Properties

Label 900.2.s.d.49.5
Level $900$
Weight $2$
Character 900.49
Analytic conductor $7.187$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(49,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.1333317747165888577536.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 3x^{14} + 5x^{12} + 15x^{10} + 45x^{8} + 60x^{6} + 80x^{4} + 192x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.5
Root \(1.27069 + 0.620769i\) of defining polynomial
Character \(\chi\) \(=\) 900.49
Dual form 900.2.s.d.349.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0977414 + 1.72929i) q^{3} +(2.94604 - 1.70089i) q^{7} +(-2.98089 + 0.338047i) q^{9} +(2.20089 + 3.81206i) q^{11} +(-1.78679 - 1.03160i) q^{13} +1.40179i q^{17} +6.35717 q^{19} +(3.22929 + 4.92830i) q^{21} +(-0.0933799 - 0.0539129i) q^{23} +(-0.875938 - 5.12179i) q^{27} +(4.54089 + 7.86505i) q^{29} +(-1.53160 + 2.65281i) q^{31} +(-6.37704 + 4.17858i) q^{33} -1.95538i q^{37} +(1.60930 - 3.19070i) q^{39} +(4.34788 - 7.53074i) q^{41} +(-6.17165 + 3.56320i) q^{43} +(6.48096 - 3.74179i) q^{47} +(2.28608 - 3.95961i) q^{49} +(-2.42410 + 0.137013i) q^{51} +13.0975i q^{53} +(0.621359 + 10.9934i) q^{57} +(-6.58966 + 11.4136i) q^{59} +(0.862308 + 1.49356i) q^{61} +(-8.20684 + 6.06608i) q^{63} +(-10.7177 - 6.18787i) q^{67} +(0.0841040 - 0.166751i) q^{69} -7.50961 q^{71} -5.42037i q^{73} +(12.9678 + 7.48698i) q^{77} +(4.71806 + 8.17193i) q^{79} +(8.77145 - 2.01536i) q^{81} +(7.77167 - 4.48698i) q^{83} +(-13.1571 + 8.62126i) q^{87} -4.01576 q^{89} -7.01858 q^{91} +(-4.73718 - 2.38929i) q^{93} +(-1.88017 + 1.08551i) q^{97} +(-7.84929 - 10.6193i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{9} + 6 q^{11} + 16 q^{19} + 26 q^{21} + 18 q^{29} - 4 q^{31} + 34 q^{39} + 18 q^{41} + 18 q^{49} + 6 q^{51} + 30 q^{59} + 2 q^{61} - 18 q^{69} - 48 q^{71} - 14 q^{79} - 62 q^{81} - 12 q^{89}+ \cdots - 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0977414 + 1.72929i 0.0564310 + 0.998406i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.94604 1.70089i 1.11350 0.642878i 0.173764 0.984787i \(-0.444407\pi\)
0.939733 + 0.341910i \(0.111074\pi\)
\(8\) 0 0
\(9\) −2.98089 + 0.338047i −0.993631 + 0.112682i
\(10\) 0 0
\(11\) 2.20089 + 3.81206i 0.663595 + 1.14938i 0.979664 + 0.200644i \(0.0643033\pi\)
−0.316070 + 0.948736i \(0.602363\pi\)
\(12\) 0 0
\(13\) −1.78679 1.03160i −0.495565 0.286115i 0.231315 0.972879i \(-0.425697\pi\)
−0.726880 + 0.686764i \(0.759031\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.40179i 0.339984i 0.985445 + 0.169992i \(0.0543741\pi\)
−0.985445 + 0.169992i \(0.945626\pi\)
\(18\) 0 0
\(19\) 6.35717 1.45843 0.729217 0.684283i \(-0.239885\pi\)
0.729217 + 0.684283i \(0.239885\pi\)
\(20\) 0 0
\(21\) 3.22929 + 4.92830i 0.704689 + 1.07544i
\(22\) 0 0
\(23\) −0.0933799 0.0539129i −0.0194711 0.0112416i 0.490233 0.871591i \(-0.336912\pi\)
−0.509704 + 0.860350i \(0.670245\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −0.875938 5.12179i −0.168574 0.985689i
\(28\) 0 0
\(29\) 4.54089 + 7.86505i 0.843222 + 1.46050i 0.887156 + 0.461469i \(0.152678\pi\)
−0.0439339 + 0.999034i \(0.513989\pi\)
\(30\) 0 0
\(31\) −1.53160 + 2.65281i −0.275084 + 0.476459i −0.970156 0.242481i \(-0.922039\pi\)
0.695073 + 0.718940i \(0.255372\pi\)
\(32\) 0 0
\(33\) −6.37704 + 4.17858i −1.11010 + 0.727398i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.95538i 0.321462i −0.986998 0.160731i \(-0.948615\pi\)
0.986998 0.160731i \(-0.0513852\pi\)
\(38\) 0 0
\(39\) 1.60930 3.19070i 0.257694 0.510921i
\(40\) 0 0
\(41\) 4.34788 7.53074i 0.679024 1.17610i −0.296251 0.955110i \(-0.595736\pi\)
0.975275 0.220994i \(-0.0709302\pi\)
\(42\) 0 0
\(43\) −6.17165 + 3.56320i −0.941167 + 0.543383i −0.890326 0.455323i \(-0.849524\pi\)
−0.0508414 + 0.998707i \(0.516190\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.48096 3.74179i 0.945345 0.545795i 0.0537135 0.998556i \(-0.482894\pi\)
0.891632 + 0.452761i \(0.149561\pi\)
\(48\) 0 0
\(49\) 2.28608 3.95961i 0.326583 0.565659i
\(50\) 0 0
\(51\) −2.42410 + 0.137013i −0.339442 + 0.0191856i
\(52\) 0 0
\(53\) 13.0975i 1.79909i 0.436833 + 0.899543i \(0.356100\pi\)
−0.436833 + 0.899543i \(0.643900\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.621359 + 10.9934i 0.0823009 + 1.45611i
\(58\) 0 0
\(59\) −6.58966 + 11.4136i −0.857901 + 1.48593i 0.0160267 + 0.999872i \(0.494898\pi\)
−0.873928 + 0.486056i \(0.838435\pi\)
\(60\) 0 0
\(61\) 0.862308 + 1.49356i 0.110407 + 0.191231i 0.915935 0.401328i \(-0.131451\pi\)
−0.805527 + 0.592559i \(0.798118\pi\)
\(62\) 0 0
\(63\) −8.20684 + 6.06608i −1.03396 + 0.764255i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −10.7177 6.18787i −1.30938 0.755969i −0.327385 0.944891i \(-0.606167\pi\)
−0.981992 + 0.188922i \(0.939501\pi\)
\(68\) 0 0
\(69\) 0.0841040 0.166751i 0.0101249 0.0200744i
\(70\) 0 0
\(71\) −7.50961 −0.891227 −0.445614 0.895225i \(-0.647014\pi\)
−0.445614 + 0.895225i \(0.647014\pi\)
\(72\) 0 0
\(73\) 5.42037i 0.634406i −0.948358 0.317203i \(-0.897256\pi\)
0.948358 0.317203i \(-0.102744\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.9678 + 7.48698i 1.47782 + 0.853220i
