Properties

Label 900.2.i.d.301.1
Level $900$
Weight $2$
Character 900.301
Analytic conductor $7.187$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(301,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.301"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.142635249.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 3x^{6} + 3x^{5} - 11x^{4} + 6x^{3} + 12x^{2} - 24x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 301.1
Root \(0.620769 - 1.27069i\) of defining polynomial
Character \(\chi\) \(=\) 900.301
Dual form 900.2.i.d.601.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72929 + 0.0977414i) q^{3} +(-1.70089 - 2.94604i) q^{7} +(2.98089 - 0.338047i) q^{9} +(2.20089 + 3.81206i) q^{11} +(1.03160 - 1.78679i) q^{13} +1.40179 q^{17} -6.35717 q^{19} +(3.22929 + 4.92830i) q^{21} +(0.0539129 - 0.0933799i) q^{23} +(-5.12179 + 0.875938i) q^{27} +(-4.54089 - 7.86505i) q^{29} +(-1.53160 + 2.65281i) q^{31} +(-4.17858 - 6.37704i) q^{33} -1.95538 q^{37} +(-1.60930 + 3.19070i) q^{39} +(4.34788 - 7.53074i) q^{41} +(-3.56320 - 6.17165i) q^{43} +(-3.74179 - 6.48096i) q^{47} +(-2.28608 + 3.95961i) q^{49} +(-2.42410 + 0.137013i) q^{51} -13.0975 q^{53} +(10.9934 - 0.621359i) q^{57} +(6.58966 - 11.4136i) q^{59} +(0.862308 + 1.49356i) q^{61} +(-6.06608 - 8.20684i) q^{63} +(-6.18787 + 10.7177i) q^{67} +(-0.0841040 + 0.166751i) q^{69} -7.50961 q^{71} +5.42037 q^{73} +(7.48698 - 12.9678i) q^{77} +(-4.71806 - 8.17193i) q^{79} +(8.77145 - 2.01536i) q^{81} +(4.48698 + 7.77167i) q^{83} +(8.62126 + 13.1571i) q^{87} +4.01576 q^{89} -7.01858 q^{91} +(2.38929 - 4.73718i) q^{93} +(1.08551 + 1.88017i) q^{97} +(7.84929 + 10.6193i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} + q^{7} + 5 q^{9} + 3 q^{11} - 2 q^{13} - 18 q^{17} - 8 q^{19} + 13 q^{21} - 3 q^{23} - 16 q^{27} - 9 q^{29} - 2 q^{31} - 12 q^{33} - 2 q^{37} - 17 q^{39} + 9 q^{41} - 8 q^{43} + 12 q^{47}+ \cdots + 33 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72929 + 0.0977414i −0.998406 + 0.0564310i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.70089 2.94604i −0.642878 1.11350i −0.984787 0.173764i \(-0.944407\pi\)
0.341910 0.939733i \(-0.388926\pi\)
\(8\) 0 0
\(9\) 2.98089 0.338047i 0.993631 0.112682i
\(10\) 0 0
\(11\) 2.20089 + 3.81206i 0.663595 + 1.14938i 0.979664 + 0.200644i \(0.0643033\pi\)
−0.316070 + 0.948736i \(0.602363\pi\)
\(12\) 0 0
\(13\) 1.03160 1.78679i 0.286115 0.495565i −0.686764 0.726880i \(-0.740969\pi\)
0.972879 + 0.231315i \(0.0743028\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.40179 0.339984 0.169992 0.985445i \(-0.445626\pi\)
0.169992 + 0.985445i \(0.445626\pi\)
\(18\) 0 0
\(19\) −6.35717 −1.45843 −0.729217 0.684283i \(-0.760115\pi\)
−0.729217 + 0.684283i \(0.760115\pi\)
\(20\) 0 0
\(21\) 3.22929 + 4.92830i 0.704689 + 1.07544i
\(22\) 0 0
\(23\) 0.0539129 0.0933799i 0.0112416 0.0194711i −0.860350 0.509704i \(-0.829755\pi\)
0.871591 + 0.490233i \(0.163088\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.12179 + 0.875938i −0.985689 + 0.168574i
\(28\) 0 0
\(29\) −4.54089 7.86505i −0.843222 1.46050i −0.887156 0.461469i \(-0.847322\pi\)
0.0439339 0.999034i \(-0.486011\pi\)
\(30\) 0 0
\(31\) −1.53160 + 2.65281i −0.275084 + 0.476459i −0.970156 0.242481i \(-0.922039\pi\)
0.695073 + 0.718940i \(0.255372\pi\)
\(32\) 0 0
\(33\) −4.17858 6.37704i −0.727398 1.11010i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.95538 −0.321462 −0.160731 0.986998i \(-0.551385\pi\)
−0.160731 + 0.986998i \(0.551385\pi\)
\(38\) 0 0
\(39\) −1.60930 + 3.19070i −0.257694 + 0.510921i
\(40\) 0 0
\(41\) 4.34788 7.53074i 0.679024 1.17610i −0.296251 0.955110i \(-0.595736\pi\)
0.975275 0.220994i \(-0.0709302\pi\)
\(42\) 0 0
\(43\) −3.56320 6.17165i −0.543383 0.941167i −0.998707 0.0508414i \(-0.983810\pi\)
0.455323 0.890326i \(-0.349524\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.74179 6.48096i −0.545795 0.945345i −0.998556 0.0537135i \(-0.982894\pi\)
0.452761 0.891632i \(-0.350439\pi\)
\(48\) 0 0
\(49\) −2.28608 + 3.95961i −0.326583 + 0.565659i
\(50\) 0 0
\(51\) −2.42410 + 0.137013i −0.339442 + 0.0191856i
\(52\) 0 0
\(53\) −13.0975 −1.79909 −0.899543 0.436833i \(-0.856100\pi\)
−0.899543 + 0.436833i \(0.856100\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 10.9934 0.621359i 1.45611 0.0823009i
\(58\) 0 0
\(59\) 6.58966 11.4136i 0.857901 1.48593i −0.0160267 0.999872i \(-0.505102\pi\)
0.873928 0.486056i \(-0.161565\pi\)
\(60\) 0 0
\(61\) 0.862308 + 1.49356i 0.110407 + 0.191231i 0.915935 0.401328i \(-0.131451\pi\)
−0.805527 + 0.592559i \(0.798118\pi\)
\(62\) 0 0
\(63\) −6.06608 8.20684i −0.764255 1.03396i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.18787 + 10.7177i −0.755969 + 1.30938i 0.188922 + 0.981992i \(0.439501\pi\)
−0.944891 + 0.327385i \(0.893833\pi\)
\(68\) 0 0
\(69\) −0.0841040 + 0.166751i −0.0101249 + 0.0200744i
\(70\) 0 0
\(71\) −7.50961 −0.891227 −0.445614 0.895225i \(-0.647014\pi\)
−0.445614 + 0.895225i \(0.647014\pi\)
\(72\) 0 0
\(73\) 5.42037 0.634406 0.317203 0.948358i \(-0.397256\pi\)
0.317203 + 0.948358i \(0.397256\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.48698 12.9678i 0.853220 1.47782i
