Properties

Label 275.3.bk.c.82.8
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.8
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.166354 + 0.326489i) q^{2} +(0.928883 - 0.147121i) q^{3} +(2.27222 + 3.12744i) q^{4} +(-0.106490 + 0.327744i) q^{6} +(-10.4047 - 1.64794i) q^{7} +(-2.84673 + 0.450878i) q^{8} +(-7.71833 + 2.50784i) q^{9} +(-8.46786 + 7.02107i) q^{11} +(2.57074 + 2.57074i) q^{12} +(-2.61803 - 1.33395i) q^{13} +(2.26890 - 3.12287i) q^{14} +(-4.45195 + 13.7017i) q^{16} +(-14.2681 + 7.26994i) q^{17} +(0.465197 - 2.93714i) q^{18} +(8.60484 - 11.8435i) q^{19} -9.90719 q^{21} +(-0.883634 - 3.93264i) q^{22} +(28.3868 - 28.3868i) q^{23} +(-2.57795 + 0.837625i) q^{24} +(0.871040 - 0.632848i) q^{26} +(-14.3421 + 7.30766i) q^{27} +(-18.4879 - 36.2846i) q^{28} +(18.1268 + 24.9494i) q^{29} +(16.2065 + 49.8786i) q^{31} +(-11.8850 - 11.8850i) q^{32} +(-6.83271 + 7.76755i) q^{33} -5.86775i q^{34} +(-25.3809 - 18.4403i) q^{36} +(-18.0590 - 2.86026i) q^{37} +(2.43533 + 4.77961i) q^{38} +(-2.62809 - 0.853920i) q^{39} +(-27.3139 - 19.8447i) q^{41} +(1.64810 - 3.23459i) q^{42} +(-47.0885 + 47.0885i) q^{43} +(-41.1988 - 10.5293i) q^{44} +(4.54571 + 13.9903i) q^{46} +(4.87237 + 30.7629i) q^{47} +(-2.11954 + 13.3822i) q^{48} +(58.9402 + 19.1508i) q^{49} +(-12.1838 + 8.85205i) q^{51} +(-1.77688 - 11.2188i) q^{52} +(21.6991 + 11.0563i) q^{53} -5.89819i q^{54} +30.3624 q^{56} +(6.25046 - 12.2672i) q^{57} +(-11.1612 + 1.76775i) q^{58} +(2.90572 + 3.99938i) q^{59} +(21.4090 - 65.8900i) q^{61} +(-18.9808 - 3.00627i) q^{62} +(84.4396 - 13.3739i) q^{63} +(-48.9493 + 15.9046i) q^{64} +(-1.39937 - 3.52297i) q^{66} +(31.7791 + 31.7791i) q^{67} +(-55.1565 - 28.1036i) q^{68} +(22.1918 - 30.5443i) q^{69} +(8.18581 - 25.1933i) q^{71} +(20.8413 - 10.6192i) q^{72} +(2.01349 - 12.7127i) q^{73} +(3.93804 - 5.42024i) q^{74} +56.5921 q^{76} +(99.6758 - 59.0975i) q^{77} +(0.715990 - 0.715990i) q^{78} +(-74.0458 + 24.0589i) q^{79} +(46.8434 - 34.0337i) q^{81} +(11.0228 - 5.61642i) q^{82} +(32.6366 + 64.0530i) q^{83} +(-22.5113 - 30.9842i) q^{84} +(-7.54048 - 23.2072i) q^{86} +(20.5082 + 20.5082i) q^{87} +(20.9401 - 23.8050i) q^{88} -43.9843i q^{89} +(25.0415 + 18.1937i) q^{91} +(153.279 + 24.2771i) q^{92} +(22.3922 + 43.9471i) q^{93} +(-10.8543 - 3.52677i) q^{94} +(-12.7883 - 9.29123i) q^{96} +(-57.0567 + 111.980i) q^{97} +(-16.0575 + 16.0575i) q^{98} +(47.7500 - 75.4269i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.166354 + 0.326489i −0.0831771 + 0.163244i −0.928849 0.370459i \(-0.879200\pi\)
0.845672 + 0.533704i \(0.179200\pi\)
\(3\) 0.928883 0.147121i 0.309628 0.0490402i 0.000313023 1.00000i \(-0.499900\pi\)
0.309315 + 0.950960i \(0.399900\pi\)
\(4\) 2.27222 + 3.12744i 0.568055 + 0.781861i
\(5\) 0 0
\(6\) −0.106490 + 0.327744i −0.0177484 + 0.0546240i
\(7\) −10.4047 1.64794i −1.48638 0.235420i −0.640158 0.768243i \(-0.721131\pi\)
−0.846227 + 0.532823i \(0.821131\pi\)
\(8\) −2.84673 + 0.450878i −0.355841 + 0.0563597i
\(9\) −7.71833 + 2.50784i −0.857592 + 0.278649i
\(10\) 0 0
\(11\) −8.46786 + 7.02107i −0.769805 + 0.638279i
\(12\) 2.57074 + 2.57074i 0.214228 + 0.214228i
\(13\) −2.61803 1.33395i −0.201387 0.102612i 0.350389 0.936604i \(-0.386049\pi\)
−0.551776 + 0.833993i \(0.686049\pi\)
\(14\) 2.26890 3.12287i 0.162064 0.223062i
\(15\) 0 0
\(16\) −4.45195 + 13.7017i −0.278247 + 0.856355i
\(17\) −14.2681 + 7.26994i −0.839298 + 0.427644i −0.820133 0.572173i \(-0.806101\pi\)
−0.0191647 + 0.999816i \(0.506101\pi\)
\(18\) 0.465197 2.93714i 0.0258443 0.163174i
\(19\) 8.60484 11.8435i 0.452886 0.623344i −0.520128 0.854088i \(-0.674116\pi\)
0.973015 + 0.230744i \(0.0741159\pi\)
\(20\) 0 0
\(21\) −9.90719 −0.471771
\(22\) −0.883634 3.93264i −0.0401652 0.178757i
\(23\) 28.3868 28.3868i 1.23421 1.23421i 0.271878 0.962332i \(-0.412355\pi\)
0.962332 0.271878i \(-0.0876448\pi\)
\(24\) −2.57795 + 0.837625i −0.107414 + 0.0349011i
\(25\) 0 0
\(26\) 0.871040 0.632848i 0.0335016 0.0243403i
\(27\) −14.3421 + 7.30766i −0.531188 + 0.270654i
\(28\) −18.4879 36.2846i −0.660283 1.29588i
\(29\) 18.1268 + 24.9494i 0.625062 + 0.860324i 0.997709 0.0676492i \(-0.0215499\pi\)
−0.372647 + 0.927973i \(0.621550\pi\)
\(30\) 0 0
\(31\) 16.2065 + 49.8786i 0.522792 + 1.60899i 0.768642 + 0.639680i \(0.220933\pi\)
−0.245850 + 0.969308i \(0.579067\pi\)
\(32\) −11.8850 11.8850i −0.371406 0.371406i
\(33\) −6.83271 + 7.76755i −0.207052 + 0.235380i
\(34\) 5.86775i 0.172581i
\(35\) 0 0
\(36\) −25.3809 18.4403i −0.705024 0.512230i
\(37\) −18.0590 2.86026i −0.488081 0.0773045i −0.0924564 0.995717i \(-0.529472\pi\)
−0.395625 + 0.918412i \(0.629472\pi\)
\(38\) 2.43533 + 4.77961i 0.0640877 + 0.125779i
\(39\) −2.62809 0.853920i −0.0673870 0.0218954i
\(40\) 0 0
\(41\) −27.3139 19.8447i −0.666192 0.484016i 0.202557 0.979271i \(-0.435075\pi\)
−0.868748 + 0.495254i \(0.835075\pi\)
\(42\) 1.64810 3.23459i 0.0392406 0.0770139i
\(43\) −47.0885 + 47.0885i −1.09508 + 1.09508i −0.100104 + 0.994977i \(0.531917\pi\)
−0.994977 + 0.100104i \(0.968083\pi\)
\(44\) −41.1988 10.5293i −0.936337 0.239303i
\(45\) 0 0
\(46\) 4.54571 + 13.9903i 0.0988197 + 0.304136i
\(47\) 4.87237 + 30.7629i 0.103667 + 0.654530i 0.983727 + 0.179668i \(0.0575023\pi\)
−0.880060 + 0.474863i \(0.842498\pi\)
\(48\) −2.11954 + 13.3822i −0.0441570 + 0.278797i
\(49\) 58.9402 + 19.1508i 1.20286 + 0.390833i
\(50\) 0 0
\(51\) −12.1838 + 8.85205i −0.238898 + 0.173570i
\(52\) −1.77688 11.2188i −0.0341707 0.215745i
\(53\) 21.6991 + 11.0563i 0.409418 + 0.208609i 0.646555 0.762867i \(-0.276209\pi\)
−0.237137 + 0.971476i \(0.576209\pi\)
\(54\) 5.89819i 0.109226i
\(55\) 0 0
\(56\) 30.3624 0.542185
\(57\) 6.25046 12.2672i 0.109657 0.215214i
\(58\) −11.1612 + 1.76775i −0.192434 + 0.0304785i
\(59\) 2.90572 + 3.99938i 0.0492495 + 0.0677862i 0.832931 0.553376i \(-0.186661\pi\)
−0.783682 + 0.621162i \(0.786661\pi\)
\(60\) 0 0
\(61\) 21.4090 65.8900i 0.350967 1.08016i −0.607345 0.794438i \(-0.707765\pi\)
0.958311 0.285726i \(-0.0922346\pi\)
\(62\) −18.9808 3.00627i −0.306142 0.0484882i
\(63\) 84.4396 13.3739i 1.34031 0.212284i
\(64\) −48.9493 + 15.9046i −0.764833 + 0.248509i
\(65\) 0 0
\(66\) −1.39937 3.52297i −0.0212025 0.0533783i
\(67\) 31.7791 + 31.7791i 0.474314 + 0.474314i 0.903308 0.428993i \(-0.141132\pi\)
−0.428993 + 0.903308i \(0.641132\pi\)
\(68\) −55.1565 28.1036i −0.811125 0.413289i
\(69\) 22.1918 30.5443i 0.321620 0.442672i
\(70\) 0 0
\(71\) 8.18581 25.1933i 0.115293 0.354836i −0.876715 0.481010i \(-0.840270\pi\)
0.992008 + 0.126175i \(0.0402700\pi\)
\(72\) 20.8413 10.6192i 0.289462 0.147488i
\(73\) 2.01349 12.7127i 0.0275821 0.174147i −0.970052 0.242899i \(-0.921902\pi\)
0.997634 + 0.0687521i \(0.0219017\pi\)
\(74\) 3.93804 5.42024i 0.0532167 0.0732465i
\(75\) 0 0
\(76\) 56.5921 0.744633
\(77\) 99.6758 59.0975i 1.29449 0.767500i
\(78\) 0.715990 0.715990i 0.00917936 0.00917936i