\(78\) 0 0
\(79\) 4.71806 + 8.17193i 0.530824 + 0.919413i 0.999353 + 0.0359656i \(0.0114507\pi\)
−0.468529 + 0.883448i \(0.655216\pi\)
\(80\) 0 0
\(81\) 8.77145 2.01536i 0.974605 0.223929i
\(82\) 0 0
\(83\) 7.77167 4.48698i 0.853052 0.492510i −0.00862744 0.999963i \(-0.502746\pi\)
0.861679 + 0.507453i \(0.169413\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −13.1571 + 8.62126i −1.41059 + 0.924296i
\(88\) 0 0
\(89\) −4.01576 −0.425670 −0.212835 0.977088i \(-0.568270\pi\)
−0.212835 + 0.977088i \(0.568270\pi\)
\(90\) 0 0
\(91\) −7.01858 −0.735747
\(92\) 0 0
\(93\) −4.73718 2.38929i −0.491223 0.247758i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.88017 + 1.08551i −0.190902 + 0.110217i −0.592405 0.805641i \(-0.701821\pi\)
0.401503 + 0.915858i \(0.368488\pi\)
\(98\) 0 0
\(99\) −7.84929 10.6193i −0.788883 1.06728i
\(100\) 0 0
\(101\) −1.48698 2.57552i −0.147960 0.256274i 0.782513 0.622634i \(-0.213937\pi\)
−0.930473 + 0.366360i \(0.880604\pi\)
\(102\) 0 0
\(103\) −5.74640 3.31768i −0.566209 0.326901i 0.189425 0.981895i \(-0.439338\pi\)
−0.755634 + 0.654994i \(0.772671\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.7878i 1.33292i −0.745541 0.666459i \(-0.767809\pi\)
0.745541 0.666459i \(-0.232191\pi\)
\(108\) 0 0
\(109\) 18.1347 1.73699 0.868495 0.495699i \(-0.165088\pi\)
0.868495 + 0.495699i \(0.165088\pi\)
\(110\) 0 0
\(111\) 3.38141 0.191121i 0.320950 0.0181404i
\(112\) 0 0
\(113\) 0.0708250 + 0.0408909i 0.00666266 + 0.00384669i 0.503328 0.864096i \(-0.332109\pi\)
−0.496665 + 0.867942i \(0.665442\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 5.67495 + 2.47108i 0.524649 + 0.228451i
\(118\) 0 0
\(119\) 2.38429 + 4.12972i 0.218568 + 0.378571i
\(120\) 0 0
\(121\) −4.18787 + 7.25361i −0.380716 + 0.659419i
\(122\) 0 0
\(123\) 13.4478 + 6.78268i 1.21255 + 0.611573i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 21.5811i 1.91501i −0.288410 0.957507i \(-0.593127\pi\)
0.288410 0.957507i \(-0.406873\pi\)
\(128\) 0 0
\(129\) −6.76504 10.3243i −0.595628 0.909004i
\(130\) 0 0
\(131\) 5.39391 9.34253i 0.471268 0.816260i −0.528192 0.849125i \(-0.677130\pi\)
0.999460 + 0.0328649i \(0.0104631\pi\)
\(132\) 0 0
\(133\) 18.7284 10.8129i 1.62396 0.937594i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.6997 + 6.75481i −0.999570 + 0.577102i −0.908121 0.418708i \(-0.862483\pi\)
−0.0914491 + 0.995810i \(0.529150\pi\)
\(138\) 0 0
\(139\) 7.30499 12.6526i 0.619601 1.07318i −0.369958 0.929049i \(-0.620628\pi\)
0.989559 0.144132i \(-0.0460389\pi\)
\(140\) 0 0
\(141\) 7.10409 + 10.8417i 0.598273 + 0.913039i
\(142\) 0 0
\(143\) 9.08178i 0.759457i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 7.07077 + 3.56628i 0.583187 + 0.294142i
\(148\) 0 0
\(149\) 0.0669350 0.115935i 0.00548353 0.00949775i −0.863271 0.504741i \(-0.831588\pi\)
0.868754 + 0.495244i \(0.164921\pi\)
\(150\) 0 0
\(151\) −3.07249 5.32171i −0.250036 0.433075i 0.713500 0.700656i \(-0.247109\pi\)
−0.963535 + 0.267581i \(0.913776\pi\)
\(152\) 0 0
\(153\) −0.473870 4.17858i −0.0383101 0.337818i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.7953 + 7.38736i 1.02117 + 0.589575i 0.914444 0.404713i \(-0.132628\pi\)
0.106730 + 0.994288i \(0.465962\pi\)
\(158\) 0 0
\(159\) −22.6495 + 1.28017i −1.79622 + 0.101524i
\(160\) 0 0
\(161\) −0.366801 −0.0289079
\(162\) 0 0
\(163\) 15.9451i 1.24892i −0.781058 0.624458i \(-0.785320\pi\)
0.781058 0.624458i \(-0.214680\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.7529 + 10.2497i 1.37376 + 0.793143i 0.991400 0.130869i \(-0.0417767\pi\)
0.382364 + 0.924012i \(0.375110\pi\)
\(168\) 0 0
\(169\) −4.37160 7.57183i −0.336277 0.582448i
\(170\) 0 0
\(171\) −18.9500 + 2.14902i −1.44915 + 0.164340i
\(172\) 0 0
\(173\) 19.5647 11.2957i 1.48748 0.858796i 0.487580 0.873078i \(-0.337880\pi\)
0.999898 + 0.0142821i \(0.00454629\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −20.3816 10.2799i −1.53197 0.772681i
\(178\) 0 0
\(179\) −20.5879 −1.53881 −0.769407 0.638759i \(-0.779448\pi\)
−0.769407 + 0.638759i \(0.779448\pi\)
\(180\) 0 0
\(181\) −8.32830 −0.619038 −0.309519 0.950893i \(-0.600168\pi\)
−0.309519 + 0.950893i \(0.600168\pi\)
\(182\) 0 0
\(183\) −2.49852 + 1.63716i −0.184696 + 0.121023i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −5.34370 + 3.08519i −0.390770 + 0.225611i
\(188\) 0 0
\(189\) −11.2922 13.5991i −0.821384 0.989189i
\(190\) 0 0
\(191\) 4.39217 + 7.60747i 0.317807 + 0.550457i 0.980030 0.198849i \(-0.0637204\pi\)
−0.662224 + 0.749306i \(0.730387\pi\)
\(192\) 0 0
\(193\) −6.26202 3.61538i −0.450750 0.260241i 0.257397 0.966306i \(-0.417135\pi\)
−0.708147 + 0.706065i \(0.750469\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.17932i 0.297764i 0.988855 + 0.148882i \(0.0475675\pi\)
−0.988855 + 0.148882i \(0.952432\pi\)
\(198\) 0 0
\(199\) −15.6518 −1.10953 −0.554763 0.832009i \(-0.687191\pi\)
−0.554763 + 0.832009i \(0.687191\pi\)
\(200\) 0 0
\(201\) 9.65307 19.1388i 0.680875 1.34995i
\(202\) 0 0
\(203\) 26.7553 + 15.4472i 1.87785 + 1.08418i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.296581 + 0.129142i 0.0206138 + 0.00897598i
