Properties

Label 2700.2.s.d.1549.7
Level $2700$
Weight $2$
Character 2700.1549
Analytic conductor $21.560$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2700,2,Mod(1549,2700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2700.1549"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.1333317747165888577536.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 3x^{14} + 5x^{12} + 15x^{10} + 45x^{8} + 60x^{6} + 80x^{4} + 192x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{10} \)
Twist minimal: no (minimal twist has level 900)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1549.7
Root \(1.27069 + 0.620769i\) of defining polynomial
Character \(\chi\) \(=\) 2700.1549
Dual form 2700.2.s.d.2449.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.94604 - 1.70089i) q^{7} +(-2.20089 - 3.81206i) q^{11} +(-1.78679 - 1.03160i) q^{13} -1.40179i q^{17} +6.35717 q^{19} +(0.0933799 + 0.0539129i) q^{23} +(-4.54089 - 7.86505i) q^{29} +(-1.53160 + 2.65281i) q^{31} -1.95538i q^{37} +(-4.34788 + 7.53074i) q^{41} +(-6.17165 + 3.56320i) q^{43} +(-6.48096 + 3.74179i) q^{47} +(2.28608 - 3.95961i) q^{49} -13.0975i q^{53} +(6.58966 - 11.4136i) q^{59} +(0.862308 + 1.49356i) q^{61} +(-10.7177 - 6.18787i) q^{67} +7.50961 q^{71} -5.42037i q^{73} +(-12.9678 - 7.48698i) q^{77} +(4.71806 + 8.17193i) q^{79} +(-7.77167 + 4.48698i) q^{83} +4.01576 q^{89} -7.01858 q^{91} +(-1.88017 + 1.08551i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{11} + 16 q^{19} - 18 q^{29} - 4 q^{31} - 18 q^{41} + 18 q^{49} - 30 q^{59} + 2 q^{61} + 48 q^{71} - 14 q^{79} + 12 q^{89} - 44 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.94604 1.70089i 1.11350 0.642878i 0.173764 0.984787i \(-0.444407\pi\)
0.939733 + 0.341910i \(0.111074\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.20089 3.81206i −0.663595 1.14938i −0.979664 0.200644i \(-0.935697\pi\)
0.316070 0.948736i \(-0.397637\pi\)
\(12\) 0 0
\(13\) −1.78679 1.03160i −0.495565 0.286115i 0.231315 0.972879i \(-0.425697\pi\)
−0.726880 + 0.686764i \(0.759031\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.40179i 0.339984i −0.985445 0.169992i \(-0.945626\pi\)
0.985445 0.169992i \(-0.0543741\pi\)
\(18\) 0 0
\(19\) 6.35717 1.45843 0.729217 0.684283i \(-0.239885\pi\)
0.729217 + 0.684283i \(0.239885\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.0933799 + 0.0539129i 0.0194711 + 0.0112416i 0.509704 0.860350i \(-0.329755\pi\)
−0.490233 + 0.871591i \(0.663088\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.54089 7.86505i −0.843222 1.46050i −0.887156 0.461469i \(-0.847322\pi\)
0.0439339 0.999034i \(-0.486011\pi\)
\(30\) 0 0
\(31\) −1.53160 + 2.65281i −0.275084 + 0.476459i −0.970156 0.242481i \(-0.922039\pi\)
0.695073 + 0.718940i \(0.255372\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.95538i 0.321462i −0.986998 0.160731i \(-0.948615\pi\)
0.986998 0.160731i \(-0.0513852\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.34788 + 7.53074i −0.679024 + 1.17610i 0.296251 + 0.955110i \(0.404264\pi\)
−0.975275 + 0.220994i \(0.929070\pi\)
\(42\) 0 0
\(43\) −6.17165 + 3.56320i −0.941167 + 0.543383i −0.890326 0.455323i \(-0.849524\pi\)
−0.0508414 + 0.998707i \(0.516190\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.48096 + 3.74179i −0.945345 + 0.545795i −0.891632 0.452761i \(-0.850439\pi\)
−0.0537135 + 0.998556i \(0.517106\pi\)
\(48\) 0 0
\(49\) 2.28608 3.95961i 0.326583 0.565659i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 13.0975i 1.79909i −0.436833 0.899543i \(-0.643900\pi\)
0.436833 0.899543i \(-0.356100\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.58966 11.4136i 0.857901 1.48593i −0.0160267 0.999872i \(-0.505102\pi\)
0.873928 0.486056i \(-0.161565\pi\)
\(60\) 0 0
\(61\) 0.862308 + 1.49356i 0.110407 + 0.191231i 0.915935 0.401328i \(-0.131451\pi\)
−0.805527 + 0.592559i \(0.798118\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −10.7177 6.18787i −1.30938 0.755969i −0.327385 0.944891i \(-0.606167\pi\)
−0.981992 + 0.188922i \(0.939501\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.50961 0.891227 0.445614 0.895225i \(-0.352986\pi\)
0.445614 + 0.895225i \(0.352986\pi\)
\(72\) 0 0
\(73\) 5.42037i 0.634406i −0.948358 0.317203i \(-0.897256\pi\)
0.948358 0.317203i \(-0.102744\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.9678 7.48698i −1.47782 0.853220i
