Properties

Label 275.3.bk.c.207.8
Level $275$
Weight $3$
Character 275.207
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 207.8
Character \(\chi\) \(=\) 275.207
Dual form 275.3.bk.c.93.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.326489 + 0.166354i) q^{2} +(-0.147121 + 0.928883i) q^{3} +(-2.27222 + 3.12744i) q^{4} +(-0.106490 - 0.327744i) q^{6} +(1.64794 + 10.4047i) q^{7} +(0.450878 - 2.84673i) q^{8} +(7.71833 + 2.50784i) q^{9} +(-8.46786 - 7.02107i) q^{11} +(-2.57074 - 2.57074i) q^{12} +(-1.33395 - 2.61803i) q^{13} +(-2.26890 - 3.12287i) q^{14} +(-4.45195 - 13.7017i) q^{16} +(-7.26994 + 14.2681i) q^{17} +(-2.93714 + 0.465197i) q^{18} +(-8.60484 - 11.8435i) q^{19} -9.90719 q^{21} +(3.93264 + 0.883634i) q^{22} +(-28.3868 + 28.3868i) q^{23} +(2.57795 + 0.837625i) q^{24} +(0.871040 + 0.632848i) q^{26} +(-7.30766 + 14.3421i) q^{27} +(-36.2846 - 18.4879i) q^{28} +(-18.1268 + 24.9494i) q^{29} +(16.2065 - 49.8786i) q^{31} +(11.8850 + 11.8850i) q^{32} +(7.76755 - 6.83271i) q^{33} -5.86775i q^{34} +(-25.3809 + 18.4403i) q^{36} +(2.86026 + 18.0590i) q^{37} +(4.77961 + 2.43533i) q^{38} +(2.62809 - 0.853920i) q^{39} +(-27.3139 + 19.8447i) q^{41} +(3.23459 - 1.64810i) q^{42} +(47.0885 - 47.0885i) q^{43} +(41.1988 - 10.5293i) q^{44} +(4.54571 - 13.9903i) q^{46} +(-30.7629 - 4.87237i) q^{47} +(13.3822 - 2.11954i) q^{48} +(-58.9402 + 19.1508i) q^{49} +(-12.1838 - 8.85205i) q^{51} +(11.2188 + 1.77688i) q^{52} +(11.0563 + 21.6991i) q^{53} -5.89819i q^{54} +30.3624 q^{56} +(12.2672 - 6.25046i) q^{57} +(1.76775 - 11.1612i) q^{58} +(-2.90572 + 3.99938i) q^{59} +(21.4090 + 65.8900i) q^{61} +(3.00627 + 18.9808i) q^{62} +(-13.3739 + 84.4396i) q^{63} +(48.9493 + 15.9046i) q^{64} +(-1.39937 + 3.52297i) q^{66} +(-31.7791 - 31.7791i) q^{67} +(-28.1036 - 55.1565i) q^{68} +(-22.1918 - 30.5443i) q^{69} +(8.18581 + 25.1933i) q^{71} +(10.6192 - 20.8413i) q^{72} +(-12.7127 + 2.01349i) q^{73} +(-3.93804 - 5.42024i) q^{74} +56.5921 q^{76} +(59.0975 - 99.6758i) q^{77} +(-0.715990 + 0.715990i) q^{78} +(74.0458 + 24.0589i) q^{79} +(46.8434 + 34.0337i) q^{81} +(5.61642 - 11.0228i) q^{82} +(64.0530 + 32.6366i) q^{83} +(22.5113 - 30.9842i) q^{84} +(-7.54048 + 23.2072i) q^{86} +(-20.5082 - 20.5082i) q^{87} +(-23.8050 + 20.9401i) q^{88} -43.9843i q^{89} +(25.0415 - 18.1937i) q^{91} +(-24.2771 - 153.279i) q^{92} +(43.9471 + 22.3922i) q^{93} +(10.8543 - 3.52677i) q^{94} +(-12.7883 + 9.29123i) q^{96} +(-111.980 + 57.0567i) q^{97} +(16.0575 - 16.0575i) q^{98} +(-47.7500 - 75.4269i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.326489 + 0.166354i −0.163244 + 0.0831771i −0.533704 0.845672i \(-0.679200\pi\)
0.370459 + 0.928849i \(0.379200\pi\)
\(3\) −0.147121 + 0.928883i −0.0490402 + 0.309628i 0.950960 + 0.309315i \(0.100100\pi\)
−1.00000 0.000313023i \(0.999900\pi\)
\(4\) −2.27222 + 3.12744i −0.568055 + 0.781861i
\(5\) 0 0
\(6\) −0.106490 0.327744i −0.0177484 0.0546240i
\(7\) 1.64794 + 10.4047i 0.235420 + 1.48638i 0.768243 + 0.640158i \(0.221131\pi\)
−0.532823 + 0.846227i \(0.678869\pi\)
\(8\) 0.450878 2.84673i 0.0563597 0.355841i
\(9\) 7.71833 + 2.50784i 0.857592 + 0.278649i
\(10\) 0 0
\(11\) −8.46786 7.02107i −0.769805 0.638279i
\(12\) −2.57074 2.57074i −0.214228 0.214228i
\(13\) −1.33395 2.61803i −0.102612 0.201387i 0.833993 0.551776i \(-0.186049\pi\)
−0.936604 + 0.350389i \(0.886049\pi\)
\(14\) −2.26890 3.12287i −0.162064 0.223062i
\(15\) 0 0
\(16\) −4.45195 13.7017i −0.278247 0.856355i
\(17\) −7.26994 + 14.2681i −0.427644 + 0.839298i 0.572173 + 0.820133i \(0.306101\pi\)
−0.999816 + 0.0191647i \(0.993899\pi\)
\(18\) −2.93714 + 0.465197i −0.163174 + 0.0258443i
\(19\) −8.60484 11.8435i −0.452886 0.623344i 0.520128 0.854088i \(-0.325884\pi\)
−0.973015 + 0.230744i \(0.925884\pi\)
\(20\) 0 0
\(21\) −9.90719 −0.471771
\(22\) 3.93264 + 0.883634i 0.178757 + 0.0401652i
\(23\) −28.3868 + 28.3868i −1.23421 + 1.23421i −0.271878 + 0.962332i \(0.587645\pi\)
−0.962332 + 0.271878i \(0.912355\pi\)
\(24\) 2.57795 + 0.837625i 0.107414 + 0.0349011i
\(25\) 0 0
\(26\) 0.871040 + 0.632848i 0.0335016 + 0.0243403i
\(27\) −7.30766 + 14.3421i −0.270654 + 0.531188i
\(28\) −36.2846 18.4879i −1.29588 0.660283i
\(29\) −18.1268 + 24.9494i −0.625062 + 0.860324i −0.997709 0.0676492i \(-0.978450\pi\)
0.372647 + 0.927973i \(0.378450\pi\)
\(30\) 0 0
\(31\) 16.2065 49.8786i 0.522792 1.60899i −0.245850 0.969308i \(-0.579067\pi\)
0.768642 0.639680i \(-0.220933\pi\)
\(32\) 11.8850 + 11.8850i 0.371406 + 0.371406i
\(33\) 7.76755 6.83271i 0.235380 0.207052i
\(34\) 5.86775i 0.172581i
\(35\) 0 0
\(36\) −25.3809 + 18.4403i −0.705024 + 0.512230i
\(37\) 2.86026 + 18.0590i 0.0773045 + 0.488081i 0.995717 + 0.0924564i \(0.0294719\pi\)
−0.918412 + 0.395625i \(0.870528\pi\)
\(38\) 4.77961 + 2.43533i 0.125779 + 0.0640877i
\(39\) 2.62809 0.853920i 0.0673870 0.0218954i
\(40\) 0 0
\(41\) −27.3139 + 19.8447i −0.666192 + 0.484016i −0.868748 0.495254i \(-0.835075\pi\)
0.202557 + 0.979271i \(0.435075\pi\)
\(42\) 3.23459 1.64810i 0.0770139 0.0392406i
\(43\) 47.0885 47.0885i 1.09508 1.09508i 0.100104 0.994977i \(-0.468083\pi\)
0.994977 0.100104i \(-0.0319175\pi\)
\(44\) 41.1988 10.5293i 0.936337 0.239303i
\(45\) 0 0
\(46\) 4.54571 13.9903i 0.0988197 0.304136i
\(47\) −30.7629 4.87237i −0.654530 0.103667i −0.179668 0.983727i \(-0.557502\pi\)
−0.474863 + 0.880060i \(0.657502\pi\)
\(48\) 13.3822 2.11954i 0.278797 0.0441570i
\(49\) −58.9402 + 19.1508i −1.20286 + 0.390833i
\(50\) 0 0
\(51\) −12.1838 8.85205i −0.238898 0.173570i
\(52\) 11.2188 + 1.77688i 0.215745 + 0.0341707i
\(53\) 11.0563 + 21.6991i 0.208609 + 0.409418i 0.971476 0.237137i \(-0.0762091\pi\)
−0.762867 + 0.646555i \(0.776209\pi\)
\(54\) 5.89819i 0.109226i
\(55\) 0 0
\(56\) 30.3624 0.542185
\(57\) 12.2672 6.25046i 0.215214 0.109657i
\(58\) 1.76775 11.1612i 0.0304785 0.192434i
\(59\) −2.90572 + 3.99938i −0.0492495 + 0.0677862i −0.832931 0.553376i \(-0.813339\pi\)
0.783682 + 0.621162i \(0.213339\pi\)
\(60\) 0 0
\(61\) 21.4090 + 65.8900i 0.350967 + 1.08016i 0.958311 + 0.285726i \(0.0922346\pi\)
−0.607345 + 0.794438i \(0.707765\pi\)
\(62\) 3.00627 + 18.9808i 0.0484882 + 0.306142i
\(63\) −13.3739 + 84.4396i −0.212284 + 1.34031i
\(64\) 48.9493 + 15.9046i 0.764833 + 0.248509i
\(65\) 0 0
\(66\) −1.39937 + 3.52297i −0.0212025 + 0.0533783i
\(67\) −31.7791 31.7791i −0.474314 0.474314i 0.428993 0.903308i \(-0.358868\pi\)
−0.903308 + 0.428993i \(0.858868\pi\)
\(68\) −28.1036 55.1565i −0.413289 0.811125i
\(69\) −22.1918 30.5443i −0.321620 0.442672i
\(70\) 0 0
\(71\) 8.18581 + 25.1933i 0.115293 + 0.354836i 0.992008 0.126175i \(-0.0402700\pi\)
−0.876715 + 0.481010i \(0.840270\pi\)
\(72\) 10.6192 20.8413i 0.147488 0.289462i
\(73\) −12.7127 + 2.01349i −0.174147 + 0.0275821i −0.242899 0.970052i \(-0.578098\pi\)
0.0687521 + 0.997634i \(0.478098\pi\)
\(74\) −3.93804 5.42024i −0.0532167 0.0732465i
\(75\) 0 0