\(78\) 0 0
\(79\) −4.71806 8.17193i −0.530824 0.919413i −0.999353 0.0359656i \(-0.988549\pi\)
0.468529 0.883448i \(-0.344784\pi\)
\(80\) 0 0
\(81\) 8.77145 2.01536i 0.974605 0.223929i
\(82\) 0 0
\(83\) 4.48698 + 7.77167i 0.492510 + 0.853052i 0.999963 0.00862744i \(-0.00274623\pi\)
−0.507453 + 0.861679i \(0.669413\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.62126 + 13.1571i 0.924296 + 1.41059i
\(88\) 0 0
\(89\) 4.01576 0.425670 0.212835 0.977088i \(-0.431730\pi\)
0.212835 + 0.977088i \(0.431730\pi\)
\(90\) 0 0
\(91\) −7.01858 −0.735747
\(92\) 0 0
\(93\) 2.38929 4.73718i 0.247758 0.491223i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.08551 + 1.88017i 0.110217 + 0.190902i 0.915858 0.401503i \(-0.131512\pi\)
−0.805641 + 0.592405i \(0.798179\pi\)
\(98\) 0 0
\(99\) 7.84929 + 10.6193i 0.788883 + 1.06728i
\(100\) 0 0
\(101\) −1.48698 2.57552i −0.147960 0.256274i 0.782513 0.622634i \(-0.213937\pi\)
−0.930473 + 0.366360i \(0.880604\pi\)
\(102\) 0 0
\(103\) 3.31768 5.74640i 0.326901 0.566209i −0.654994 0.755634i \(-0.727329\pi\)
0.981895 + 0.189425i \(0.0606622\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.7878 −1.33292 −0.666459 0.745541i \(-0.732191\pi\)
−0.666459 + 0.745541i \(0.732191\pi\)
\(108\) 0 0
\(109\) −18.1347 −1.73699 −0.868495 0.495699i \(-0.834912\pi\)
−0.868495 + 0.495699i \(0.834912\pi\)
\(110\) 0 0
\(111\) 3.38141 0.191121i 0.320950 0.0181404i
\(112\) 0 0
\(113\) −0.0408909 + 0.0708250i −0.00384669 + 0.00666266i −0.867942 0.496665i \(-0.834558\pi\)
0.864096 + 0.503328i \(0.167891\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.47108 5.67495i 0.228451 0.524649i
\(118\) 0 0
\(119\) −2.38429 4.12972i −0.218568 0.378571i
\(120\) 0 0
\(121\) −4.18787 + 7.25361i −0.380716 + 0.659419i
\(122\) 0 0
\(123\) −6.78268 + 13.4478i −0.611573 + 1.21255i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −21.5811 −1.91501 −0.957507 0.288410i \(-0.906873\pi\)
−0.957507 + 0.288410i \(0.906873\pi\)
\(128\) 0 0
\(129\) 6.76504 + 10.3243i 0.595628 + 0.909004i
\(130\) 0 0
\(131\) 5.39391 9.34253i 0.471268 0.816260i −0.528192 0.849125i \(-0.677130\pi\)
0.999460 + 0.0328649i \(0.0104631\pi\)
\(132\) 0 0
\(133\) 10.8129 + 18.7284i 0.937594 + 1.62396i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.75481 + 11.6997i 0.577102 + 0.999570i 0.995810 + 0.0914491i \(0.0291499\pi\)
−0.418708 + 0.908121i \(0.637517\pi\)
\(138\) 0 0
\(139\) −7.30499 + 12.6526i −0.619601 + 1.07318i 0.369958 + 0.929049i \(0.379372\pi\)
−0.989559 + 0.144132i \(0.953961\pi\)
\(140\) 0 0
\(141\) 7.10409 + 10.8417i 0.598273 + 0.913039i
\(142\) 0 0
\(143\) 9.08178 0.759457
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 3.56628 7.07077i 0.294142 0.583187i
\(148\) 0 0
\(149\) −0.0669350 + 0.115935i −0.00548353 + 0.00949775i −0.868754 0.495244i \(-0.835079\pi\)
0.863271 + 0.504741i \(0.168412\pi\)
\(150\) 0 0
\(151\) −3.07249 5.32171i −0.250036 0.433075i 0.713500 0.700656i \(-0.247109\pi\)
−0.963535 + 0.267581i \(0.913776\pi\)
\(152\) 0 0
\(153\) 4.17858 0.473870i 0.337818 0.0383101i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.38736 12.7953i 0.589575 1.02117i −0.404713 0.914444i \(-0.632628\pi\)
0.994288 0.106730i \(-0.0340382\pi\)
\(158\) 0 0
\(159\) 22.6495 1.28017i 1.79622 0.101524i
\(160\) 0 0
\(161\) −0.366801 −0.0289079
\(162\) 0 0
\(163\) 15.9451 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.2497 17.7529i 0.793143 1.37376i −0.130869 0.991400i \(-0.541777\pi\)
0.924012 0.382364i \(-0.124890\pi\)
\(168\) 0 0
\(169\) 4.37160 + 7.57183i 0.336277 + 0.582448i
\(170\) 0 0
\(171\) −18.9500 + 2.14902i −1.44915 + 0.164340i
\(172\) 0 0
\(173\) 11.2957 + 19.5647i 0.858796 + 1.48748i 0.873078 + 0.487580i \(0.162120\pi\)
−0.0142821 + 0.999898i \(0.504546\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −10.2799 + 20.3816i −0.772681 + 1.53197i
\(178\) 0 0
\(179\) 20.5879 1.53881 0.769407 0.638759i \(-0.220552\pi\)
0.769407 + 0.638759i \(0.220552\pi\)
\(180\) 0 0
\(181\) −8.32830 −0.619038 −0.309519 0.950893i \(-0.600168\pi\)
−0.309519 + 0.950893i \(0.600168\pi\)
\(182\) 0 0
\(183\) −1.63716 2.49852i −0.121023 0.184696i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.08519 + 5.34370i 0.225611 + 0.390770i
\(188\) 0 0
\(189\) 11.2922 + 13.5991i 0.821384 + 0.989189i
\(190\) 0 0
\(191\) 4.39217 + 7.60747i 0.317807 + 0.550457i 0.980030 0.198849i \(-0.0637204\pi\)
−0.662224 + 0.749306i \(0.730387\pi\)
\(192\) 0 0
\(193\) 3.61538 6.26202i 0.260241 0.450750i −0.706065 0.708147i \(-0.749531\pi\)
0.966306 + 0.257397i \(0.0828647\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.17932 0.297764 0.148882 0.988855i \(-0.452432\pi\)
0.148882 + 0.988855i \(0.452432\pi\)
\(198\) 0 0
\(199\) 15.6518 1.10953 0.554763 0.832009i \(-0.312809\pi\)
0.554763 + 0.832009i \(0.312809\pi\)
\(200\) 0 0
\(201\) 9.65307 19.1388i 0.680875 1.34995i
\(202\) 0 0
\(203\) −15.4472 + 26.7553i −1.08418 + 1.87785i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.129142 0.296581i 0.00897598 0.0206138i
\(208\) 0 0