\(78\) 0 0
\(79\) 4.71806 + 8.17193i 0.530824 + 0.919413i 0.999353 + 0.0359656i \(0.0114507\pi\)
−0.468529 + 0.883448i \(0.655216\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.77167 + 4.48698i −0.853052 + 0.492510i −0.861679 0.507453i \(-0.830587\pi\)
0.00862744 + 0.999963i \(0.497254\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.01576 0.425670 0.212835 0.977088i \(-0.431730\pi\)
0.212835 + 0.977088i \(0.431730\pi\)
\(90\) 0 0
\(91\) −7.01858 −0.735747
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.88017 + 1.08551i −0.190902 + 0.110217i −0.592405 0.805641i \(-0.701821\pi\)
0.401503 + 0.915858i \(0.368488\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.48698 + 2.57552i 0.147960 + 0.256274i 0.930473 0.366360i \(-0.119396\pi\)
−0.782513 + 0.622634i \(0.786063\pi\)
\(102\) 0 0
\(103\) −5.74640 3.31768i −0.566209 0.326901i 0.189425 0.981895i \(-0.439338\pi\)
−0.755634 + 0.654994i \(0.772671\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.7878i 1.33292i 0.745541 + 0.666459i \(0.232191\pi\)
−0.745541 + 0.666459i \(0.767809\pi\)
\(108\) 0 0
\(109\) 18.1347 1.73699 0.868495 0.495699i \(-0.165088\pi\)
0.868495 + 0.495699i \(0.165088\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.0708250 0.0408909i −0.00666266 0.00384669i 0.496665 0.867942i \(-0.334558\pi\)
−0.503328 + 0.864096i \(0.667891\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.38429 4.12972i −0.218568 0.378571i
\(120\) 0 0
\(121\) −4.18787 + 7.25361i −0.380716 + 0.659419i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 21.5811i 1.91501i −0.288410 0.957507i \(-0.593127\pi\)
0.288410 0.957507i \(-0.406873\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.39391 + 9.34253i −0.471268 + 0.816260i −0.999460 0.0328649i \(-0.989537\pi\)
0.528192 + 0.849125i \(0.322870\pi\)
\(132\) 0 0
\(133\) 18.7284 10.8129i 1.62396 0.937594i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.6997 6.75481i 0.999570 0.577102i 0.0914491 0.995810i \(-0.470850\pi\)
0.908121 + 0.418708i \(0.137517\pi\)
\(138\) 0 0
\(139\) 7.30499 12.6526i 0.619601 1.07318i −0.369958 0.929049i \(-0.620628\pi\)
0.989559 0.144132i \(-0.0460389\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.08178i 0.759457i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.0669350 + 0.115935i −0.00548353 + 0.00949775i −0.868754 0.495244i \(-0.835079\pi\)
0.863271 + 0.504741i \(0.168412\pi\)
\(150\) 0 0
\(151\) −3.07249 5.32171i −0.250036 0.433075i 0.713500 0.700656i \(-0.247109\pi\)
−0.963535 + 0.267581i \(0.913776\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.7953 + 7.38736i 1.02117 + 0.589575i 0.914444 0.404713i \(-0.132628\pi\)
0.106730 + 0.994288i \(0.465962\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.366801 0.0289079
\(162\) 0 0
\(163\) 15.9451i 1.24892i −0.781058 0.624458i \(-0.785320\pi\)
0.781058 0.624458i \(-0.214680\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.7529 10.2497i −1.37376 0.793143i −0.382364 0.924012i \(-0.624890\pi\)
−0.991400 + 0.130869i \(0.958223\pi\)
\(168\) 0 0
\(169\) −4.37160 7.57183i −0.336277 0.582448i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −19.5647 + 11.2957i −1.48748 + 0.858796i −0.999898 0.0142821i \(-0.995454\pi\)
−0.487580 + 0.873078i \(0.662120\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 20.5879 1.53881 0.769407 0.638759i \(-0.220552\pi\)
0.769407 + 0.638759i \(0.220552\pi\)
\(180\) 0 0
\(181\) −8.32830 −0.619038 −0.309519 0.950893i \(-0.600168\pi\)
−0.309519 + 0.950893i \(0.600168\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −5.34370 + 3.08519i −0.390770 + 0.225611i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.39217 7.60747i −0.317807 0.550457i 0.662224 0.749306i \(-0.269613\pi\)
−0.980030 + 0.198849i \(0.936280\pi\)
\(192\) 0 0
\(193\) −6.26202 3.61538i −0.450750 0.260241i 0.257397 0.966306i \(-0.417135\pi\)
−0.708147 + 0.706065i \(0.750469\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.17932i 0.297764i −0.988855 0.148882i \(-0.952432\pi\)
0.988855 0.148882i \(-0.0475675\pi\)
\(198\) 0 0
\(199\) −15.6518 −1.10953 −0.554763 0.832009i \(-0.687191\pi\)
−0.554763 + 0.832009i \(0.687191\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −26.7553 15.4472i −1.87785 1.08418i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −13.9914 24.2339i −0.967809 1.67629i