\(76\) 56.5921 0.744633
\(77\) 59.0975 99.6758i 0.767500 1.29449i
\(78\) −0.715990 + 0.715990i −0.00917936 + 0.00917936i
\(79\) 74.0458 + 24.0589i 0.937288 + 0.304543i 0.737540 0.675304i \(-0.235988\pi\)
0.199748 + 0.979847i \(0.435988\pi\)
\(80\) 0 0
\(81\) 46.8434 + 34.0337i 0.578314 + 0.420170i
\(82\) 5.61642 11.0228i 0.0684929 0.134425i
\(83\) 64.0530 + 32.6366i 0.771723 + 0.393212i 0.795072 0.606515i \(-0.207433\pi\)
−0.0233493 + 0.999727i \(0.507433\pi\)
\(84\) 22.5113 30.9842i 0.267992 0.368859i
\(85\) 0 0
\(86\) −7.54048 + 23.2072i −0.0876800 + 0.269851i
\(87\) −20.5082 20.5082i −0.235727 0.235727i
\(88\) −23.8050 + 20.9401i −0.270512 + 0.237955i
\(89\) 43.9843i 0.494205i −0.968989 0.247103i \(-0.920522\pi\)
0.968989 0.247103i \(-0.0794785\pi\)
\(90\) 0 0
\(91\) 25.0415 18.1937i 0.275181 0.199931i
\(92\) −24.2771 153.279i −0.263881 1.66608i
\(93\) 43.9471 + 22.3922i 0.472549 + 0.240776i
\(94\) 10.8543 3.52677i 0.115471 0.0375189i
\(95\) 0 0
\(96\) −12.7883 + 9.29123i −0.133211 + 0.0967837i
\(97\) −111.980 + 57.0567i −1.15443 + 0.588213i −0.923062 0.384652i \(-0.874321\pi\)
−0.231372 + 0.972865i \(0.574321\pi\)
\(98\) 16.0575 16.0575i 0.163852 0.163852i
\(99\) −47.7500 75.4269i −0.482324 0.761888i
\(100\) 0 0
\(101\) −21.5112 + 66.2046i −0.212982 + 0.655491i 0.786309 + 0.617834i \(0.211990\pi\)
−0.999291 + 0.0376575i \(0.988010\pi\)
\(102\) 5.45045 + 0.863267i 0.0534358 + 0.00846340i
\(103\) 162.045 25.6654i 1.57325 0.249178i 0.692024 0.721875i \(-0.256719\pi\)
0.881225 + 0.472696i \(0.156719\pi\)
\(104\) −8.05427 + 2.61699i −0.0774449 + 0.0251634i
\(105\) 0 0
\(106\) −7.21949 5.24527i −0.0681084 0.0494836i
\(107\) 121.810 + 19.2927i 1.13841 + 0.180306i 0.697048 0.717025i \(-0.254497\pi\)
0.441359 + 0.897331i \(0.354497\pi\)
\(108\) −28.2494 55.4427i −0.261569 0.513358i
\(109\) 79.0032i 0.724800i 0.932023 + 0.362400i \(0.118043\pi\)
−0.932023 + 0.362400i \(0.881957\pi\)
\(110\) 0 0
\(111\) −17.1955 −0.154914
\(112\) 135.225 68.9007i 1.20737 0.615185i
\(113\) −14.5821 + 92.0678i −0.129045 + 0.814759i 0.835238 + 0.549888i \(0.185330\pi\)
−0.964284 + 0.264872i \(0.914670\pi\)
\(114\) −2.96532 + 4.08141i −0.0260115 + 0.0358018i
\(115\) 0 0
\(116\) −36.8397 113.381i −0.317584 0.977422i
\(117\) −3.73029 23.5521i −0.0318828 0.201300i
\(118\) 0.283371 1.78913i 0.00240145 0.0151621i
\(119\) −160.435 52.1286i −1.34820 0.438055i
\(120\) 0 0
\(121\) 22.4093 + 118.907i 0.185201 + 0.982701i
\(122\) −17.9509 17.9509i −0.147138 0.147138i
\(123\) −14.4150 28.2909i −0.117195 0.230008i
\(124\) 119.168 + 164.020i 0.961030 + 1.32274i
\(125\) 0 0
\(126\) −9.68046 29.7934i −0.0768290 0.236455i
\(127\) −34.0472 + 66.8213i −0.268088 + 0.526152i −0.985327 0.170675i \(-0.945405\pi\)
0.717240 + 0.696827i \(0.245405\pi\)
\(128\) −85.0311 + 13.4676i −0.664305 + 0.105216i
\(129\) 36.8120 + 50.6674i 0.285364 + 0.392770i
\(130\) 0 0
\(131\) 252.393 1.92667 0.963334 0.268306i \(-0.0864639\pi\)
0.963334 + 0.268306i \(0.0864639\pi\)
\(132\) 3.71933 + 39.8180i 0.0281767 + 0.301651i
\(133\) 109.048 109.048i 0.819911 0.819911i
\(134\) 15.6621 + 5.08892i 0.116881 + 0.0379770i
\(135\) 0 0
\(136\) 37.3395 + 27.1287i 0.274555 + 0.199476i
\(137\) −55.9341 + 109.777i −0.408278 + 0.801291i −0.999988 0.00485985i \(-0.998453\pi\)
0.591710 + 0.806151i \(0.298453\pi\)
\(138\) 12.3265 + 6.28069i 0.0893228 + 0.0455122i
\(139\) −47.1210 + 64.8564i −0.339000 + 0.466593i −0.944149 0.329519i \(-0.893113\pi\)
0.605149 + 0.796112i \(0.293113\pi\)
\(140\) 0 0
\(141\) 9.05172 27.8583i 0.0641966 0.197577i
\(142\) −6.86359 6.86359i −0.0483352 0.0483352i
\(143\) −7.08563 + 31.5349i −0.0495499 + 0.220523i
\(144\) 116.919i 0.811937i
\(145\) 0 0
\(146\) 3.81560 2.77220i 0.0261342 0.0189876i
\(147\) −9.11756 57.5660i −0.0620242 0.391606i
\(148\) −62.9776 32.0887i −0.425525 0.216816i
\(149\) 19.5223 6.34317i 0.131022 0.0425716i −0.242772 0.970083i \(-0.578057\pi\)
0.373794 + 0.927512i \(0.378057\pi\)
\(150\) 0 0
\(151\) −147.152 + 106.912i −0.974515 + 0.708026i −0.956476 0.291811i \(-0.905742\pi\)
−0.0180387 + 0.999837i \(0.505742\pi\)
\(152\) −37.5951 + 19.1557i −0.247336 + 0.126024i
\(153\) −91.8938 + 91.8938i −0.600613 + 0.600613i
\(154\) −2.71317 + 42.3741i −0.0176180 + 0.275157i
\(155\) 0 0
\(156\) −3.30102 + 10.1595i −0.0211604 + 0.0651250i
\(157\) 106.251 + 16.8286i 0.676760 + 0.107188i 0.485347 0.874321i \(-0.338693\pi\)
0.191413 + 0.981510i \(0.438693\pi\)
\(158\) −28.1774 + 4.46286i −0.178338 + 0.0282460i
\(159\) −21.7826 + 7.07758i −0.136997 + 0.0445131i
\(160\) 0 0
\(161\) −342.136 248.576i −2.12507 1.54395i
\(162\) −20.9555 3.31903i −0.129355 0.0204878i
\(163\) −96.2244 188.851i −0.590334 1.15860i −0.972151 0.234357i \(-0.924701\pi\)
0.381817 0.924238i \(-0.375299\pi\)
\(164\) 130.514i 0.795817i
\(165\) 0 0
\(166\) −26.3418 −0.158686
\(167\) −263.889 + 134.458i −1.58018 + 0.805140i −0.999957 0.00932044i \(-0.997033\pi\)
−0.580219 + 0.814460i \(0.697033\pi\)
\(168\) −4.46693 + 28.2031i −0.0265889 + 0.167876i
\(169\) 94.2611 129.739i 0.557758 0.767688i
\(170\) 0 0
\(171\) −36.7133 112.992i −0.214698 0.660771i
\(172\) 40.2711 + 254.262i 0.234134 + 1.47827i
\(173\) −32.0882 + 202.597i −0.185481 + 1.17108i 0.702666 + 0.711520i \(0.251993\pi\)
−0.888147 + 0.459560i \(0.848007\pi\)
\(174\) 10.1073 + 3.28407i 0.0580882 + 0.0188740i
\(175\) 0 0
\(176\) −58.5020 + 147.281i −0.332398 + 0.836826i
\(177\) −3.28747 3.28747i −0.0185733 0.0185733i
\(178\) 7.31697 + 14.3604i 0.0411066 + 0.0806762i
\(179\) −94.6411 130.262i −0.528721 0.727722i 0.458214 0.888842i \(-0.348489\pi\)
−0.986935 + 0.161120i \(0.948489\pi\)
\(180\) 0 0
\(181\) −53.1406 163.550i −0.293595 0.903592i −0.983690 0.179873i \(-0.942431\pi\)
0.690095 0.723719i \(-0.257569\pi\)
\(182\) −5.14917 + 10.1058i −0.0282921 + 0.0555264i
\(183\) −64.3538 + 10.1926i −0.351660 + 0.0556975i
\(184\) 68.0107 + 93.6086i 0.369623 + 0.508743i
\(185\) 0 0
\(186\) −18.0733 −0.0971681
\(187\) 161.738 69.7772i 0.864908 0.373140i
\(188\) 85.1382 85.1382i 0.452863 0.452863i
\(189\) −161.268 52.3990i −0.853268 0.277244i
\(190\) 0 0
\(191\) 37.4498 + 27.2089i 0.196072 + 0.142455i 0.681490 0.731828i \(-0.261332\pi\)
−0.485418 + 0.874282i \(0.661332\pi\)
\(192\) −21.9750 + 43.1283i −0.114453 + 0.224627i
\(193\) −51.7834 26.3850i −0.268308 0.136710i 0.314661 0.949204i \(-0.398109\pi\)
−0.582969 + 0.812494i \(0.698109\pi\)
\(194\) 27.0686 37.2567i 0.139529 0.192045i
\(195\) 0 0
\(196\) 74.0319 227.847i 0.377714 1.16248i
\(197\) −62.4136 62.4136i −0.316820 0.316820i 0.530724 0.847544i \(-0.321920\pi\)
−0.847544 + 0.530724i \(0.821920\pi\)
\(198\) 28.1374 + 16.6826i 0.142108 + 0.0842556i
\(199\) 235.857i 1.18521i 0.805492 + 0.592606i \(0.201901\pi\)
−0.805492 + 0.592606i \(0.798099\pi\)
\(200\) 0 0
\(201\) 34.1944 24.8437i 0.170121 0.123600i
\(202\) −3.99026 25.1935i −0.0197538 0.124720i