\(209\) −13.9914 24.2339i −0.967809 1.67629i
\(210\) 0 0
\(211\) 12.0770 20.9179i 0.831412 1.44005i −0.0655057 0.997852i \(-0.520866\pi\)
0.896918 0.442196i \(-0.145801\pi\)
\(212\) 0 0
\(213\) 12.9863 0.734001i 0.889807 0.0502929i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 10.4204 0.707381
\(218\) 0 0
\(219\) −9.37339 + 0.529795i −0.633395 + 0.0358002i
\(220\) 0 0
\(221\) 1.44609 2.50470i 0.0972743 0.168484i
\(222\) 0 0
\(223\) 0.723206 + 1.25263i 0.0484295 + 0.0838823i 0.889224 0.457472i \(-0.151245\pi\)
−0.840794 + 0.541354i \(0.817912\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.2627 + 17.7755i 0.681158 + 1.17980i 0.974628 + 0.223832i \(0.0718569\pi\)
−0.293469 + 0.955969i \(0.594810\pi\)
\(228\) 0 0
\(229\) −10.4743 + 18.1420i −0.692160 + 1.19886i 0.278969 + 0.960300i \(0.410007\pi\)
−0.971129 + 0.238556i \(0.923326\pi\)
\(230\) 0 0
\(231\) −11.6797 + 23.1569i −0.768466 + 1.52361i
\(232\) 0 0
\(233\) 9.90112 0.648644 0.324322 0.945947i \(-0.394864\pi\)
0.324322 + 0.945947i \(0.394864\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.95764 + 13.6705i 0.581861 + 0.887993i
\(238\) 0 0
\(239\) −3.05391 + 5.28953i −0.197541 + 0.342151i −0.947731 0.319072i \(-0.896629\pi\)
0.750189 + 0.661223i \(0.229962\pi\)
\(240\) 0 0
\(241\) 0.148392 + 0.257022i 0.00955875 + 0.0165562i 0.870765 0.491699i \(-0.163624\pi\)
−0.861206 + 0.508255i \(0.830291\pi\)
\(242\) 0 0
\(243\) −14.9714 + 4.34248i −0.960416 + 0.278570i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.55806 + 11.3589i −0.417279 + 0.722749i
\(248\) 0 0
\(249\) −8.51890 13.0009i −0.539864 0.823900i
\(250\) 0 0
\(251\) −4.51643 −0.285075 −0.142537 0.989789i \(-0.545526\pi\)
−0.142537 + 0.989789i \(0.545526\pi\)
\(252\) 0 0
\(253\) 0.474626 0.0298395
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.79911 11.7764i 0.424117 0.734591i −0.572221 0.820100i \(-0.693918\pi\)
0.996337 + 0.0855081i \(0.0272514\pi\)
\(258\) 0 0
\(259\) 3.32589 + 5.76061i 0.206661 + 0.357947i
\(260\) 0 0
\(261\) −16.1947 21.9099i −1.00242 1.35619i
\(262\) 0 0
\(263\) −3.56179 6.16921i −0.219630 0.380409i 0.735065 0.677996i \(-0.237152\pi\)
−0.954695 + 0.297587i \(0.903818\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −6.94441 + 0.392506i −0.424991 + 0.0240210i
\(268\) 0 0
\(269\) 8.80358 0.536764 0.268382 0.963313i \(-0.413511\pi\)
0.268382 + 0.963313i \(0.413511\pi\)
\(270\) 0 0
\(271\) −9.95885 −0.604957 −0.302478 0.953156i \(-0.597814\pi\)
−0.302478 + 0.953156i \(0.597814\pi\)
\(272\) 0 0
\(273\) 12.1372 0.686006i 0.734575 0.0415190i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4.46467 7.73303i −0.268256 0.464633i 0.700156 0.713990i \(-0.253114\pi\)
−0.968411 + 0.249358i \(0.919781\pi\)
\(278\) 0 0
\(279\) −3.66877 + 8.42550i −0.219643 + 0.504421i
\(280\) 0 0
\(281\) −16.0402 27.7825i −0.956879 1.65736i −0.730008 0.683439i \(-0.760484\pi\)
−0.226872 0.973925i \(-0.572850\pi\)
\(282\) 0 0
\(283\) −3.18373 + 5.51437i −0.189253 + 0.327796i −0.945001 0.327066i \(-0.893940\pi\)
0.755749 + 0.654862i \(0.227273\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −29.5811 −1.74612
\(288\) 0 0
\(289\) −15.0350 −0.884411
\(290\) 0 0
\(291\) −2.06094 3.14525i −0.120814 0.184378i
\(292\) 0 0
\(293\) 13.9506 24.1631i 0.815000 1.41162i −0.0943273 0.995541i \(-0.530070\pi\)
0.909328 0.416081i \(-0.136597\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −14.6116 17.5967i −0.847854 1.02107i
\(298\) 0 0
\(299\) −0.111233 0.192662i −0.00643278 0.0111419i
\(300\) 0 0
\(301\) −12.1213 + 20.9946i −0.698658 + 1.21011i
\(302\) 0 0
\(303\) 2.82315 + 4.30849i 0.162186 + 0.247516i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.2054 0.696597 0.348299 0.937384i \(-0.386760\pi\)
0.348299 + 0.937384i \(0.386760\pi\)
\(308\) 0 0
\(309\) −5.17558 + 10.2615i −0.294428 + 0.583755i
\(310\) 0 0
\(311\) 2.45123 4.24565i 0.138996 0.240749i −0.788121 0.615521i \(-0.788946\pi\)
0.927117 + 0.374772i \(0.122279\pi\)
\(312\) 0 0
\(313\) −8.79429 15.2322i −0.497083 0.860972i 0.502912 0.864338i \(-0.332262\pi\)
−0.999994 + 0.00336551i \(0.998929\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.78608 + 16.9500i 0.549641 + 0.952007i 0.998299 + 0.0583028i \(0.0185689\pi\)
−0.448658 + 0.893704i \(0.648098\pi\)
\(318\) 0 0
\(319\) 19.9880 34.6203i 1.11912 1.93836i
\(320\) 0 0
\(321\) 23.8431 1.34764i 1.33079 0.0752180i
\(322\) 0 0
\(323\) −8.91140 −0.495844
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 31.3602 1.77251i 1.73422 0.0980201i
\(328\) 0 0
\(329\) −12.7288 + 22.0469i −0.701759 + 1.21548i
\(330\) 0 0
\(331\) −7.29537 12.6360i −0.400990 0.694535i 0.592856 0.805309i \(-0.298000\pi\)
−0.993846 + 0.110774i \(0.964667\pi\)
\(332\) 0 0
\(333\) −5.82877 + 0.661009i −0.319415 + 0.0362231i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −4.95429 + 8.58108i −0.269877 + 0.467441i −0.968830 0.247727i \(-0.920317\pi\)
0.698953 + 0.715168i \(0.253650\pi\)
\(338\) 0 0
\(339\) 0.0637896 0.126474i 0.00346458 0.00686911i
\(340\) 0 0
\(341\) −13.4836 −0.730176
\(342\) 0 0
\(343\) −8.25897 −0.445943