\(210\) 0 0
\(211\) 12.0770 20.9179i 0.831412 1.44005i −0.0655057 0.997852i \(-0.520866\pi\)
0.896918 0.442196i \(-0.145801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 10.4204i 0.707381i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.44609 + 2.50470i −0.0972743 + 0.168484i
\(222\) 0 0
\(223\) 1.25263 0.723206i 0.0838823 0.0484295i −0.457472 0.889224i \(-0.651245\pi\)
0.541354 + 0.840794i \(0.317912\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.7755 10.2627i 1.17980 0.681158i 0.223832 0.974628i \(-0.428143\pi\)
0.955969 + 0.293469i \(0.0948098\pi\)
\(228\) 0 0
\(229\) 10.4743 18.1420i 0.692160 1.19886i −0.278969 0.960300i \(-0.589993\pi\)
0.971129 0.238556i \(-0.0766741\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.90112i 0.648644i 0.945947 + 0.324322i \(0.105136\pi\)
−0.945947 + 0.324322i \(0.894864\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.05391 + 5.28953i −0.197541 + 0.342151i −0.947731 0.319072i \(-0.896629\pi\)
0.750189 + 0.661223i \(0.229962\pi\)
\(240\) 0 0
\(241\) 0.148392 + 0.257022i 0.00955875 + 0.0165562i 0.870765 0.491699i \(-0.163624\pi\)
−0.861206 + 0.508255i \(0.830291\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −11.3589 6.55806i −0.722749 0.417279i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.51643 0.285075 0.142537 0.989789i \(-0.454474\pi\)
0.142537 + 0.989789i \(0.454474\pi\)
\(252\) 0 0
\(253\) 0.474626i 0.0298395i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.7764 6.79911i −0.734591 0.424117i 0.0855081 0.996337i \(-0.472749\pi\)
−0.820100 + 0.572221i \(0.806082\pi\)
\(258\) 0 0
\(259\) −3.32589 5.76061i −0.206661 0.357947i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.16921 3.56179i 0.380409 0.219630i −0.297587 0.954695i \(-0.596182\pi\)
0.677996 + 0.735065i \(0.262848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.80358 0.536764 0.268382 0.963313i \(-0.413511\pi\)
0.268382 + 0.963313i \(0.413511\pi\)
\(270\) 0 0
\(271\) −9.95885 −0.604957 −0.302478 0.953156i \(-0.597814\pi\)
−0.302478 + 0.953156i \(0.597814\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.73303 4.46467i 0.464633 0.268256i −0.249358 0.968411i \(-0.580219\pi\)
0.713990 + 0.700156i \(0.246886\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.0402 + 27.7825i 0.956879 + 1.65736i 0.730008 + 0.683439i \(0.239516\pi\)
0.226872 + 0.973925i \(0.427150\pi\)
\(282\) 0 0
\(283\) 5.51437 + 3.18373i 0.327796 + 0.189253i 0.654862 0.755749i \(-0.272727\pi\)
−0.327066 + 0.945001i \(0.606060\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 29.5811i 1.74612i
\(288\) 0 0
\(289\) 15.0350 0.884411
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 24.1631 + 13.9506i 1.41162 + 0.815000i 0.995541 0.0943273i \(-0.0300700\pi\)
0.416081 + 0.909328i \(0.363403\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.111233 0.192662i −0.00643278 0.0111419i
\(300\) 0 0
\(301\) −12.1213 + 20.9946i −0.698658 + 1.21011i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.2054i 0.696597i 0.937384 + 0.348299i \(0.113240\pi\)
−0.937384 + 0.348299i \(0.886760\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.45123 + 4.24565i −0.138996 + 0.240749i −0.927117 0.374772i \(-0.877721\pi\)
0.788121 + 0.615521i \(0.211054\pi\)
\(312\) 0 0
\(313\) −15.2322 + 8.79429i −0.860972 + 0.497083i −0.864338 0.502912i \(-0.832262\pi\)
0.00336551 + 0.999994i \(0.498929\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.9500 9.78608i 0.952007 0.549641i 0.0583028 0.998299i \(-0.481431\pi\)
0.893704 + 0.448658i \(0.148098\pi\)
\(318\) 0 0
\(319\) −19.9880 + 34.6203i −1.11912 + 1.93836i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.91140i 0.495844i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.7288 + 22.0469i −0.701759 + 1.21548i
\(330\) 0 0
\(331\) −7.29537 12.6360i −0.400990 0.694535i 0.592856 0.805309i \(-0.298000\pi\)
−0.993846 + 0.110774i \(0.964667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −8.58108 4.95429i −0.467441 0.269877i 0.247727 0.968830i \(-0.420317\pi\)
−0.715168 + 0.698953i \(0.753650\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 13.4836 0.730176
\(342\) 0 0