\(79\) −74.0458 + 24.0589i −0.937288 + 0.304543i −0.737540 0.675304i \(-0.764012\pi\)
−0.199748 + 0.979847i \(0.564012\pi\)
\(80\) 0 0
\(81\) 46.8434 34.0337i 0.578314 0.420170i
\(82\) 11.0228 5.61642i 0.134425 0.0684929i
\(83\) 32.6366 + 64.0530i 0.393212 + 0.771723i 0.999727 0.0233493i \(-0.00743299\pi\)
−0.606515 + 0.795072i \(0.707433\pi\)
\(84\) −22.5113 30.9842i −0.267992 0.368859i
\(85\) 0 0
\(86\) −7.54048 23.2072i −0.0876800 0.269851i
\(87\) 20.5082 + 20.5082i 0.235727 + 0.235727i
\(88\) 20.9401 23.8050i 0.237955 0.270512i
\(89\) 43.9843i 0.494205i −0.968989 0.247103i \(-0.920522\pi\)
0.968989 0.247103i \(-0.0794785\pi\)
\(90\) 0 0
\(91\) 25.0415 + 18.1937i 0.275181 + 0.199931i
\(92\) 153.279 + 24.2771i 1.66608 + 0.263881i
\(93\) 22.3922 + 43.9471i 0.240776 + 0.472549i
\(94\) −10.8543 3.52677i −0.115471 0.0375189i
\(95\) 0 0
\(96\) −12.7883 9.29123i −0.133211 0.0967837i
\(97\) −57.0567 + 111.980i −0.588213 + 1.15443i 0.384652 + 0.923062i \(0.374321\pi\)
−0.972865 + 0.231372i \(0.925679\pi\)
\(98\) −16.0575 + 16.0575i −0.163852 + 0.163852i
\(99\) 47.7500 75.4269i 0.482324 0.761888i
\(100\) 0 0
\(101\) −21.5112 66.2046i −0.212982 0.655491i −0.999291 0.0376575i \(-0.988010\pi\)
0.786309 0.617834i \(-0.211990\pi\)
\(102\) −0.863267 5.45045i −0.00846340 0.0534358i
\(103\) −25.6654 + 162.045i −0.249178 + 1.57325i 0.472696 + 0.881225i \(0.343281\pi\)
−0.721875 + 0.692024i \(0.756719\pi\)
\(104\) 8.05427 + 2.61699i 0.0774449 + 0.0251634i
\(105\) 0 0
\(106\) −7.21949 + 5.24527i −0.0681084 + 0.0494836i
\(107\) −19.2927 121.810i −0.180306 1.13841i −0.897331 0.441359i \(-0.854497\pi\)
0.717025 0.697048i \(-0.245503\pi\)
\(108\) −55.4427 28.2494i −0.513358 0.261569i
\(109\) 79.0032i 0.724800i 0.932023 + 0.362400i \(0.118043\pi\)
−0.932023 + 0.362400i \(0.881957\pi\)
\(110\) 0 0
\(111\) −17.1955 −0.154914
\(112\) 68.9007 135.225i 0.615185 1.20737i
\(113\) 92.0678 14.5821i 0.814759 0.129045i 0.264872 0.964284i \(-0.414670\pi\)
0.549888 + 0.835238i \(0.314670\pi\)
\(114\) 2.96532 + 4.08141i 0.0260115 + 0.0358018i
\(115\) 0 0
\(116\) −36.8397 + 113.381i −0.317584 + 0.977422i
\(117\) 23.5521 + 3.73029i 0.201300 + 0.0318828i
\(118\) −1.78913 + 0.283371i −0.0151621 + 0.00240145i
\(119\) 160.435 52.1286i 1.34820 0.438055i
\(120\) 0 0
\(121\) 22.4093 118.907i 0.185201 0.982701i
\(122\) 17.9509 + 17.9509i 0.147138 + 0.147138i
\(123\) −28.2909 14.4150i −0.230008 0.117195i
\(124\) −119.168 + 164.020i −0.961030 + 1.32274i
\(125\) 0 0
\(126\) −9.68046 + 29.7934i −0.0768290 + 0.236455i
\(127\) −66.8213 + 34.0472i −0.526152 + 0.268088i −0.696827 0.717240i \(-0.745405\pi\)
0.170675 + 0.985327i \(0.445405\pi\)
\(128\) 13.4676 85.0311i 0.105216 0.664305i
\(129\) −36.8120 + 50.6674i −0.285364 + 0.392770i
\(130\) 0 0
\(131\) 252.393 1.92667 0.963334 0.268306i \(-0.0864639\pi\)
0.963334 + 0.268306i \(0.0864639\pi\)
\(132\) −39.8180 3.71933i −0.301651 0.0281767i
\(133\) −109.048 + 109.048i −0.819911 + 0.819911i
\(134\) −15.6621 + 5.08892i −0.116881 + 0.0379770i
\(135\) 0 0
\(136\) 37.3395 27.1287i 0.274555 0.199476i
\(137\) −109.777 + 55.9341i −0.801291 + 0.408278i −0.806151 0.591710i \(-0.798453\pi\)
0.00485985 + 0.999988i \(0.498453\pi\)
\(138\) 6.28069 + 12.3265i 0.0455122 + 0.0893228i
\(139\) 47.1210 + 64.8564i 0.339000 + 0.466593i 0.944149 0.329519i \(-0.106887\pi\)
−0.605149 + 0.796112i \(0.706887\pi\)
\(140\) 0 0
\(141\) 9.05172 + 27.8583i 0.0641966 + 0.197577i
\(142\) 6.86359 + 6.86359i 0.0483352 + 0.0483352i
\(143\) 31.5349 7.08563i 0.220523 0.0495499i
\(144\) 116.919i 0.811937i
\(145\) 0 0
\(146\) 3.81560 + 2.77220i 0.0261342 + 0.0189876i
\(147\) 57.5660 + 9.11756i 0.391606 + 0.0620242i
\(148\) −32.0887 62.9776i −0.216816 0.425525i
\(149\) −19.5223 6.34317i −0.131022 0.0425716i 0.242772 0.970083i \(-0.421943\pi\)
−0.373794 + 0.927512i \(0.621943\pi\)
\(150\) 0 0
\(151\) −147.152 106.912i −0.974515 0.708026i −0.0180387 0.999837i \(-0.505742\pi\)
−0.956476 + 0.291811i \(0.905742\pi\)
\(152\) −19.1557 + 37.5951i −0.126024 + 0.247336i
\(153\) 91.8938 91.8938i 0.600613 0.600613i
\(154\) 2.71317 + 42.3741i 0.0176180 + 0.275157i
\(155\) 0 0
\(156\) −3.30102 10.1595i −0.0211604 0.0651250i
\(157\) −16.8286 106.251i −0.107188 0.676760i −0.981510 0.191413i \(-0.938693\pi\)
0.874321 0.485347i \(-0.161307\pi\)
\(158\) 4.46286 28.1774i 0.0282460 0.178338i
\(159\) 21.7826 + 7.07758i 0.136997 + 0.0445131i
\(160\) 0 0
\(161\) −342.136 + 248.576i −2.12507 + 1.54395i
\(162\) 3.31903 + 20.9555i 0.0204878 + 0.129355i
\(163\) −188.851 96.2244i −1.15860 0.590334i −0.234357 0.972151i \(-0.575299\pi\)
−0.924238 + 0.381817i \(0.875299\pi\)
\(164\) 130.514i 0.795817i
\(165\) 0 0
\(166\) −26.3418 −0.158686
\(167\) −134.458 + 263.889i −0.805140 + 1.58018i 0.00932044 + 0.999957i \(0.497033\pi\)
−0.814460 + 0.580219i \(0.802967\pi\)
\(168\) 28.2031 4.46693i 0.167876 0.0265889i
\(169\) −94.2611 129.739i −0.557758 0.767688i
\(170\) 0 0
\(171\) −36.7133 + 112.992i −0.214698 + 0.660771i
\(172\) −254.262 40.2711i −1.47827 0.234134i
\(173\) 202.597 32.0882i 1.17108 0.185481i 0.459560 0.888147i \(-0.348007\pi\)
0.711520 + 0.702666i \(0.248007\pi\)
\(174\) −10.1073 + 3.28407i −0.0580882 + 0.0188740i
\(175\) 0 0
\(176\) −58.5020 147.281i −0.332398 0.836826i
\(177\) 3.28747 + 3.28747i 0.0185733 + 0.0185733i
\(178\) 14.3604 + 7.31697i 0.0806762 + 0.0411066i
\(179\) 94.6411 130.262i 0.528721 0.727722i −0.458214 0.888842i \(-0.651511\pi\)
0.986935 + 0.161120i \(0.0515105\pi\)
\(180\) 0 0
\(181\) −53.1406 + 163.550i −0.293595 + 0.903592i 0.690095 + 0.723719i \(0.257569\pi\)
−0.983690 + 0.179873i \(0.942431\pi\)
\(182\) −10.1058 + 5.14917i −0.0555264 + 0.0282921i
\(183\) 10.1926 64.3538i 0.0556975 0.351660i
\(184\) −68.0107 + 93.6086i −0.369623 + 0.508743i
\(185\) 0 0
\(186\) −18.0733 −0.0971681
\(187\) 69.7772 161.738i 0.373140 0.864908i
\(188\) −85.1382 + 85.1382i −0.452863 + 0.452863i
\(189\) 161.268 52.3990i 0.853268 0.277244i
\(190\) 0 0
\(191\) 37.4498 27.2089i 0.196072 0.142455i −0.485418 0.874282i \(-0.661332\pi\)
0.681490 + 0.731828i \(0.261332\pi\)
\(192\) −43.1283 + 21.9750i −0.224627 + 0.114453i
\(193\) −26.3850 51.7834i −0.136710 0.268308i 0.812494 0.582969i \(-0.198109\pi\)
−0.949204 + 0.314661i \(0.898109\pi\)
\(194\) −27.0686 37.2567i −0.139529 0.192045i
\(195\) 0 0
\(196\) 74.0319 + 227.847i 0.377714 + 1.16248i
\(197\) 62.4136 + 62.4136i 0.316820 + 0.316820i 0.847544 0.530724i \(-0.178080\pi\)
−0.530724 + 0.847544i \(0.678080\pi\)
\(198\) 16.6826 + 28.1374i 0.0842556 + 0.142108i
\(199\) 235.857i 1.18521i 0.805492 + 0.592606i \(0.201901\pi\)
−0.805492 + 0.592606i \(0.798099\pi\)
\(200\) 0 0
\(201\) 34.1944 + 24.8437i 0.170121 + 0.123600i
\(202\) 25.1935 + 3.99026i 0.124720 + 0.0197538i
\(203\) −147.489 289.463i −0.726545 1.42592i
\(204\) −55.3686 17.9903i −0.271415 0.0881879i
\(205\) 0 0