\(203\) −289.463 147.489i −1.42592 0.726545i
\(204\) 55.3686 17.9903i 0.271415 0.0881879i
\(205\) 0 0
\(206\) −48.6362 + 35.3363i −0.236098 + 0.171535i
\(207\) −290.288 + 147.909i −1.40236 + 0.714538i
\(208\) −29.9327 + 29.9327i −0.143907 + 0.143907i
\(209\) −10.2897 + 160.705i −0.0492332 + 0.768921i
\(210\) 0 0
\(211\) 6.32918 19.4792i 0.0299961 0.0923186i −0.934938 0.354812i \(-0.884545\pi\)
0.964934 + 0.262494i \(0.0845448\pi\)
\(212\) −92.9850 14.7274i −0.438609 0.0694688i
\(213\) −24.6060 + 3.89720i −0.115521 + 0.0182967i
\(214\) −42.9789 + 13.9647i −0.200836 + 0.0652555i
\(215\) 0 0
\(216\) 37.5332 + 27.2695i 0.173765 + 0.126248i
\(217\) 545.679 + 86.4271i 2.51465 + 0.398282i
\(218\) −13.1425 25.7937i −0.0602868 0.118320i
\(219\) 12.1048i 0.0552732i
\(220\) 0 0
\(221\) 47.0519 0.212905
\(222\) 5.61414 2.86055i 0.0252889 0.0128853i
\(223\) 24.2766 153.277i 0.108864 0.687339i −0.871538 0.490329i \(-0.836877\pi\)
0.980401 0.197010i \(-0.0631232\pi\)
\(224\) −104.074 + 143.245i −0.464615 + 0.639488i
\(225\) 0 0
\(226\) −10.5550 32.4849i −0.0467035 0.143738i
\(227\) 52.1964 + 329.555i 0.229940 + 1.45178i 0.784753 + 0.619809i \(0.212790\pi\)
−0.554812 + 0.831975i \(0.687210\pi\)
\(228\) −8.32586 + 52.5674i −0.0365169 + 0.230559i
\(229\) 144.163 + 46.8414i 0.629533 + 0.204548i 0.606368 0.795184i \(-0.292626\pi\)
0.0231646 + 0.999732i \(0.492626\pi\)
\(230\) 0 0
\(231\) 83.8927 + 69.5590i 0.363172 + 0.301121i
\(232\) 62.8512 + 62.8512i 0.270910 + 0.270910i
\(233\) 147.905 + 290.281i 0.634787 + 1.24584i 0.954468 + 0.298315i \(0.0964245\pi\)
−0.319680 + 0.947525i \(0.603576\pi\)
\(234\) 5.13590 + 7.06896i 0.0219483 + 0.0302092i
\(235\) 0 0
\(236\) −5.90540 18.1750i −0.0250229 0.0770125i
\(237\) −33.2416 + 65.2403i −0.140260 + 0.275275i
\(238\) 61.0521 9.66970i 0.256521 0.0406290i
\(239\) −4.37606 6.02313i −0.0183099 0.0252014i 0.799764 0.600315i \(-0.204958\pi\)
−0.818074 + 0.575113i \(0.804958\pi\)
\(240\) 0 0
\(241\) −79.0071 −0.327830 −0.163915 0.986474i \(-0.552412\pi\)
−0.163915 + 0.986474i \(0.552412\pi\)
\(242\) −27.0970 35.0938i −0.111971 0.145016i
\(243\) −140.943 + 140.943i −0.580010 + 0.580010i
\(244\) −254.713 82.7613i −1.04391 0.339186i
\(245\) 0 0
\(246\) 9.41264 + 6.83868i 0.0382628 + 0.0277995i
\(247\) −19.5283 + 38.3264i −0.0790619 + 0.155168i
\(248\) −134.684 68.6248i −0.543080 0.276713i
\(249\) −39.7391 + 54.6962i −0.159595 + 0.219664i
\(250\) 0 0
\(251\) 129.811 399.517i 0.517174 1.59170i −0.262116 0.965036i \(-0.584420\pi\)
0.779290 0.626663i \(-0.215580\pi\)
\(252\) −233.692 233.692i −0.927348 0.927348i
\(253\) 439.681 41.0699i 1.73787 0.162332i
\(254\) 27.4803i 0.108190i
\(255\) 0 0
\(256\) −141.034 + 102.467i −0.550913 + 0.400262i
\(257\) −63.8105 402.884i −0.248290 1.56764i −0.725105 0.688638i \(-0.758209\pi\)
0.476815 0.879004i \(-0.341791\pi\)
\(258\) −20.4474 10.4185i −0.0792536 0.0403817i
\(259\) −183.185 + 59.5204i −0.707277 + 0.229808i
\(260\) 0 0
\(261\) −202.478 + 147.109i −0.775776 + 0.563634i
\(262\) −82.4036 + 41.9867i −0.314518 + 0.160255i
\(263\) 191.700 191.700i 0.728899 0.728899i −0.241501 0.970400i \(-0.577640\pi\)
0.970400 + 0.241501i \(0.0776398\pi\)
\(264\) −15.9487 25.1928i −0.0604116 0.0954274i
\(265\) 0 0
\(266\) −17.4624 + 53.7436i −0.0656480 + 0.202044i
\(267\) 40.8562 + 6.47099i 0.153020 + 0.0242359i
\(268\) 171.596 27.1782i 0.640285 0.101411i
\(269\) 467.686 151.961i 1.73861 0.564909i 0.743963 0.668221i \(-0.232944\pi\)
0.994649 + 0.103312i \(0.0329441\pi\)
\(270\) 0 0
\(271\) −53.5655 38.9176i −0.197659 0.143607i 0.484554 0.874762i \(-0.338982\pi\)
−0.682212 + 0.731154i \(0.738982\pi\)
\(272\) 227.862 + 36.0898i 0.837728 + 0.132683i
\(273\) 13.2157 + 25.9373i 0.0484092 + 0.0950084i
\(274\) 45.1458i 0.164766i
\(275\) 0 0
\(276\) 145.950 0.528805
\(277\) 194.311 99.0065i 0.701485 0.357424i −0.0665937 0.997780i \(-0.521213\pi\)
0.768078 + 0.640356i \(0.221213\pi\)
\(278\) 4.59531 29.0137i 0.0165299 0.104366i
\(279\) 250.175 344.336i 0.896684 1.23418i
\(280\) 0 0
\(281\) 113.903 + 350.558i 0.405349 + 1.24754i 0.920604 + 0.390499i \(0.127697\pi\)
−0.515255 + 0.857037i \(0.672303\pi\)
\(282\) 1.67907 + 10.6012i 0.00595415 + 0.0375930i
\(283\) 19.1620 120.984i 0.0677103 0.427506i −0.930426 0.366480i \(-0.880563\pi\)
0.998136 0.0610260i \(-0.0194372\pi\)
\(284\) −97.3907 31.6441i −0.342925 0.111423i
\(285\) 0 0
\(286\) −2.93258 11.4745i −0.0102538 0.0401206i
\(287\) −251.489 251.489i −0.876270 0.876270i
\(288\) 61.9266 + 121.538i 0.215023 + 0.422006i
\(289\) 19.1444 + 26.3500i 0.0662435 + 0.0911763i
\(290\) 0 0
\(291\) −36.5244 112.411i −0.125513 0.386291i
\(292\) 22.5890 44.3333i 0.0773595 0.151827i
\(293\) −521.815 + 82.6474i −1.78094 + 0.282073i −0.958149 0.286271i \(-0.907584\pi\)
−0.822791 + 0.568344i \(0.807584\pi\)
\(294\) 12.5531 + 17.2779i 0.0426977 + 0.0587684i
\(295\) 0 0
\(296\) 52.6987 0.178036
\(297\) 162.577 70.1392i 0.547397 0.236159i
\(298\) −5.31858 + 5.31858i −0.0178476 + 0.0178476i
\(299\) 112.184 + 36.4509i 0.375198 + 0.121909i
\(300\) 0 0
\(301\) 567.540 + 412.342i 1.88552 + 1.36991i
\(302\) 30.2581 59.3849i 0.100192 0.196639i
\(303\) −58.3316 29.7214i −0.192514 0.0980906i
\(304\) −123.968 + 170.628i −0.407790 + 0.561275i
\(305\) 0 0
\(306\) 14.7154 45.2892i 0.0480894 0.148004i
\(307\) −316.814 316.814i −1.03197 1.03197i −0.999472 0.0324958i \(-0.989654\pi\)
−0.0324958 0.999472i \(-0.510346\pi\)
\(308\) 177.448 + 411.309i 0.576129 + 1.33542i
\(309\) 154.296i 0.499341i
\(310\) 0 0
\(311\) 24.6102 17.8803i 0.0791324 0.0574931i −0.547516 0.836795i \(-0.684426\pi\)
0.626648 + 0.779302i \(0.284426\pi\)
\(312\) −1.24593 7.86649i −0.00399336 0.0252131i
\(313\) −173.059 88.1780i −0.552904 0.281719i 0.155133 0.987894i \(-0.450419\pi\)
−0.708038 + 0.706175i \(0.750419\pi\)
\(314\) −37.4894 + 12.1810i −0.119393 + 0.0387931i
\(315\) 0 0
\(316\) −243.491 + 176.907i −0.770542 + 0.559831i
\(317\) 197.819 100.794i 0.624034 0.317961i −0.113227 0.993569i \(-0.536119\pi\)
0.737261 + 0.675608i \(0.236119\pi\)
\(318\) 5.93437 5.93437i 0.0186616 0.0186616i
\(319\) 328.666 83.9985i 1.03030 0.263318i
\(320\) 0 0
\(321\) −35.8414 + 110.308i −0.111655 + 0.343640i
\(322\) 153.055 + 24.2416i 0.475327 + 0.0752844i
\(323\) 231.541 36.6725i 0.716845 0.113537i
\(324\) −212.877 + 69.1679i −0.657028 + 0.213481i
\(325\) 0 0
\(326\) 62.8324 + 45.6504i 0.192737 + 0.140032i
\(327\) −73.3847 11.6230i −0.224418 0.0355443i
\(328\) 44.1772 + 86.7027i 0.134687 + 0.264337i
\(329\) 328.108i 0.997290i
\(330\) 0 0
\(331\) 589.908 1.78220 0.891099 0.453809i \(-0.149935\pi\)
0.891099 + 0.453809i \(0.149935\pi\)
\(332\) −247.612 + 126.164i −0.745818 + 0.380013i
\(333\) −23.2126 + 146.558i −0.0697074 + 0.440115i
\(334\) 63.7892 87.7983i 0.190986 0.262869i
\(335\) 0 0
\(336\) 44.1063 + 135.745i 0.131269 + 0.404004i
\(337\) 9.40843 + 59.4025i 0.0279182 + 0.176269i 0.997707 0.0676761i \(-0.0215585\pi\)