\(343\) 8.25897i 0.445943i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.93739 5.16000i −0.479784 0.277004i 0.240542 0.970639i \(-0.422675\pi\)
−0.720327 + 0.693635i \(0.756008\pi\)
\(348\) 0 0
\(349\) 8.56767 + 14.8396i 0.458617 + 0.794348i 0.998888 0.0471429i \(-0.0150116\pi\)
−0.540271 + 0.841491i \(0.681678\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.4845 6.63055i 0.611256 0.352909i −0.162201 0.986758i \(-0.551859\pi\)
0.773457 + 0.633849i \(0.218526\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.2817 0.753758 0.376879 0.926263i \(-0.376997\pi\)
0.376879 + 0.926263i \(0.376997\pi\)
\(360\) 0 0
\(361\) 21.4136 1.12703
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −8.29749 + 4.79056i −0.433125 + 0.250065i −0.700677 0.713478i \(-0.747119\pi\)
0.267552 + 0.963543i \(0.413785\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −22.2775 38.5858i −1.15659 2.00328i
\(372\) 0 0
\(373\) 20.8763 + 12.0529i 1.08093 + 0.624076i 0.931148 0.364642i \(-0.118809\pi\)
0.149784 + 0.988719i \(0.452142\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.7376i 0.965033i
\(378\) 0 0
\(379\) −2.73973 −0.140730 −0.0703651 0.997521i \(-0.522416\pi\)
−0.0703651 + 0.997521i \(0.522416\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 18.4924 + 10.6766i 0.944917 + 0.545548i 0.891498 0.453024i \(-0.149655\pi\)
0.0534187 + 0.998572i \(0.482988\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.33485 + 12.7043i 0.371892 + 0.644136i 0.989857 0.142070i \(-0.0453759\pi\)
−0.617965 + 0.786206i \(0.712043\pi\)
\(390\) 0 0
\(391\) 0.0755745 0.130899i 0.00382197 0.00661984i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6.43065i 0.322745i −0.986894 0.161373i \(-0.948408\pi\)
0.986894 0.161373i \(-0.0515921\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.03748 15.6534i 0.451310 0.781693i −0.547157 0.837030i \(-0.684290\pi\)
0.998468 + 0.0553373i \(0.0176234\pi\)
\(402\) 0 0
\(403\) 5.47329 3.16000i 0.272644 0.157411i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.45402 + 4.30358i −0.369482 + 0.213320i
\(408\) 0 0
\(409\) −9.39532 + 16.2732i −0.464569 + 0.804657i −0.999182 0.0404403i \(-0.987124\pi\)
0.534613 + 0.845097i \(0.320457\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 44.8333i 2.20610i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −19.8297 + 34.3461i −0.968745 + 1.67792i −0.269547 + 0.962987i \(0.586874\pi\)
−0.699198 + 0.714928i \(0.746460\pi\)
\(420\) 0 0
\(421\) 18.7682 + 32.5076i 0.914708 + 1.58432i 0.807328 + 0.590103i \(0.200913\pi\)
0.107380 + 0.994218i \(0.465754\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.08078 + 2.93339i 0.245876 + 0.141957i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.7357 −0.806132 −0.403066 0.915171i \(-0.632055\pi\)
−0.403066 + 0.915171i \(0.632055\pi\)
\(432\) 0 0
\(433\) 21.0008i 1.00924i 0.863343 + 0.504618i \(0.168367\pi\)
−0.863343 + 0.504618i \(0.831633\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.593631 + 0.342733i 0.0283972 + 0.0163952i
\(438\) 0 0
\(439\) −3.01576 5.22345i −0.143934 0.249302i 0.785041 0.619444i \(-0.212642\pi\)
−0.928975 + 0.370143i \(0.879309\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.47803 + 3.16274i −0.260269 + 0.150266i −0.624457 0.781059i \(-0.714680\pi\)
0.364188 + 0.931325i \(0.381346\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.6594 −0.880593 −0.440296 0.897853i \(-0.645127\pi\)
−0.440296 + 0.897853i \(0.645127\pi\)
\(450\) 0 0
\(451\) 38.2769 1.80239
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 23.8889 13.7923i 1.11748 0.645176i 0.176722 0.984261i \(-0.443451\pi\)
0.940756 + 0.339085i \(0.110117\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.76442 11.7163i −0.315051 0.545684i 0.664398 0.747379i \(-0.268688\pi\)
−0.979448 + 0.201696i \(0.935355\pi\)
\(462\) 0 0
\(463\) −23.8020 13.7421i −1.10617 0.638650i −0.168338 0.985729i \(-0.553840\pi\)
−0.937836 + 0.347079i \(0.887173\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 32.7515i 1.51556i 0.652511 + 0.757779i \(0.273716\pi\)
−0.652511 + 0.757779i \(0.726284\pi\)
\(468\) 0 0
\(469\) −42.0997 −1.94398
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 27.1663 + 15.6845i 1.24911 + 0.721172i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.92783 5.07116i −0.133776 0.231707i 0.791353 0.611359i \(-0.209377\pi\)