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.16000 8.93739i 0.277004 0.479784i −0.693635 0.720327i \(-0.743992\pi\)
0.970639 + 0.240542i \(0.0773253\pi\)
\(348\) 0 0
\(349\) −8.56767 14.8396i −0.458617 0.794348i 0.540271 0.841491i \(-0.318322\pi\)
−0.998888 + 0.0471429i \(0.984988\pi\)
\(350\) 0 0
\(351\) −3.71853 + 10.0552i −0.198481 + 0.536705i
\(352\) 0 0
\(353\) −6.63055 11.4845i −0.352909 0.611256i 0.633849 0.773457i \(-0.281474\pi\)
−0.986758 + 0.162201i \(0.948141\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.52678 + 6.90844i 0.239583 + 0.365634i
\(358\) 0 0
\(359\) 14.2817 0.753758 0.376879 0.926263i \(-0.376997\pi\)
0.376879 + 0.926263i \(0.376997\pi\)
\(360\) 0 0
\(361\) 21.4136 1.12703
\(362\) 0 0
\(363\) 6.53307 12.9529i 0.342897 0.679852i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.79056 + 8.29749i 0.250065 + 0.433125i 0.963543 0.267552i \(-0.0862147\pi\)
−0.713478 + 0.700677i \(0.752881\pi\)
\(368\) 0 0
\(369\) 10.4148 23.9181i 0.542173 1.24513i
\(370\) 0 0
\(371\) 22.2775 + 38.5858i 1.15659 + 2.00328i
\(372\) 0 0
\(373\) −12.0529 + 20.8763i −0.624076 + 1.08093i 0.364642 + 0.931148i \(0.381191\pi\)
−0.988719 + 0.149784i \(0.952142\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.7376 −0.965033
\(378\) 0 0
\(379\) 2.73973 0.140730 0.0703651 0.997521i \(-0.477584\pi\)
0.0703651 + 0.997521i \(0.477584\pi\)
\(380\) 0 0
\(381\) 37.3200 2.10937i 1.91196 0.108066i
\(382\) 0 0
\(383\) 10.6766 18.4924i 0.545548 0.944917i −0.453024 0.891498i \(-0.649655\pi\)
0.998572 0.0534187i \(-0.0170118\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −12.7078 17.1925i −0.645975 0.873944i
\(388\) 0 0
\(389\) 7.33485 + 12.7043i 0.371892 + 0.644136i 0.989857 0.142070i \(-0.0453759\pi\)
−0.617965 + 0.786206i \(0.712043\pi\)
\(390\) 0 0
\(391\) 0.0755745 0.130899i 0.00382197 0.00661984i
\(392\) 0 0
\(393\) −8.41449 + 16.6832i −0.424455 + 0.841554i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −6.43065 −0.322745 −0.161373 0.986894i \(-0.551592\pi\)
−0.161373 + 0.986894i \(0.551592\pi\)
\(398\) 0 0
\(399\) −20.5291 31.3300i −1.02774 1.56846i
\(400\) 0 0
\(401\) −9.03748 + 15.6534i −0.451310 + 0.781693i −0.998468 0.0553373i \(-0.982377\pi\)
0.547157 + 0.837030i \(0.315710\pi\)
\(402\) 0 0
\(403\) 3.16000 + 5.47329i 0.157411 + 0.272644i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.30358 7.45402i −0.213320 0.369482i
\(408\) 0 0
\(409\) 9.39532 16.2732i 0.464569 0.804657i −0.534613 0.845097i \(-0.679543\pi\)
0.999182 + 0.0404403i \(0.0128761\pi\)
\(410\) 0 0
\(411\) −12.8246 19.5719i −0.632589 0.965411i
\(412\) 0 0
\(413\) −44.8333 −2.20610
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 11.3958 22.5940i 0.558053 1.10643i
\(418\) 0 0
\(419\) −19.8297 + 34.3461i −0.968745 + 1.67792i −0.269547 + 0.962987i \(0.586874\pi\)
−0.699198 + 0.714928i \(0.746460\pi\)
\(420\) 0 0
\(421\) 18.7682 + 32.5076i 0.914708 + 1.58432i 0.807328 + 0.590103i \(0.200913\pi\)
0.107380 + 0.994218i \(0.465754\pi\)
\(422\) 0 0
\(423\) −13.3447 18.0542i −0.648843 0.877823i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.93339 5.08078i 0.141957 0.245876i
\(428\) 0 0
\(429\) −15.7050 + 0.887666i −0.758247 + 0.0428569i
\(430\) 0 0
\(431\) 16.7357 0.806132 0.403066 0.915171i \(-0.367945\pi\)
0.403066 + 0.915171i \(0.367945\pi\)
\(432\) 0 0
\(433\) −21.0008 −1.00924 −0.504618 0.863343i \(-0.668367\pi\)
−0.504618 + 0.863343i \(0.668367\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.342733 + 0.593631i −0.0163952 + 0.0283972i
\(438\) 0 0
\(439\) 3.01576 + 5.22345i 0.143934 + 0.249302i 0.928975 0.370143i \(-0.120691\pi\)
−0.785041 + 0.619444i \(0.787358\pi\)
\(440\) 0 0
\(441\) −5.47604 + 12.5760i −0.260764 + 0.598856i
\(442\) 0 0
\(443\) 3.16274 + 5.47803i 0.150266 + 0.260269i 0.931325 0.364188i \(-0.118654\pi\)
−0.781059 + 0.624457i \(0.785320\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0.104418 0.207027i 0.00493882 0.00979205i
\(448\) 0 0
\(449\) −18.6594 −0.880593 −0.440296 0.897853i \(-0.645127\pi\)
−0.440296 + 0.897853i \(0.645127\pi\)
\(450\) 0 0
\(451\) 38.2769 1.80239
\(452\) 0 0
\(453\) 5.83338 + 8.90248i 0.274076 + 0.418275i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13.7923 23.8889i −0.645176 1.11748i −0.984261 0.176722i \(-0.943451\pi\)
0.339085 0.940756i \(-0.389883\pi\)
\(458\) 0 0
\(459\) −7.17967 + 1.22788i −0.335118 + 0.0573125i
\(460\) 0 0
\(461\) 6.76442 + 11.7163i 0.315051 + 0.545684i 0.979448 0.201696i \(-0.0646452\pi\)
−0.664398 + 0.747379i \(0.731312\pi\)
\(462\) 0 0
\(463\) 13.7421 23.8020i 0.638650 1.10617i −0.347079 0.937836i \(-0.612827\pi\)
0.985729 0.168338i \(-0.0538402\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −32.7515 −1.51556 −0.757779 0.652511i \(-0.773716\pi\)
−0.757779 + 0.652511i \(0.773716\pi\)
\(468\) 0 0
\(469\) 42.0997 1.94398
\(470\) 0 0
\(471\) −11.5243 + 22.8488i −0.531010 + 1.05282i
\(472\) 0 0
\(473\) 15.6845 27.1663i 0.721172 1.24911i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −39.0424 + 4.42758i −1.78763 + 0.202725i
\(478\) 0 0
\(479\) −2.92783 5.07116i −0.133776 0.231707i 0.791353 0.611359i \(-0.209377\pi\)