\(208\) 0 0
\(209\) 13.9914 + 24.2339i 0.967809 + 1.67629i
\(210\) 0 0
\(211\) 12.0770 20.9179i 0.831412 1.44005i −0.0655057 0.997852i \(-0.520866\pi\)
0.896918 0.442196i \(-0.145801\pi\)
\(212\) 0 0
\(213\) −0.734001 12.9863i −0.0502929 0.889807i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 10.4204i 0.707381i
\(218\) 0 0
\(219\) 9.37339 0.529795i 0.633395 0.0358002i
\(220\) 0 0
\(221\) 1.44609 2.50470i 0.0972743 0.168484i
\(222\) 0 0
\(223\) 1.25263 0.723206i 0.0838823 0.0484295i −0.457472 0.889224i \(-0.651245\pi\)
0.541354 + 0.840794i \(0.317912\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.7755 + 10.2627i −1.17980 + 0.681158i −0.955969 0.293469i \(-0.905190\pi\)
−0.223832 + 0.974628i \(0.571857\pi\)
\(228\) 0 0
\(229\) 10.4743 18.1420i 0.692160 1.19886i −0.278969 0.960300i \(-0.589993\pi\)
0.971129 0.238556i \(-0.0766741\pi\)
\(230\) 0 0
\(231\) −11.6797 + 23.1569i −0.768466 + 1.52361i
\(232\) 0 0
\(233\) 9.90112i 0.648644i −0.945947 0.324322i \(-0.894864\pi\)
0.945947 0.324322i \(-0.105136\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −13.6705 + 8.95764i −0.887993 + 0.581861i
\(238\) 0 0
\(239\) 3.05391 5.28953i 0.197541 0.342151i −0.750189 0.661223i \(-0.770038\pi\)
0.947731 + 0.319072i \(0.103371\pi\)
\(240\) 0 0
\(241\) 0.148392 + 0.257022i 0.00955875 + 0.0165562i 0.870765 0.491699i \(-0.163624\pi\)
−0.861206 + 0.508255i \(0.830291\pi\)
\(242\) 0 0
\(243\) 4.34248 + 14.9714i 0.278570 + 0.960416i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −11.3589 6.55806i −0.722749 0.417279i
\(248\) 0 0
\(249\) 8.51890 + 13.0009i 0.539864 + 0.823900i
\(250\) 0 0
\(251\) −4.51643 −0.285075 −0.142537 0.989789i \(-0.545526\pi\)
−0.142537 + 0.989789i \(0.545526\pi\)
\(252\) 0 0
\(253\) 0.474626i 0.0298395i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.7764 + 6.79911i 0.734591 + 0.424117i 0.820100 0.572221i \(-0.193918\pi\)
−0.0855081 + 0.996337i \(0.527251\pi\)
\(258\) 0 0
\(259\) −3.32589 5.76061i −0.206661 0.357947i
\(260\) 0 0
\(261\) −16.1947 21.9099i −1.00242 1.35619i
\(262\) 0 0
\(263\) −6.16921 + 3.56179i −0.380409 + 0.219630i −0.677996 0.735065i \(-0.737152\pi\)
0.297587 + 0.954695i \(0.403818\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.392506 6.94441i −0.0240210 0.424991i
\(268\) 0 0
\(269\) −8.80358 −0.536764 −0.268382 0.963313i \(-0.586489\pi\)
−0.268382 + 0.963313i \(0.586489\pi\)
\(270\) 0 0
\(271\) −9.95885 −0.604957 −0.302478 0.953156i \(-0.597814\pi\)
−0.302478 + 0.953156i \(0.597814\pi\)
\(272\) 0 0
\(273\) −0.686006 12.1372i −0.0415190 0.734575i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.73303 4.46467i 0.464633 0.268256i −0.249358 0.968411i \(-0.580219\pi\)
0.713990 + 0.700156i \(0.246886\pi\)
\(278\) 0 0
\(279\) 3.66877 8.42550i 0.219643 0.504421i
\(280\) 0 0
\(281\) −16.0402 27.7825i −0.956879 1.65736i −0.730008 0.683439i \(-0.760484\pi\)
−0.226872 0.973925i \(-0.572850\pi\)
\(282\) 0 0
\(283\) 5.51437 + 3.18373i 0.327796 + 0.189253i 0.654862 0.755749i \(-0.272727\pi\)
−0.327066 + 0.945001i \(0.606060\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 29.5811i 1.74612i
\(288\) 0 0
\(289\) 15.0350 0.884411
\(290\) 0 0
\(291\) −2.06094 3.14525i −0.120814 0.184378i
\(292\) 0 0
\(293\) −24.1631 13.9506i −1.41162 0.815000i −0.416081 0.909328i \(-0.636597\pi\)
−0.995541 + 0.0943273i \(0.969930\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 17.5967 14.6116i 1.02107 0.847854i
\(298\) 0 0
\(299\) 0.111233 + 0.192662i 0.00643278 + 0.0111419i
\(300\) 0 0
\(301\) −12.1213 + 20.9946i −0.698658 + 1.21011i
\(302\) 0 0
\(303\) 4.30849 2.82315i 0.247516 0.162186i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.2054i 0.696597i 0.937384 + 0.348299i \(0.113240\pi\)
−0.937384 + 0.348299i \(0.886760\pi\)
\(308\) 0 0
\(309\) 5.17558 10.2615i 0.294428 0.583755i
\(310\) 0 0
\(311\) 2.45123 4.24565i 0.138996 0.240749i −0.788121 0.615521i \(-0.788946\pi\)
0.927117 + 0.374772i \(0.122279\pi\)
\(312\) 0 0
\(313\) −15.2322 + 8.79429i −0.860972 + 0.497083i −0.864338 0.502912i \(-0.832262\pi\)
0.00336551 + 0.999994i \(0.498929\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.9500 + 9.78608i −0.952007 + 0.549641i −0.893704 0.448658i \(-0.851902\pi\)
−0.0583028 + 0.998299i \(0.518569\pi\)
\(318\) 0 0
\(319\) −19.9880 + 34.6203i −1.11912 + 1.93836i
\(320\) 0 0
\(321\) 23.8431 1.34764i 1.33079 0.0752180i
\(322\) 0 0
\(323\) 8.91140i 0.495844i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.77251 + 31.3602i 0.0980201 + 1.73422i
\(328\) 0 0
\(329\) 12.7288 22.0469i 0.701759 1.21548i
\(330\) 0 0
\(331\) −7.29537 12.6360i −0.400990 0.694535i 0.592856 0.805309i \(-0.298000\pi\)
−0.993846 + 0.110774i \(0.964667\pi\)
\(332\) 0 0
\(333\) 0.661009 + 5.82877i 0.0362231 + 0.319415i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −8.58108 4.95429i −0.467441 0.269877i 0.247727 0.968830i \(-0.420317\pi\)
−0.715168 + 0.698953i \(0.753650\pi\)
\(338\) 0 0
\(339\) −0.0637896 + 0.126474i −0.00346458 + 0.00686911i
\(340\) 0 0
\(341\) −13.4836 −0.730176
\(342\) 0 0