−0.925129 + 0.379652i \(0.876044\pi\)
\(480\) 0 0
\(481\) −2.01717 + 3.49384i −0.0919750 + 0.159305i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.4864i 0.747070i 0.927616 + 0.373535i \(0.121854\pi\)
−0.927616 + 0.373535i \(0.878146\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.85302 + 11.8698i −0.309272 + 0.535676i −0.978203 0.207649i \(-0.933419\pi\)
0.668931 + 0.743324i \(0.266752\pi\)
\(492\) 0 0
\(493\) −11.0251 + 6.36537i −0.496548 + 0.286682i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.1236 12.7731i 0.992379 0.572950i
\(498\) 0 0
\(499\) 2.23482 3.87082i 0.100044 0.173282i −0.811658 0.584132i \(-0.801435\pi\)
0.911703 + 0.410851i \(0.134768\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.1010i 0.807084i 0.914961 + 0.403542i \(0.132221\pi\)
−0.914961 + 0.403542i \(0.867779\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.6044 18.3674i 0.470033 0.814120i −0.529380 0.848385i \(-0.677575\pi\)
0.999413 + 0.0342644i \(0.0109088\pi\)
\(510\) 0 0
\(511\) −9.21947 15.9686i −0.407846 0.706409i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 28.5278 + 16.4705i 1.25465 + 0.724374i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 28.4507 1.24645 0.623224 0.782043i \(-0.285822\pi\)
0.623224 + 0.782043i \(0.285822\pi\)
\(522\) 0 0
\(523\) 26.5111i 1.15925i 0.814884 + 0.579625i \(0.196801\pi\)
−0.814884 + 0.579625i \(0.803199\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.71868 + 2.14698i 0.161988 + 0.0935240i
\(528\) 0 0
\(529\) −11.4942 19.9085i −0.499747 0.865588i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 15.5374 8.97055i 0.673001 0.388558i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −20.1257 −0.866876
\(540\) 0 0
\(541\) −14.3132 −0.615372 −0.307686 0.951488i \(-0.599555\pi\)
−0.307686 + 0.951488i \(0.599555\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −11.8222 + 6.82556i −0.505482 + 0.291840i −0.730974 0.682405i \(-0.760934\pi\)
0.225493 + 0.974245i \(0.427601\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −28.8672 49.9994i −1.22978 2.13005i
\(552\) 0 0
\(553\) 27.7992 + 16.0499i 1.18214 + 0.682509i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.4665i 0.994306i −0.867663 0.497153i \(-0.834379\pi\)
0.867663 0.497153i \(-0.165621\pi\)
\(558\) 0 0
\(559\) 14.7032 0.621880
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.504418 0.291226i −0.0212587 0.0122737i 0.489333 0.872097i \(-0.337240\pi\)
−0.510592 + 0.859823i \(0.670574\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.77994 + 4.81500i 0.116541 + 0.201855i 0.918395 0.395665i \(-0.129486\pi\)
−0.801854 + 0.597521i \(0.796153\pi\)
\(570\) 0 0
\(571\) 11.3706 19.6945i 0.475845 0.824188i −0.523772 0.851858i \(-0.675476\pi\)
0.999617 + 0.0276708i \(0.00880903\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 30.5522i 1.27191i 0.771728 + 0.635953i \(0.219393\pi\)
−0.771728 + 0.635953i \(0.780607\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −15.2638 + 26.4376i −0.633247 + 1.09682i
\(582\) 0 0
\(583\) −49.9286 + 28.8263i −2.06783 + 1.19386i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.6353 10.1817i 0.727886 0.420245i −0.0897626 0.995963i \(-0.528611\pi\)
0.817648 + 0.575718i \(0.195278\pi\)
\(588\) 0 0
\(589\) −9.73664 + 16.8644i −0.401191 + 0.694884i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.5199i 0.637326i −0.947868 0.318663i \(-0.896766\pi\)
0.947868 0.318663i \(-0.103234\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14.6288 + 25.3379i −0.597717 + 1.03528i 0.395440 + 0.918492i \(0.370592\pi\)
−0.993157 + 0.116785i \(0.962741\pi\)
\(600\) 0 0
\(601\) 9.15254 + 15.8527i 0.373340 + 0.646644i 0.990077 0.140526i \(-0.0448792\pi\)
−0.616737 + 0.787169i \(0.711546\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 14.5845 + 8.42037i 0.591967 + 0.341772i 0.765875 0.642990i \(-0.222306\pi\)
−0.173908 + 0.984762i \(0.555640\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.4401 0.624640
\(612\) 0 0
\(613\) 13.5954i 0.549113i 0.961571 + 0.274556i \(0.0885310\pi\)
−0.961571 + 0.274556i \(0.911469\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 25.3861 + 14.6567i 1.02201 + 0.590056i 0.914685 0.404168i \(-0.132439\pi\)
0.107322 + 0.994224i \(0.465772\pi\)
\(618\) 0 0
\(619\) 6.08211 + 10.5345i 0.244461 + 0.423418i 0.961980 0.273121i \(-0.0880558\pi\)