−0.969789 + 0.243945i \(0.921558\pi\)
\(338\) −9.19249 + 58.0391i −0.0271967 + 0.171713i
\(339\) −83.3749 27.0902i −0.245944 0.0799120i
\(340\) 0 0
\(341\) −487.436 + 308.578i −1.42943 + 0.904920i
\(342\) 30.7832 + 30.7832i 0.0900092 + 0.0900092i
\(343\) −62.0453 121.771i −0.180890 0.355017i
\(344\) −112.817 155.279i −0.327956 0.451393i
\(345\) 0 0
\(346\) −23.2264 71.4836i −0.0671284 0.206600i
\(347\) 11.4973 22.5648i 0.0331335 0.0650281i −0.873846 0.486202i \(-0.838382\pi\)
0.906980 + 0.421174i \(0.138382\pi\)
\(348\) 110.738 17.5391i 0.318211 0.0503997i
\(349\) 204.827 + 281.920i 0.586898 + 0.807795i 0.994430 0.105395i \(-0.0336108\pi\)
−0.407533 + 0.913191i \(0.633611\pi\)
\(350\) 0 0
\(351\) 47.2961 0.134747
\(352\) −17.1951 184.086i −0.0488498 0.522970i
\(353\) 313.352 313.352i 0.887684 0.887684i −0.106617 0.994300i \(-0.534002\pi\)
0.994300 + 0.106617i \(0.0340017\pi\)
\(354\) 1.62021 + 0.526437i 0.00457685 + 0.00148711i
\(355\) 0 0
\(356\) 137.558 + 99.9419i 0.386399 + 0.280736i
\(357\) 72.0247 141.356i 0.201750 0.395956i
\(358\) 52.5689 + 26.7852i 0.146841 + 0.0748190i
\(359\) 110.962 152.726i 0.309086 0.425421i −0.626010 0.779815i \(-0.715313\pi\)
0.935096 + 0.354394i \(0.115313\pi\)
\(360\) 0 0
\(361\) 45.3289 139.508i 0.125565 0.386449i
\(362\) 44.5571 + 44.5571i 0.123086 + 0.123086i
\(363\) −113.747 + 3.32196i −0.313354 + 0.00915141i
\(364\) 119.656i 0.328725i
\(365\) 0 0
\(366\) 19.3152 14.0333i 0.0527738 0.0383424i
\(367\) −68.9910 435.592i −0.187986 1.18690i −0.883516 0.468402i \(-0.844830\pi\)
0.695529 0.718498i \(-0.255170\pi\)
\(368\) 515.324 + 262.571i 1.40034 + 0.713507i
\(369\) −260.585 + 84.6690i −0.706191 + 0.229455i
\(370\) 0 0
\(371\) −207.553 + 150.796i −0.559441 + 0.406458i
\(372\) −169.888 + 86.5621i −0.456687 + 0.232694i
\(373\) 315.552 315.552i 0.845985 0.845985i −0.143645 0.989629i \(-0.545882\pi\)
0.989629 + 0.143645i \(0.0458822\pi\)
\(374\) −41.1978 + 49.6873i −0.110155 + 0.132854i
\(375\) 0 0
\(376\) −27.7406 + 85.3769i −0.0737783 + 0.227066i
\(377\) 89.4985 + 14.1752i 0.237396 + 0.0375999i
\(378\) 61.3689 9.71987i 0.162352 0.0257140i
\(379\) −63.3937 + 20.5979i −0.167266 + 0.0543480i −0.391453 0.920198i \(-0.628027\pi\)
0.224187 + 0.974546i \(0.428027\pi\)
\(380\) 0 0
\(381\) −57.0602 41.4566i −0.149764 0.108810i
\(382\) −16.7532 2.65345i −0.0438567 0.00694621i
\(383\) −88.0570 172.822i −0.229914 0.451231i 0.747012 0.664811i \(-0.231488\pi\)
−0.976926 + 0.213579i \(0.931488\pi\)
\(384\) 80.9653i 0.210847i
\(385\) 0 0
\(386\) 21.2960 0.0551709
\(387\) 481.535 245.354i 1.24428 0.633990i
\(388\) 76.0018 479.857i 0.195881 1.23674i
\(389\) −225.724 + 310.683i −0.580268 + 0.798671i −0.993725 0.111853i \(-0.964321\pi\)
0.413456 + 0.910524i \(0.364321\pi\)
\(390\) 0 0
\(391\) −198.654 611.396i −0.508068 1.56367i
\(392\) 27.9424 + 176.421i 0.0712817 + 0.450055i
\(393\) −37.1323 + 234.444i −0.0944842 + 0.596550i
\(394\) 30.7601 + 9.99456i 0.0780713 + 0.0253669i
\(395\) 0 0
\(396\) 344.392 + 22.0510i 0.869676 + 0.0556844i
\(397\) 178.629 + 178.629i 0.449946 + 0.449946i 0.895336 0.445391i \(-0.146935\pi\)
−0.445391 + 0.895336i \(0.646935\pi\)
\(398\) −39.2359 77.0047i −0.0985826 0.193479i
\(399\) 85.2498 + 117.336i 0.213659 + 0.294076i
\(400\) 0 0
\(401\) 35.7014 + 109.877i 0.0890308 + 0.274009i 0.985652 0.168789i \(-0.0539858\pi\)
−0.896621 + 0.442798i \(0.853986\pi\)
\(402\) −7.03123 + 13.7996i −0.0174906 + 0.0343273i
\(403\) −152.202 + 24.1065i −0.377673 + 0.0598176i
\(404\) −158.173 217.706i −0.391517 0.538877i
\(405\) 0 0
\(406\) 119.042 0.293206
\(407\) 102.573 173.003i 0.252022 0.425069i
\(408\) −30.6928 + 30.6928i −0.0752275 + 0.0752275i
\(409\) 291.234 + 94.6276i 0.712063 + 0.231363i 0.642579 0.766220i \(-0.277865\pi\)
0.0694843 + 0.997583i \(0.477865\pi\)
\(410\) 0 0
\(411\) −93.7408 68.1067i −0.228080 0.165710i
\(412\) −287.934 + 565.103i −0.698869 + 1.37161i
\(413\) −46.4008 23.6424i −0.112351 0.0572455i
\(414\) 70.1705 96.5815i 0.169494 0.233289i
\(415\) 0 0
\(416\) 15.2612 46.9692i 0.0366856 0.112907i
\(417\) −53.3116 53.3116i −0.127846 0.127846i
\(418\) −23.3744 54.1800i −0.0559196 0.129617i
\(419\) 209.142i 0.499147i −0.968356 0.249573i \(-0.919710\pi\)
0.968356 0.249573i \(-0.0802904\pi\)
\(420\) 0 0
\(421\) −246.603 + 179.167i −0.585755 + 0.425576i −0.840794 0.541355i \(-0.817912\pi\)
0.255039 + 0.966931i \(0.417912\pi\)
\(422\) 1.17405 + 7.41263i 0.00278210 + 0.0175655i
\(423\) −225.219 114.755i −0.532433 0.271288i
\(424\) 66.7566 21.6905i 0.157445 0.0511569i
\(425\) 0 0
\(426\) 7.38525 5.36570i 0.0173363 0.0125955i
\(427\) −650.285 + 331.337i −1.52291 + 0.775964i
\(428\) −337.115 + 337.115i −0.787652 + 0.787652i
\(429\) −28.2498 11.2212i −0.0658502 0.0261565i
\(430\) 0 0
\(431\) 112.689 346.822i 0.261460 0.804692i −0.731028 0.682348i \(-0.760959\pi\)
0.992488 0.122344i \(-0.0390411\pi\)
\(432\) 229.044 + 36.2770i 0.530195 + 0.0839746i
\(433\) −335.954 + 53.2099i −0.775876 + 0.122887i −0.531800 0.846870i \(-0.678484\pi\)
−0.244075 + 0.969756i \(0.578484\pi\)
\(434\) −192.536 + 62.5586i −0.443630 + 0.144144i
\(435\) 0 0
\(436\) −247.078 179.513i −0.566693 0.411726i
\(437\) 580.465 + 91.9366i 1.32829 + 0.210381i
\(438\) 2.01369 + 3.95209i 0.00459747 + 0.00902304i
\(439\) 745.582i 1.69836i 0.528100 + 0.849182i \(0.322904\pi\)
−0.528100 + 0.849182i \(0.677096\pi\)
\(440\) 0 0
\(441\) −502.947 −1.14047
\(442\) −15.3619 + 7.82729i −0.0347555 + 0.0177088i
\(443\) −62.2972 + 393.329i −0.140626 + 0.887876i 0.811984 + 0.583680i \(0.198388\pi\)
−0.952609 + 0.304196i \(0.901612\pi\)
\(444\) 39.0720 53.7780i 0.0879999 0.121122i
\(445\) 0 0
\(446\) 17.5722 + 54.0816i 0.0393995 + 0.121259i
\(447\) 3.01993 + 19.0671i 0.00675600 + 0.0426557i
\(448\) −84.8168 + 535.512i −0.189323 + 1.19534i
\(449\) −497.787 161.741i −1.10866 0.360224i −0.303228 0.952918i \(-0.598065\pi\)
−0.805428 + 0.592694i \(0.798065\pi\)
\(450\) 0 0
\(451\) 370.621 + 23.7304i 0.821775 + 0.0526174i
\(452\) −254.803 254.803i −0.563724 0.563724i
\(453\) −77.6597 152.416i −0.171434 0.336459i
\(454\) −71.8644 98.9129i −0.158292 0.217870i
\(455\) 0 0
\(456\) −12.2624 37.7396i −0.0268911 0.0827624i
\(457\) −44.8205 + 87.9652i −0.0980755 + 0.192484i −0.934831 0.355092i \(-0.884449\pi\)
0.836756 + 0.547576i \(0.184449\pi\)
\(458\) −54.8599 + 8.68895i −0.119781 + 0.0189715i
\(459\) −151.508 208.532i −0.330082 0.454319i
\(460\) 0 0
\(461\) 232.336 0.503983 0.251992 0.967729i \(-0.418914\pi\)
0.251992 + 0.967729i \(0.418914\pi\)
\(462\) −38.9615 8.75433i −0.0843322 0.0189488i
\(463\) −231.578 + 231.578i −0.500168 + 0.500168i −0.911490 0.411322i \(-0.865067\pi\)
0.411322 + 0.911490i \(0.365067\pi\)
\(464\) 422.548 + 137.294i 0.910664 + 0.295893i
\(465\) 0 0
\(466\) −96.5789 70.1687i −0.207251 0.150577i
\(467\) −317.208 + 622.555i −0.679245 + 1.33309i 0.251654 + 0.967817i \(0.419026\pi\)
