242i
\(787\) 491.248 250.303i 0.624203 0.318047i −0.113127 0.993581i \(-0.536087\pi\)
0.737329 + 0.675533i \(0.236087\pi\)
\(788\) 53.3775 337.012i 0.0677379 0.427680i
\(789\) −149.864 + 206.270i −0.189942 + 0.261433i
\(790\) 0 0
\(791\) −981.968 −1.24143
\(792\) 101.923 236.249i 0.128691 0.298295i
\(793\) 143.943 143.943i 0.181517 0.181517i
\(794\) 88.0358 28.6046i 0.110876 0.0360259i
\(795\) 0 0
\(796\) −737.630 + 535.920i −0.926671 + 0.673266i
\(797\) −1043.33 + 531.605i −1.30908 + 0.667007i −0.962568 0.271040i \(-0.912633\pi\)
−0.346508 + 0.938047i \(0.612633\pi\)
\(798\) 24.1273 + 47.3525i 0.0302347 + 0.0593389i
\(799\) −293.164 403.506i −0.366914 0.505013i
\(800\) 0 0
\(801\) 110.305 + 339.485i 0.137710 + 0.423826i
\(802\) −29.9347 29.9347i −0.0373250 0.0373250i
\(803\) −72.2067 121.786i −0.0899212 0.151664i
\(804\) 163.391i 0.203223i
\(805\) 0 0
\(806\) 45.6821 + 33.1900i 0.0566776 + 0.0411787i
\(807\) 456.783 + 72.3473i 0.566026 + 0.0896496i
\(808\) −91.0867 178.768i −0.112731 0.221247i
\(809\) 958.766 + 311.522i 1.18512 + 0.385070i 0.834268 0.551359i \(-0.185891\pi\)
0.350856 + 0.936429i \(0.385891\pi\)
\(810\) 0 0
\(811\) −445.331 323.552i −0.549114 0.398954i 0.278345 0.960481i \(-0.410214\pi\)
−0.827459 + 0.561527i \(0.810214\pi\)
\(812\) −570.151 + 1118.98i −0.702157 + 1.37806i
\(813\) 44.0305 44.0305i 0.0541581 0.0541581i
\(814\) 4.70914 + 73.5471i 0.00578518 + 0.0903527i
\(815\) 0 0
\(816\) −67.0464 206.348i −0.0821647 0.252877i
\(817\) −152.506 962.883i −0.186665 1.17856i
\(818\) −17.5531 + 110.826i −0.0214586 + 0.135484i
\(819\) −238.905 77.6251i −0.291704 0.0947803i
\(820\) 0 0
\(821\) −112.308 + 81.5964i −0.136794 + 0.0993866i −0.654078 0.756427i \(-0.726943\pi\)
0.517284 + 0.855814i \(0.326943\pi\)
\(822\) 6.64188 + 41.9352i 0.00808014 + 0.0510160i
\(823\) −1254.83 639.367i −1.52470 0.776873i −0.527352 0.849647i \(-0.676815\pi\)
−0.997348 + 0.0727737i \(0.976815\pi\)
\(824\) 472.869i 0.573871i
\(825\) 0 0
\(826\) 19.0824 0.0231021
\(827\) 479.658 941.381i 0.579997 1.13831i −0.395535 0.918451i \(-0.629441\pi\)
0.975532 0.219858i \(-0.0705593\pi\)
\(828\) 1243.94 197.021i 1.50235 0.237948i
\(829\) −274.311 377.556i −0.330893 0.455436i 0.610861 0.791738i \(-0.290824\pi\)
−0.941754 + 0.336303i \(0.890824\pi\)
\(830\) 0 0
\(831\) 63.3783 195.058i 0.0762675 0.234727i
\(832\) −149.367 23.6574i −0.179527 0.0284343i
\(833\) 980.188 155.246i 1.17670 0.186370i
\(834\) −26.2742 + 8.53702i −0.0315039 + 0.0102362i
\(835\) 0 0
\(836\) −479.214 + 397.337i −0.573222 + 0.475283i
\(837\) 596.932 + 596.932i 0.713180 + 0.713180i
\(838\) −68.2827 34.7918i −0.0814829 0.0415176i
\(839\) 826.244 1137.23i 0.984796 1.35546i 0.0505912 0.998719i \(-0.483889\pi\)
0.934205 0.356736i \(-0.116111\pi\)
\(840\) 0 0
\(841\) −34.0082 + 104.666i −0.0404378 + 0.124455i
\(842\) −99.5196 + 50.7077i −0.118194 + 0.0602230i