−0.717519 + 0.696539i \(0.754722\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.8306 6.83038i 0.473982 0.273653i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.74103 −0.109292
\(630\) 0 0
\(631\) 5.45471 0.217148 0.108574 0.994088i \(-0.465371\pi\)
0.108574 + 0.994088i \(0.465371\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −8.16948 + 4.71665i −0.323687 + 0.186881i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.839996 1.45492i −0.0331779 0.0574657i 0.848960 0.528458i \(-0.177229\pi\)
−0.882138 + 0.470992i \(0.843896\pi\)
\(642\) 0 0
\(643\) 4.92202 + 2.84173i 0.194106 + 0.112067i 0.593903 0.804537i \(-0.297586\pi\)
−0.399797 + 0.916603i \(0.630920\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 34.3064i 1.34872i −0.738401 0.674361i \(-0.764419\pi\)
0.738401 0.674361i \(-0.235581\pi\)
\(648\) 0 0
\(649\) −58.0126 −2.27719
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.9377 + 6.31486i 0.428024 + 0.247120i 0.698504 0.715606i \(-0.253849\pi\)
−0.270480 + 0.962725i \(0.587183\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.16697 + 5.48535i 0.123368 + 0.213679i 0.921094 0.389341i \(-0.127297\pi\)
−0.797726 + 0.603020i \(0.793964\pi\)
\(660\) 0 0
\(661\) 18.8448 32.6401i 0.732978 1.26955i −0.222628 0.974904i \(-0.571463\pi\)
0.955605 0.294651i \(-0.0952033\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.979251i 0.0379167i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.79570 6.57434i 0.146531 0.253800i
\(672\) 0 0
\(673\) 26.5477 15.3273i 1.02334 0.590824i 0.108268 0.994122i \(-0.465469\pi\)
0.915069 + 0.403298i \(0.132136\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 25.0035 14.4358i 0.960964 0.554813i 0.0644945 0.997918i \(-0.479456\pi\)
0.896470 + 0.443105i \(0.146123\pi\)
\(678\) 0 0
\(679\) −3.69269 + 6.39593i −0.141712 + 0.245453i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 47.0352i 1.79975i 0.436147 + 0.899875i \(0.356343\pi\)
−0.436147 + 0.899875i \(0.643657\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −13.5114 + 23.4025i −0.514745 + 0.891564i
\(690\) 0 0
\(691\) −0.425186 0.736443i −0.0161748 0.0280156i 0.857825 0.513942i \(-0.171815\pi\)
−0.874000 + 0.485927i \(0.838482\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 10.5565 + 6.09480i 0.399856 + 0.230857i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 35.6821 1.34770 0.673848 0.738870i \(-0.264640\pi\)
0.673848 + 0.738870i \(0.264640\pi\)
\(702\) 0 0
\(703\) 12.4307i 0.468831i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.76138 + 5.05838i 0.329506 + 0.190240i
\(708\) 0 0
\(709\) 7.69543 + 13.3289i 0.289008 + 0.500576i 0.973573 0.228375i \(-0.0733413\pi\)
−0.684565 + 0.728951i \(0.740008\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.286042 + 0.165146i −0.0107123 + 0.00618477i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 25.5846 0.954144 0.477072 0.878864i \(-0.341698\pi\)
0.477072 + 0.878864i \(0.341698\pi\)
\(720\) 0 0
\(721\) −22.5721 −0.840630
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −5.31509 + 3.06867i −0.197126 + 0.113811i −0.595314 0.803493i \(-0.702972\pi\)
0.398188 + 0.917304i \(0.369639\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.99486 + 8.65135i 0.184741 + 0.319982i
\(732\) 0 0
\(733\) −4.44306 2.56520i −0.164108 0.0947478i 0.415697 0.909503i \(-0.363538\pi\)
−0.579805 + 0.814756i \(0.696871\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 54.4754i 2.00663i
\(738\) 0 0
\(739\) −18.8784 −0.694454 −0.347227 0.937781i \(-0.612877\pi\)
−0.347227 + 0.937781i \(0.612877\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.0152 + 10.9784i 0.697600 + 0.402759i 0.806453 0.591298i \(-0.201384\pi\)
−0.108853 + 0.994058i \(0.534718\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 23.4516 + 40.6194i 0.856904 + 1.48420i
\(750\) 0 0
\(751\) 1.58037 2.73728i 0.0576686 0.0998849i −0.835750 0.549110i \(-0.814967\pi\)
0.893418 + 0.449225i \(0.148300\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 39.1753i 1.42385i −0.702255 0.711926i \(-0.747823\pi\)
0.702255 0.711926i \(-0.252177\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.03916 8.72807i 0.182669 0.316392i −0.760119 0.649783i \(-0.774860\pi\)
0.942789 + 0.333391i \(0.108193\pi\)
\(762\) 0 0