−0.925129 + 0.379652i \(0.876044\pi\)
\(480\) 0 0
\(481\) −2.01717 + 3.49384i −0.0919750 + 0.159305i
\(482\) 0 0
\(483\) 0.634305 0.0358516i 0.0288619 0.00163131i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.4864 0.747070 0.373535 0.927616i \(-0.378146\pi\)
0.373535 + 0.927616i \(0.378146\pi\)
\(488\) 0 0
\(489\) −27.5737 + 1.55850i −1.24693 + 0.0704776i
\(490\) 0 0
\(491\) 6.85302 11.8698i 0.309272 0.535676i −0.668931 0.743324i \(-0.733248\pi\)
0.978203 + 0.207649i \(0.0665812\pi\)
\(492\) 0 0
\(493\) −6.36537 11.0251i −0.286682 0.496548i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.7731 + 22.1236i 0.572950 + 0.992379i
\(498\) 0 0
\(499\) −2.23482 + 3.87082i −0.100044 + 0.173282i −0.911703 0.410851i \(-0.865232\pi\)
0.811658 + 0.584132i \(0.198565\pi\)
\(500\) 0 0
\(501\) −15.9895 + 31.7018i −0.714356 + 1.41633i
\(502\) 0 0
\(503\) 18.1010 0.807084 0.403542 0.914961i \(-0.367779\pi\)
0.403542 + 0.914961i \(0.367779\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −8.29985 12.6666i −0.368609 0.562544i
\(508\) 0 0
\(509\) 10.6044 18.3674i 0.470033 0.814120i −0.529380 0.848385i \(-0.677575\pi\)
0.999413 + 0.0342644i \(0.0109088\pi\)
\(510\) 0 0
\(511\) −9.21947 15.9686i −0.407846 0.706409i
\(512\) 0 0
\(513\) 32.5601 5.56848i 1.43756 0.245855i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.4705 28.5278i 0.724374 1.25465i
\(518\) 0 0
\(519\) −21.4458 32.7290i −0.941368 1.43665i
\(520\) 0 0
\(521\) −28.4507 −1.24645 −0.623224 0.782043i \(-0.714178\pi\)
−0.623224 + 0.782043i \(0.714178\pi\)
\(522\) 0 0
\(523\) −26.5111 −1.15925 −0.579625 0.814884i \(-0.696801\pi\)
−0.579625 + 0.814884i \(0.696801\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.14698 + 3.71868i −0.0935240 + 0.161988i
\(528\) 0 0
\(529\) 11.4942 + 19.9085i 0.499747 + 0.865588i
\(530\) 0 0
\(531\) 15.7847 36.2504i 0.684999 1.57313i
\(532\) 0 0
\(533\) −8.97055 15.5374i −0.388558 0.673001i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −35.6025 + 2.01229i −1.53636 + 0.0868369i
\(538\) 0 0
\(539\) −20.1257 −0.866876
\(540\) 0 0
\(541\) −14.3132 −0.615372 −0.307686 0.951488i \(-0.599555\pi\)
−0.307686 + 0.951488i \(0.599555\pi\)
\(542\) 0 0
\(543\) 14.4021 0.814020i 0.618051 0.0349329i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.82556 + 11.8222i 0.291840 + 0.505482i 0.974245 0.225493i \(-0.0723992\pi\)
−0.682405 + 0.730974i \(0.739066\pi\)
\(548\) 0 0
\(549\) 3.07534 + 4.16065i 0.131252 + 0.177572i
\(550\) 0 0
\(551\) 28.8672 + 49.9994i 1.22978 + 2.13005i
\(552\) 0 0
\(553\) −16.0499 + 27.7992i −0.682509 + 1.18214i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.4665 0.994306 0.497153 0.867663i \(-0.334379\pi\)
0.497153 + 0.867663i \(0.334379\pi\)
\(558\) 0 0
\(559\) −14.7032 −0.621880
\(560\) 0 0
\(561\) −5.85749 8.93927i −0.247303 0.377416i
\(562\) 0 0
\(563\) −0.291226 + 0.504418i −0.0122737 + 0.0212587i −0.872097 0.489333i \(-0.837240\pi\)
0.859823 + 0.510592i \(0.170574\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −20.8566 22.4131i −0.875896 0.941261i
\(568\) 0 0
\(569\) 2.77994 + 4.81500i 0.116541 + 0.201855i 0.918395 0.395665i \(-0.129486\pi\)
−0.801854 + 0.597521i \(0.796153\pi\)
\(570\) 0 0
\(571\) 11.3706 19.6945i 0.475845 0.824188i −0.523772 0.851858i \(-0.675476\pi\)
0.999617 + 0.0276708i \(0.00880903\pi\)
\(572\) 0 0
\(573\) −8.33891 12.7262i −0.348363 0.531646i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 30.5522 1.27191 0.635953 0.771728i \(-0.280607\pi\)
0.635953 + 0.771728i \(0.280607\pi\)
\(578\) 0 0
\(579\) −5.63998 + 11.1822i −0.234390 + 0.464718i
\(580\) 0 0
\(581\) 15.2638 26.4376i 0.633247 1.09682i
\(582\) 0 0
\(583\) −28.8263 49.9286i −1.19386 2.06783i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.1817 + 17.6353i 0.420245 + 0.727886i 0.995963 0.0897626i \(-0.0286108\pi\)
−0.575718 + 0.817648i \(0.695278\pi\)
\(588\) 0 0
\(589\) 9.73664 16.8644i 0.401191 0.694884i
\(590\) 0 0
\(591\) −7.22726 + 0.408493i −0.297290 + 0.0168032i
\(592\) 0 0
\(593\) −15.5199 −0.637326 −0.318663 0.947868i \(-0.603234\pi\)
−0.318663 + 0.947868i \(0.603234\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −27.0665 + 1.52983i −1.10776 + 0.0626117i
\(598\) 0 0
\(599\) −14.6288 + 25.3379i −0.597717 + 1.03528i 0.395440 + 0.918492i \(0.370592\pi\)
−0.993157 + 0.116785i \(0.962741\pi\)
\(600\) 0 0
\(601\) 9.15254 + 15.8527i 0.373340 + 0.646644i 0.990077 0.140526i \(-0.0448792\pi\)
−0.616737 + 0.787169i \(0.711546\pi\)
\(602\) 0 0
\(603\) −14.8223 + 34.0401i −0.603611 + 1.38622i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 8.42037 14.5845i 0.341772 0.591967i −0.642990 0.765875i \(-0.722306\pi\)
0.984762 + 0.173908i \(0.0556395\pi\)
\(608\) 0 0
\(609\) 24.0975 47.7774i 0.976481 1.93604i
\(610\) 0 0
\(611\) −15.4401 −0.624640
\(612\) 0 0
\(613\) −13.5954 −0.549113 −0.274556 0.961571i \(-0.588531\pi\)
−0.274556 + 0.961571i \(0.588531\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14.6567 + 25.3861i −0.590056 + 1.02201i 0.404168 + 0.914685i \(0.367561\pi\)
−0.994224 + 0.107322i \(0.965772\pi\)
\(618\) 0 0