\(843\) −54.2284 + 342.384i −0.0643278 + 0.406150i
\(844\) −46.5388 + 64.0552i −0.0551408 + 0.0758948i
\(845\) 0 0
\(846\) 92.6215 0.109482
\(847\) 429.113 1200.26i 0.506627 1.41707i
\(848\) 248.093 248.093i 0.292562 0.292562i
\(849\) −109.561 + 35.5986i −0.129047 + 0.0419300i
\(850\) 0 0
\(851\) −593.832 + 431.444i −0.697805 + 0.506985i
\(852\) −85.8090 + 43.7219i −0.100715 + 0.0513168i
\(853\) −458.448 899.755i −0.537454 1.05481i −0.986874 0.161492i \(-0.948369\pi\)
0.449420 0.893320i \(-0.351631\pi\)
\(854\) −157.191 216.355i −0.184065 0.253343i
\(855\) 0 0
\(856\) 109.842 + 338.060i 0.128321 + 0.394930i
\(857\) 787.462 + 787.462i 0.918859 + 0.918859i 0.996947 0.0780872i \(-0.0248812\pi\)
−0.0780872 + 0.996947i \(0.524881\pi\)
\(858\) 1.03589 11.0899i 0.00120733 0.0129253i
\(859\) 333.892i 0.388699i 0.980932 + 0.194349i \(0.0622595\pi\)
−0.980932 + 0.194349i \(0.937740\pi\)
\(860\) 0 0
\(861\) 270.604 + 196.605i 0.314290 + 0.228345i
\(862\) 131.980 + 20.9036i 0.153109 + 0.0242501i
\(863\) 651.489 + 1278.62i 0.754912 + 1.48160i 0.872541 + 0.488541i \(0.162471\pi\)
−0.117628 + 0.993058i \(0.537529\pi\)
\(864\) 257.307 + 83.6041i 0.297809 + 0.0967640i
\(865\) 0 0
\(866\) 100.834 + 73.2598i 0.116436 + 0.0845957i
\(867\) 13.9063 27.2926i 0.0160395 0.0314793i
\(868\) −1510.20 + 1510.20i −1.73986 + 1.73986i
\(869\) 458.090 723.608i 0.527146 0.832690i
\(870\) 0 0
\(871\) −40.8067 125.590i −0.0468505 0.144191i
\(872\) 35.6208 + 224.901i 0.0408495 + 0.257914i
\(873\) −159.555 + 1007.39i −0.182766 + 1.15394i
\(874\) 204.809 + 66.5465i 0.234335 + 0.0761402i
\(875\) 0 0
\(876\) 37.8572 27.5049i 0.0432160 0.0313982i
\(877\) −199.124 1257.22i −0.227051 1.43355i −0.793058 0.609146i \(-0.791512\pi\)
0.566007 0.824401i \(-0.308488\pi\)
\(878\) 243.424 + 124.031i 0.277248 + 0.141265i
\(879\) 496.865i 0.565261i
\(880\) 0 0
\(881\) −226.497 −0.257091 −0.128545 0.991704i \(-0.541031\pi\)
−0.128545 + 0.991704i \(0.541031\pi\)
\(882\) −83.6674 + 164.206i −0.0948610 + 0.186175i
\(883\) −913.239 + 144.643i −1.03425 + 0.163808i −0.650402 0.759590i \(-0.725400\pi\)
−0.383843 + 0.923398i \(0.625400\pi\)
\(884\) 106.912 + 147.152i 0.120942 + 0.166462i
\(885\) 0 0
\(886\) −45.0926 + 138.781i −0.0508946 + 0.156638i
\(887\) −1494.65 236.730i −1.68507 0.266888i −0.760897 0.648873i \(-0.775241\pi\)
−0.924169 + 0.381985i \(0.875241\pi\)
\(888\) −48.9510 + 7.75307i −0.0551250 + 0.00873094i
\(889\) 751.363 244.133i 0.845178 0.274615i
\(890\) 0 0
\(891\) −157.710 + 617.083i −0.177004 + 0.692574i
\(892\) 424.202 + 424.202i 0.475563 + 0.475563i
\(893\) −406.268 207.004i −0.454947 0.231807i
\(894\) 4.15787 5.72282i 0.00465086 0.00640136i
\(895\) 0 0
\(896\) −280.252 + 862.528i −0.312782 + 0.962643i
\(897\) 98.8433 50.3632i 0.110193 0.0561463i
\(898\) 30.0024 189.428i 0.0334103 0.210944i