\(763\) 53.4255 30.8452i 1.93413 1.11667i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.5486 + 13.5958i −0.850292 + 0.490916i
\(768\) 0 0
\(769\) 10.5790 18.3233i 0.381487 0.660755i −0.609788 0.792565i \(-0.708745\pi\)
0.991275 + 0.131810i \(0.0420787\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 43.2543i 1.55575i −0.628420 0.777874i \(-0.716298\pi\)
0.628420 0.777874i \(-0.283702\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −27.6402 + 47.8742i −0.990312 + 1.71527i
\(780\) 0 0
\(781\) −16.5279 28.6271i −0.591414 1.02436i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.02189 0.589986i −0.0364263 0.0210307i 0.481676 0.876349i \(-0.340028\pi\)
−0.518103 + 0.855318i \(0.673361\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.278204 −0.00989180
\(792\) 0 0
\(793\) 3.55823i 0.126357i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.989706 + 0.571407i 0.0350572 + 0.0202403i 0.517426 0.855728i \(-0.326890\pi\)
−0.482369 + 0.875968i \(0.660224\pi\)
\(798\) 0 0
\(799\) 5.24519 + 9.08494i 0.185562 + 0.321402i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −20.6628 + 11.9297i −0.729173 + 0.420988i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −11.3723 −0.399828 −0.199914 0.979813i \(-0.564066\pi\)
−0.199914 + 0.979813i \(0.564066\pi\)
\(810\) 0 0
\(811\) 2.08590 0.0732459 0.0366230 0.999329i \(-0.488340\pi\)
0.0366230 + 0.999329i \(0.488340\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −39.2342 + 22.6519i −1.37263 + 0.792489i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.89564 + 13.6757i 0.275560 + 0.477284i 0.970276 0.242000i \(-0.0778034\pi\)
−0.694716 + 0.719284i \(0.744470\pi\)
\(822\) 0 0
\(823\) −6.34003 3.66042i −0.221000 0.127594i 0.385413 0.922744i \(-0.374059\pi\)
−0.606413 + 0.795150i \(0.707392\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.8401i 0.516040i −0.966140 0.258020i \(-0.916930\pi\)
0.966140 0.258020i \(-0.0830701\pi\)
\(828\) 0 0
\(829\) 23.3346 0.810444 0.405222 0.914218i \(-0.367194\pi\)
0.405222 + 0.914218i \(0.367194\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5.55054 3.20461i −0.192315 0.111033i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7.33826 + 12.7102i 0.253345 + 0.438806i 0.964445 0.264285i \(-0.0851359\pi\)
−0.711100 + 0.703091i \(0.751803\pi\)
\(840\) 0 0
\(841\) −26.7394 + 46.3140i −0.922048 + 1.59703i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 28.4925i 0.979014i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.105420 0.182593i 0.00361375 0.00625920i
\(852\) 0 0
\(853\) 21.2369 12.2611i 0.727136 0.419812i −0.0902375 0.995920i \(-0.528763\pi\)
0.817374 + 0.576108i \(0.195429\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.83929 2.79396i 0.165307 0.0954400i −0.415064 0.909792i \(-0.636241\pi\)
0.580371 + 0.814352i \(0.302908\pi\)
\(858\) 0 0
\(859\) −20.0309 + 34.6946i −0.683447 + 1.18376i 0.290476 + 0.956882i \(0.406186\pi\)
−0.973922 + 0.226882i \(0.927147\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27.2157i 0.926432i 0.886246 + 0.463216i \(0.153305\pi\)
−0.886246 + 0.463216i \(0.846695\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 20.7679 35.9711i 0.704503 1.22024i
\(870\) 0 0
\(871\) 12.7668 + 22.1128i 0.432588 + 0.749264i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −20.6806 11.9399i −0.698334 0.403183i 0.108393 0.994108i \(-0.465430\pi\)
−0.806727 + 0.590925i \(0.798763\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −28.3585 −0.955421 −0.477710 0.878517i \(-0.658533\pi\)
−0.477710 + 0.878517i \(0.658533\pi\)
\(882\) 0 0
\(883\) 28.3449i 0.953881i 0.878936 + 0.476941i \(0.158254\pi\)
−0.878936 + 0.476941i \(0.841746\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −0.446080 0.257544i −0.0149779 0.00864749i 0.492492 0.870317i \(-0.336086\pi\)
−0.507470 + 0.861669i \(0.669419\pi\)
\(888\) 0 0
\(889\) −36.7072 63.5787i −1.23112 2.13236i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −41.2005 + 23.7871i −1.37872 + 0.796007i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 27.8193 0.927827
\(900\) 0 0
\(901\) −18.3600 −0.611660
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.87426 + 1.08211i −0.0622339 + 0.0359308i −0.530794 0.847501i \(-0.678106\pi\)