\(206\) −48.6362 35.3363i −0.236098 0.171535i
\(207\) −147.909 + 290.288i −0.714538 + 1.40236i
\(208\) 29.9327 29.9327i 0.143907 0.143907i
\(209\) 10.2897 + 160.705i 0.0492332 + 0.768921i
\(210\) 0 0
\(211\) 6.32918 + 19.4792i 0.0299961 + 0.0923186i 0.964934 0.262494i \(-0.0845448\pi\)
−0.934938 + 0.354812i \(0.884545\pi\)
\(212\) 14.7274 + 92.9850i 0.0694688 + 0.438609i
\(213\) 3.89720 24.6060i 0.0182967 0.115521i
\(214\) 42.9789 + 13.9647i 0.200836 + 0.0652555i
\(215\) 0 0
\(216\) 37.5332 27.2695i 0.173765 0.126248i
\(217\) −86.4271 545.679i −0.398282 2.51465i
\(218\) −25.7937 13.1425i −0.118320 0.0602868i
\(219\) 12.1048i 0.0552732i
\(220\) 0 0
\(221\) 47.0519 0.212905
\(222\) 2.86055 5.61414i 0.0128853 0.0252889i
\(223\) −153.277 + 24.2766i −0.687339 + 0.108864i −0.490329 0.871538i \(-0.663123\pi\)
−0.197010 + 0.980401i \(0.563123\pi\)
\(224\) 104.074 + 143.245i 0.464615 + 0.639488i
\(225\) 0 0
\(226\) −10.5550 + 32.4849i −0.0467035 + 0.143738i
\(227\) −329.555 52.1964i −1.45178 0.229940i −0.619809 0.784753i \(-0.712790\pi\)
−0.831975 + 0.554812i \(0.812790\pi\)
\(228\) 52.5674 8.32586i 0.230559 0.0365169i
\(229\) −144.163 + 46.8414i −0.629533 + 0.204548i −0.606368 0.795184i \(-0.707374\pi\)
−0.0231646 + 0.999732i \(0.507374\pi\)
\(230\) 0 0
\(231\) 83.8927 69.5590i 0.363172 0.301121i
\(232\) −62.8512 62.8512i −0.270910 0.270910i
\(233\) 290.281 + 147.905i 1.24584 + 0.634787i 0.947525 0.319680i \(-0.103576\pi\)
0.298315 + 0.954468i \(0.403576\pi\)
\(234\) −5.13590 + 7.06896i −0.0219483 + 0.0302092i
\(235\) 0 0
\(236\) −5.90540 + 18.1750i −0.0250229 + 0.0770125i
\(237\) −65.2403 + 33.2416i −0.275275 + 0.140260i
\(238\) −9.66970 + 61.0521i −0.0406290 + 0.256521i
\(239\) 4.37606 6.02313i 0.0183099 0.0252014i −0.799764 0.600315i \(-0.795042\pi\)
0.818074 + 0.575113i \(0.195042\pi\)
\(240\) 0 0
\(241\) −79.0071 −0.327830 −0.163915 0.986474i \(-0.552412\pi\)
−0.163915 + 0.986474i \(0.552412\pi\)
\(242\) 35.0938 + 27.0970i 0.145016 + 0.111971i
\(243\) 140.943 140.943i 0.580010 0.580010i
\(244\) 254.713 82.7613i 1.04391 0.339186i
\(245\) 0 0
\(246\) 9.41264 6.83868i 0.0382628 0.0277995i
\(247\) −38.3264 + 19.5283i −0.155168 + 0.0790619i
\(248\) −68.6248 134.684i −0.276713 0.543080i
\(249\) 39.7391 + 54.6962i 0.159595 + 0.219664i
\(250\) 0 0
\(251\) 129.811 + 399.517i 0.517174 + 1.59170i 0.779290 + 0.626663i \(0.215580\pi\)
−0.262116 + 0.965036i \(0.584420\pi\)
\(252\) 233.692 + 233.692i 0.927348 + 0.927348i
\(253\) −41.0699 + 439.681i −0.162332 + 1.73787i
\(254\) 27.4803i 0.108190i
\(255\) 0 0
\(256\) −141.034 102.467i −0.550913 0.400262i
\(257\) 402.884 + 63.8105i 1.56764 + 0.248290i 0.879004 0.476815i \(-0.158209\pi\)
0.688638 + 0.725105i \(0.258209\pi\)
\(258\) −10.4185 20.4474i −0.0403817 0.0792536i
\(259\) 183.185 + 59.5204i 0.707277 + 0.229808i
\(260\) 0 0
\(261\) −202.478 147.109i −0.775776 0.563634i
\(262\) −41.9867 + 82.4036i −0.160255 + 0.314518i
\(263\) −191.700 + 191.700i −0.728899 + 0.728899i −0.970400 0.241501i \(-0.922360\pi\)
0.241501 + 0.970400i \(0.422360\pi\)
\(264\) 15.9487 25.1928i 0.0604116 0.0954274i
\(265\) 0 0
\(266\) −17.4624 53.7436i −0.0656480 0.202044i
\(267\) −6.47099 40.8562i −0.0242359 0.153020i
\(268\) −27.1782 + 171.596i −0.101411 + 0.640285i
\(269\) −467.686 151.961i −1.73861 0.564909i −0.743963 0.668221i \(-0.767056\pi\)
−0.994649 + 0.103312i \(0.967056\pi\)
\(270\) 0 0
\(271\) −53.5655 + 38.9176i −0.197659 + 0.143607i −0.682212 0.731154i \(-0.738982\pi\)
0.484554 + 0.874762i \(0.338982\pi\)
\(272\) −36.0898 227.862i −0.132683 0.837728i
\(273\) 25.9373 + 13.2157i 0.0950084 + 0.0484092i
\(274\) 45.1458i 0.164766i
\(275\) 0 0
\(276\) 145.950 0.528805
\(277\) 99.0065 194.311i 0.357424 0.701485i −0.640356 0.768078i \(-0.721213\pi\)
0.997780 + 0.0665937i \(0.0212131\pi\)
\(278\) −29.0137 + 4.59531i −0.104366 + 0.0165299i
\(279\) −250.175 344.336i −0.896684 1.23418i
\(280\) 0 0
\(281\) 113.903 350.558i 0.405349 1.24754i −0.515255 0.857037i \(-0.672303\pi\)
0.920604 0.390499i \(-0.127697\pi\)
\(282\) −10.6012 1.67907i −0.0375930 0.00595415i
\(283\) −120.984 + 19.1620i −0.427506 + 0.0677103i −0.366480 0.930426i \(-0.619437\pi\)
−0.0610260 + 0.998136i \(0.519437\pi\)
\(284\) 97.3907 31.6441i 0.342925 0.111423i
\(285\) 0 0
\(286\) −2.93258 + 11.4745i −0.0102538 + 0.0401206i
\(287\) 251.489 + 251.489i 0.876270 + 0.876270i
\(288\) 121.538 + 61.9266i 0.422006 + 0.215023i
\(289\) −19.1444 + 26.3500i −0.0662435 + 0.0911763i
\(290\) 0 0
\(291\) −36.5244 + 112.411i −0.125513 + 0.386291i
\(292\) 44.3333 22.5890i 0.151827 0.0773595i
\(293\) 82.6474 521.815i 0.282073 1.78094i −0.286271 0.958149i \(-0.592416\pi\)
0.568344 0.822791i \(-0.307584\pi\)
\(294\) −12.5531 + 17.2779i −0.0426977 + 0.0587684i
\(295\) 0 0
\(296\) 52.6987 0.178036
\(297\) 70.1392 162.577i 0.236159 0.547397i
\(298\) 5.31858 5.31858i 0.0178476 0.0178476i
\(299\) −112.184 + 36.4509i −0.375198 + 0.121909i
\(300\) 0 0
\(301\) 567.540 412.342i 1.88552 1.36991i
\(302\) 59.3849 30.2581i 0.196639 0.100192i
\(303\) −29.7214 58.3316i −0.0980906 0.192514i
\(304\) 123.968 + 170.628i 0.407790 + 0.561275i
\(305\) 0 0
\(306\) 14.7154 + 45.2892i 0.0480894 + 0.148004i
\(307\) 316.814 + 316.814i 1.03197 + 1.03197i 0.999472 + 0.0324958i \(0.0103456\pi\)
0.0324958 + 0.999472i \(0.489654\pi\)
\(308\) 411.309 + 177.448i 1.33542 + 0.576129i
\(309\) 154.296i 0.499341i
\(310\) 0 0
\(311\) 24.6102 + 17.8803i 0.0791324 + 0.0574931i 0.626648 0.779302i \(-0.284426\pi\)
−0.547516 + 0.836795i \(0.684426\pi\)
\(312\) 7.86649 + 1.24593i 0.0252131 + 0.00399336i
\(313\) −88.1780 173.059i −0.281719 0.552904i 0.706175 0.708038i \(-0.250419\pi\)
−0.987894 + 0.155133i \(0.950419\pi\)
\(314\) 37.4894 + 12.1810i 0.119393 + 0.0387931i
\(315\) 0 0
\(316\) −243.491 176.907i −0.770542 0.559831i
\(317\) 100.794 197.819i 0.317961 0.624034i −0.675608 0.737261i \(-0.736119\pi\)
0.993569 + 0.113227i \(0.0361188\pi\)
\(318\) −5.93437 + 5.93437i −0.0186616 + 0.0186616i
\(319\) −328.666 83.9985i −1.03030 0.263318i
\(320\) 0 0
\(321\) −35.8414 110.308i −0.111655 0.343640i
\(322\) −24.2416 153.055i −0.0752844 0.475327i
\(323\) −36.6725 + 231.541i −0.113537 + 0.716845i
\(324\) 212.877 + 69.1679i 0.657028 + 0.213481i
\(325\) 0 0
\(326\) 62.8324 45.6504i 0.192737 0.140032i
\(327\) 11.6230 + 73.3847i 0.0355443 + 0.224418i
\(328\) 86.7027 + 44.1772i 0.264337 + 0.134687i
\(329\) 328.108i 0.997290i
\(330\) 0 0
\(331\) 589.908 1.78220 0.891099 0.453809i \(-0.149935\pi\)
0.891099 + 0.453809i \(0.149935\pi\)
\(332\) −126.164 + 247.612i −0.380013 + 0.745818i
\(333\) 146.558 23.2126i 0.440115 0.0697074i
\(334\) −63.7892 87.7983i −0.190986 0.262869i
\(335\) 0 0
\(336\) 44.1063 135.745i 0.131269 0.404004i
\(337\) −59.4025 9.40843i −0.176269 0.0279182i 0.0676761 0.997707i \(-0.478442\pi\)
−0.243945 + 0.969789i \(0.578442\pi\)
\(338\) 58.0391 9.19249i 0.171713 0.0271967i
