Properties

Label 2700.2
Level 2700
Weight 2
Dimension 81925
Nonzero newspaces 36
Sturm bound 777600
Trace bound 16

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 36 \)
Sturm bound: \(777600\)
Trace bound: \(16\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2700))\).

Total New Old
Modular forms 198600 83237 115363
Cusp forms 190201 81925 108276
Eisenstein series 8399 1312 7087

Trace form

\( 81925 q - 51 q^{2} - 89 q^{4} - 128 q^{5} - 126 q^{6} + 6 q^{7} - 57 q^{8} - 150 q^{9} - 112 q^{10} + 22 q^{11} - 87 q^{12} - 168 q^{13} - 89 q^{14} - 169 q^{16} - 114 q^{17} - 99 q^{18} + 7 q^{19} - 80 q^{20}+ \cdots + 267 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2700))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2700.2.a \(\chi_{2700}(1, \cdot)\) 2700.2.a.a 1 1
2700.2.a.b 1
2700.2.a.c 1
2700.2.a.d 1
2700.2.a.e 1
2700.2.a.f 1
2700.2.a.g 1
2700.2.a.h 1
2700.2.a.i 1
2700.2.a.j 1
2700.2.a.k 1
2700.2.a.l 1
2700.2.a.m 1
2700.2.a.n 1
2700.2.a.o 1
2700.2.a.p 1
2700.2.a.q 1
2700.2.a.r 1
2700.2.a.s 1
2700.2.a.t 1
2700.2.a.u 1
2700.2.a.v 2
2700.2.a.w 2
2700.2.d \(\chi_{2700}(649, \cdot)\) 2700.2.d.a 2 1
2700.2.d.b 2
2700.2.d.c 2
2700.2.d.d 2
2700.2.d.e 2
2700.2.d.f 2
2700.2.d.g 2
2700.2.d.h 2
2700.2.d.i 2
2700.2.d.j 2
2700.2.d.k 2
2700.2.d.l 2
2700.2.e \(\chi_{2700}(2051, \cdot)\) n/a 152 1
2700.2.h \(\chi_{2700}(2699, \cdot)\) n/a 144 1
2700.2.i \(\chi_{2700}(901, \cdot)\) 2700.2.i.a 2 2
2700.2.i.b 2
2700.2.i.c 6
2700.2.i.d 8
2700.2.i.e 8
2700.2.i.f 12
2700.2.j \(\chi_{2700}(593, \cdot)\) 2700.2.j.a 4 2
2700.2.j.b 4
2700.2.j.c 4
2700.2.j.d 4
2700.2.j.e 4
2700.2.j.f 4
2700.2.j.g 4
2700.2.j.h 4
2700.2.j.i 8
2700.2.j.j 8
2700.2.k \(\chi_{2700}(1243, \cdot)\) n/a 288 2
2700.2.n \(\chi_{2700}(541, \cdot)\) n/a 160 4
2700.2.o \(\chi_{2700}(899, \cdot)\) n/a 208 2
2700.2.r \(\chi_{2700}(251, \cdot)\) n/a 216 2
2700.2.s \(\chi_{2700}(1549, \cdot)\) 2700.2.s.a 4 2
2700.2.s.b 4
2700.2.s.c 12
2700.2.s.d 16
2700.2.v \(\chi_{2700}(301, \cdot)\) n/a 342 6
2700.2.w \(\chi_{2700}(431, \cdot)\) n/a 960 4
2700.2.x \(\chi_{2700}(109, \cdot)\) n/a 160 4
2700.2.ba \(\chi_{2700}(539, \cdot)\) n/a 960 4
2700.2.bf \(\chi_{2700}(557, \cdot)\) 2700.2.bf.a 4 4
2700.2.bf.b 4
2700.2.bf.c 4
2700.2.bf.d 4
2700.2.bf.e 24
2700.2.bf.f 32
2700.2.bg \(\chi_{2700}(307, \cdot)\) n/a 416 4
2700.2.bh \(\chi_{2700}(181, \cdot)\) n/a 240 8
2700.2.bk \(\chi_{2700}(299, \cdot)\) n/a 1920 6
2700.2.bm \(\chi_{2700}(49, \cdot)\) n/a 324 6
2700.2.bn \(\chi_{2700}(551, \cdot)\) n/a 2016 6
2700.2.br \(\chi_{2700}(163, \cdot)\) n/a 1920 8
2700.2.bs \(\chi_{2700}(53, \cdot)\) n/a 320 8
2700.2.bv \(\chi_{2700}(179, \cdot)\) n/a 1408 8
2700.2.by \(\chi_{2700}(289, \cdot)\) n/a 240 8
2700.2.bz \(\chi_{2700}(71, \cdot)\) n/a 1408 8
2700.2.cb \(\chi_{2700}(7, \cdot)\) n/a 3840 12
2700.2.cd \(\chi_{2700}(257, \cdot)\) n/a 648 12
2700.2.ce \(\chi_{2700}(61, \cdot)\) n/a 2160 24
2700.2.cf \(\chi_{2700}(127, \cdot)\) n/a 2816 16
2700.2.cg \(\chi_{2700}(17, \cdot)\) n/a 480 16
2700.2.ck \(\chi_{2700}(11, \cdot)\) n/a 12864 24
2700.2.cl \(\chi_{2700}(169, \cdot)\) n/a 2160 24
2700.2.cn \(\chi_{2700}(59, \cdot)\) n/a 12864 24
2700.2.cq \(\chi_{2700}(77, \cdot)\) n/a 4320 48
2700.2.cs \(\chi_{2700}(67, \cdot)\) n/a 25728 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2700))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2700)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 36}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 27}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(225))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(270))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(300))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(450))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(540))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(675))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(900))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1350))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2700))\)\(^{\oplus 1}\)