\(899\) −950.668 + 1308.48i −1.05747 + 1.45549i
\(900\) 0 0
\(901\) −389.983 −0.432833
\(902\) 53.9066 124.951i 0.0597634 0.138527i
\(903\) −466.514 + 466.514i −0.516627 + 0.516627i
\(904\) −255.517 + 83.0227i −0.282652 + 0.0918392i
\(905\) 0 0
\(906\) 50.7100 36.8430i 0.0559713 0.0406655i
\(907\) −79.5367 + 40.5260i −0.0876920 + 0.0446813i −0.497286 0.867586i \(-0.665670\pi\)
0.409594 + 0.912268i \(0.365670\pi\)
\(908\) 585.580 + 1149.27i 0.644912 + 1.26571i
\(909\) 332.061 + 457.043i 0.365303 + 0.502797i
\(910\) 0 0
\(911\) −254.545 783.408i −0.279412 0.859943i −0.988018 0.154338i \(-0.950676\pi\)
0.708606 0.705605i \(-0.249324\pi\)
\(912\) −140.255 140.255i −0.153788 0.153788i
\(913\) 726.083 + 313.248i 0.795271 + 0.343097i
\(914\) 36.1757i 0.0395796i
\(915\) 0 0
\(916\) −474.064 344.428i −0.517537 0.376013i
\(917\) 2626.08 + 415.930i 2.86377 + 0.453576i
\(918\) −42.8795 84.1558i −0.0467097 0.0916729i
\(919\) 24.7032 + 8.02657i 0.0268806 + 0.00873402i 0.322426 0.946595i \(-0.395502\pi\)
−0.295546 + 0.955329i \(0.595502\pi\)
\(920\) 0 0
\(921\) 340.893 + 247.673i 0.370134 + 0.268918i
\(922\) 38.6502 75.8552i 0.0419199 0.0822724i
\(923\) 55.0374 55.0374i 0.0596288 0.0596288i
\(924\) 408.165 + 104.316i 0.441737 + 0.112896i
\(925\) 0 0
\(926\) 37.0836 + 114.131i 0.0400470 + 0.123252i
\(927\) 208.288 + 1315.08i 0.224690 + 1.41864i
\(928\) −81.0864 + 511.960i −0.0873776 + 0.551681i
\(929\) −853.382 277.281i −0.918603 0.298472i −0.188709 0.982033i \(-0.560430\pi\)
−0.729894 + 0.683561i \(0.760430\pi\)
\(930\) 0 0
\(931\) 733.984 533.271i 0.788383 0.572794i
\(932\) −197.016 1243.91i −0.211391 1.33467i
\(933\) −25.4906 12.9881i −0.0273211 0.0139208i
\(934\) 256.026i 0.274118i
\(935\) 0 0
\(936\) −68.7285 −0.0734279
\(937\) 574.636 1127.79i 0.613272 1.20361i −0.350418 0.936593i \(-0.613961\pi\)
0.963691 0.267021i \(-0.0860394\pi\)
\(938\) −171.346 + 27.1385i −0.182671 + 0.0289323i
\(939\) −107.368 147.779i −0.114343 0.157379i
\(940\) 0 0
\(941\) −356.827 + 1098.20i −0.379199 + 1.16706i 0.561402 + 0.827543i \(0.310262\pi\)
−0.940602 + 0.339513i \(0.889738\pi\)
\(942\) −36.6153 5.79930i −0.0388698 0.00615636i
\(943\) 1338.68 212.026i 1.41960 0.224842i
\(944\) −67.7344 + 22.0082i −0.0717525 + 0.0233138i
\(945\) 0 0
\(946\) 226.791 + 143.573i 0.239737 + 0.151769i
\(947\) 960.358 + 960.358i 1.01411 + 1.01411i 0.999899 + 0.0142062i \(0.00452214\pi\)
0.0142062 + 0.999899i \(0.495478\pi\)
\(948\) 252.201 + 128.503i 0.266035 + 0.135552i
\(949\) −22.2295 + 30.5963i −0.0234242 + 0.0322406i
\(950\) 0 0
\(951\) 64.5223 198.579i 0.0678468 0.208811i
\(952\) 433.212 220.733i 0.455055 0.231862i
\(953\) −166.024 + 1048.23i −0.174212 + 1.09993i 0.733300 + 0.679905i \(0.237979\pi\)
−0.907512 + 0.420026i \(0.862021\pi\)
\(954\) 42.5681 58.5900i 0.0446207 0.0614151i
\(955\) 0 0
\(956\) 28.7803 0.0301050
\(957\) 317.651 + 29.6712i 0.331923 + 0.0310044i