\(619\) −6.08211 10.5345i −0.244461 0.423418i 0.717519 0.696539i \(-0.245278\pi\)
−0.961980 + 0.273121i \(0.911944\pi\)
\(620\) 0 0
\(621\) −0.194336 + 0.525497i −0.00779842 + 0.0210875i
\(622\) 0 0
\(623\) −6.83038 11.8306i −0.273653 0.473982i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 26.5639 + 40.5399i 1.06086 + 1.61901i
\(628\) 0 0
\(629\) −2.74103 −0.109292
\(630\) 0 0
\(631\) 5.45471 0.217148 0.108574 0.994088i \(-0.465371\pi\)
0.108574 + 0.994088i \(0.465371\pi\)
\(632\) 0 0
\(633\) −18.8400 + 37.3536i −0.748824 + 1.48467i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 4.71665 + 8.16948i 0.186881 + 0.323687i
\(638\) 0 0
\(639\) −22.3854 + 2.53860i −0.885551 + 0.100425i
\(640\) 0 0
\(641\) 0.839996 + 1.45492i 0.0331779 + 0.0574657i 0.882138 0.470992i \(-0.156104\pi\)
−0.848960 + 0.528458i \(0.822771\pi\)
\(642\) 0 0
\(643\) −2.84173 + 4.92202i −0.112067 + 0.194106i −0.916603 0.399797i \(-0.869080\pi\)
0.804537 + 0.593903i \(0.202414\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 34.3064 1.34872 0.674361 0.738401i \(-0.264419\pi\)
0.674361 + 0.738401i \(0.264419\pi\)
\(648\) 0 0
\(649\) 58.0126 2.27719
\(650\) 0 0
\(651\) −18.0198 + 1.01850i −0.706253 + 0.0399182i
\(652\) 0 0
\(653\) 6.31486 10.9377i 0.247120 0.428024i −0.715606 0.698504i \(-0.753849\pi\)
0.962725 + 0.270480i \(0.0871826\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 16.1575 1.83234i 0.630366 0.0714863i
\(658\) 0 0
\(659\) 3.16697 + 5.48535i 0.123368 + 0.213679i 0.921094 0.389341i \(-0.127297\pi\)
−0.797726 + 0.603020i \(0.793964\pi\)
\(660\) 0 0
\(661\) 18.8448 32.6401i 0.732978 1.26955i −0.222628 0.974904i \(-0.571463\pi\)
0.955605 0.294651i \(-0.0952033\pi\)
\(662\) 0 0
\(663\) −2.25589 + 4.47269i −0.0876116 + 0.173705i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.979251 −0.0379167
\(668\) 0 0
\(669\) −1.37307 2.09547i −0.0530859 0.0810157i
\(670\) 0 0
\(671\) −3.79570 + 6.57434i −0.146531 + 0.253800i
\(672\) 0 0
\(673\) 15.3273 + 26.5477i 0.590824 + 1.02334i 0.994122 + 0.108268i \(0.0345306\pi\)
−0.403298 + 0.915069i \(0.632136\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.4358 + 25.0035i 0.554813 + 0.960964i 0.997918 + 0.0644945i \(0.0205435\pi\)
−0.443105 + 0.896470i \(0.646123\pi\)
\(678\) 0 0
\(679\) 3.69269 6.39593i 0.141712 0.245453i
\(680\) 0 0
\(681\) −19.4846 29.7359i −0.746650 1.13948i
\(682\) 0 0
\(683\) 47.0352 1.79975 0.899875 0.436147i \(-0.143657\pi\)
0.899875 + 0.436147i \(0.143657\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 16.3399 32.3965i 0.623404 1.23601i
\(688\) 0 0
\(689\) −13.5114 + 23.4025i −0.514745 + 0.891564i
\(690\) 0 0
\(691\) −0.425186 0.736443i −0.0161748 0.0280156i 0.857825 0.513942i \(-0.171815\pi\)
−0.874000 + 0.485927i \(0.838482\pi\)
\(692\) 0 0
\(693\) 17.9342 41.1867i 0.681262 1.56455i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6.09480 10.5565i 0.230857 0.399856i
\(698\) 0 0
\(699\) −17.1219 + 0.967750i −0.647610 + 0.0366037i
\(700\) 0 0
\(701\) −35.6821 −1.34770 −0.673848 0.738870i \(-0.735360\pi\)
−0.673848 + 0.738870i \(0.735360\pi\)
\(702\) 0 0
\(703\) 12.4307 0.468831
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.05838 + 8.76138i −0.190240 + 0.329506i
\(708\) 0 0
\(709\) −7.69543 13.3289i −0.289008 0.500576i 0.684565 0.728951i \(-0.259992\pi\)
−0.973573 + 0.228375i \(0.926659\pi\)
\(710\) 0 0
\(711\) −16.8265 22.7647i −0.631044 0.853743i
\(712\) 0 0
\(713\) 0.165146 + 0.286042i 0.00618477 + 0.0107123i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.76410 9.44563i 0.177918 0.352754i
\(718\) 0 0
\(719\) 25.5846 0.954144 0.477072 0.878864i \(-0.341698\pi\)
0.477072 + 0.878864i \(0.341698\pi\)
\(720\) 0 0
\(721\) −22.5721 −0.840630
\(722\) 0 0
\(723\) −0.281734 0.429962i −0.0104778 0.0159904i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.06867 + 5.31509i 0.113811 + 0.197126i 0.917304 0.398188i \(-0.130361\pi\)
−0.803493 + 0.595314i \(0.797028\pi\)
\(728\) 0 0
\(729\) 25.4655 8.97274i 0.943165 0.332324i
\(730\) 0 0
\(731\) −4.99486 8.65135i −0.184741 0.319982i
\(732\) 0 0
\(733\) 2.56520 4.44306i 0.0947478 0.164108i −0.814756 0.579805i \(-0.803129\pi\)
0.909503 + 0.415697i \(0.136462\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −54.4754 −2.00663
\(738\) 0 0
\(739\) 18.8784 0.694454 0.347227 0.937781i \(-0.387123\pi\)
0.347227 + 0.937781i \(0.387123\pi\)
\(740\) 0 0
\(741\) 10.2306 20.2838i 0.375829 0.745145i
\(742\) 0 0
\(743\) 10.9784 19.0152i 0.402759 0.697600i −0.591298 0.806453i \(-0.701384\pi\)
0.994058 + 0.108853i \(0.0347178\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 16.0024 + 21.6497i 0.585497 + 0.792122i
\(748\) 0 0
\(749\) 23.4516 + 40.6194i 0.856904 + 1.48420i
\(750\) 0 0
\(751\) 1.58037 2.73728i 0.0576686 0.0998849i −0.835750 0.549110i \(-0.814967\pi\)
0.893418 + 0.449225i \(0.148300\pi\)
\(752\) 0 0
\(753\) 7.81022 0.441442i 0.284620 0.0160871i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −39.1753 −1.42385 −0.711926 0.702255i \(-0.752177\pi\)
−0.711926 + 0.702255i \(0.752177\pi\)
\(758\) 0 0
\(759\) −0.820767 + 0.0463907i −0.0297920 + 0.00168387i