−0.930899 + 0.365277i \(0.880974\pi\)
\(468\) 82.1340 + 41.8494i 0.175500 + 0.0894217i
\(469\) 278.281 383.022i 0.593351 0.816677i
\(470\) 0 0
\(471\) −31.2635 + 96.2192i −0.0663769 + 0.204287i
\(472\) 10.0750 + 10.0750i 0.0213454 + 0.0213454i
\(473\) −729.350 + 68.1273i −1.54197 + 0.144032i
\(474\) 26.8301i 0.0566036i
\(475\) 0 0
\(476\) 527.573 383.304i 1.10835 0.805261i
\(477\) 30.9180 + 195.208i 0.0648175 + 0.409242i
\(478\) 2.43071 + 1.23851i 0.00508516 + 0.00259102i
\(479\) 499.509 162.300i 1.04282 0.338832i 0.262971 0.964804i \(-0.415298\pi\)
0.779846 + 0.625972i \(0.215298\pi\)
\(480\) 0 0
\(481\) 43.4635 31.5781i 0.0903607 0.0656509i
\(482\) 25.7949 13.1432i 0.0535164 0.0272680i
\(483\) 281.234 281.234i 0.582264 0.582264i
\(484\) −422.793 200.099i −0.873539 0.413427i
\(485\) 0 0
\(486\) 22.5697 69.4625i 0.0464398 0.142927i
\(487\) −572.208 90.6289i −1.17497 0.186096i −0.461730 0.887020i \(-0.652771\pi\)
−0.713236 + 0.700924i \(0.752771\pi\)
\(488\) 197.224 31.2372i 0.404147 0.0640106i
\(489\) 189.577 61.5974i 0.387683 0.125966i
\(490\) 0 0
\(491\) −669.637 486.520i −1.36382 0.990876i −0.998191 0.0601162i \(-0.980853\pi\)
−0.365632 0.930759i \(-0.619147\pi\)
\(492\) 121.232 + 19.2013i 0.246407 + 0.0390270i
\(493\) −224.199 440.015i −0.454764 0.892525i
\(494\) 15.7618i 0.0319064i
\(495\) 0 0
\(496\) −755.572 −1.52333
\(497\) −248.639 + 126.688i −0.500280 + 0.254905i
\(498\) 3.87543 24.4685i 0.00778198 0.0491335i
\(499\) −203.530 + 280.135i −0.407876 + 0.561393i −0.962699 0.270576i \(-0.912786\pi\)
0.554823 + 0.831968i \(0.312786\pi\)
\(500\) 0 0
\(501\) −86.0725 264.904i −0.171801 0.528750i
\(502\) 24.0795 + 152.032i 0.0479672 + 0.302853i
\(503\) 46.9968 296.726i 0.0934330 0.589913i −0.895902 0.444252i \(-0.853469\pi\)
0.989335 0.145660i \(-0.0465306\pi\)
\(504\) 234.347 + 76.1439i 0.464974 + 0.151079i
\(505\) 0 0
\(506\) −136.719 + 86.5518i −0.270195 + 0.171051i
\(507\) 106.645 + 106.645i 0.210345 + 0.210345i
\(508\) −131.617 258.313i −0.259089 0.508491i
\(509\) 63.4809 + 87.3740i 0.124717 + 0.171658i 0.866810 0.498639i \(-0.166167\pi\)
−0.742093 + 0.670297i \(0.766167\pi\)
\(510\) 0 0
\(511\) −41.8996 128.954i −0.0819953 0.252355i
\(512\) 185.338 363.746i 0.361988 0.710442i
\(513\) 232.742 36.8628i 0.453689 0.0718572i
\(514\) 87.8549 + 120.922i 0.170924 + 0.235257i
\(515\) 0 0
\(516\) −242.104 −0.469194
\(517\) 226.287 + 257.247i 0.437692 + 0.497577i
\(518\) 49.9063 49.9063i 0.0963442 0.0963442i
\(519\) −183.468 59.6123i −0.353503 0.114860i
\(520\) 0 0
\(521\) −203.745 148.030i −0.391066 0.284126i 0.374826 0.927095i \(-0.377702\pi\)
−0.765892 + 0.642969i \(0.777702\pi\)
\(522\) 41.6345 81.7123i 0.0797596 0.156537i
\(523\) 378.312 + 192.760i 0.723350 + 0.368565i 0.776581 0.630017i \(-0.216952\pi\)
−0.0532315 + 0.998582i \(0.516952\pi\)
\(524\) −573.493 + 789.346i −1.09445 + 1.50639i
\(525\) 0 0
\(526\) −30.6978 + 94.4782i −0.0583609 + 0.179616i
\(527\) 593.851 + 593.851i 1.12685 + 1.12685i
\(528\) −128.200 76.0096i −0.242804 0.143958i
\(529\) 1082.62i 2.04655i
\(530\) 0 0
\(531\) −32.4571 + 23.5815i −0.0611245 + 0.0444096i
\(532\) 93.2604 + 588.823i 0.175302 + 1.10681i
\(533\) 88.3893 + 45.0366i 0.165834 + 0.0844964i
\(534\) −14.4156 + 4.68390i −0.0269955 + 0.00877136i
\(535\) 0 0
\(536\) −104.795 + 76.1380i −0.195513 + 0.142048i
\(537\) 134.922 68.7463i 0.251252 0.128019i
\(538\) −127.415 + 127.415i −0.236831 + 0.236831i
\(539\) 633.556 + 251.656i 1.17543 + 0.466895i
\(540\) 0 0
\(541\) 69.7357 214.624i 0.128901 0.396718i −0.865690 0.500580i \(-0.833120\pi\)
0.994592 + 0.103862i \(0.0331201\pi\)
\(542\) 23.9626 + 3.79531i 0.0442115 + 0.00700242i
\(543\) 159.737 25.2999i 0.294175 0.0465927i
\(544\) −255.979 + 83.1725i −0.470549 + 0.152891i
\(545\) 0 0
\(546\) −8.62956 6.26975i −0.0158051 0.0114831i
\(547\) −831.270 131.660i −1.51969 0.240695i −0.659904 0.751350i \(-0.729403\pi\)
−0.859786 + 0.510655i \(0.829403\pi\)
\(548\) −216.226 424.368i −0.394573 0.774394i
\(549\) 562.251i 1.02414i
\(550\) 0 0
\(551\) 451.467 0.819360
\(552\) −96.9572 + 49.4022i −0.175647 + 0.0894967i
\(553\) −128.303 + 810.071i −0.232012 + 1.46487i
\(554\) −46.9703 + 64.6490i −0.0847839 + 0.116695i
\(555\) 0 0
\(556\) −95.7656 294.736i −0.172240 0.530101i
\(557\) 96.2519 + 607.711i 0.172804 + 1.09104i 0.909770 + 0.415113i \(0.136258\pi\)
−0.736966 + 0.675930i \(0.763742\pi\)
\(558\) −24.3975 + 154.040i −0.0437231 + 0.276057i
\(559\) −186.093 60.4652i −0.332903 0.108167i
\(560\) 0 0
\(561\) 41.0199 + 160.501i 0.0731193 + 0.286098i
\(562\) −95.5048 95.5048i −0.169937 0.169937i
\(563\) −114.729 225.168i −0.203781 0.399943i 0.766386 0.642381i \(-0.222053\pi\)
−0.970167 + 0.242437i \(0.922053\pi\)
\(564\) 66.5578 + 91.6090i 0.118010 + 0.162427i
\(565\) 0 0
\(566\) 13.8701 + 42.6877i 0.0245054 + 0.0754199i
\(567\) −276.915 + 543.477i −0.488387 + 0.958513i
\(568\) 75.4094 11.9437i 0.132763 0.0210276i
\(569\) 168.013 + 231.250i 0.295278 + 0.406415i 0.930719 0.365734i \(-0.119182\pi\)
−0.635442 + 0.772149i \(0.719182\pi\)
\(570\) 0 0
\(571\) 496.264 0.869114 0.434557 0.900644i \(-0.356905\pi\)
0.434557 + 0.900644i \(0.356905\pi\)
\(572\) −82.5233 93.8140i −0.144272 0.164011i
\(573\) −30.7835 + 30.7835i −0.0537234 + 0.0537234i
\(574\) 123.945 + 40.2721i 0.215932 + 0.0701605i
\(575\) 0 0
\(576\) 337.921 + 245.514i 0.586668 + 0.426239i
\(577\) 426.012 836.096i 0.738323 1.44904i −0.149455 0.988769i \(-0.547752\pi\)
0.887778 0.460272i \(-0.152248\pi\)
\(578\) −10.6338 5.41822i −0.0183977 0.00937408i
\(579\) 32.1270 44.2190i 0.0554870 0.0763713i
\(580\) 0 0
\(581\) −234.019 + 720.235i −0.402786 + 1.23965i
\(582\) 30.6248 + 30.6248i 0.0526199 + 0.0526199i
\(583\) 58.7282 261.372i 0.100734 0.448322i
\(584\) 37.0975i 0.0635231i
\(585\) 0 0
\(586\) 156.618 113.790i 0.267266 0.194180i
\(587\) −8.34641 52.6972i −0.0142188 0.0897737i 0.979558 0.201160i \(-0.0644710\pi\)
−0.993777 + 0.111386i \(0.964471\pi\)
\(588\) 200.752 + 102.288i 0.341414 + 0.173959i
\(589\) −730.194 + 237.254i −1.23972 + 0.402809i
\(590\) 0 0
\(591\) 67.1572 48.7926i 0.113633 0.0825593i
\(592\) 234.705 119.588i 0.396461 0.202007i
\(593\) 71.7371 71.7371i 0.120973 0.120973i −0.644028 0.765002i \(-0.722738\pi\)
0.765002 + 0.644028i \(0.222738\pi\)
\(594\) −41.4116 + 49.9450i −0.0697165 + 0.0840826i
\(595\) 0 0
\(596\) −24.5210 + 75.4678i −0.0411426 + 0.126624i
\(597\) −219.084 34.6995i −0.366975 0.0581231i
\(598\) −42.6906 + 6.76153i −0.0713890 + 0.0113069i
\(599\) −488.511 + 158.727i −0.815544 + 0.264986i −0.686944 0.726710i \(-0.741048\pi\)
−0.128600 + 0.991697i \(0.541048\pi\)
\(600\) 0 0
\(601\) 752.121 + 546.448i 1.25145 + 0.909231i 0.998305 0.0581972i \(-0.0185352\pi\)
0.253144 + 0.967429i \(0.418535\pi\)
\(602\) −253.890 40.2123i −0.421745 0.0667978i
\(603\) −165.585 324.978i −0.274601 0.538935i
\(604\) 703.136i 1.16413i