\(343\) 8.25897i 0.445943i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.93739 + 5.16000i 0.479784 + 0.277004i 0.720327 0.693635i \(-0.243992\pi\)
−0.240542 + 0.970639i \(0.577325\pi\)
\(348\) 0 0
\(349\) 8.56767 + 14.8396i 0.458617 + 0.794348i 0.998888 0.0471429i \(-0.0150116\pi\)
−0.540271 + 0.841491i \(0.681678\pi\)
\(350\) 0 0
\(351\) −3.71853 + 10.0552i −0.198481 + 0.536705i
\(352\) 0 0
\(353\) −11.4845 + 6.63055i −0.611256 + 0.352909i −0.773457 0.633849i \(-0.781474\pi\)
0.162201 + 0.986758i \(0.448141\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6.90844 + 4.52678i −0.365634 + 0.239583i
\(358\) 0 0
\(359\) −14.2817 −0.753758 −0.376879 0.926263i \(-0.623003\pi\)
−0.376879 + 0.926263i \(0.623003\pi\)
\(360\) 0 0
\(361\) 21.4136 1.12703
\(362\) 0 0
\(363\) −12.9529 6.53307i −0.679852 0.342897i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −8.29749 + 4.79056i −0.433125 + 0.250065i −0.700677 0.713478i \(-0.747119\pi\)
0.267552 + 0.963543i \(0.413785\pi\)
\(368\) 0 0
\(369\) −10.4148 + 23.9181i −0.542173 + 1.24513i
\(370\) 0 0
\(371\) 22.2775 + 38.5858i 1.15659 + 2.00328i
\(372\) 0 0
\(373\) 20.8763 + 12.0529i 1.08093 + 0.624076i 0.931148 0.364642i \(-0.118809\pi\)
0.149784 + 0.988719i \(0.452142\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.7376i 0.965033i
\(378\) 0 0
\(379\) −2.73973 −0.140730 −0.0703651 0.997521i \(-0.522416\pi\)
−0.0703651 + 0.997521i \(0.522416\pi\)
\(380\) 0 0
\(381\) 37.3200 2.10937i 1.91196 0.108066i
\(382\) 0 0
\(383\) −18.4924 10.6766i −0.944917 0.545548i −0.0534187 0.998572i \(-0.517012\pi\)
−0.891498 + 0.453024i \(0.850345\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 17.1925 12.7078i 0.873944 0.645975i
\(388\) 0 0
\(389\) −7.33485 12.7043i −0.371892 0.644136i 0.617965 0.786206i \(-0.287957\pi\)
−0.989857 + 0.142070i \(0.954624\pi\)
\(390\) 0 0
\(391\) 0.0755745 0.130899i 0.00382197 0.00661984i
\(392\) 0 0
\(393\) 16.6832 + 8.41449i 0.841554 + 0.424455i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6.43065i 0.322745i −0.986894 0.161373i \(-0.948408\pi\)
0.986894 0.161373i \(-0.0515921\pi\)
\(398\) 0 0
\(399\) 20.5291 + 31.3300i 1.02774 + 1.56846i
\(400\) 0 0
\(401\) −9.03748 + 15.6534i −0.451310 + 0.781693i −0.998468 0.0553373i \(-0.982377\pi\)
0.547157 + 0.837030i \(0.315710\pi\)
\(402\) 0 0
\(403\) 5.47329 3.16000i 0.272644 0.157411i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.45402 4.30358i 0.369482 0.213320i
\(408\) 0 0
\(409\) −9.39532 + 16.2732i −0.464569 + 0.804657i −0.999182 0.0404403i \(-0.987124\pi\)
0.534613 + 0.845097i \(0.320457\pi\)
\(410\) 0 0
\(411\) −12.8246 19.5719i −0.632589 0.965411i
\(412\) 0 0
\(413\) 44.8333i 2.20610i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 22.5940 + 11.3958i 1.10643 + 0.558053i
\(418\) 0 0
\(419\) 19.8297 34.3461i 0.968745 1.67792i 0.269547 0.962987i \(-0.413126\pi\)
0.699198 0.714928i \(-0.253540\pi\)
\(420\) 0 0
\(421\) 18.7682 + 32.5076i 0.914708 + 1.58432i 0.807328 + 0.590103i \(0.200913\pi\)
0.107380 + 0.994218i \(0.465754\pi\)
\(422\) 0 0
\(423\) −18.0542 + 13.3447i −0.877823 + 0.648843i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.08078 + 2.93339i 0.245876 + 0.141957i
\(428\) 0 0
\(429\) 15.7050 0.887666i 0.758247 0.0428569i
\(430\) 0 0
\(431\) 16.7357 0.806132 0.403066 0.915171i \(-0.367945\pi\)
0.403066 + 0.915171i \(0.367945\pi\)
\(432\) 0 0
\(433\) 21.0008i 1.00924i 0.863343 + 0.504618i \(0.168367\pi\)
−0.863343 + 0.504618i \(0.831633\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.593631 0.342733i −0.0283972 0.0163952i
\(438\) 0 0
\(439\) −3.01576 5.22345i −0.143934 0.249302i 0.785041 0.619444i \(-0.212642\pi\)
−0.928975 + 0.370143i \(0.879309\pi\)
\(440\) 0 0
\(441\) −5.47604 + 12.5760i −0.260764 + 0.598856i
\(442\) 0 0
\(443\) 5.47803 3.16274i 0.260269 0.150266i −0.364188 0.931325i \(-0.618654\pi\)
0.624457 + 0.781059i \(0.285320\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0.207027 + 0.104418i 0.00979205 + 0.00493882i
\(448\) 0 0
\(449\) 18.6594 0.880593 0.440296 0.897853i \(-0.354873\pi\)
0.440296 + 0.897853i \(0.354873\pi\)
\(450\) 0 0
\(451\) 38.2769 1.80239
\(452\) 0 0
\(453\) 8.90248 5.83338i 0.418275 0.274076i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 23.8889 13.7923i 1.11748 0.645176i 0.176722 0.984261i \(-0.443451\pi\)
0.940756 + 0.339085i \(0.110117\pi\)
\(458\) 0 0
\(459\) 7.17967 1.22788i 0.335118 0.0573125i
\(460\) 0 0
\(461\) 6.76442 + 11.7163i 0.315051 + 0.545684i 0.979448 0.201696i \(-0.0646452\pi\)
−0.664398 + 0.747379i \(0.731312\pi\)
\(462\) 0 0
\(463\) −23.8020 13.7421i −1.10617 0.638650i −0.168338 0.985729i \(-0.553840\pi\)
−0.937836 + 0.347079i \(0.887173\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 32.7515i 1.51556i −0.652511 0.757779i \(-0.726284\pi\)
0.652511 0.757779i \(-0.273716\pi\)
\(468\) 0 0
\(469\) −42.0997 −1.94398
\(470\) 0 0
\(471\) −11.5243 + 22.8488i −0.531010 + 1.05282i
\(472\) 0 0
\(473\) −27.1663 15.6845i −1.24911 0.721172i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −4.42758 39.0424i −0.202725 1.78763i
\(478\) 0 0
\(479\) 2.92783 + 5.07116i 0.133776 + 0.231707i 0.925129 0.379652i \(-0.123956\pi\)