\(760\) 0 0
\(761\) −5.03916 + 8.72807i −0.182669 + 0.316392i −0.942789 0.333391i \(-0.891807\pi\)
0.760119 + 0.649783i \(0.225140\pi\)
\(762\) 0 0
\(763\) 30.8452 + 53.4255i 1.11667 + 1.93413i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.5958 23.5486i −0.490916 0.850292i
\(768\) 0 0
\(769\) −10.5790 + 18.3233i −0.381487 + 0.660755i −0.991275 0.131810i \(-0.957921\pi\)
0.609788 + 0.792565i \(0.291255\pi\)
\(770\) 0 0
\(771\) −10.6066 + 21.0294i −0.381987 + 0.757354i
\(772\) 0 0
\(773\) −43.2543 −1.55575 −0.777874 0.628420i \(-0.783702\pi\)
−0.777874 + 0.628420i \(0.783702\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −6.31448 9.63669i −0.226531 0.345714i
\(778\) 0 0
\(779\) −27.6402 + 47.8742i −0.990312 + 1.71527i
\(780\) 0 0
\(781\) −16.5279 28.6271i −0.591414 1.02436i
\(782\) 0 0
\(783\) 30.1468 + 36.3056i 1.07736 + 1.29746i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −0.589986 + 1.02189i −0.0210307 + 0.0364263i −0.876349 0.481676i \(-0.840028\pi\)
0.855318 + 0.518103i \(0.173361\pi\)
\(788\) 0 0
\(789\) 6.76236 + 10.3202i 0.240746 + 0.367409i
\(790\) 0 0
\(791\) 0.278204 0.00989180
\(792\) 0 0
\(793\) 3.55823 0.126357
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.571407 + 0.989706i −0.0202403 + 0.0350572i −0.875968 0.482369i \(-0.839776\pi\)
0.855728 + 0.517426i \(0.173110\pi\)
\(798\) 0 0
\(799\) −5.24519 9.08494i −0.185562 0.321402i
\(800\) 0 0
\(801\) 11.9705 1.35751i 0.422959 0.0479654i
\(802\) 0 0
\(803\) 11.9297 + 20.6628i 0.420988 + 0.729173i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −15.2239 + 0.860474i −0.535908 + 0.0302901i
\(808\) 0 0
\(809\) −11.3723 −0.399828 −0.199914 0.979813i \(-0.564066\pi\)
−0.199914 + 0.979813i \(0.564066\pi\)
\(810\) 0 0
\(811\) 2.08590 0.0732459 0.0366230 0.999329i \(-0.488340\pi\)
0.0366230 + 0.999329i \(0.488340\pi\)
\(812\) 0 0
\(813\) 17.2217 0.973392i 0.603993 0.0341384i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 22.6519 + 39.2342i 0.792489 + 1.37263i
\(818\) 0 0
\(819\) −20.9216 + 2.37261i −0.731061 + 0.0829056i
\(820\) 0 0
\(821\) −7.89564 13.6757i −0.275560 0.477284i 0.694716 0.719284i \(-0.255530\pi\)
−0.970276 + 0.242000i \(0.922197\pi\)
\(822\) 0 0
\(823\) 3.66042 6.34003i 0.127594 0.221000i −0.795150 0.606413i \(-0.792608\pi\)
0.922744 + 0.385413i \(0.125941\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.8401 0.516040 0.258020 0.966140i \(-0.416930\pi\)
0.258020 + 0.966140i \(0.416930\pi\)
\(828\) 0 0
\(829\) −23.3346 −0.810444 −0.405222 0.914218i \(-0.632806\pi\)
−0.405222 + 0.914218i \(0.632806\pi\)
\(830\) 0 0
\(831\) 8.47654 + 12.9363i 0.294048 + 0.448754i
\(832\) 0 0
\(833\) −3.20461 + 5.55054i −0.111033 + 0.192315i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 5.52084 14.9287i 0.190828 0.516012i
\(838\) 0 0
\(839\) 7.33826 + 12.7102i 0.253345 + 0.438806i 0.964445 0.264285i \(-0.0851359\pi\)
−0.711100 + 0.703091i \(0.751803\pi\)
\(840\) 0 0
\(841\) −26.7394 + 46.3140i −0.922048 + 1.59703i
\(842\) 0 0
\(843\) 30.4537 + 46.4762i 1.04888 + 1.60072i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 28.4925 0.979014
\(848\) 0 0
\(849\) 4.96660 9.84714i 0.170453 0.337953i
\(850\) 0 0
\(851\) −0.105420 + 0.182593i −0.00361375 + 0.00625920i
\(852\) 0 0
\(853\) 12.2611 + 21.2369i 0.419812 + 0.727136i 0.995920 0.0902375i \(-0.0287626\pi\)
−0.576108 + 0.817374i \(0.695429\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.79396 + 4.83929i 0.0954400 + 0.165307i 0.909792 0.415064i \(-0.136241\pi\)
−0.814352 + 0.580371i \(0.802908\pi\)
\(858\) 0 0
\(859\) 20.0309 34.6946i 0.683447 1.18376i −0.290476 0.956882i \(-0.593814\pi\)
0.973922 0.226882i \(-0.0728531\pi\)
\(860\) 0 0
\(861\) 51.1543 2.89130i 1.74334 0.0985353i
\(862\) 0 0
\(863\) 27.2157 0.926432 0.463216 0.886246i \(-0.346695\pi\)
0.463216 + 0.886246i \(0.346695\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 25.9999 1.46954i 0.883002 0.0499082i
\(868\) 0 0
\(869\) 20.7679 35.9711i 0.704503 1.22024i
\(870\) 0 0
\(871\) 12.7668 + 22.1128i 0.432588 + 0.749264i
\(872\) 0 0
\(873\) 3.87139 + 5.23762i 0.131027 + 0.177267i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −11.9399 + 20.6806i −0.403183 + 0.698334i −0.994108 0.108393i \(-0.965430\pi\)
0.590925 + 0.806727i \(0.298763\pi\)
\(878\) 0 0
\(879\) −21.7628 + 43.1485i −0.734042 + 1.45536i
\(880\) 0 0
\(881\) 28.3585 0.955421 0.477710 0.878517i \(-0.341467\pi\)
0.477710 + 0.878517i \(0.341467\pi\)
\(882\) 0 0
\(883\) −28.3449 −0.953881 −0.476941 0.878936i \(-0.658254\pi\)
−0.476941 + 0.878936i \(0.658254\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.257544 0.446080i 0.00864749 0.0149779i −0.861669 0.507470i \(-0.830581\pi\)
0.870317 + 0.492492i \(0.163914\pi\)
\(888\) 0 0
\(889\) 36.7072 + 63.5787i 1.23112 + 2.13236i
\(890\) 0 0
\(891\) 26.9877 + 29.0017i 0.904123 + 0.971593i
\(892\) 0 0
\(893\) 23.7871 + 41.2005i 0.796007 + 1.37872i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.211186 + 0.322296i 0.00705128 + 0.0107611i
\(898\) 0 0
\(899\) 27.8193 0.927827
\(900\) 0 0
\(901\) −18.3600 −0.611660
\(902\) 0 0