\(958\) −136.085 + 136.085i −0.142051 + 0.142051i
\(959\) 1234.37 401.071i 1.28714 0.418218i
\(960\) 0 0
\(961\) −1447.76 + 1051.86i −1.50651 + 1.09455i
\(962\) 17.5402 8.93720i 0.0182331 0.00929022i
\(963\) −454.386 891.783i −0.471844 0.926047i
\(964\) −179.521 247.090i −0.186226 0.256318i
\(965\) 0 0
\(966\) −45.0352 138.604i −0.0466203 0.143482i
\(967\) 246.228 + 246.228i 0.254631 + 0.254631i 0.822866 0.568235i \(-0.192374\pi\)
−0.568235 + 0.822866i \(0.692374\pi\)
\(968\) 10.1808 348.599i 0.0105173 0.360123i
\(969\) 220.470i 0.227523i
\(970\) 0 0
\(971\) 514.171 + 373.567i 0.529527 + 0.384724i 0.820181 0.572104i \(-0.193873\pi\)
−0.290654 + 0.956828i \(0.593873\pi\)
\(972\) −761.042 120.537i −0.782965 0.124009i
\(973\) 383.400 + 752.464i 0.394039 + 0.773344i
\(974\) −201.896 65.6000i −0.207286 0.0673512i
\(975\) 0 0
\(976\) 807.493 + 586.678i 0.827349 + 0.601104i
\(977\) 2.04171 4.00708i 0.00208977 0.00410141i −0.889959 0.456040i \(-0.849267\pi\)
0.892049 + 0.451939i \(0.149267\pi\)
\(978\) −51.6478 + 51.6478i −0.0528096 + 0.0528096i
\(979\) 308.816 + 372.452i 0.315441 + 0.380442i
\(980\) 0 0
\(981\) −198.127 609.773i −0.201965 0.621583i
\(982\) 47.4462 + 299.564i 0.0483159 + 0.305055i
\(983\) 19.5212 123.252i 0.0198588 0.125383i −0.975767 0.218811i \(-0.929782\pi\)
0.995626 + 0.0934273i \(0.0297823\pi\)
\(984\) 87.0360 + 28.2797i 0.0884513 + 0.0287396i
\(985\) 0 0
\(986\) 146.397 106.363i 0.148475 0.107874i
\(987\) 48.2715 + 304.774i 0.0489073 + 0.308788i
\(988\) 148.160 + 75.4911i 0.149959 + 0.0764080i
\(989\) 2673.38i 2.70312i
\(990\) 0 0
\(991\) −1455.86 −1.46908 −0.734542 0.678564i \(-0.762603\pi\)
−0.734542 + 0.678564i \(0.762603\pi\)
\(992\) −400.192 + 785.421i −0.403419 + 0.791755i
\(993\) −547.955 + 86.7876i −0.551818 + 0.0873994i
\(994\) −60.1028 82.7244i −0.0604656 0.0832237i
\(995\) 0 0
\(996\) −80.7632 + 248.564i −0.0810876 + 0.249562i
\(997\) −622.653 98.6185i −0.624526 0.0989153i −0.163853 0.986485i \(-0.552392\pi\)
−0.460674 + 0.887570i \(0.652392\pi\)
\(998\) 125.319 19.8486i 0.125570 0.0198883i
\(999\) 279.906 90.9469i 0.280186 0.0910379i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.9 yes 128
5.2 odd 4 inner 275.3.bk.c.93.9 yes 128
5.3 odd 4 inner 275.3.bk.c.93.8 yes 128
5.4 even 2 inner 275.3.bk.c.82.8 128
11.9 even 5 inner 275.3.bk.c.207.8 yes 128
55.9 even 10 inner 275.3.bk.c.207.9 yes 128
55.42 odd 20 inner 275.3.bk.c.218.8 yes 128
55.53 odd 20 inner 275.3.bk.c.218.9 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.8 128 5.4 even 2 inner
275.3.bk.c.82.9 yes 128 1.1 even 1 trivial
275.3.bk.c.93.8 yes 128 5.3 odd 4 inner
275.3.bk.c.93.9 yes 128 5.2 odd 4 inner
275.3.bk.c.207.8 yes 128 11.9 even 5 inner
275.3.bk.c.207.9 yes 128 55.9 even 10 inner
275.3.bk.c.218.8 yes 128 55.42 odd 20 inner
275.3.bk.c.218.9 yes 128 55.53 odd 20 inner