−0.791353 + 0.611359i \(0.790623\pi\)
\(480\) 0 0
\(481\) −2.01717 + 3.49384i −0.0919750 + 0.159305i
\(482\) 0 0
\(483\) −0.0358516 0.634305i −0.00163131 0.0288619i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.4864i 0.747070i 0.927616 + 0.373535i \(0.121854\pi\)
−0.927616 + 0.373535i \(0.878146\pi\)
\(488\) 0 0
\(489\) 27.5737 1.55850i 1.24693 0.0704776i
\(490\) 0 0
\(491\) 6.85302 11.8698i 0.309272 0.535676i −0.668931 0.743324i \(-0.733248\pi\)
0.978203 + 0.207649i \(0.0665812\pi\)
\(492\) 0 0
\(493\) −11.0251 + 6.36537i −0.496548 + 0.286682i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −22.1236 + 12.7731i −0.992379 + 0.572950i
\(498\) 0 0
\(499\) 2.23482 3.87082i 0.100044 0.173282i −0.811658 0.584132i \(-0.801435\pi\)
0.911703 + 0.410851i \(0.134768\pi\)
\(500\) 0 0
\(501\) −15.9895 + 31.7018i −0.714356 + 1.41633i
\(502\) 0 0
\(503\) 18.1010i 0.807084i −0.914961 0.403542i \(-0.867779\pi\)
0.914961 0.403542i \(-0.132221\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.6666 8.29985i 0.562544 0.368609i
\(508\) 0 0
\(509\) −10.6044 + 18.3674i −0.470033 + 0.814120i −0.999413 0.0342644i \(-0.989091\pi\)
0.529380 + 0.848385i \(0.322425\pi\)
\(510\) 0 0
\(511\) −9.21947 15.9686i −0.407846 0.706409i
\(512\) 0 0
\(513\) −5.56848 32.5601i −0.245855 1.43756i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 28.5278 + 16.4705i 1.25465 + 0.724374i
\(518\) 0 0
\(519\) 21.4458 + 32.7290i 0.941368 + 1.43665i
\(520\) 0 0
\(521\) −28.4507 −1.24645 −0.623224 0.782043i \(-0.714178\pi\)
−0.623224 + 0.782043i \(0.714178\pi\)
\(522\) 0 0
\(523\) 26.5111i 1.15925i 0.814884 + 0.579625i \(0.196801\pi\)
−0.814884 + 0.579625i \(0.803199\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.71868 2.14698i −0.161988 0.0935240i
\(528\) 0 0
\(529\) −11.4942 19.9085i −0.499747 0.865588i
\(530\) 0 0
\(531\) 15.7847 36.2504i 0.684999 1.57313i
\(532\) 0 0
\(533\) −15.5374 + 8.97055i −0.673001 + 0.388558i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.01229 35.6025i −0.0868369 1.53636i
\(538\) 0 0
\(539\) 20.1257 0.866876
\(540\) 0 0
\(541\) −14.3132 −0.615372 −0.307686 0.951488i \(-0.599555\pi\)
−0.307686 + 0.951488i \(0.599555\pi\)
\(542\) 0 0
\(543\) −0.814020 14.4021i −0.0349329 0.618051i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −11.8222 + 6.82556i −0.505482 + 0.291840i −0.730974 0.682405i \(-0.760934\pi\)
0.225493 + 0.974245i \(0.427601\pi\)
\(548\) 0 0
\(549\) −3.07534 4.16065i −0.131252 0.177572i
\(550\) 0 0
\(551\) 28.8672 + 49.9994i 1.22978 + 2.13005i
\(552\) 0 0
\(553\) 27.7992 + 16.0499i 1.18214 + 0.682509i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.4665i 0.994306i 0.867663 + 0.497153i \(0.165621\pi\)
−0.867663 + 0.497153i \(0.834379\pi\)
\(558\) 0 0
\(559\) 14.7032 0.621880
\(560\) 0 0
\(561\) −5.85749 8.93927i −0.247303 0.377416i
\(562\) 0 0
\(563\) 0.504418 + 0.291226i 0.0212587 + 0.0122737i 0.510592 0.859823i \(-0.329426\pi\)
−0.489333 + 0.872097i \(0.662760\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 22.4131 20.8566i 0.941261 0.875896i
\(568\) 0 0
\(569\) −2.77994 4.81500i −0.116541 0.201855i 0.801854 0.597521i \(-0.203847\pi\)
−0.918395 + 0.395665i \(0.870514\pi\)
\(570\) 0 0
\(571\) 11.3706 19.6945i 0.475845 0.824188i −0.523772 0.851858i \(-0.675476\pi\)
0.999617 + 0.0276708i \(0.00880903\pi\)
\(572\) 0 0
\(573\) −12.7262 + 8.33891i −0.531646 + 0.348363i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 30.5522i 1.27191i 0.771728 + 0.635953i \(0.219393\pi\)
−0.771728 + 0.635953i \(0.780607\pi\)
\(578\) 0 0
\(579\) 5.63998 11.1822i 0.234390 0.464718i
\(580\) 0 0
\(581\) 15.2638 26.4376i 0.633247 1.09682i
\(582\) 0 0
\(583\) −49.9286 + 28.8263i −2.06783 + 1.19386i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −17.6353 + 10.1817i −0.727886 + 0.420245i −0.817648 0.575718i \(-0.804722\pi\)
0.0897626 + 0.995963i \(0.471389\pi\)
\(588\) 0 0
\(589\) −9.73664 + 16.8644i −0.401191 + 0.694884i
\(590\) 0 0
\(591\) −7.22726 + 0.408493i −0.297290 + 0.0168032i
\(592\) 0 0
\(593\) 15.5199i 0.637326i 0.947868 + 0.318663i \(0.103234\pi\)
−0.947868 + 0.318663i \(0.896766\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.52983 27.0665i −0.0626117 1.10776i
\(598\) 0 0
\(599\) 14.6288 25.3379i 0.597717 1.03528i −0.395440 0.918492i \(-0.629408\pi\)
0.993157 0.116785i \(-0.0372588\pi\)
\(600\) 0 0
\(601\) 9.15254 + 15.8527i 0.373340 + 0.646644i 0.990077 0.140526i \(-0.0448792\pi\)
−0.616737 + 0.787169i \(0.711546\pi\)
\(602\) 0 0
\(603\) 34.0401 + 14.8223i 1.38622 + 0.603611i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 14.5845 + 8.42037i 0.591967 + 0.341772i 0.765875 0.642990i \(-0.222306\pi\)
−0.173908 + 0.984762i \(0.555640\pi\)
\(608\) 0 0
\(609\) −24.0975 + 47.7774i −0.976481 + 1.93604i
\(610\) 0 0
\(611\) −15.4401 −0.624640
\(612\) 0 0
\(613\) 13.5954i 0.549113i 0.961571 + 0.274556i \(0.0885310\pi\)
−0.961571 + 0.274556i \(0.911469\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −25.3861 14.6567i −1.02201 0.590056i −0.107322 0.994224i \(-0.534228\pi\)
−0.914685 + 0.404168i \(0.867561\pi\)
\(618\) 0 0