\(339\) 83.3749 27.0902i 0.245944 0.0799120i
\(340\) 0 0
\(341\) −487.436 308.578i −1.42943 0.904920i
\(342\) −30.7832 30.7832i −0.0900092 0.0900092i
\(343\) −121.771 62.0453i −0.355017 0.180890i
\(344\) 112.817 155.279i 0.327956 0.451393i
\(345\) 0 0
\(346\) −23.2264 + 71.4836i −0.0671284 + 0.206600i
\(347\) 22.5648 11.4973i 0.0650281 0.0331335i −0.421174 0.906980i \(-0.638382\pi\)
0.486202 + 0.873846i \(0.338382\pi\)
\(348\) −17.5391 + 110.738i −0.0503997 + 0.318211i
\(349\) −204.827 + 281.920i −0.586898 + 0.807795i −0.994430 0.105395i \(-0.966389\pi\)
0.407533 + 0.913191i \(0.366389\pi\)
\(350\) 0 0
\(351\) 47.2961 0.134747
\(352\) 184.086 + 17.1951i 0.522970 + 0.0488498i
\(353\) −313.352 + 313.352i −0.887684 + 0.887684i −0.994300 0.106617i \(-0.965998\pi\)
0.106617 + 0.994300i \(0.465998\pi\)
\(354\) −1.62021 + 0.526437i −0.00457685 + 0.00148711i
\(355\) 0 0
\(356\) 137.558 99.9419i 0.386399 0.280736i
\(357\) 141.356 72.0247i 0.395956 0.201750i
\(358\) 26.7852 + 52.5689i 0.0748190 + 0.146841i
\(359\) −110.962 152.726i −0.309086 0.425421i 0.626010 0.779815i \(-0.284687\pi\)
−0.935096 + 0.354394i \(0.884687\pi\)
\(360\) 0 0
\(361\) 45.3289 + 139.508i 0.125565 + 0.386449i
\(362\) −44.5571 44.5571i −0.123086 0.123086i
\(363\) 3.32196 113.747i 0.00915141 0.313354i
\(364\) 119.656i 0.328725i
\(365\) 0 0
\(366\) 19.3152 + 14.0333i 0.0527738 + 0.0383424i
\(367\) 435.592 + 68.9910i 1.18690 + 0.187986i 0.718498 0.695529i \(-0.244830\pi\)
0.468402 + 0.883516i \(0.344830\pi\)
\(368\) 262.571 + 515.324i 0.713507 + 1.40034i
\(369\) 260.585 + 84.6690i 0.706191 + 0.229455i
\(370\) 0 0
\(371\) −207.553 150.796i −0.559441 0.406458i
\(372\) −86.5621 + 169.888i −0.232694 + 0.456687i
\(373\) −315.552 + 315.552i −0.845985 + 0.845985i −0.989629 0.143645i \(-0.954118\pi\)
0.143645 + 0.989629i \(0.454118\pi\)
\(374\) 41.1978 + 49.6873i 0.110155 + 0.132854i
\(375\) 0 0
\(376\) −27.7406 85.3769i −0.0737783 0.227066i
\(377\) −14.1752 89.4985i −0.0375999 0.237396i
\(378\) −9.71987 + 61.3689i −0.0257140 + 0.162352i
\(379\) 63.3937 + 20.5979i 0.167266 + 0.0543480i 0.391453 0.920198i \(-0.371973\pi\)
−0.224187 + 0.974546i \(0.571973\pi\)
\(380\) 0 0
\(381\) −57.0602 + 41.4566i −0.149764 + 0.108810i
\(382\) 2.65345 + 16.7532i 0.00694621 + 0.0438567i
\(383\) −172.822 88.0570i −0.451231 0.229914i 0.213579 0.976926i \(-0.431488\pi\)
−0.664811 + 0.747012i \(0.731488\pi\)
\(384\) 80.9653i 0.210847i
\(385\) 0 0
\(386\) 21.2960 0.0551709
\(387\) 245.354 481.535i 0.633990 1.24428i
\(388\) −479.857 + 76.0018i −1.23674 + 0.195881i
\(389\) 225.724 + 310.683i 0.580268 + 0.798671i 0.993725 0.111853i \(-0.0356786\pi\)
−0.413456 + 0.910524i \(0.635679\pi\)
\(390\) 0 0
\(391\) −198.654 + 611.396i −0.508068 + 1.56367i
\(392\) −176.421 27.9424i −0.450055 0.0712817i
\(393\) 234.444 37.1323i 0.596550 0.0944842i
\(394\) −30.7601 + 9.99456i −0.0780713 + 0.0253669i
\(395\) 0 0
\(396\) 344.392 22.0510i 0.869676 0.0556844i
\(397\) −178.629 178.629i −0.449946 0.449946i 0.445391 0.895336i \(-0.353065\pi\)
−0.895336 + 0.445391i \(0.853065\pi\)
\(398\) −77.0047 39.2359i −0.193479 0.0985826i
\(399\) −85.2498 + 117.336i −0.213659 + 0.294076i
\(400\) 0 0
\(401\) 35.7014 109.877i 0.0890308 0.274009i −0.896621 0.442798i \(-0.853986\pi\)
0.985652 + 0.168789i \(0.0539858\pi\)
\(402\) −13.7996 + 7.03123i −0.0343273 + 0.0174906i
\(403\) 24.1065 152.202i 0.0598176 0.377673i
\(404\) 158.173 217.706i 0.391517 0.538877i
\(405\) 0 0
\(406\) 119.042 0.293206
\(407\) 173.003 102.573i 0.425069 0.252022i
\(408\) 30.6928 30.6928i 0.0752275 0.0752275i
\(409\) −291.234 + 94.6276i −0.712063 + 0.231363i −0.642579 0.766220i \(-0.722135\pi\)
−0.0694843 + 0.997583i \(0.522135\pi\)
\(410\) 0 0
\(411\) −93.7408 + 68.1067i −0.228080 + 0.165710i
\(412\) −565.103 + 287.934i −1.37161 + 0.698869i
\(413\) −23.6424 46.4008i −0.0572455 0.112351i
\(414\) −70.1705 96.5815i −0.169494 0.233289i
\(415\) 0 0
\(416\) 15.2612 + 46.9692i 0.0366856 + 0.112907i
\(417\) 53.3116 + 53.3116i 0.127846 + 0.127846i
\(418\) −54.1800 23.3744i −0.129617 0.0559196i
\(419\) 209.142i 0.499147i −0.968356 0.249573i \(-0.919710\pi\)
0.968356 0.249573i \(-0.0802904\pi\)
\(420\) 0 0
\(421\) −246.603 179.167i −0.585755 0.425576i 0.255039 0.966931i \(-0.417912\pi\)
−0.840794 + 0.541355i \(0.817912\pi\)
\(422\) −7.41263 1.17405i −0.0175655 0.00278210i
\(423\) −114.755 225.219i −0.271288 0.532433i
\(424\) −66.7566 21.6905i −0.157445 0.0511569i
\(425\) 0 0
\(426\) 7.38525 + 5.36570i 0.0173363 + 0.0125955i
\(427\) −331.337 + 650.285i −0.775964 + 1.52291i
\(428\) 337.115 337.115i 0.787652 0.787652i
\(429\) 28.2498 11.2212i 0.0658502 0.0261565i
\(430\) 0 0
\(431\) 112.689 + 346.822i 0.261460 + 0.804692i 0.992488 + 0.122344i \(0.0390411\pi\)
−0.731028 + 0.682348i \(0.760959\pi\)
\(432\) −36.2770 229.044i −0.0839746 0.530195i
\(433\) 53.2099 335.954i 0.122887 0.775876i −0.846870 0.531800i \(-0.821516\pi\)
0.969756 0.244075i \(-0.0784844\pi\)
\(434\) 192.536 + 62.5586i 0.443630 + 0.144144i
\(435\) 0 0
\(436\) −247.078 + 179.513i −0.566693 + 0.411726i
\(437\) −91.9366 580.465i −0.210381 1.32829i
\(438\) 3.95209 + 2.01369i 0.00902304 + 0.00459747i
\(439\) 745.582i 1.69836i 0.528100 + 0.849182i \(0.322904\pi\)
−0.528100 + 0.849182i \(0.677096\pi\)
\(440\) 0 0
\(441\) −502.947 −1.14047
\(442\) −7.82729 + 15.3619i −0.0177088 + 0.0347555i
\(443\) 393.329 62.2972i 0.887876 0.140626i 0.304196 0.952609i \(-0.401612\pi\)
0.583680 + 0.811984i \(0.301612\pi\)
\(444\) −39.0720 53.7780i −0.0879999 0.121122i
\(445\) 0 0
\(446\) 17.5722 54.0816i 0.0393995 0.121259i
\(447\) −19.0671 3.01993i −0.0426557 0.00675600i
\(448\) 535.512 84.8168i 1.19534 0.189323i
\(449\) 497.787 161.741i 1.10866 0.360224i 0.303228 0.952918i \(-0.401935\pi\)
0.805428 + 0.592694i \(0.201935\pi\)
\(450\) 0 0
\(451\) 370.621 23.7304i 0.821775 0.0526174i
\(452\) 254.803 + 254.803i 0.563724 + 0.563724i
\(453\) −152.416 77.6597i −0.336459 0.171434i
\(454\) 71.8644 98.9129i 0.158292 0.217870i
\(455\) 0 0
\(456\) −12.2624 + 37.7396i −0.0268911 + 0.0827624i
\(457\) −87.9652 + 44.8205i −0.192484 + 0.0980755i −0.547576 0.836756i \(-0.684449\pi\)
0.355092 + 0.934831i \(0.384449\pi\)
\(458\) 8.68895 54.8599i 0.0189715 0.119781i
\(459\) 151.508 208.532i 0.330082 0.454319i
\(460\) 0 0
\(461\) 232.336 0.503983 0.251992 0.967729i \(-0.418914\pi\)
0.251992 + 0.967729i \(0.418914\pi\)
\(462\) 8.75433 + 38.9615i 0.0189488 + 0.0843322i
\(463\) 231.578 231.578i 0.500168 0.500168i −0.411322 0.911490i \(-0.634933\pi\)
0.911490 + 0.411322i \(0.134933\pi\)
\(464\) −422.548 + 137.294i −0.910664 + 0.295893i
\(465\) 0 0
\(466\) −96.5789 + 70.1687i −0.207251 + 0.150577i
\(467\) −622.555 + 317.208i −1.33309 + 0.679245i −0.967817 0.251654i \(-0.919026\pi\)
−0.365277 + 0.930899i \(0.619026\pi\)
\(468\) 41.8494 + 82.1340i 0.0894217 + 0.175500i
