Properties

Label 900.2.s.d.349.4
Level $900$
Weight $2$
Character 900.349
Analytic conductor $7.187$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(49,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.1333317747165888577536.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 3x^{14} + 5x^{12} + 15x^{10} + 45x^{8} + 60x^{6} + 80x^{4} + 192x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.4
Root \(-1.27069 + 0.620769i\) of defining polynomial
Character \(\chi\) \(=\) 900.349
Dual form 900.2.s.d.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0977414 + 1.72929i) q^{3} +(-2.94604 - 1.70089i) q^{7} +(-2.98089 - 0.338047i) q^{9} +(2.20089 - 3.81206i) q^{11} +(1.78679 - 1.03160i) q^{13} +1.40179i q^{17} +6.35717 q^{19} +(3.22929 - 4.92830i) q^{21} +(0.0933799 - 0.0539129i) q^{23} +(0.875938 - 5.12179i) q^{27} +(4.54089 - 7.86505i) q^{29} +(-1.53160 - 2.65281i) q^{31} +(6.37704 + 4.17858i) q^{33} -1.95538i q^{37} +(1.60930 + 3.19070i) q^{39} +(4.34788 + 7.53074i) q^{41} +(6.17165 + 3.56320i) q^{43} +(-6.48096 - 3.74179i) q^{47} +(2.28608 + 3.95961i) q^{49} +(-2.42410 - 0.137013i) q^{51} +13.0975i q^{53} +(-0.621359 + 10.9934i) q^{57} +(-6.58966 - 11.4136i) q^{59} +(0.862308 - 1.49356i) q^{61} +(8.20684 + 6.06608i) q^{63} +(10.7177 - 6.18787i) q^{67} +(0.0841040 + 0.166751i) q^{69} -7.50961 q^{71} -5.42037i q^{73} +(-12.9678 + 7.48698i) q^{77} +(4.71806 - 8.17193i) q^{79} +(8.77145 + 2.01536i) q^{81} +(-7.77167 - 4.48698i) q^{83} +(13.1571 + 8.62126i) q^{87} -4.01576 q^{89} -7.01858 q^{91} +(4.73718 - 2.38929i) q^{93} +(1.88017 + 1.08551i) q^{97} +(-7.84929 + 10.6193i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{9} + 6 q^{11} + 16 q^{19} + 26 q^{21} + 18 q^{29} - 4 q^{31} + 34 q^{39} + 18 q^{41} + 18 q^{49} + 6 q^{51} + 30 q^{59} + 2 q^{61} - 18 q^{69} - 48 q^{71} - 14 q^{79} - 62 q^{81} - 12 q^{89}+ \cdots - 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0977414 + 1.72929i −0.0564310 + 0.998406i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.94604 1.70089i −1.11350 0.642878i −0.173764 0.984787i \(-0.555593\pi\)
−0.939733 + 0.341910i \(0.888926\pi\)
\(8\) 0 0
\(9\) −2.98089 0.338047i −0.993631 0.112682i
\(10\) 0 0
\(11\) 2.20089 3.81206i 0.663595 1.14938i −0.316070 0.948736i \(-0.602363\pi\)
0.979664 0.200644i \(-0.0643033\pi\)
\(12\) 0 0
\(13\) 1.78679 1.03160i 0.495565 0.286115i −0.231315 0.972879i \(-0.574303\pi\)
0.726880 + 0.686764i \(0.240969\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.40179i 0.339984i 0.985445 + 0.169992i \(0.0543741\pi\)
−0.985445 + 0.169992i \(0.945626\pi\)
\(18\) 0 0
\(19\) 6.35717 1.45843 0.729217 0.684283i \(-0.239885\pi\)
0.729217 + 0.684283i \(0.239885\pi\)
\(20\) 0 0
\(21\) 3.22929 4.92830i 0.704689 1.07544i
\(22\) 0 0
\(23\) 0.0933799 0.0539129i 0.0194711 0.0112416i −0.490233 0.871591i \(-0.663088\pi\)
0.509704 + 0.860350i \(0.329755\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.875938 5.12179i 0.168574 0.985689i
\(28\) 0 0
\(29\) 4.54089 7.86505i 0.843222 1.46050i −0.0439339 0.999034i \(-0.513989\pi\)
0.887156 0.461469i \(-0.152678\pi\)
\(30\) 0 0
\(31\) −1.53160 2.65281i −0.275084 0.476459i 0.695073 0.718940i \(-0.255372\pi\)
−0.970156 + 0.242481i \(0.922039\pi\)
\(32\) 0 0
\(33\) 6.37704 + 4.17858i 1.11010 + 0.727398i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.95538i 0.321462i −0.986998 0.160731i \(-0.948615\pi\)
0.986998 0.160731i \(-0.0513852\pi\)
\(38\) 0 0
\(39\) 1.60930 + 3.19070i 0.257694 + 0.510921i
\(40\) 0 0
\(41\) 4.34788 + 7.53074i 0.679024 + 1.17610i 0.975275 + 0.220994i \(0.0709302\pi\)
−0.296251 + 0.955110i \(0.595736\pi\)
\(42\) 0 0
\(43\) 6.17165 + 3.56320i 0.941167 + 0.543383i 0.890326 0.455323i \(-0.150476\pi\)