\(619\) 6.08211 + 10.5345i 0.244461 + 0.423418i 0.961980 0.273121i \(-0.0880558\pi\)
−0.717519 + 0.696539i \(0.754722\pi\)
\(620\) 0 0
\(621\) −0.194336 + 0.525497i −0.00779842 + 0.0210875i
\(622\) 0 0
\(623\) −11.8306 + 6.83038i −0.473982 + 0.273653i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −40.5399 + 26.5639i −1.61901 + 1.06086i
\(628\) 0 0
\(629\) 2.74103 0.109292
\(630\) 0 0
\(631\) 5.45471 0.217148 0.108574 0.994088i \(-0.465371\pi\)
0.108574 + 0.994088i \(0.465371\pi\)
\(632\) 0 0
\(633\) 37.3536 + 18.8400i 1.48467 + 0.748824i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −8.16948 + 4.71665i −0.323687 + 0.186881i
\(638\) 0 0
\(639\) 22.3854 2.53860i 0.885551 0.100425i
\(640\) 0 0
\(641\) 0.839996 + 1.45492i 0.0331779 + 0.0574657i 0.882138 0.470992i \(-0.156104\pi\)
−0.848960 + 0.528458i \(0.822771\pi\)
\(642\) 0 0
\(643\) 4.92202 + 2.84173i 0.194106 + 0.112067i 0.593903 0.804537i \(-0.297586\pi\)
−0.399797 + 0.916603i \(0.630920\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 34.3064i 1.34872i 0.738401 + 0.674361i \(0.235581\pi\)
−0.738401 + 0.674361i \(0.764419\pi\)
\(648\) 0 0
\(649\) −58.0126 −2.27719
\(650\) 0 0
\(651\) −18.0198 + 1.01850i −0.706253 + 0.0399182i
\(652\) 0 0
\(653\) −10.9377 6.31486i −0.428024 0.247120i 0.270480 0.962725i \(-0.412817\pi\)
−0.698504 + 0.715606i \(0.746151\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.83234 + 16.1575i 0.0714863 + 0.630366i
\(658\) 0 0
\(659\) −3.16697 5.48535i −0.123368 0.213679i 0.797726 0.603020i \(-0.206036\pi\)
−0.921094 + 0.389341i \(0.872703\pi\)
\(660\) 0 0
\(661\) 18.8448 32.6401i 0.732978 1.26955i −0.222628 0.974904i \(-0.571463\pi\)
0.955605 0.294651i \(-0.0952033\pi\)
\(662\) 0 0
\(663\) 4.47269 + 2.25589i 0.173705 + 0.0876116i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.979251i 0.0379167i
\(668\) 0 0
\(669\) 1.37307 + 2.09547i 0.0530859 + 0.0810157i
\(670\) 0 0
\(671\) −3.79570 + 6.57434i −0.146531 + 0.253800i
\(672\) 0 0
\(673\) 26.5477 15.3273i 1.02334 0.590824i 0.108268 0.994122i \(-0.465469\pi\)
0.915069 + 0.403298i \(0.132136\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −25.0035 + 14.4358i −0.960964 + 0.554813i −0.896470 0.443105i \(-0.853877\pi\)
−0.0644945 + 0.997918i \(0.520544\pi\)
\(678\) 0 0
\(679\) −3.69269 + 6.39593i −0.141712 + 0.245453i
\(680\) 0 0
\(681\) −19.4846 29.7359i −0.746650 1.13948i
\(682\) 0 0
\(683\) 47.0352i 1.79975i −0.436147 0.899875i \(-0.643657\pi\)
0.436147 0.899875i \(-0.356343\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 32.3965 + 16.3399i 1.23601 + 0.623404i
\(688\) 0 0
\(689\) 13.5114 23.4025i 0.514745 0.891564i
\(690\) 0 0
\(691\) −0.425186 0.736443i −0.0161748 0.0280156i 0.857825 0.513942i \(-0.171815\pi\)
−0.874000 + 0.485927i \(0.838482\pi\)
\(692\) 0 0
\(693\) −41.1867 17.9342i −1.56455 0.681262i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 10.5565 + 6.09480i 0.399856 + 0.230857i
\(698\) 0 0
\(699\) 17.1219 0.967750i 0.647610 0.0366037i
\(700\) 0 0
\(701\) −35.6821 −1.34770 −0.673848 0.738870i \(-0.735360\pi\)
−0.673848 + 0.738870i \(0.735360\pi\)
\(702\) 0 0
\(703\) 12.4307i 0.468831i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.76138 5.05838i −0.329506 0.190240i
\(708\) 0 0
\(709\) 7.69543 + 13.3289i 0.289008 + 0.500576i 0.973573 0.228375i \(-0.0733413\pi\)
−0.684565 + 0.728951i \(0.740008\pi\)
\(710\) 0 0
\(711\) −16.8265 22.7647i −0.631044 0.853743i
\(712\) 0 0
\(713\) 0.286042 0.165146i 0.0107123 0.00618477i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 9.44563 + 4.76410i 0.352754 + 0.177918i
\(718\) 0 0
\(719\) −25.5846 −0.954144 −0.477072 0.878864i \(-0.658302\pi\)
−0.477072 + 0.878864i \(0.658302\pi\)
\(720\) 0 0
\(721\) −22.5721 −0.840630
\(722\) 0 0
\(723\) −0.429962 + 0.281734i −0.0159904 + 0.0104778i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −5.31509 + 3.06867i −0.197126 + 0.113811i −0.595314 0.803493i \(-0.702972\pi\)
0.398188 + 0.917304i \(0.369639\pi\)
\(728\) 0 0
\(729\) −25.4655 + 8.97274i −0.943165 + 0.332324i
\(730\) 0 0
\(731\) −4.99486 8.65135i −0.184741 0.319982i
\(732\) 0 0
\(733\) −4.44306 2.56520i −0.164108 0.0947478i 0.415697 0.909503i \(-0.363538\pi\)
−0.579805 + 0.814756i \(0.696871\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 54.4754i 2.00663i
\(738\) 0 0
\(739\) −18.8784 −0.694454 −0.347227 0.937781i \(-0.612877\pi\)
−0.347227 + 0.937781i \(0.612877\pi\)
\(740\) 0 0
\(741\) 10.2306 20.2838i 0.375829 0.745145i
\(742\) 0 0
\(743\) −19.0152 10.9784i −0.697600 0.402759i 0.108853 0.994058i \(-0.465282\pi\)
−0.806453 + 0.591298i \(0.798616\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −21.6497 + 16.0024i −0.792122 + 0.585497i
\(748\) 0 0
\(749\) −23.4516 40.6194i −0.856904 1.48420i
\(750\) 0 0
\(751\) 1.58037 2.73728i 0.0576686 0.0998849i −0.835750 0.549110i \(-0.814967\pi\)
0.893418 + 0.449225i \(0.148300\pi\)
\(752\) 0 0
\(753\) −0.441442 7.81022i −0.0160871 0.284620i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 39.1753i 1.42385i −0.702255 0.711926i \(-0.747823\pi\)
0.702255 0.711926i \(-0.252177\pi\)
\(758\) 0 0
\(759\) 0.820767 0.0463907i 0.0297920 0.00168387i