\(469\) −278.281 383.022i −0.593351 0.816677i
\(470\) 0 0
\(471\) −31.2635 96.2192i −0.0663769 0.204287i
\(472\) −10.0750 10.0750i −0.0213454 0.0213454i
\(473\) 68.1273 729.350i 0.144032 1.54197i
\(474\) 26.8301i 0.0566036i
\(475\) 0 0
\(476\) 527.573 + 383.304i 1.10835 + 0.805261i
\(477\) −195.208 30.9180i −0.409242 0.0648175i
\(478\) 1.23851 + 2.43071i 0.00259102 + 0.00508516i
\(479\) −499.509 162.300i −1.04282 0.338832i −0.262971 0.964804i \(-0.584702\pi\)
−0.779846 + 0.625972i \(0.784702\pi\)
\(480\) 0 0
\(481\) 43.4635 + 31.5781i 0.0903607 + 0.0656509i
\(482\) 13.1432 25.7949i 0.0272680 0.0535164i
\(483\) −281.234 + 281.234i −0.582264 + 0.582264i
\(484\) 422.793 200.099i 0.873539 0.413427i
\(485\) 0 0
\(486\) 22.5697 + 69.4625i 0.0464398 + 0.142927i
\(487\) 90.6289 + 572.208i 0.186096 + 1.17497i 0.887020 + 0.461730i \(0.152771\pi\)
−0.700924 + 0.713236i \(0.747229\pi\)
\(488\) −31.2372 + 197.224i −0.0640106 + 0.404147i
\(489\) −189.577 61.5974i −0.387683 0.125966i
\(490\) 0 0
\(491\) −669.637 + 486.520i −1.36382 + 0.990876i −0.365632 + 0.930759i \(0.619147\pi\)
−0.998191 + 0.0601162i \(0.980853\pi\)
\(492\) −19.2013 121.232i −0.0390270 0.246407i
\(493\) −440.015 224.199i −0.892525 0.454764i
\(494\) 15.7618i 0.0319064i
\(495\) 0 0
\(496\) −755.572 −1.52333
\(497\) −126.688 + 248.639i −0.254905 + 0.500280i
\(498\) −24.4685 + 3.87543i −0.0491335 + 0.00778198i
\(499\) 203.530 + 280.135i 0.407876 + 0.561393i 0.962699 0.270576i \(-0.0872141\pi\)
−0.554823 + 0.831968i \(0.687214\pi\)
\(500\) 0 0
\(501\) −86.0725 + 264.904i −0.171801 + 0.528750i
\(502\) −152.032 24.0795i −0.302853 0.0479672i
\(503\) −296.726 + 46.9968i −0.589913 + 0.0934330i −0.444252 0.895902i \(-0.646531\pi\)
−0.145660 + 0.989335i \(0.546531\pi\)
\(504\) −234.347 + 76.1439i −0.464974 + 0.151079i
\(505\) 0 0
\(506\) −136.719 86.5518i −0.270195 0.171051i
\(507\) −106.645 106.645i −0.210345 0.210345i
\(508\) −258.313 131.617i −0.508491 0.259089i
\(509\) −63.4809 + 87.3740i −0.124717 + 0.171658i −0.866810 0.498639i \(-0.833833\pi\)
0.742093 + 0.670297i \(0.233833\pi\)
\(510\) 0 0
\(511\) −41.8996 + 128.954i −0.0819953 + 0.252355i
\(512\) 363.746 185.338i 0.710442 0.361988i
\(513\) −36.8628 + 232.742i −0.0718572 + 0.453689i
\(514\) −87.8549 + 120.922i −0.170924 + 0.235257i
\(515\) 0 0
\(516\) −242.104 −0.469194
\(517\) −257.247 226.287i −0.497577 0.437692i
\(518\) −49.9063 + 49.9063i −0.0963442 + 0.0963442i
\(519\) 183.468 59.6123i 0.353503 0.114860i
\(520\) 0 0
\(521\) −203.745 + 148.030i −0.391066 + 0.284126i −0.765892 0.642969i \(-0.777702\pi\)
0.374826 + 0.927095i \(0.377702\pi\)
\(522\) 81.7123 41.6345i 0.156537 0.0797596i
\(523\) 192.760 + 378.312i 0.368565 + 0.723350i 0.998582 0.0532315i \(-0.0169521\pi\)
−0.630017 + 0.776581i \(0.716952\pi\)
\(524\) 573.493 + 789.346i 1.09445 + 1.50639i
\(525\) 0 0
\(526\) −30.6978 94.4782i −0.0583609 0.179616i
\(527\) −593.851 593.851i −1.12685 1.12685i
\(528\) −76.0096 128.200i −0.143958 0.242804i
\(529\) 1082.62i 2.04655i
\(530\) 0 0
\(531\) −32.4571 23.5815i −0.0611245 0.0444096i
\(532\) −588.823 93.2604i −1.10681 0.175302i
\(533\) 45.0366 + 88.3893i 0.0844964 + 0.165834i
\(534\) 14.4156 + 4.68390i 0.0269955 + 0.00877136i
\(535\) 0 0
\(536\) −104.795 76.1380i −0.195513 0.142048i
\(537\) 68.7463 134.922i 0.128019 0.251252i
\(538\) 127.415 127.415i 0.236831 0.236831i
\(539\) −633.556 + 251.656i −1.17543 + 0.466895i
\(540\) 0 0
\(541\) 69.7357 + 214.624i 0.128901 + 0.396718i 0.994592 0.103862i \(-0.0331201\pi\)
−0.865690 + 0.500580i \(0.833120\pi\)
\(542\) −3.79531 23.9626i −0.00700242 0.0442115i
\(543\) −25.2999 + 159.737i −0.0465927 + 0.294175i
\(544\) 255.979 + 83.1725i 0.470549 + 0.152891i
\(545\) 0 0
\(546\) −8.62956 + 6.26975i −0.0158051 + 0.0114831i
\(547\) 131.660 + 831.270i 0.240695 + 1.51969i 0.751350 + 0.659904i \(0.229403\pi\)
−0.510655 + 0.859786i \(0.670597\pi\)
\(548\) −424.368 216.226i −0.774394 0.394573i
\(549\) 562.251i 1.02414i
\(550\) 0 0
\(551\) 451.467 0.819360
\(552\) −49.4022 + 96.9572i −0.0894967 + 0.175647i
\(553\) 810.071 128.303i 1.46487 0.232012i
\(554\) 46.9703 + 64.6490i 0.0847839 + 0.116695i
\(555\) 0 0
\(556\) −95.7656 + 294.736i −0.172240 + 0.530101i
\(557\) −607.711 96.2519i −1.09104 0.172804i −0.415113 0.909770i \(-0.636258\pi\)
−0.675930 + 0.736966i \(0.736258\pi\)
\(558\) 154.040 24.3975i 0.276057 0.0437231i
\(559\) 186.093 60.4652i 0.332903 0.108167i
\(560\) 0 0
\(561\) 41.0199 160.501i 0.0731193 0.286098i
\(562\) 95.5048 + 95.5048i 0.169937 + 0.169937i
\(563\) −225.168 114.729i −0.399943 0.203781i 0.242437 0.970167i \(-0.422053\pi\)
−0.642381 + 0.766386i \(0.722053\pi\)
\(564\) −66.5578 + 91.6090i −0.118010 + 0.162427i
\(565\) 0 0
\(566\) 13.8701 42.6877i 0.0245054 0.0754199i
\(567\) −543.477 + 276.915i −0.958513 + 0.488387i
\(568\) −11.9437 + 75.4094i −0.0210276 + 0.132763i
\(569\) −168.013 + 231.250i −0.295278 + 0.406415i −0.930719 0.365734i \(-0.880818\pi\)
0.635442 + 0.772149i \(0.280818\pi\)
\(570\) 0 0
\(571\) 496.264 0.869114 0.434557 0.900644i \(-0.356905\pi\)
0.434557 + 0.900644i \(0.356905\pi\)
\(572\) 93.8140 + 82.5233i 0.164011 + 0.144272i
\(573\) 30.7835 30.7835i 0.0537234 0.0537234i
\(574\) −123.945 + 40.2721i −0.215932 + 0.0701605i
\(575\) 0 0
\(576\) 337.921 245.514i 0.586668 0.426239i
\(577\) 836.096 426.012i 1.44904 0.738323i 0.460272 0.887778i \(-0.347752\pi\)
0.988769 + 0.149455i \(0.0477519\pi\)
\(578\) −5.41822 10.6338i −0.00937408 0.0183977i
\(579\) −32.1270 44.2190i −0.0554870 0.0763713i
\(580\) 0 0
\(581\) −234.019 720.235i −0.402786 1.23965i
\(582\) −30.6248 30.6248i −0.0526199 0.0526199i
\(583\) −261.372 + 58.7282i −0.448322 + 0.100734i
\(584\) 37.0975i 0.0635231i
\(585\) 0 0
\(586\) 156.618 + 113.790i 0.267266 + 0.194180i
\(587\) 52.6972 + 8.34641i 0.0897737 + 0.0142188i 0.201160 0.979558i \(-0.435529\pi\)
−0.111386 + 0.993777i \(0.535529\pi\)
\(588\) 102.288 + 200.752i 0.173959 + 0.341414i
\(589\) 730.194 + 237.254i 1.23972 + 0.402809i
\(590\) 0 0
\(591\) 67.1572 + 48.7926i 0.113633 + 0.0825593i
\(592\) 119.588 234.705i 0.202007 0.396461i
\(593\) −71.7371 + 71.7371i −0.120973 + 0.120973i −0.765002 0.644028i \(-0.777262\pi\)
0.644028 + 0.765002i \(0.277262\pi\)
\(594\) 41.4116 + 49.9450i 0.0697165 + 0.0840826i
\(595\) 0 0
\(596\) −24.5210 75.4678i −0.0411426 0.126624i
\(597\) 34.6995 + 219.084i 0.0581231 + 0.366975i
\(598\) 6.76153 42.6906i 0.0113069 0.0713890i
\(599\) 488.511 + 158.727i 0.815544 + 0.264986i 0.686944 0.726710i \(-0.258952\pi\)
0.128600 + 0.991697i \(0.458952\pi\)
\(600\) 0 0
\(601\) 752.121 546.448i 1.25145 0.909231i 0.253144 0.967429i \(-0.418535\pi\)
0.998305 + 0.0581972i \(0.0185352\pi\)
\(602\) 40.2123 + 253.890i 0.0667978 + 0.421745i
\(603\) −324.978 165.585i −0.538935 0.274601i
\(604\) 703.136i 1.16413i
\(605\) 0 0
\(606\) 23.9889 0.0395857