\(605\) 0 0
\(606\) 23.9889 0.0395857
\(607\) 579.149 295.091i 0.954117 0.486147i 0.0936234 0.995608i \(-0.470155\pi\)
0.860494 + 0.509461i \(0.170155\pi\)
\(608\) 38.4919 243.029i 0.0633091 0.399718i
\(609\) 179.586 247.178i 0.294886 0.405876i
\(610\) 0 0
\(611\) 28.2803 + 87.0377i 0.0462852 + 0.142451i
\(612\) −78.5896 496.195i −0.128414 0.810777i
\(613\) −71.8222 + 453.468i −0.117165 + 0.739751i 0.857234 + 0.514927i \(0.172181\pi\)
−0.974399 + 0.224825i \(0.927819\pi\)
\(614\) 156.140 + 50.7328i 0.254299 + 0.0826268i
\(615\) 0 0
\(616\) −257.104 213.176i −0.417377 0.346065i
\(617\) −292.953 292.953i −0.474803 0.474803i 0.428662 0.903465i \(-0.358985\pi\)
−0.903465 + 0.428662i \(0.858985\pi\)
\(618\) −25.6679 50.3760i −0.0415338 0.0815146i
\(619\) −178.737 246.011i −0.288752 0.397433i 0.639856 0.768495i \(-0.278994\pi\)
−0.928608 + 0.371062i \(0.878994\pi\)
\(620\) 0 0
\(621\) −199.685 614.568i −0.321554 0.989642i
\(622\) −5.06047 + 9.93174i −0.00813581 + 0.0159674i
\(623\) 457.643 72.4835i 0.734579 0.116346i
\(624\) −23.4003 32.2077i −0.0375004 0.0516149i
\(625\) 0 0
\(626\) 71.1706 0.113691
\(627\) −147.762 33.2009i −0.235665 0.0529520i
\(628\) −294.057 + 294.057i −0.468243 + 0.468243i
\(629\) −278.461 90.4774i −0.442704 0.143843i
\(630\) 0 0
\(631\) −118.262 85.9222i −0.187420 0.136168i 0.490119 0.871656i \(-0.336953\pi\)
−0.677539 + 0.735487i \(0.736953\pi\)
\(632\) 101.875 199.941i 0.161194 0.316362i
\(633\) 17.1628 + 8.74487i 0.0271134 + 0.0138150i
\(634\) −47.8181 + 65.8160i −0.0754229 + 0.103811i
\(635\) 0 0
\(636\) 27.3600 84.2055i 0.0430189 0.132399i
\(637\) 128.761 + 128.761i 0.202136 + 0.202136i
\(638\) −93.3324 + 82.0996i −0.146289 + 0.128683i
\(639\) 214.979i 0.336431i
\(640\) 0 0
\(641\) −701.684 + 509.804i −1.09467 + 0.795325i −0.980182 0.198099i \(-0.936523\pi\)
−0.114489 + 0.993424i \(0.536523\pi\)
\(642\) −6.64848 41.9768i −0.0103559 0.0653845i
\(643\) 239.840 + 122.204i 0.373001 + 0.190054i 0.630434 0.776243i \(-0.282877\pi\)
−0.257433 + 0.966296i \(0.582877\pi\)
\(644\) 1554.82 505.191i 2.41431 0.784458i
\(645\) 0 0
\(646\) −69.4949 + 50.4910i −0.107577 + 0.0781595i
\(647\) 409.189 208.492i 0.632440 0.322244i −0.108217 0.994127i \(-0.534514\pi\)
0.740657 + 0.671883i \(0.234514\pi\)
\(648\) 118.005 118.005i 0.182107 0.182107i
\(649\) 52.6852 13.4649i 0.0811790 0.0207472i
\(650\) 0 0
\(651\) −160.561 + 494.157i −0.246638 + 0.759074i
\(652\) 809.264 + 128.175i 1.24120 + 0.196587i
\(653\) 52.2225 8.27124i 0.0799733 0.0126665i −0.116320 0.993212i \(-0.537110\pi\)
0.196293 + 0.980545i \(0.437110\pi\)
\(654\) 25.8928 8.41309i 0.0395915 0.0128641i
\(655\) 0 0
\(656\) 393.505 + 285.898i 0.599856 + 0.435821i
\(657\) −103.170 16.3406i −0.157032 0.0248715i
\(658\) 54.5822 + 107.124i 0.0829517 + 0.162802i
\(659\) 164.064i 0.248960i 0.992222 + 0.124480i \(0.0397262\pi\)
−0.992222 + 0.124480i \(0.960274\pi\)
\(660\) 0 0
\(661\) −382.249 −0.578290 −0.289145 0.957285i \(-0.593371\pi\)
−0.289145 + 0.957285i \(0.593371\pi\)
\(662\) −192.598 + 98.1337i −0.290934 + 0.148238i
\(663\) −6.92231 + 43.7058i −0.0104409 + 0.0659212i
\(664\) 121.788 167.626i 0.183415 0.252449i
\(665\) 0 0
\(666\) −16.8020 51.7112i −0.0252282 0.0776444i
\(667\) −193.672 1222.80i −0.290363 1.83328i
\(668\) 179.104 1130.82i 0.268120 1.69284i
\(669\) 138.804 + 45.1003i 0.207480 + 0.0674145i
\(670\) 0 0
\(671\) 281.330 708.261i 0.419270 1.05553i
\(672\) −117.747 117.747i −0.175218 0.175218i
\(673\) 515.427 + 1011.58i 0.765865 + 1.50309i 0.861544 + 0.507683i \(0.169498\pi\)
−0.0956792 + 0.995412i \(0.530502\pi\)
\(674\) −12.9536 17.8291i −0.0192190 0.0264527i
\(675\) 0 0
\(676\) 191.570 + 589.592i 0.283388 + 0.872178i
\(677\) 224.561 440.725i 0.331700 0.650997i −0.663574 0.748111i \(-0.730961\pi\)
0.995273 + 0.0971137i \(0.0309610\pi\)
\(678\) 31.7275 5.02515i 0.0467958 0.00741172i
\(679\) −778.194 1071.09i −1.14609 1.57746i
\(680\) 0 0
\(681\) −313.797 −0.460789
\(682\) 107.809 181.834i 0.158078 0.266619i
\(683\) −152.022 + 152.022i −0.222580 + 0.222580i −0.809584 0.587004i \(-0.800307\pi\)
0.587004 + 0.809584i \(0.300307\pi\)
\(684\) 436.796 + 141.924i 0.638591 + 0.207491i
\(685\) 0 0
\(686\) 40.5142 + 29.4353i 0.0590586 + 0.0429086i
\(687\) −64.7195 + 127.019i −0.0942060 + 0.184890i
\(688\) −854.827 435.556i −1.24248 0.633076i
\(689\) 42.0604 57.8912i 0.0610456 0.0840221i
\(690\) 0 0
\(691\) −47.8360 + 147.224i −0.0692272 + 0.213059i −0.979685 0.200543i \(-0.935729\pi\)
0.910458 + 0.413602i \(0.135729\pi\)
\(692\) −560.698 560.698i −0.810258 0.810258i
\(693\) 706.105 621.124i 1.01891 0.896282i
\(694\) 9.27977i 0.0133714i
\(695\) 0 0
\(696\) −67.6281 + 49.1347i −0.0971669 + 0.0705959i
\(697\) −84.5750 533.985i −0.121341 0.766120i
\(698\) −113.772 57.9700i −0.162998 0.0830515i
\(699\) −291.397 + 94.6806i −0.416877 + 0.135451i
\(700\) 0 0
\(701\) 1007.39 731.909i 1.43707 1.04409i 0.448425 0.893821i \(-0.351985\pi\)
0.988645 0.150272i \(-0.0480148\pi\)
\(702\) −15.4416 + 7.86790i −0.0219966 + 0.0112078i
\(703\) 189.270 189.270i 0.269232 0.269232i
\(704\) −302.829 478.354i −0.430154 0.679480i
\(705\) 0 0
\(706\) −50.1785 + 154.434i −0.0710743 + 0.218744i
\(707\) −724.288 114.716i −1.02445 0.162257i
\(708\) 17.7512 2.81152i 0.0250723 0.00397107i
\(709\) 572.197 185.918i 0.807047 0.262226i 0.123701 0.992320i \(-0.460524\pi\)
0.683347 + 0.730094i \(0.260524\pi\)
\(710\) 0 0
\(711\) 511.174 + 371.389i 0.718950 + 0.522348i
\(712\) −125.211 19.8315i −0.175859 0.0278533i
\(713\) 955.843 + 1875.95i 1.34059 + 2.63106i
\(714\) 58.1329i 0.0814186i
\(715\) 0 0
\(716\) 622.433 0.869320
\(717\) 6.23859 3.17872i 0.00870096 0.00443336i
\(718\) −10.8212 + 68.3223i −0.0150713 + 0.0951565i
\(719\) −367.141 + 505.327i −0.510628 + 0.702819i −0.984025 0.178030i \(-0.943027\pi\)
0.473397 + 0.880849i \(0.343027\pi\)
\(720\) 0 0
\(721\) 534.080 + 1643.73i 0.740749 + 2.27979i
\(722\) 8.40838 + 53.0884i 0.0116460 + 0.0735297i
\(723\) 11.6236 73.3883i 0.0160769 0.101505i
\(724\) 632.241 + 205.427i 0.873261 + 0.283740i
\(725\) 0 0
\(726\) 36.5846 20.0069i 0.0503920 0.0275578i
\(727\) 312.563 + 312.563i 0.429936 + 0.429936i 0.888606 0.458671i \(-0.151674\pi\)
−0.458671 + 0.888606i \(0.651674\pi\)
\(728\) −40.5020 79.4896i −0.0556346 0.109189i
\(729\) 196.120 + 269.936i 0.269026 + 0.370283i
\(730\) 0 0
\(731\) 329.531 + 1014.19i 0.450795 + 1.38740i
\(732\) 114.349 224.423i 0.156215 0.306588i
\(733\) −85.2930 + 13.5091i −0.116362 + 0.0184299i −0.214344 0.976758i \(-0.568761\pi\)
0.0979821 + 0.995188i \(0.468761\pi\)
\(734\) 94.9874 + 130.739i 0.129411 + 0.178118i
\(735\) 0 0
\(736\) −674.754 −0.916785
\(737\) 45.9778 + 492.224i 0.0623850 + 0.667875i
\(738\) 70.9928 70.9928i 0.0961963 0.0961963i
\(739\) −534.104 173.541i −0.722738 0.234832i −0.0755282 0.997144i \(-0.524064\pi\)
−0.647210 + 0.762312i \(0.724064\pi\)