\(760\) 0 0
\(761\) −5.03916 + 8.72807i −0.182669 + 0.316392i −0.942789 0.333391i \(-0.891807\pi\)
0.760119 + 0.649783i \(0.225140\pi\)
\(762\) 0 0
\(763\) 53.4255 30.8452i 1.93413 1.11667i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.5486 13.5958i 0.850292 0.490916i
\(768\) 0 0
\(769\) 10.5790 18.3233i 0.381487 0.660755i −0.609788 0.792565i \(-0.708745\pi\)
0.991275 + 0.131810i \(0.0420787\pi\)
\(770\) 0 0
\(771\) −10.6066 + 21.0294i −0.381987 + 0.757354i
\(772\) 0 0
\(773\) 43.2543i 1.55575i 0.628420 + 0.777874i \(0.283702\pi\)
−0.628420 + 0.777874i \(0.716298\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 9.63669 6.31448i 0.345714 0.226531i
\(778\) 0 0
\(779\) 27.6402 47.8742i 0.990312 1.71527i
\(780\) 0 0
\(781\) −16.5279 28.6271i −0.591414 1.02436i
\(782\) 0 0
\(783\) 36.3056 30.1468i 1.29746 1.07736i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.02189 0.589986i −0.0364263 0.0210307i 0.481676 0.876349i \(-0.340028\pi\)
−0.518103 + 0.855318i \(0.673361\pi\)
\(788\) 0 0
\(789\) −6.76236 10.3202i −0.240746 0.367409i
\(790\) 0 0
\(791\) 0.278204 0.00989180
\(792\) 0 0
\(793\) 3.55823i 0.126357i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.989706 0.571407i −0.0350572 0.0202403i 0.482369 0.875968i \(-0.339776\pi\)
−0.517426 + 0.855728i \(0.673110\pi\)
\(798\) 0 0
\(799\) 5.24519 + 9.08494i 0.185562 + 0.321402i
\(800\) 0 0
\(801\) 11.9705 1.35751i 0.422959 0.0479654i
\(802\) 0 0
\(803\) 20.6628 11.9297i 0.729173 0.420988i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.860474 15.2239i −0.0302901 0.535908i
\(808\) 0 0
\(809\) 11.3723 0.399828 0.199914 0.979813i \(-0.435934\pi\)
0.199914 + 0.979813i \(0.435934\pi\)
\(810\) 0 0
\(811\) 2.08590 0.0732459 0.0366230 0.999329i \(-0.488340\pi\)
0.0366230 + 0.999329i \(0.488340\pi\)
\(812\) 0 0
\(813\) −0.973392 17.2217i −0.0341384 0.603993i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −39.2342 + 22.6519i −1.37263 + 0.792489i
\(818\) 0 0
\(819\) 20.9216 2.37261i 0.731061 0.0829056i
\(820\) 0 0
\(821\) −7.89564 13.6757i −0.275560 0.477284i 0.694716 0.719284i \(-0.255530\pi\)
−0.970276 + 0.242000i \(0.922197\pi\)
\(822\) 0 0
\(823\) −6.34003 3.66042i −0.221000 0.127594i 0.385413 0.922744i \(-0.374059\pi\)
−0.606413 + 0.795150i \(0.707392\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.8401i 0.516040i 0.966140 + 0.258020i \(0.0830701\pi\)
−0.966140 + 0.258020i \(0.916930\pi\)
\(828\) 0 0
\(829\) 23.3346 0.810444 0.405222 0.914218i \(-0.367194\pi\)
0.405222 + 0.914218i \(0.367194\pi\)
\(830\) 0 0
\(831\) 8.47654 + 12.9363i 0.294048 + 0.448754i
\(832\) 0 0
\(833\) 5.55054 + 3.20461i 0.192315 + 0.111033i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 14.9287 + 5.52084i 0.516012 + 0.190828i
\(838\) 0 0
\(839\) −7.33826 12.7102i −0.253345 0.438806i 0.711100 0.703091i \(-0.248197\pi\)
−0.964445 + 0.264285i \(0.914864\pi\)
\(840\) 0 0
\(841\) −26.7394 + 46.3140i −0.922048 + 1.59703i
\(842\) 0 0
\(843\) 46.4762 30.4537i 1.60072 1.04888i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 28.4925i 0.979014i
\(848\) 0 0
\(849\) −4.96660 + 9.84714i −0.170453 + 0.337953i
\(850\) 0 0
\(851\) −0.105420 + 0.182593i −0.00361375 + 0.00625920i
\(852\) 0 0
\(853\) 21.2369 12.2611i 0.727136 0.419812i −0.0902375 0.995920i \(-0.528763\pi\)
0.817374 + 0.576108i \(0.195429\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.83929 + 2.79396i −0.165307 + 0.0954400i −0.580371 0.814352i \(-0.697092\pi\)
0.415064 + 0.909792i \(0.363759\pi\)
\(858\) 0 0
\(859\) −20.0309 + 34.6946i −0.683447 + 1.18376i 0.290476 + 0.956882i \(0.406186\pi\)
−0.973922 + 0.226882i \(0.927147\pi\)
\(860\) 0 0
\(861\) 51.1543 2.89130i 1.74334 0.0985353i
\(862\) 0 0
\(863\) 27.2157i 0.926432i −0.886246 0.463216i \(-0.846695\pi\)
0.886246 0.463216i \(-0.153305\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.46954 + 25.9999i 0.0499082 + 0.883002i
\(868\) 0 0
\(869\) −20.7679 + 35.9711i −0.704503 + 1.22024i
\(870\) 0 0
\(871\) 12.7668 + 22.1128i 0.432588 + 0.749264i
\(872\) 0 0
\(873\) 5.23762 3.87139i 0.177267 0.131027i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −20.6806 11.9399i −0.698334 0.403183i 0.108393 0.994108i \(-0.465430\pi\)
−0.806727 + 0.590925i \(0.798763\pi\)
\(878\) 0 0
\(879\) 21.7628 43.1485i 0.734042 1.45536i
\(880\) 0 0
\(881\) 28.3585 0.955421 0.477710 0.878517i \(-0.341467\pi\)
0.477710 + 0.878517i \(0.341467\pi\)
\(882\) 0 0
\(883\) 28.3449i 0.953881i 0.878936 + 0.476941i \(0.158254\pi\)
−0.878936 + 0.476941i \(0.841746\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.446080 + 0.257544i 0.0149779 + 0.00864749i 0.507470 0.861669i \(-0.330581\pi\)
−0.492492 + 0.870317i \(0.663914\pi\)
\(888\) 0 0
\(889\) −36.7072 63.5787i −1.23112 2.13236i
\(890\) 0 0
\(891\) 26.9877 + 29.0017i 0.904123 + 0.971593i
\(892\) 0 0
\(893\) 41.2005 23.7871i 1.37872 0.796007i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −0.322296 + 0.211186i −0.0107611 + 0.00705128i
\(898\) 0 0
\(899\) −27.8193 −0.927827
\(900\) 0 0
\(901\) −18.3600 −0.611660
\(902\) 0 0