\(607\) 295.091 579.149i 0.486147 0.954117i −0.509461 0.860494i \(-0.670155\pi\)
0.995608 0.0936234i \(-0.0298450\pi\)
\(608\) −243.029 + 38.4919i −0.399718 + 0.0633091i
\(609\) −179.586 247.178i −0.294886 0.405876i
\(610\) 0 0
\(611\) 28.2803 87.0377i 0.0462852 0.142451i
\(612\) 496.195 + 78.5896i 0.810777 + 0.128414i
\(613\) 453.468 71.8222i 0.739751 0.117165i 0.224825 0.974399i \(-0.427819\pi\)
0.514927 + 0.857234i \(0.327819\pi\)
\(614\) −156.140 + 50.7328i −0.254299 + 0.0826268i
\(615\) 0 0
\(616\) −257.104 + 213.176i −0.417377 + 0.346065i
\(617\) 292.953 + 292.953i 0.474803 + 0.474803i 0.903465 0.428662i \(-0.141015\pi\)
−0.428662 + 0.903465i \(0.641015\pi\)
\(618\) −50.3760 25.6679i −0.0815146 0.0415338i
\(619\) 178.737 246.011i 0.288752 0.397433i −0.639856 0.768495i \(-0.721006\pi\)
0.928608 + 0.371062i \(0.121006\pi\)
\(620\) 0 0
\(621\) −199.685 + 614.568i −0.321554 + 0.989642i
\(622\) −9.93174 + 5.06047i −0.0159674 + 0.00813581i
\(623\) −72.4835 + 457.643i −0.116346 + 0.734579i
\(624\) 23.4003 32.2077i 0.0375004 0.0516149i
\(625\) 0 0
\(626\) 71.1706 0.113691
\(627\) 33.2009 + 147.762i 0.0529520 + 0.235665i
\(628\) 294.057 294.057i 0.468243 0.468243i
\(629\) 278.461 90.4774i 0.442704 0.143843i
\(630\) 0 0
\(631\) −118.262 + 85.9222i −0.187420 + 0.136168i −0.677539 0.735487i \(-0.736953\pi\)
0.490119 + 0.871656i \(0.336953\pi\)
\(632\) 199.941 101.875i 0.316362 0.161194i
\(633\) 8.74487 + 17.1628i 0.0138150 + 0.0271134i
\(634\) 47.8181 + 65.8160i 0.0754229 + 0.103811i
\(635\) 0 0
\(636\) 27.3600 + 84.2055i 0.0430189 + 0.132399i
\(637\) −128.761 128.761i −0.202136 0.202136i
\(638\) 82.0996 93.3324i 0.128683 0.146289i
\(639\) 214.979i 0.336431i
\(640\) 0 0
\(641\) −701.684 509.804i −1.09467 0.795325i −0.114489 0.993424i \(-0.536523\pi\)
−0.980182 + 0.198099i \(0.936523\pi\)
\(642\) 41.9768 + 6.64848i 0.0653845 + 0.0103559i
\(643\) 122.204 + 239.840i 0.190054 + 0.373001i 0.966296 0.257433i \(-0.0828768\pi\)
−0.776243 + 0.630434i \(0.782877\pi\)
\(644\) −1554.82 505.191i −2.41431 0.784458i
\(645\) 0 0
\(646\) −69.4949 50.4910i −0.107577 0.0781595i
\(647\) 208.492 409.189i 0.322244 0.632440i −0.671883 0.740657i \(-0.734514\pi\)
0.994127 + 0.108217i \(0.0345142\pi\)
\(648\) −118.005 + 118.005i −0.182107 + 0.182107i
\(649\) −52.6852 13.4649i −0.0811790 0.0207472i
\(650\) 0 0
\(651\) −160.561 494.157i −0.246638 0.759074i
\(652\) −128.175 809.264i −0.196587 1.24120i
\(653\) −8.27124 + 52.2225i −0.0126665 + 0.0799733i −0.993212 0.116320i \(-0.962890\pi\)
0.980545 + 0.196293i \(0.0628903\pi\)
\(654\) −25.8928 8.41309i −0.0395915 0.0128641i
\(655\) 0 0
\(656\) 393.505 285.898i 0.599856 0.435821i
\(657\) 16.3406 + 103.170i 0.0248715 + 0.157032i
\(658\) 107.124 + 54.5822i 0.162802 + 0.0829517i
\(659\) 164.064i 0.248960i 0.992222 + 0.124480i \(0.0397262\pi\)
−0.992222 + 0.124480i \(0.960274\pi\)
\(660\) 0 0
\(661\) −382.249 −0.578290 −0.289145 0.957285i \(-0.593371\pi\)
−0.289145 + 0.957285i \(0.593371\pi\)
\(662\) −98.1337 + 192.598i −0.148238 + 0.290934i
\(663\) 43.7058 6.92231i 0.0659212 0.0104409i
\(664\) −121.788 167.626i −0.183415 0.252449i
\(665\) 0 0
\(666\) −16.8020 + 51.7112i −0.0252282 + 0.0776444i
\(667\) 1222.80 + 193.672i 1.83328 + 0.290363i
\(668\) −1130.82 + 179.104i −1.69284 + 0.268120i
\(669\) −138.804 + 45.1003i −0.207480 + 0.0674145i
\(670\) 0 0
\(671\) 281.330 + 708.261i 0.419270 + 1.05553i
\(672\) 117.747 + 117.747i 0.175218 + 0.175218i
\(673\) 1011.58 + 515.427i 1.50309 + 0.765865i 0.995412 0.0956792i \(-0.0305023\pi\)
0.507683 + 0.861544i \(0.330502\pi\)
\(674\) 12.9536 17.8291i 0.0192190 0.0264527i
\(675\) 0 0
\(676\) 191.570 589.592i 0.283388 0.872178i
\(677\) 440.725 224.561i 0.650997 0.331700i −0.0971137 0.995273i \(-0.530961\pi\)
0.748111 + 0.663574i \(0.230961\pi\)
\(678\) −5.02515 + 31.7275i −0.00741172 + 0.0467958i
\(679\) 778.194 1071.09i 1.14609 1.57746i
\(680\) 0 0
\(681\) −313.797 −0.460789
\(682\) 181.834 107.809i 0.266619 0.158078i
\(683\) 152.022 152.022i 0.222580 0.222580i −0.587004 0.809584i \(-0.699693\pi\)
0.809584 + 0.587004i \(0.199693\pi\)
\(684\) −436.796 + 141.924i −0.638591 + 0.207491i
\(685\) 0 0
\(686\) 40.5142 29.4353i 0.0590586 0.0429086i
\(687\) −127.019 + 64.7195i −0.184890 + 0.0942060i
\(688\) −435.556 854.827i −0.633076 1.24248i
\(689\) −42.0604 57.8912i −0.0610456 0.0840221i
\(690\) 0 0
\(691\) −47.8360 147.224i −0.0692272 0.213059i 0.910458 0.413602i \(-0.135729\pi\)
−0.979685 + 0.200543i \(0.935729\pi\)
\(692\) 560.698 + 560.698i 0.810258 + 0.810258i
\(693\) −621.124 + 706.105i −0.896282 + 1.01891i
\(694\) 9.27977i 0.0133714i
\(695\) 0 0
\(696\) −67.6281 49.1347i −0.0971669 0.0705959i
\(697\) 533.985 + 84.5750i 0.766120 + 0.121341i
\(698\) −57.9700 113.772i −0.0830515 0.162998i
\(699\) 291.397 + 94.6806i 0.416877 + 0.135451i
\(700\) 0 0
\(701\) 1007.39 + 731.909i 1.43707 + 1.04409i 0.988645 + 0.150272i \(0.0480148\pi\)
0.448425 + 0.893821i \(0.351985\pi\)
\(702\) −7.86790 + 15.4416i −0.0112078 + 0.0219966i
\(703\) −189.270 + 189.270i −0.269232 + 0.269232i
\(704\) 302.829 478.354i 0.430154 0.679480i
\(705\) 0 0
\(706\) −50.1785 154.434i −0.0710743 0.218744i
\(707\) 114.716 + 724.288i 0.162257 + 1.02445i
\(708\) −2.81152 + 17.7512i −0.00397107 + 0.0250723i
\(709\) −572.197 185.918i −0.807047 0.262226i −0.123701 0.992320i \(-0.539476\pi\)
−0.683347 + 0.730094i \(0.739476\pi\)
\(710\) 0 0
\(711\) 511.174 371.389i 0.718950 0.522348i
\(712\) 19.8315 + 125.211i 0.0278533 + 0.175859i
\(713\) 1875.95 + 955.843i 2.63106 + 1.34059i
\(714\) 58.1329i 0.0814186i
\(715\) 0 0
\(716\) 622.433 0.869320
\(717\) 3.17872 6.23859i 0.00443336 0.00870096i
\(718\) 68.3223 10.8212i 0.0951565 0.0150713i
\(719\) 367.141 + 505.327i 0.510628 + 0.702819i 0.984025 0.178030i \(-0.0569725\pi\)
−0.473397 + 0.880849i \(0.656973\pi\)
\(720\) 0 0
\(721\) 534.080 1643.73i 0.740749 2.27979i
\(722\) −53.0884 8.40838i −0.0735297 0.0116460i
\(723\) −73.3883 + 11.6236i −0.101505 + 0.0160769i
\(724\) −632.241 + 205.427i −0.873261 + 0.283740i
\(725\) 0 0
\(726\) 36.5846 + 20.0069i 0.0503920 + 0.0275578i
\(727\) −312.563 312.563i −0.429936 0.429936i 0.458671 0.888606i \(-0.348326\pi\)
−0.888606 + 0.458671i \(0.848326\pi\)
\(728\) −79.4896 40.5020i −0.109189 0.0556346i
\(729\) −196.120 + 269.936i −0.269026 + 0.370283i
\(730\) 0 0
\(731\) 329.531 1014.19i 0.450795 1.38740i
\(732\) 224.423 114.349i 0.306588 0.156215i
\(733\) 13.5091 85.2930i 0.0184299 0.116362i −0.976758 0.214344i \(-0.931239\pi\)
0.995188 + 0.0979821i \(0.0312388\pi\)
\(734\) −94.9874 + 130.739i −0.129411 + 0.178118i
\(735\) 0 0
\(736\) −674.754 −0.916785
\(737\) −492.224 45.9778i −0.667875 0.0623850i
\(738\) −70.9928 + 70.9928i −0.0961963 + 0.0961963i
\(739\) 534.104 173.541i 0.722738 0.234832i 0.0755282 0.997144i \(-0.475936\pi\)
0.647210 + 0.762312i \(0.275936\pi\)
\(740\) 0 0
\(741\) −32.7278 + 23.7781i −0.0441670 + 0.0320892i