\(740\) 0 0
\(741\) −32.7278 23.7781i −0.0441670 0.0320892i
\(742\) 42.6781 83.7605i 0.0575176 0.112885i
\(743\) 380.846 + 194.051i 0.512578 + 0.261172i 0.691093 0.722766i \(-0.257129\pi\)
−0.178515 + 0.983937i \(0.557129\pi\)
\(744\) 83.5592 115.009i 0.112311 0.154582i
\(745\) 0 0
\(746\) −50.5308 + 155.518i −0.0677356 + 0.208469i
\(747\) 412.535 + 412.535i 0.552255 + 0.552255i
\(748\) −149.280 + 664.375i −0.199572 + 0.888202i
\(749\) 1299.18i 1.73456i
\(750\) 0 0
\(751\) 86.0258 62.5014i 0.114548 0.0832242i −0.529036 0.848599i \(-0.677446\pi\)
0.643585 + 0.765375i \(0.277446\pi\)
\(752\) 70.1953 + 443.196i 0.0933448 + 0.589356i
\(753\) 352.006 + 179.356i 0.467472 + 0.238189i
\(754\) −31.5783 + 10.2604i −0.0418811 + 0.0136080i
\(755\) 0 0
\(756\) 530.311 385.293i 0.701469 0.509647i
\(757\) 199.406 101.603i 0.263417 0.134217i −0.317295 0.948327i \(-0.602774\pi\)
0.580711 + 0.814110i \(0.302774\pi\)
\(758\) 17.2708 17.2708i 0.0227847 0.0227847i
\(759\) −26.5371 + 414.455i −0.0349632 + 0.546054i
\(760\) 0 0
\(761\) 272.671 839.195i 0.358306 1.10275i −0.595762 0.803161i \(-0.703150\pi\)
0.954068 0.299591i \(-0.0968503\pi\)
\(762\) 25.5260 + 4.04292i 0.0334987 + 0.00530567i
\(763\) −822.004 + 130.193i −1.07733 + 0.170633i
\(764\) −170.188 + 55.2975i −0.222760 + 0.0723790i
\(765\) 0 0
\(766\) 57.4992 + 41.7756i 0.0750642 + 0.0545374i
\(767\) 14.3466 + 2.27228i 0.0187048 + 0.00296255i
\(768\) −74.4309 146.079i −0.0969153 0.190207i
\(769\) 892.786i 1.16097i −0.814271 0.580485i \(-0.802863\pi\)
0.814271 0.580485i \(-0.197137\pi\)
\(770\) 0 0
\(771\) 383.620 0.497562
\(772\) 200.181 101.997i 0.259302 0.132121i
\(773\) 170.093 1073.93i 0.220043 1.38929i −0.592113 0.805855i \(-0.701706\pi\)
0.812156 0.583440i \(-0.198294\pi\)
\(774\) −116.400 + 160.211i −0.150387 + 0.206991i
\(775\) 0 0
\(776\) 111.936 + 344.503i 0.144247 + 0.443947i
\(777\) −28.3372 178.914i −0.0364700 0.230263i
\(778\) 22.0130 138.985i 0.0282944 0.178644i
\(779\) 470.062 + 152.733i 0.603418 + 0.196062i
\(780\) 0 0
\(781\) 107.568 270.807i 0.137731 0.346744i
\(782\) 166.567 + 166.567i 0.213001 + 0.213001i
\(783\) −225.362 442.298i −0.287819 0.564876i
\(784\) 524.797 + 722.321i 0.669384 + 0.921328i
\(785\) 0 0
\(786\) −26.8775 82.7204i −0.0341953 0.105242i
\(787\) −250.303 + 491.248i −0.318047 + 0.624203i −0.993581 0.113127i \(-0.963913\pi\)
0.675533 + 0.737329i \(0.263913\pi\)
\(788\) 337.012 53.3775i 0.427680 0.0677379i
\(789\) 149.864 + 206.270i 0.189942 + 0.261433i
\(790\) 0 0
\(791\) −981.968 −1.24143
\(792\) −236.249 + 101.923i −0.298295 + 0.128691i
\(793\) 143.943 143.943i 0.181517 0.181517i
\(794\) −88.0358 28.6046i −0.110876 0.0360259i
\(795\) 0 0
\(796\) −737.630 535.920i −0.926671 0.673266i
\(797\) 531.605 1043.33i 0.667007 1.30908i −0.271040 0.962568i \(-0.587367\pi\)
0.938047 0.346508i \(-0.112633\pi\)
\(798\) −47.3525 24.1273i −0.0593389 0.0302347i
\(799\) 293.164 403.506i 0.366914 0.505013i
\(800\) 0 0
\(801\) 110.305 339.485i 0.137710 0.423826i
\(802\) −29.9347 29.9347i −0.0373250 0.0373250i
\(803\) 121.786 + 72.2067i 0.151664 + 0.0899212i
\(804\) 163.391i 0.203223i
\(805\) 0 0
\(806\) 45.6821 33.1900i 0.0566776 0.0411787i
\(807\) 72.3473 + 456.783i 0.0896496 + 0.566026i
\(808\) 178.768 + 91.0867i 0.221247 + 0.112731i
\(809\) −958.766 + 311.522i −1.18512 + 0.385070i −0.834268 0.551359i \(-0.814109\pi\)
−0.350856 + 0.936429i \(0.614109\pi\)
\(810\) 0 0
\(811\) −445.331 + 323.552i −0.549114 + 0.398954i −0.827459 0.561527i \(-0.810214\pi\)
0.278345 + 0.960481i \(0.410214\pi\)
\(812\) 1118.98 570.151i 1.37806 0.702157i
\(813\) 44.0305 44.0305i 0.0541581 0.0541581i
\(814\) −4.70914 + 73.5471i −0.00578518 + 0.0903527i
\(815\) 0 0
\(816\) −67.0464 + 206.348i −0.0821647 + 0.252877i
\(817\) −962.883 152.506i −1.17856 0.186665i
\(818\) −110.826 + 17.5531i −0.135484 + 0.0214586i
\(819\) 238.905 77.6251i 0.291704 0.0947803i
\(820\) 0 0
\(821\) −112.308 81.5964i −0.136794 0.0993866i 0.517284 0.855814i \(-0.326943\pi\)
−0.654078 + 0.756427i \(0.726943\pi\)
\(822\) 41.9352 + 6.64188i 0.0510160 + 0.00808014i
\(823\) 639.367 + 1254.83i 0.776873 + 1.52470i 0.849647 + 0.527352i \(0.176815\pi\)
−0.0727737 + 0.997348i \(0.523185\pi\)
\(824\) 472.869i 0.573871i
\(825\) 0 0
\(826\) 19.0824 0.0231021
\(827\) −941.381 + 479.658i −1.13831 + 0.579997i −0.918451 0.395535i \(-0.870559\pi\)
−0.219858 + 0.975532i \(0.570559\pi\)
\(828\) 197.021 1243.94i 0.237948 1.50235i
\(829\) 274.311 377.556i 0.330893 0.455436i −0.610861 0.791738i \(-0.709176\pi\)
0.941754 + 0.336303i \(0.109176\pi\)
\(830\) 0 0
\(831\) 63.3783 + 195.058i 0.0762675 + 0.234727i
\(832\) −23.6574 149.367i −0.0284343 0.179527i
\(833\) 155.246 980.188i 0.186370 1.17670i
\(834\) 26.2742 + 8.53702i 0.0315039 + 0.0102362i
\(835\) 0 0
\(836\) −479.214 397.337i −0.573222 0.475283i
\(837\) 596.932 + 596.932i 0.713180 + 0.713180i
\(838\) 34.7918 + 68.2827i 0.0415176 + 0.0814829i
\(839\) −826.244 1137.23i −0.984796 1.35546i −0.934205 0.356736i \(-0.883889\pi\)
−0.0505912 0.998719i \(-0.516111\pi\)
\(840\) 0 0
\(841\) −34.0082 104.666i −0.0404378 0.124455i
\(842\) 50.7077 99.5196i 0.0602230 0.118194i
\(843\) −342.384 + 54.2284i −0.406150 + 0.0643278i
\(844\) 46.5388 + 64.0552i 0.0551408 + 0.0758948i
\(845\) 0 0
\(846\) 92.6215 0.109482
\(847\) −1200.26 + 429.113i −1.41707 + 0.506627i
\(848\) 248.093 248.093i 0.292562 0.292562i
\(849\) 109.561 + 35.5986i 0.129047 + 0.0419300i
\(850\) 0 0
\(851\) −593.832 431.444i −0.697805 0.506985i
\(852\) 43.7219 85.8090i 0.0513168 0.100715i
\(853\) 899.755 + 458.448i 1.05481 + 0.537454i 0.893320 0.449420i \(-0.148369\pi\)
0.161492 + 0.986874i \(0.448369\pi\)
\(854\) 157.191 216.355i 0.184065 0.253343i
\(855\) 0 0
\(856\) 109.842 338.060i 0.128321 0.394930i
\(857\) 787.462 + 787.462i 0.918859 + 0.918859i 0.996947 0.0780872i \(-0.0248812\pi\)
−0.0780872 + 0.996947i \(0.524881\pi\)
\(858\) 11.0899 1.03589i 0.0129253 0.00120733i
\(859\) 333.892i 0.388699i 0.980932 + 0.194349i \(0.0622595\pi\)
−0.980932 + 0.194349i \(0.937740\pi\)
\(860\) 0 0
\(861\) 270.604 196.605i 0.314290 0.228345i
\(862\) 20.9036 + 131.980i 0.0242501 + 0.153109i
\(863\) −1278.62 651.489i −1.48160 0.754912i −0.488541 0.872541i \(-0.662471\pi\)
−0.993058 + 0.117628i \(0.962471\pi\)
\(864\) −257.307 + 83.6041i −0.297809 + 0.0967640i
\(865\) 0 0
\(866\) 100.834 73.2598i 0.116436 0.0845957i
\(867\) −27.2926 + 13.9063i −0.0314793 + 0.0160395i
\(868\) −1510.20 + 1510.20i −1.73986 + 1.73986i
\(869\) −458.090 723.608i −0.527146 0.832690i
\(870\) 0 0
\(871\) −40.8067 + 125.590i −0.0468505 + 0.144191i
\(872\) 224.901 + 35.6208i 0.257914 + 0.0408495i
\(873\) −1007.39 + 159.555i −1.15394 + 0.182766i
\(874\) −204.809 + 66.5465i −0.234335 + 0.0761402i
\(875\) 0 0
\(876\) 37.8572 + 27.5049i 0.0432160 + 0.0313982i
\(877\) −1257.22 199.124i −1.43355 0.227051i −0.609146 0.793058i \(-0.708488\pi\)