0.468560 + 0.883432i \(0.344773\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19.2332 + 33.3129i 0.637226 + 1.10371i 0.986039 + 0.166515i \(0.0532513\pi\)
−0.348813 + 0.937192i \(0.613415\pi\)
\(912\) 0 0
\(913\) 34.2093 + 19.7507i 1.13216 + 0.653654i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 36.6979i 1.21187i
\(918\) 0 0
\(919\) −18.6992 −0.616830 −0.308415 0.951252i \(-0.599799\pi\)
−0.308415 + 0.951252i \(0.599799\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −13.4181 7.74693i −0.441661 0.254993i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.10335 + 1.91106i 0.0361999 + 0.0627000i 0.883558 0.468322i \(-0.155141\pi\)
−0.847358 + 0.531022i \(0.821808\pi\)
\(930\) 0 0
\(931\) 14.5330 25.1719i 0.476300 0.824976i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21.3429i 0.697242i 0.937264 + 0.348621i \(0.113350\pi\)
−0.937264 + 0.348621i \(0.886650\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.589661 + 1.02132i −0.0192224 + 0.0332942i −0.875477 0.483261i \(-0.839452\pi\)
0.856254 + 0.516555i \(0.172786\pi\)
\(942\) 0 0
\(943\) −0.812008 + 0.468813i −0.0264426 + 0.0152667i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.5152 + 11.8445i −0.666655 + 0.384894i −0.794808 0.606861i \(-0.792428\pi\)
0.128153 + 0.991754i \(0.459095\pi\)
\(948\) 0 0
\(949\) −5.59166 + 9.68504i −0.181513 + 0.314390i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12.8125i 0.415038i 0.978231 + 0.207519i \(0.0665389\pi\)
−0.978231 + 0.207519i \(0.933461\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.9784 39.7998i 0.742012 1.28520i
\(960\) 0 0
\(961\) 10.8084 + 18.7207i 0.348658 + 0.603893i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −9.46264 5.46326i −0.304298 0.175686i 0.340074 0.940399i \(-0.389548\pi\)
−0.644372 + 0.764712i \(0.722881\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.7933 −0.506831 −0.253415 0.967358i \(-0.581554\pi\)
−0.253415 + 0.967358i \(0.581554\pi\)
\(972\) 0 0
\(973\) 49.7001i 1.59331i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −32.4742 18.7490i −1.03894 0.599833i −0.119409 0.992845i \(-0.538100\pi\)
−0.919533 + 0.393012i \(0.871433\pi\)
\(978\) 0 0
\(979\) −8.83826 15.3083i −0.282472 0.489256i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.3795 11.7661i 0.650004 0.375280i −0.138454 0.990369i \(-0.544213\pi\)
0.788458 + 0.615089i \(0.210880\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.768410 −0.0244340
\(990\) 0 0
\(991\) 46.7019 1.48353 0.741767 0.670658i \(-0.233988\pi\)
0.741767 + 0.670658i \(0.233988\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 37.1161 21.4290i 1.17548 0.678663i 0.220514 0.975384i \(-0.429226\pi\)
0.954964 + 0.296721i \(0.0958931\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.2.s.d.1549.7 16
3.2 odd 2 900.2.s.d.49.5 16
5.2 odd 4 2700.2.i.d.901.4 8
5.3 odd 4 2700.2.i.e.901.1 8
5.4 even 2 inner 2700.2.s.d.1549.2 16
9.2 odd 6 900.2.s.d.349.4 16
9.4 even 3 8100.2.d.s.649.7 8
9.5 odd 6 8100.2.d.q.649.7 8
9.7 even 3 inner 2700.2.s.d.2449.2 16
15.2 even 4 900.2.i.e.301.4 yes 8
15.8 even 4 900.2.i.d.301.1 8
15.14 odd 2 900.2.s.d.49.4 16
45.2 even 12 900.2.i.e.601.4 yes 8
45.4 even 6 8100.2.d.s.649.2 8
45.7 odd 12 2700.2.i.d.1801.4 8
45.13 odd 12 8100.2.a.y.1.4 4
45.14 odd 6 8100.2.d.q.649.2 8
45.22 odd 12 8100.2.a.ba.1.1 4
45.23 even 12 8100.2.a.x.1.4 4
45.29 odd 6 900.2.s.d.349.5 16
45.32 even 12 8100.2.a.z.1.1 4
45.34 even 6 inner 2700.2.s.d.2449.7 16
45.38 even 12 900.2.i.d.601.1 yes 8
45.43 odd 12 2700.2.i.e.1801.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.2.i.d.301.1 8 15.8 even 4
900.2.i.d.601.1 yes 8 45.38 even 12
900.2.i.e.301.4 yes 8 15.2 even 4
900.2.i.e.601.4 yes 8 45.2 even 12
900.2.s.d.49.4 16 15.14 odd 2
900.2.s.d.49.5 16 3.2 odd 2
900.2.s.d.349.4 16 9.2 odd 6
900.2.s.d.349.5 16 45.29 odd 6
2700.2.i.d.901.4 8 5.2 odd 4
2700.2.i.d.1801.4 8 45.7 odd 12
2700.2.i.e.901.1 8 5.3 odd 4
2700.2.i.e.1801.1 8 45.43 odd 12
2700.2.s.d.1549.2 16 5.4 even 2 inner
2700.2.s.d.1549.7 16 1.1 even 1 trivial
2700.2.s.d.2449.2 16 9.7 even 3 inner
2700.2.s.d.2449.7 16 45.34 even 6 inner
8100.2.a.x.1.4 4 45.23 even 12
8100.2.a.y.1.4 4 45.13 odd 12
8100.2.a.z.1.1 4 45.32 even 12
8100.2.a.ba.1.1 4 45.22 odd 12
8100.2.d.q.649.2 8 45.14 odd 6
8100.2.d.q.649.7 8 9.5 odd 6
8100.2.d.s.649.2 8 45.4 even 6
8100.2.d.s.649.7 8 9.4 even 3