\(742\) 83.7605 42.6781i 0.112885 0.0575176i
\(743\) 194.051 + 380.846i 0.261172 + 0.512578i 0.983937 0.178515i \(-0.0571294\pi\)
−0.722766 + 0.691093i \(0.757129\pi\)
\(744\) −83.5592 115.009i −0.112311 0.154582i
\(745\) 0 0
\(746\) −50.5308 155.518i −0.0677356 0.208469i
\(747\) −412.535 412.535i −0.552255 0.552255i
\(748\) 664.375 149.280i 0.888202 0.199572i
\(749\) 1299.18i 1.73456i
\(750\) 0 0
\(751\) 86.0258 + 62.5014i 0.114548 + 0.0832242i 0.643585 0.765375i \(-0.277446\pi\)
−0.529036 + 0.848599i \(0.677446\pi\)
\(752\) −443.196 70.1953i −0.589356 0.0933448i
\(753\) 179.356 + 352.006i 0.238189 + 0.467472i
\(754\) 31.5783 + 10.2604i 0.0418811 + 0.0136080i
\(755\) 0 0
\(756\) 530.311 + 385.293i 0.701469 + 0.509647i
\(757\) 101.603 199.406i 0.134217 0.263417i −0.814110 0.580711i \(-0.802774\pi\)
0.948327 + 0.317295i \(0.102774\pi\)
\(758\) −17.2708 + 17.2708i −0.0227847 + 0.0227847i
\(759\) 26.5371 + 414.455i 0.0349632 + 0.546054i
\(760\) 0 0
\(761\) 272.671 + 839.195i 0.358306 + 1.10275i 0.954068 + 0.299591i \(0.0968503\pi\)
−0.595762 + 0.803161i \(0.703150\pi\)
\(762\) −4.04292 25.5260i −0.00530567 0.0334987i
\(763\) 130.193 822.004i 0.170633 1.07733i
\(764\) 170.188 + 55.2975i 0.222760 + 0.0723790i
\(765\) 0 0
\(766\) 57.4992 41.7756i 0.0750642 0.0545374i
\(767\) −2.27228 14.3466i −0.00296255 0.0187048i
\(768\) −146.079 74.4309i −0.190207 0.0969153i
\(769\) 892.786i 1.16097i −0.814271 0.580485i \(-0.802863\pi\)
0.814271 0.580485i \(-0.197137\pi\)
\(770\) 0 0
\(771\) 383.620 0.497562
\(772\) 101.997 200.181i 0.132121 0.259302i
\(773\) −1073.93 + 170.093i −1.38929 + 0.220043i −0.805855 0.592113i \(-0.798294\pi\)
−0.583440 + 0.812156i \(0.698294\pi\)
\(774\) 116.400 + 160.211i 0.150387 + 0.206991i
\(775\) 0 0
\(776\) 111.936 344.503i 0.144247 0.443947i
\(777\) 178.914 + 28.3372i 0.230263 + 0.0364700i
\(778\) −138.985 + 22.0130i −0.178644 + 0.0282944i
\(779\) −470.062 + 152.733i −0.603418 + 0.196062i
\(780\) 0 0
\(781\) 107.568 + 270.807i 0.137731 + 0.346744i
\(782\) −166.567 166.567i −0.213001 0.213001i
\(783\) −442.298 225.362i −0.564876 0.287819i
\(784\) −524.797 + 722.321i −0.669384 + 0.921328i
\(785\) 0 0
\(786\) −26.8775 + 82.7204i −0.0341953 + 0.105242i
\(787\) −491.248 + 250.303i −0.624203 + 0.318047i −0.737329 0.675533i \(-0.763913\pi\)
0.113127 + 0.993581i \(0.463913\pi\)
\(788\) −53.3775 + 337.012i −0.0677379 + 0.427680i
\(789\) −149.864 + 206.270i −0.189942 + 0.261433i
\(790\) 0 0
\(791\) −981.968 −1.24143
\(792\) −101.923 + 236.249i −0.128691 + 0.298295i
\(793\) −143.943 + 143.943i −0.181517 + 0.181517i
\(794\) 88.0358 28.6046i 0.110876 0.0360259i
\(795\) 0 0
\(796\) −737.630 + 535.920i −0.926671 + 0.673266i
\(797\) 1043.33 531.605i 1.30908 0.667007i 0.346508 0.938047i \(-0.387367\pi\)
0.962568 + 0.271040i \(0.0873675\pi\)
\(798\) −24.1273 47.3525i −0.0302347 0.0593389i
\(799\) −293.164 403.506i −0.366914 0.505013i
\(800\) 0 0
\(801\) 110.305 + 339.485i 0.137710 + 0.423826i
\(802\) 29.9347 + 29.9347i 0.0373250 + 0.0373250i
\(803\) 72.2067 + 121.786i 0.0899212 + 0.151664i
\(804\) 163.391i 0.203223i
\(805\) 0 0
\(806\) 45.6821 + 33.1900i 0.0566776 + 0.0411787i
\(807\) −456.783 72.3473i −0.566026 0.0896496i
\(808\) 91.0867 + 178.768i 0.112731 + 0.221247i
\(809\) 958.766 + 311.522i 1.18512 + 0.385070i 0.834268 0.551359i \(-0.185891\pi\)
0.350856 + 0.936429i \(0.385891\pi\)
\(810\) 0 0
\(811\) −445.331 323.552i −0.549114 0.398954i 0.278345 0.960481i \(-0.410214\pi\)
−0.827459 + 0.561527i \(0.810214\pi\)
\(812\) 570.151 1118.98i 0.702157 1.37806i
\(813\) −44.0305 + 44.0305i −0.0541581 + 0.0541581i
\(814\) 4.70914 + 73.5471i 0.00578518 + 0.0903527i
\(815\) 0 0
\(816\) −67.0464 206.348i −0.0821647 0.252877i
\(817\) 152.506 + 962.883i 0.186665 + 1.17856i
\(818\) 17.5531 110.826i 0.0214586 0.135484i
\(819\) −238.905 77.6251i −0.291704 0.0947803i
\(820\) 0 0
\(821\) −112.308 + 81.5964i −0.136794 + 0.0993866i −0.654078 0.756427i \(-0.726943\pi\)
0.517284 + 0.855814i \(0.326943\pi\)
\(822\) −6.64188 41.9352i −0.00808014 0.0510160i
\(823\) 1254.83 + 639.367i 1.52470 + 0.776873i 0.997348 0.0727737i \(-0.0231851\pi\)
0.527352 + 0.849647i \(0.323185\pi\)
\(824\) 472.869i 0.573871i
\(825\) 0 0
\(826\) 19.0824 0.0231021
\(827\) −479.658 + 941.381i −0.579997 + 1.13831i 0.395535 + 0.918451i \(0.370559\pi\)
−0.975532 + 0.219858i \(0.929441\pi\)
\(828\) −1243.94 + 197.021i −1.50235 + 0.237948i
\(829\) −274.311 377.556i −0.330893 0.455436i 0.610861 0.791738i \(-0.290824\pi\)
−0.941754 + 0.336303i \(0.890824\pi\)
\(830\) 0 0
\(831\) 63.3783 195.058i 0.0762675 0.234727i
\(832\) 149.367 + 23.6574i 0.179527 + 0.0284343i
\(833\) −980.188 + 155.246i −1.17670 + 0.186370i
\(834\) −26.2742 + 8.53702i −0.0315039 + 0.0102362i
\(835\) 0 0
\(836\) −479.214 + 397.337i −0.573222 + 0.475283i
\(837\) −596.932 596.932i −0.713180 0.713180i
\(838\) 68.2827 + 34.7918i 0.0814829 + 0.0415176i
\(839\) 826.244 1137.23i 0.984796 1.35546i 0.0505912 0.998719i \(-0.483889\pi\)
0.934205 0.356736i \(-0.116111\pi\)
\(840\) 0 0
\(841\) −34.0082 + 104.666i −0.0404378 + 0.124455i
\(842\) 99.5196 50.7077i 0.118194 0.0602230i
\(843\) 54.2284 342.384i 0.0643278 0.406150i
\(844\) −46.5388 + 64.0552i −0.0551408 + 0.0758948i
\(845\) 0 0
\(846\) 92.6215 0.109482
\(847\) −429.113 + 1200.26i −0.506627 + 1.41707i
\(848\) −248.093 + 248.093i −0.292562 + 0.292562i
\(849\) −109.561 + 35.5986i −0.129047 + 0.0419300i
\(850\) 0 0
\(851\) −593.832 + 431.444i −0.697805 + 0.506985i
\(852\) 85.8090 43.7219i 0.100715 0.0513168i
\(853\) 458.448 + 899.755i 0.537454 + 1.05481i 0.986874 + 0.161492i \(0.0516306\pi\)
−0.449420 + 0.893320i \(0.648369\pi\)
\(854\) −157.191 216.355i −0.184065 0.253343i
\(855\) 0 0
\(856\) 109.842 + 338.060i 0.128321 + 0.394930i
\(857\) −787.462 787.462i −0.918859 0.918859i 0.0780872 0.996947i \(-0.475119\pi\)
−0.996947 + 0.0780872i \(0.975119\pi\)
\(858\) −1.03589 + 11.0899i −0.00120733 + 0.0129253i
\(859\) 333.892i 0.388699i 0.980932 + 0.194349i \(0.0622595\pi\)
−0.980932 + 0.194349i \(0.937740\pi\)
\(860\) 0 0
\(861\) 270.604 + 196.605i 0.314290 + 0.228345i
\(862\) −131.980 20.9036i −0.153109 0.0242501i
\(863\) −651.489 1278.62i −0.754912 1.48160i −0.872541 0.488541i \(-0.837529\pi\)
0.117628 0.993058i \(-0.462471\pi\)
\(864\) 257.307 + 83.6041i 0.297809 + 0.0967640i
\(865\) 0 0
\(866\) 100.834 + 73.2598i 0.116436 + 0.0845957i
\(867\) −13.9063 + 27.2926i −0.0160395 + 0.0314793i
\(868\) 1510.20 1510.20i 1.73986 1.73986i
\(869\) 458.090 723.608i 0.527146 0.832690i
\(870\) 0 0
\(871\) −40.8067 125.590i −0.0468505 0.144191i
\(872\) −35.6208 224.901i −0.0408495 0.257914i
\(873\) 159.555 1007.39i 0.182766 1.15394i
\(874\) 204.809 + 66.5465i 0.234335 + 0.0761402i
\(875\) 0 0
\(876\) 37.8572 27.5049i 0.0432160 0.0313982i
\(877\) 199.124 + 1257.22i 0.227051 + 1.43355i 0.793058 + 0.609146i \(0.208488\pi\)