\(903\) 18.9091 37.4906i 0.629257 1.24761i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.08211 + 1.87426i 0.0359308 + 0.0622339i 0.883432 0.468560i \(-0.155227\pi\)
−0.847501 + 0.530794i \(0.821894\pi\)
\(908\) 0 0
\(909\) −5.30317 7.17469i −0.175895 0.237969i
\(910\) 0 0
\(911\) −19.2332 33.3129i −0.637226 1.10371i −0.986039 0.166515i \(-0.946749\pi\)
0.348813 0.937192i \(-0.386585\pi\)
\(912\) 0 0
\(913\) −19.7507 + 34.2093i −0.653654 + 1.13216i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −36.6979 −1.21187
\(918\) 0 0
\(919\) 18.6992 0.616830 0.308415 0.951252i \(-0.400201\pi\)
0.308415 + 0.951252i \(0.400201\pi\)
\(920\) 0 0
\(921\) −21.1066 + 1.19297i −0.695487 + 0.0393097i
\(922\) 0 0
\(923\) −7.74693 + 13.4181i −0.254993 + 0.441661i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 7.94711 18.2509i 0.261017 0.599439i
\(928\) 0 0
\(929\) 1.10335 + 1.91106i 0.0361999 + 0.0627000i 0.883558 0.468322i \(-0.155141\pi\)
−0.847358 + 0.531022i \(0.821808\pi\)
\(930\) 0 0
\(931\) 14.5330 25.1719i 0.476300 0.824976i
\(932\) 0 0
\(933\) −3.82391 + 7.58156i −0.125189 + 0.248209i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21.3429 0.697242 0.348621 0.937264i \(-0.386650\pi\)
0.348621 + 0.937264i \(0.386650\pi\)
\(938\) 0 0
\(939\) 16.6967 + 25.4813i 0.544876 + 0.831549i
\(940\) 0 0
\(941\) 0.589661 1.02132i 0.0192224 0.0332942i −0.856254 0.516555i \(-0.827214\pi\)
0.875477 + 0.483261i \(0.160548\pi\)
\(942\) 0 0
\(943\) −0.468813 0.812008i −0.0152667 0.0264426i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11.8445 20.5152i −0.384894 0.666655i 0.606861 0.794808i \(-0.292428\pi\)
−0.991754 + 0.128153i \(0.959095\pi\)
\(948\) 0 0
\(949\) 5.59166 9.68504i 0.181513 0.314390i
\(950\) 0 0
\(951\) −18.5797 28.3550i −0.602488 0.919473i
\(952\) 0 0
\(953\) 12.8125 0.415038 0.207519 0.978231i \(-0.433461\pi\)
0.207519 + 0.978231i \(0.433461\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −31.1813 + 61.8222i −1.00795 + 1.99843i
\(958\) 0 0
\(959\) 22.9784 39.7998i 0.742012 1.28520i
\(960\) 0 0
\(961\) 10.8084 + 18.7207i 0.348658 + 0.603893i
\(962\) 0 0
\(963\) −41.1000 + 4.66093i −1.32443 + 0.150196i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −5.46326 + 9.46264i −0.175686 + 0.304298i −0.940399 0.340074i \(-0.889548\pi\)
0.764712 + 0.644372i \(0.222881\pi\)
\(968\) 0 0
\(969\) 15.4104 0.871013i 0.495054 0.0279810i
\(970\) 0 0
\(971\) 15.7933 0.506831 0.253415 0.967358i \(-0.418446\pi\)
0.253415 + 0.967358i \(0.418446\pi\)
\(972\) 0 0
\(973\) 49.7001 1.59331
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.7490 32.4742i 0.599833 1.03894i −0.393012 0.919533i \(-0.628567\pi\)
0.992845 0.119409i \(-0.0380998\pi\)
\(978\) 0 0
\(979\) 8.83826 + 15.3083i 0.282472 + 0.489256i
\(980\) 0 0
\(981\) −54.0576 + 6.13038i −1.72593 + 0.195728i
\(982\) 0 0
\(983\) −11.7661 20.3795i −0.375280 0.650004i 0.615089 0.788458i \(-0.289120\pi\)
−0.990369 + 0.138454i \(0.955787\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 19.8568 39.3696i 0.632050 1.25315i
\(988\) 0 0
\(989\) −0.768410 −0.0244340
\(990\) 0 0
\(991\) 46.7019 1.48353 0.741767 0.670658i \(-0.233988\pi\)
0.741767 + 0.670658i \(0.233988\pi\)
\(992\) 0 0
\(993\) 13.8509 + 21.1382i 0.439544 + 0.670800i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −21.4290 37.1161i −0.678663 1.17548i −0.975384 0.220514i \(-0.929226\pi\)
0.296721 0.954964i \(-0.404107\pi\)
\(998\) 0 0
\(999\) 10.0150 1.71279i 0.316861 0.0541902i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.i.d.301.1 8
3.2 odd 2 2700.2.i.e.901.1 8
5.2 odd 4 900.2.s.d.49.5 16
5.3 odd 4 900.2.s.d.49.4 16
5.4 even 2 900.2.i.e.301.4 yes 8
9.2 odd 6 2700.2.i.e.1801.1 8
9.4 even 3 8100.2.a.x.1.4 4
9.5 odd 6 8100.2.a.y.1.4 4
9.7 even 3 inner 900.2.i.d.601.1 yes 8
15.2 even 4 2700.2.s.d.1549.7 16
15.8 even 4 2700.2.s.d.1549.2 16
15.14 odd 2 2700.2.i.d.901.4 8
45.2 even 12 2700.2.s.d.2449.2 16
45.4 even 6 8100.2.a.z.1.1 4
45.7 odd 12 900.2.s.d.349.4 16
45.13 odd 12 8100.2.d.q.649.2 8
45.14 odd 6 8100.2.a.ba.1.1 4
45.22 odd 12 8100.2.d.q.649.7 8
45.23 even 12 8100.2.d.s.649.2 8
45.29 odd 6 2700.2.i.d.1801.4 8
45.32 even 12 8100.2.d.s.649.7 8
45.34 even 6 900.2.i.e.601.4 yes 8
45.38 even 12 2700.2.s.d.2449.7 16
45.43 odd 12 900.2.s.d.349.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.2.i.d.301.1 8 1.1 even 1 trivial
900.2.i.d.601.1 yes 8 9.7 even 3 inner
900.2.i.e.301.4 yes 8 5.4 even 2
900.2.i.e.601.4 yes 8 45.34 even 6
900.2.s.d.49.4 16 5.3 odd 4
900.2.s.d.49.5 16 5.2 odd 4
900.2.s.d.349.4 16 45.7 odd 12
900.2.s.d.349.5 16 45.43 odd 12
2700.2.i.d.901.4 8 15.14 odd 2
2700.2.i.d.1801.4 8 45.29 odd 6
2700.2.i.e.901.1 8 3.2 odd 2
2700.2.i.e.1801.1 8 9.2 odd 6
2700.2.s.d.1549.2 16 15.8 even 4
2700.2.s.d.1549.7 16 15.2 even 4
2700.2.s.d.2449.2 16 45.2 even 12
2700.2.s.d.2449.7 16 45.38 even 12
8100.2.a.x.1.4 4 9.4 even 3
8100.2.a.y.1.4 4 9.5 odd 6
8100.2.a.z.1.1 4 45.4 even 6
8100.2.a.ba.1.1 4 45.14 odd 6
8100.2.d.q.649.2 8 45.13 odd 12
8100.2.d.q.649.7 8 45.22 odd 12
8100.2.d.s.649.2 8 45.23 even 12
8100.2.d.s.649.7 8 45.32 even 12