−0.824401 + 0.566007i \(0.808488\pi\)
\(878\) −124.031 243.424i −0.141265 0.277248i
\(879\) 496.865i 0.565261i
\(880\) 0 0
\(881\) −226.497 −0.257091 −0.128545 0.991704i \(-0.541031\pi\)
−0.128545 + 0.991704i \(0.541031\pi\)
\(882\) 164.206 83.6674i 0.186175 0.0948610i
\(883\) −144.643 + 913.239i −0.163808 + 1.03425i 0.759590 + 0.650402i \(0.225400\pi\)
−0.923398 + 0.383843i \(0.874600\pi\)
\(884\) −106.912 + 147.152i −0.120942 + 0.166462i
\(885\) 0 0
\(886\) −45.0926 138.781i −0.0508946 0.156638i
\(887\) −236.730 1494.65i −0.266888 1.68507i −0.648873 0.760897i \(-0.724759\pi\)
0.381985 0.924169i \(-0.375241\pi\)
\(888\) −7.75307 + 48.9510i −0.00873094 + 0.0551250i
\(889\) −751.363 244.133i −0.845178 0.274615i
\(890\) 0 0
\(891\) −157.710 617.083i −0.177004 0.692574i
\(892\) 424.202 + 424.202i 0.475563 + 0.475563i
\(893\) 207.004 + 406.268i 0.231807 + 0.454947i
\(894\) −4.15787 5.72282i −0.00465086 0.00640136i
\(895\) 0 0
\(896\) −280.252 862.528i −0.312782 0.962643i
\(897\) −50.3632 + 98.8433i −0.0561463 + 0.110193i
\(898\) 189.428 30.0024i 0.210944 0.0334103i
\(899\) 950.668 + 1308.48i 1.05747 + 1.45549i
\(900\) 0 0
\(901\) −389.983 −0.432833
\(902\) −124.951 + 53.9066i −0.138527 + 0.0597634i
\(903\) −466.514 + 466.514i −0.516627 + 0.516627i
\(904\) 255.517 + 83.0227i 0.282652 + 0.0918392i
\(905\) 0 0
\(906\) 50.7100 + 36.8430i 0.0559713 + 0.0406655i
\(907\) 40.5260 79.5367i 0.0446813 0.0876920i −0.867586 0.497286i \(-0.834330\pi\)
0.912268 + 0.409594i \(0.134330\pi\)
\(908\) −1149.27 585.580i −1.26571 0.644912i
\(909\) −332.061 + 457.043i −0.365303 + 0.502797i
\(910\) 0 0
\(911\) −254.545 + 783.408i −0.279412 + 0.859943i 0.708606 + 0.705605i \(0.249324\pi\)
−0.988018 + 0.154338i \(0.950676\pi\)
\(912\) −140.255 140.255i −0.153788 0.153788i
\(913\) −313.248 726.083i −0.343097 0.795271i
\(914\) 36.1757i 0.0395796i
\(915\) 0 0
\(916\) −474.064 + 344.428i −0.517537 + 0.376013i
\(917\) 415.930 + 2626.08i 0.453576 + 2.86377i
\(918\) 84.1558 + 42.8795i 0.0916729 + 0.0467097i
\(919\) −24.7032 + 8.02657i −0.0268806 + 0.00873402i −0.322426 0.946595i \(-0.604498\pi\)
0.295546 + 0.955329i \(0.404498\pi\)
\(920\) 0 0
\(921\) 340.893 247.673i 0.370134 0.268918i
\(922\) −75.8552 + 38.6502i −0.0822724 + 0.0419199i
\(923\) 55.0374 55.0374i 0.0596288 0.0596288i
\(924\) −408.165 + 104.316i −0.441737 + 0.112896i
\(925\) 0 0
\(926\) 37.0836 114.131i 0.0400470 0.123252i
\(927\) 1315.08 + 208.288i 1.41864 + 0.224690i
\(928\) −511.960 + 81.0864i −0.551681 + 0.0873776i
\(929\) 853.382 277.281i 0.918603 0.298472i 0.188709 0.982033i \(-0.439570\pi\)
0.729894 + 0.683561i \(0.239570\pi\)
\(930\) 0 0
\(931\) 733.984 + 533.271i 0.788383 + 0.572794i
\(932\) −1243.91 197.016i −1.33467 0.211391i
\(933\) 12.9881 + 25.4906i 0.0139208 + 0.0273211i
\(934\) 256.026i 0.274118i
\(935\) 0 0
\(936\) −68.7285 −0.0734279
\(937\) −1127.79 + 574.636i −1.20361 + 0.613272i −0.936593 0.350418i \(-0.886039\pi\)
−0.267021 + 0.963691i \(0.586039\pi\)
\(938\) −27.1385 + 171.346i −0.0289323 + 0.182671i
\(939\) 107.368 147.779i 0.114343 0.157379i
\(940\) 0 0
\(941\) −356.827 1098.20i −0.379199 1.16706i −0.940602 0.339513i \(-0.889738\pi\)
0.561402 0.827543i \(-0.310262\pi\)
\(942\) −5.79930 36.6153i −0.00615636 0.0388698i
\(943\) 212.026 1338.68i 0.224842 1.41960i
\(944\) 67.7344 + 22.0082i 0.0717525 + 0.0233138i
\(945\) 0 0
\(946\) 226.791 143.573i 0.239737 0.151769i
\(947\) 960.358 + 960.358i 1.01411 + 1.01411i 0.999899 + 0.0142062i \(0.00452214\pi\)
0.0142062 + 0.999899i \(0.495478\pi\)
\(948\) −128.503 252.201i −0.135552 0.266035i
\(949\) 22.2295 + 30.5963i 0.0234242 + 0.0322406i
\(950\) 0 0
\(951\) 64.5223 + 198.579i 0.0678468 + 0.208811i
\(952\) −220.733 + 433.212i −0.231862 + 0.455055i
\(953\) −1048.23 + 166.024i −1.09993 + 0.174212i −0.679905 0.733300i \(-0.737979\pi\)
−0.420026 + 0.907512i \(0.637979\pi\)
\(954\) −42.5681 58.5900i −0.0446207 0.0614151i
\(955\) 0 0
\(956\) 28.7803 0.0301050
\(957\) 29.6712 + 317.651i 0.0310044 + 0.331923i
\(958\) −136.085 + 136.085i −0.142051 + 0.142051i
\(959\) −1234.37 401.071i −1.28714 0.418218i
\(960\) 0 0
\(961\) −1447.76 1051.86i −1.50651 1.09455i
\(962\) −8.93720 + 17.5402i −0.00929022 + 0.0182331i
\(963\) 891.783 + 454.386i 0.926047 + 0.471844i
\(964\) 179.521 247.090i 0.186226 0.256318i
\(965\) 0 0
\(966\) −45.0352 + 138.604i −0.0466203 + 0.143482i
\(967\) 246.228 + 246.228i 0.254631 + 0.254631i 0.822866 0.568235i \(-0.192374\pi\)
−0.568235 + 0.822866i \(0.692374\pi\)
\(968\) 348.599 10.1808i 0.360123 0.0105173i
\(969\) 220.470i 0.227523i
\(970\) 0 0
\(971\) 514.171 373.567i 0.529527 0.384724i −0.290654 0.956828i \(-0.593873\pi\)
0.820181 + 0.572104i \(0.193873\pi\)
\(972\) −120.537 761.042i −0.124009 0.782965i
\(973\) −752.464 383.400i −0.773344 0.394039i
\(974\) 201.896 65.6000i 0.207286 0.0673512i
\(975\) 0 0
\(976\) 807.493 586.678i 0.827349 0.601104i
\(977\) −4.00708 + 2.04171i −0.00410141 + 0.00208977i −0.456040 0.889959i \(-0.650733\pi\)
0.451939 + 0.892049i \(0.350733\pi\)
\(978\) −51.6478 + 51.6478i −0.0528096 + 0.0528096i
\(979\) −308.816 + 372.452i −0.315441 + 0.380442i
\(980\) 0 0
\(981\) −198.127 + 609.773i −0.201965 + 0.621583i
\(982\) 299.564 + 47.4462i 0.305055 + 0.0483159i
\(983\) 123.252 19.5212i 0.125383 0.0198588i −0.0934273 0.995626i \(-0.529782\pi\)
0.218811 + 0.975767i \(0.429782\pi\)
\(984\) −87.0360 + 28.2797i −0.0884513 + 0.0287396i
\(985\) 0 0
\(986\) 146.397 + 106.363i 0.148475 + 0.107874i
\(987\) 304.774 + 48.2715i 0.308788 + 0.0489073i
\(988\) −75.4911 148.160i −0.0764080 0.149959i
\(989\) 2673.38i 2.70312i
\(990\) 0 0
\(991\) −1455.86 −1.46908 −0.734542 0.678564i \(-0.762603\pi\)
−0.734542 + 0.678564i \(0.762603\pi\)
\(992\) 785.421 400.192i 0.791755 0.403419i
\(993\) −86.7876 + 547.955i −0.0873994 + 0.551818i
\(994\) 60.1028 82.7244i 0.0604656 0.0832237i
\(995\) 0 0
\(996\) −80.7632 248.564i −0.0810876 0.249562i
\(997\) −98.6185 622.653i −0.0989153 0.624526i −0.986485 0.163853i \(-0.947608\pi\)
0.887570 0.460674i \(-0.152392\pi\)
\(998\) 19.8486 125.319i 0.0198883 0.125570i
\(999\) −279.906 90.9469i −0.280186 0.0910379i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.207.8 yes 128
5.2 odd 4 inner 275.3.bk.c.218.8 yes 128
5.3 odd 4 inner 275.3.bk.c.218.9 yes 128
5.4 even 2 inner 275.3.bk.c.207.9 yes 128
11.5 even 5 inner 275.3.bk.c.82.9 yes 128
55.27 odd 20 inner 275.3.bk.c.93.9 yes 128
55.38 odd 20 inner 275.3.bk.c.93.8 yes 128
55.49 even 10 inner 275.3.bk.c.82.8 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.8 128 55.49 even 10 inner
275.3.bk.c.82.9 yes 128 11.5 even 5 inner
275.3.bk.c.93.8 yes 128 55.38 odd 20 inner
275.3.bk.c.93.9 yes 128 55.27 odd 20 inner
275.3.bk.c.207.8 yes 128 1.1 even 1 trivial
275.3.bk.c.207.9 yes 128 5.4 even 2 inner
275.3.bk.c.218.8 yes 128 5.2 odd 4 inner
275.3.bk.c.218.9 yes 128 5.3 odd 4 inner