−0.566007 + 0.824401i \(0.691512\pi\)
\(878\) −243.424 124.031i −0.277248 0.141265i
\(879\) 496.865i 0.565261i
\(880\) 0 0
\(881\) −226.497 −0.257091 −0.128545 0.991704i \(-0.541031\pi\)
−0.128545 + 0.991704i \(0.541031\pi\)
\(882\) 83.6674 164.206i 0.0948610 0.186175i
\(883\) 913.239 144.643i 1.03425 0.163808i 0.383843 0.923398i \(-0.374600\pi\)
0.650402 + 0.759590i \(0.274600\pi\)
\(884\) 106.912 + 147.152i 0.120942 + 0.166462i
\(885\) 0 0
\(886\) −45.0926 + 138.781i −0.0508946 + 0.156638i
\(887\) 1494.65 + 236.730i 1.68507 + 0.266888i 0.924169 0.381985i \(-0.124759\pi\)
0.760897 + 0.648873i \(0.224759\pi\)
\(888\) 48.9510 7.75307i 0.0551250 0.00873094i
\(889\) 751.363 244.133i 0.845178 0.274615i
\(890\) 0 0
\(891\) −157.710 + 617.083i −0.177004 + 0.692574i
\(892\) −424.202 424.202i −0.475563 0.475563i
\(893\) 406.268 + 207.004i 0.454947 + 0.231807i
\(894\) 4.15787 5.72282i 0.00465086 0.00640136i
\(895\) 0 0
\(896\) −280.252 + 862.528i −0.312782 + 0.962643i
\(897\) −98.8433 + 50.3632i −0.110193 + 0.0561463i
\(898\) −30.0024 + 189.428i −0.0334103 + 0.210944i
\(899\) −950.668 + 1308.48i −1.05747 + 1.45549i
\(900\) 0 0
\(901\) −389.983 −0.432833
\(902\) −53.9066 + 124.951i −0.0597634 + 0.138527i
\(903\) 466.514 466.514i 0.516627 0.516627i
\(904\) −255.517 + 83.0227i −0.282652 + 0.0918392i
\(905\) 0 0
\(906\) 50.7100 36.8430i 0.0559713 0.0406655i
\(907\) 79.5367 40.5260i 0.0876920 0.0446813i −0.409594 0.912268i \(-0.634330\pi\)
0.497286 + 0.867586i \(0.334330\pi\)
\(908\) −585.580 1149.27i −0.644912 1.26571i
\(909\) 332.061 + 457.043i 0.365303 + 0.502797i
\(910\) 0 0
\(911\) −254.545 783.408i −0.279412 0.859943i −0.988018 0.154338i \(-0.950676\pi\)
0.708606 0.705605i \(-0.249324\pi\)
\(912\) 140.255 + 140.255i 0.153788 + 0.153788i
\(913\) −726.083 313.248i −0.795271 0.343097i
\(914\) 36.1757i 0.0395796i
\(915\) 0 0
\(916\) −474.064 344.428i −0.517537 0.376013i
\(917\) −2626.08 415.930i −2.86377 0.453576i
\(918\) 42.8795 + 84.1558i 0.0467097 + 0.0916729i
\(919\) 24.7032 + 8.02657i 0.0268806 + 0.00873402i 0.322426 0.946595i \(-0.395502\pi\)
−0.295546 + 0.955329i \(0.595502\pi\)
\(920\) 0 0
\(921\) 340.893 + 247.673i 0.370134 + 0.268918i
\(922\) −38.6502 + 75.8552i −0.0419199 + 0.0822724i
\(923\) −55.0374 + 55.0374i −0.0596288 + 0.0596288i
\(924\) 408.165 + 104.316i 0.441737 + 0.112896i
\(925\) 0 0
\(926\) 37.0836 + 114.131i 0.0400470 + 0.123252i
\(927\) −208.288 1315.08i −0.224690 1.41864i
\(928\) 81.0864 511.960i 0.0873776 0.551681i
\(929\) −853.382 277.281i −0.918603 0.298472i −0.188709 0.982033i \(-0.560430\pi\)
−0.729894 + 0.683561i \(0.760430\pi\)
\(930\) 0 0
\(931\) 733.984 533.271i 0.788383 0.572794i
\(932\) 197.016 + 1243.91i 0.211391 + 1.33467i
\(933\) 25.4906 + 12.9881i 0.0273211 + 0.0139208i
\(934\) 256.026i 0.274118i
\(935\) 0 0
\(936\) −68.7285 −0.0734279
\(937\) −574.636 + 1127.79i −0.613272 + 1.20361i 0.350418 + 0.936593i \(0.386039\pi\)
−0.963691 + 0.267021i \(0.913961\pi\)
\(938\) 171.346 27.1385i 0.182671 0.0289323i
\(939\) −107.368 147.779i −0.114343 0.157379i
\(940\) 0 0
\(941\) −356.827 + 1098.20i −0.379199 + 1.16706i 0.561402 + 0.827543i \(0.310262\pi\)
−0.940602 + 0.339513i \(0.889738\pi\)
\(942\) 36.6153 + 5.79930i 0.0388698 + 0.00615636i
\(943\) −1338.68 + 212.026i −1.41960 + 0.224842i
\(944\) −67.7344 + 22.0082i −0.0717525 + 0.0233138i
\(945\) 0 0
\(946\) 226.791 + 143.573i 0.239737 + 0.151769i
\(947\) −960.358 960.358i −1.01411 1.01411i −0.999899 0.0142062i \(-0.995478\pi\)
−0.0142062 0.999899i \(-0.504522\pi\)
\(948\) −252.201 128.503i −0.266035 0.135552i
\(949\) −22.2295 + 30.5963i −0.0234242 + 0.0322406i
\(950\) 0 0
\(951\) 64.5223 198.579i 0.0678468 0.208811i
\(952\) −433.212 + 220.733i −0.455055 + 0.231862i
\(953\) 166.024 1048.23i 0.174212 1.09993i −0.733300 0.679905i \(-0.762021\pi\)
0.907512 0.420026i \(-0.137979\pi\)
\(954\) 42.5681 58.5900i 0.0446207 0.0614151i
\(955\) 0 0
\(956\) 28.7803 0.0301050
\(957\) −317.651 29.6712i −0.331923 0.0310044i
\(958\) 136.085 136.085i 0.142051 0.142051i
\(959\) 1234.37 401.071i 1.28714 0.418218i
\(960\) 0 0
\(961\) −1447.76 + 1051.86i −1.50651 + 1.09455i
\(962\) −17.5402 + 8.93720i −0.0182331 + 0.00929022i
\(963\) 454.386 + 891.783i 0.471844 + 0.926047i
\(964\) −179.521 247.090i −0.186226 0.256318i
\(965\) 0 0
\(966\) −45.0352 138.604i −0.0466203 0.143482i
\(967\) −246.228 246.228i −0.254631 0.254631i 0.568235 0.822866i \(-0.307626\pi\)
−0.822866 + 0.568235i \(0.807626\pi\)
\(968\) −10.1808 + 348.599i −0.0105173 + 0.360123i
\(969\) 220.470i 0.227523i
\(970\) 0 0
\(971\) 514.171 + 373.567i 0.529527 + 0.384724i 0.820181 0.572104i \(-0.193873\pi\)
−0.290654 + 0.956828i \(0.593873\pi\)
\(972\) 761.042 + 120.537i 0.782965 + 0.124009i
\(973\) −383.400 752.464i −0.394039 0.773344i
\(974\) −201.896 65.6000i −0.207286 0.0673512i
\(975\) 0 0
\(976\) 807.493 + 586.678i 0.827349 + 0.601104i
\(977\) −2.04171 + 4.00708i −0.00208977 + 0.00410141i −0.892049 0.451939i \(-0.850733\pi\)
0.889959 + 0.456040i \(0.150733\pi\)
\(978\) 51.6478 51.6478i 0.0528096 0.0528096i
\(979\) 308.816 + 372.452i 0.315441 + 0.380442i
\(980\) 0 0
\(981\) −198.127 609.773i −0.201965 0.621583i
\(982\) −47.4462 299.564i −0.0483159 0.305055i
\(983\) −19.5212 + 123.252i −0.0198588 + 0.125383i −0.995626 0.0934273i \(-0.970218\pi\)
0.975767 + 0.218811i \(0.0702177\pi\)
\(984\) 87.0360 + 28.2797i 0.0884513 + 0.0287396i
\(985\) 0 0
\(986\) 146.397 106.363i 0.148475 0.107874i
\(987\) −48.2715 304.774i −0.0489073 0.308788i
\(988\) −148.160 75.4911i −0.149959 0.0764080i
\(989\) 2673.38i 2.70312i
\(990\) 0 0
\(991\) −1455.86 −1.46908 −0.734542 0.678564i \(-0.762603\pi\)
−0.734542 + 0.678564i \(0.762603\pi\)
\(992\) 400.192 785.421i 0.403419 0.791755i
\(993\) 547.955 86.7876i 0.551818 0.0873994i
\(994\) −60.1028 82.7244i −0.0604656 0.0832237i
\(995\) 0 0
\(996\) −80.7632 + 248.564i −0.0810876 + 0.249562i
\(997\) 622.653 + 98.6185i 0.624526 + 0.0989153i 0.460674 0.887570i \(-0.347608\pi\)
0.163853 + 0.986485i \(0.447608\pi\)
\(998\) −125.319 + 19.8486i −0.125570 + 0.0198883i
\(999\) 279.906 90.9469i 0.280186 0.0910379i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.8 128
5.2 odd 4 inner 275.3.bk.c.93.8 yes 128
5.3 odd 4 inner 275.3.bk.c.93.9 yes 128
5.4 even 2 inner 275.3.bk.c.82.9 yes 128
11.9 even 5 inner 275.3.bk.c.207.9 yes 128
55.9 even 10 inner 275.3.bk.c.207.8 yes 128
55.42 odd 20 inner 275.3.bk.c.218.9 yes 128
55.53 odd 20 inner 275.3.bk.c.218.8 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.8 128 1.1 even 1 trivial
275.3.bk.c.82.9 yes 128 5.4 even 2 inner
275.3.bk.c.93.8 yes 128 5.2 odd 4 inner
275.3.bk.c.93.9 yes 128 5.3 odd 4 inner
275.3.bk.c.207.8 yes 128 55.9 even 10 inner
275.3.bk.c.207.9 yes 128 11.9 even 5 inner
275.3.bk.c.218.8 yes 128 55.53 odd 20 inner
275.3.bk.c.218.9 yes 128 55.42 odd 20 inner