\(903\) −37.4906 18.9091i −1.24761 0.629257i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.87426 + 1.08211i −0.0622339 + 0.0359308i −0.530794 0.847501i \(-0.678106\pi\)
0.468560 + 0.883432i \(0.344773\pi\)
\(908\) 0 0
\(909\) 5.30317 + 7.17469i 0.175895 + 0.237969i
\(910\) 0 0
\(911\) −19.2332 33.3129i −0.637226 1.10371i −0.986039 0.166515i \(-0.946749\pi\)
0.348813 0.937192i \(-0.386585\pi\)
\(912\) 0 0
\(913\) 34.2093 + 19.7507i 1.13216 + 0.653654i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 36.6979i 1.21187i
\(918\) 0 0
\(919\) −18.6992 −0.616830 −0.308415 0.951252i \(-0.599799\pi\)
−0.308415 + 0.951252i \(0.599799\pi\)
\(920\) 0 0
\(921\) −21.1066 + 1.19297i −0.695487 + 0.0393097i
\(922\) 0 0
\(923\) 13.4181 + 7.74693i 0.441661 + 0.254993i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 18.2509 + 7.94711i 0.599439 + 0.261017i
\(928\) 0 0
\(929\) −1.10335 1.91106i −0.0361999 0.0627000i 0.847358 0.531022i \(-0.178192\pi\)
−0.883558 + 0.468322i \(0.844859\pi\)
\(930\) 0 0
\(931\) 14.5330 25.1719i 0.476300 0.824976i
\(932\) 0 0
\(933\) 7.58156 + 3.82391i 0.248209 + 0.125189i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21.3429i 0.697242i 0.937264 + 0.348621i \(0.113350\pi\)
−0.937264 + 0.348621i \(0.886650\pi\)
\(938\) 0 0
\(939\) −16.6967 25.4813i −0.544876 0.831549i
\(940\) 0 0
\(941\) 0.589661 1.02132i 0.0192224 0.0332942i −0.856254 0.516555i \(-0.827214\pi\)
0.875477 + 0.483261i \(0.160548\pi\)
\(942\) 0 0
\(943\) −0.812008 + 0.468813i −0.0264426 + 0.0152667i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.5152 11.8445i 0.666655 0.384894i −0.128153 0.991754i \(-0.540905\pi\)
0.794808 + 0.606861i \(0.207572\pi\)
\(948\) 0 0
\(949\) −5.59166 + 9.68504i −0.181513 + 0.314390i
\(950\) 0 0
\(951\) −18.5797 28.3550i −0.602488 0.919473i
\(952\) 0 0
\(953\) 12.8125i 0.415038i −0.978231 0.207519i \(-0.933461\pi\)
0.978231 0.207519i \(-0.0665389\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −61.8222 31.1813i −1.99843 1.00795i
\(958\) 0 0
\(959\) −22.9784 + 39.7998i −0.742012 + 1.28520i
\(960\) 0 0
\(961\) 10.8084 + 18.7207i 0.348658 + 0.603893i
\(962\) 0 0
\(963\) 4.66093 + 41.1000i 0.150196 + 1.32443i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −9.46264 5.46326i −0.304298 0.175686i 0.340074 0.940399i \(-0.389548\pi\)
−0.644372 + 0.764712i \(0.722881\pi\)
\(968\) 0 0
\(969\) −15.4104 + 0.871013i −0.495054 + 0.0279810i
\(970\) 0 0
\(971\) 15.7933 0.506831 0.253415 0.967358i \(-0.418446\pi\)
0.253415 + 0.967358i \(0.418446\pi\)
\(972\) 0 0
\(973\) 49.7001i 1.59331i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 32.4742 + 18.7490i 1.03894 + 0.599833i 0.919533 0.393012i \(-0.128567\pi\)
0.119409 + 0.992845i \(0.461900\pi\)
\(978\) 0 0
\(979\) −8.83826 15.3083i −0.282472 0.489256i
\(980\) 0 0
\(981\) −54.0576 + 6.13038i −1.72593 + 0.195728i
\(982\) 0 0
\(983\) −20.3795 + 11.7661i −0.650004 + 0.375280i −0.788458 0.615089i \(-0.789120\pi\)
0.138454 + 0.990369i \(0.455787\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 39.3696 + 19.8568i 1.25315 + 0.632050i
\(988\) 0 0
\(989\) 0.768410 0.0244340
\(990\) 0 0
\(991\) 46.7019 1.48353 0.741767 0.670658i \(-0.233988\pi\)
0.741767 + 0.670658i \(0.233988\pi\)
\(992\) 0 0
\(993\) 21.1382 13.8509i 0.670800 0.439544i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 37.1161 21.4290i 1.17548 0.678663i 0.220514 0.975384i \(-0.429226\pi\)
0.954964 + 0.296721i \(0.0958931\pi\)
\(998\) 0 0
\(999\) −10.0150 + 1.71279i −0.316861 + 0.0541902i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.s.d.49.5 16
3.2 odd 2 2700.2.s.d.1549.7 16
5.2 odd 4 900.2.i.e.301.4 yes 8
5.3 odd 4 900.2.i.d.301.1 8
5.4 even 2 inner 900.2.s.d.49.4 16
9.2 odd 6 2700.2.s.d.2449.2 16
9.4 even 3 8100.2.d.q.649.7 8
9.5 odd 6 8100.2.d.s.649.7 8
9.7 even 3 inner 900.2.s.d.349.4 16
15.2 even 4 2700.2.i.d.901.4 8
15.8 even 4 2700.2.i.e.901.1 8
15.14 odd 2 2700.2.s.d.1549.2 16
45.2 even 12 2700.2.i.d.1801.4 8
45.4 even 6 8100.2.d.q.649.2 8
45.7 odd 12 900.2.i.e.601.4 yes 8
45.13 odd 12 8100.2.a.x.1.4 4
45.14 odd 6 8100.2.d.s.649.2 8
45.22 odd 12 8100.2.a.z.1.1 4
45.23 even 12 8100.2.a.y.1.4 4
45.29 odd 6 2700.2.s.d.2449.7 16
45.32 even 12 8100.2.a.ba.1.1 4
45.34 even 6 inner 900.2.s.d.349.5 16
45.38 even 12 2700.2.i.e.1801.1 8
45.43 odd 12 900.2.i.d.601.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.2.i.d.301.1 8 5.3 odd 4
900.2.i.d.601.1 yes 8 45.43 odd 12
900.2.i.e.301.4 yes 8 5.2 odd 4
900.2.i.e.601.4 yes 8 45.7 odd 12
900.2.s.d.49.4 16 5.4 even 2 inner
900.2.s.d.49.5 16 1.1 even 1 trivial
900.2.s.d.349.4 16 9.7 even 3 inner
900.2.s.d.349.5 16 45.34 even 6 inner
2700.2.i.d.901.4 8 15.2 even 4
2700.2.i.d.1801.4 8 45.2 even 12
2700.2.i.e.901.1 8 15.8 even 4
2700.2.i.e.1801.1 8 45.38 even 12
2700.2.s.d.1549.2 16 15.14 odd 2
2700.2.s.d.1549.7 16 3.2 odd 2
2700.2.s.d.2449.2 16 9.2 odd 6
2700.2.s.d.2449.7 16 45.29 odd 6
8100.2.a.x.1.4 4 45.13 odd 12
8100.2.a.y.1.4 4 45.23 even 12
8100.2.a.z.1.1 4 45.22 odd 12
8100.2.a.ba.1.1 4 45.32 even 12
8100.2.d.q.649.2 8 45.4 even 6
8100.2.d.q.649.7 8 9.4 even 3
8100.2.d.s.649.2 8 45.14 odd 6
8100.2.d.s.649.7 8 9.5 odd 6