0.0508414 + 0.998707i \(0.483810\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.48096 3.74179i −0.945345 0.545795i −0.0537135 0.998556i \(-0.517106\pi\)
−0.891632 + 0.452761i \(0.850439\pi\)
\(48\) 0 0
\(49\) 2.28608 + 3.95961i 0.326583 + 0.565659i
\(50\) 0 0
\(51\) −2.42410 0.137013i −0.339442 0.0191856i
\(52\) 0 0
\(53\) 13.0975i 1.79909i 0.436833 + 0.899543i \(0.356100\pi\)
−0.436833 + 0.899543i \(0.643900\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.621359 + 10.9934i −0.0823009 + 1.45611i
\(58\) 0 0
\(59\) −6.58966 11.4136i −0.857901 1.48593i −0.873928 0.486056i \(-0.838435\pi\)
0.0160267 0.999872i \(-0.494898\pi\)
\(60\) 0 0
\(61\) 0.862308 1.49356i 0.110407 0.191231i −0.805527 0.592559i \(-0.798118\pi\)
0.915935 + 0.401328i \(0.131451\pi\)
\(62\) 0 0
\(63\) 8.20684 + 6.06608i 1.03396 + 0.764255i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.7177 6.18787i 1.30938 0.755969i 0.327385 0.944891i \(-0.393833\pi\)
0.981992 + 0.188922i \(0.0604994\pi\)
\(68\) 0 0
\(69\) 0.0841040 + 0.166751i 0.0101249 + 0.0200744i
\(70\) 0 0
\(71\) −7.50961 −0.891227 −0.445614 0.895225i \(-0.647014\pi\)
−0.445614 + 0.895225i \(0.647014\pi\)
\(72\) 0 0
\(73\) 5.42037i 0.634406i −0.948358 0.317203i \(-0.897256\pi\)
0.948358 0.317203i \(-0.102744\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.9678 + 7.48698i −1.47782 + 0.853220i
\(78\) 0 0
\(79\) 4.71806 8.17193i 0.530824 0.919413i −0.468529 0.883448i \(-0.655216\pi\)
0.999353 0.0359656i \(-0.0114507\pi\)
\(80\) 0 0
\(81\) 8.77145 + 2.01536i 0.974605 + 0.223929i
\(82\) 0 0
\(83\) −7.77167 4.48698i −0.853052 0.492510i 0.00862744 0.999963i \(-0.497254\pi\)
−0.861679 + 0.507453i \(0.830587\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 13.1571 + 8.62126i 1.41059 + 0.924296i
\(88\) 0 0
\(89\) −4.01576 −0.425670 −0.212835 0.977088i \(-0.568270\pi\)
−0.212835 + 0.977088i \(0.568270\pi\)
\(90\) 0 0
\(91\) −7.01858 −0.735747
\(92\) 0 0
\(93\) 4.73718 2.38929i 0.491223 0.247758i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.88017 + 1.08551i 0.190902 + 0.110217i 0.592405 0.805641i \(-0.298179\pi\)
−0.401503 + 0.915858i \(0.631512\pi\)
\(98\) 0 0
\(99\) −7.84929 + 10.6193i −0.788883 + 1.06728i
\(100\) 0 0
\(101\) −1.48698 + 2.57552i −0.147960 + 0.256274i −0.930473 0.366360i \(-0.880604\pi\)
0.782513 + 0.622634i \(0.213937\pi\)
\(102\) 0 0
\(103\) 5.74640 3.31768i 0.566209 0.326901i −0.189425 0.981895i \(-0.560662\pi\)
0.755634 + 0.654994i \(0.227329\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.7878i 1.33292i −0.745541 0.666459i \(-0.767809\pi\)
0.745541 0.666459i \(-0.232191\pi\)
\(108\) 0 0
\(109\) 18.1347 1.73699 0.868495 0.495699i \(-0.165088\pi\)
0.868495 + 0.495699i \(0.165088\pi\)
\(110\) 0 0
\(111\) 3.38141 + 0.191121i 0.320950 + 0.0181404i
\(112\) 0 0
\(113\) −0.0708250 + 0.0408909i −0.00666266 + 0.00384669i −0.503328 0.864096i \(-0.667891\pi\)
0.496665 + 0.867942i \(0.334558\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −5.67495 + 2.47108i −0.524649 + 0.228451i
\(118\) 0 0
\(119\) 2.38429 4.12972i 0.218568 0.378571i
\(120\) 0 0
\(121\) −4.18787 7.25361i −0.380716 0.659419i
\(122\) 0 0
\(123\) −13.4478 + 6.78268i −1.21255 + 0.611573i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 21.5811i 1.91501i −0.288410 0.957507i \(-0.593127\pi\)
0.288410 0.957507i \(-0.406873\pi\)
\(128\) 0 0
\(129\) −6.76504 + 10.3243i −0.595628 + 0.909004i
\(130\) 0 0
\(131\) 5.39391 + 9.34253i 0.471268 + 0.816260i 0.999460 0.0328649i \(-0.0104631\pi\)
−0.528192 + 0.849125i \(0.677130\pi\)
\(132\) 0 0
\(133\) −18.7284 10.8129i −1.62396 0.937594i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.6997 + 6.75481i 0.999570 + 0.577102i 0.908121 0.418708i \(-0.137517\pi\)
0.0914491 + 0.995810i \(0.470850\pi\)
\(138\) 0 0
\(139\) 7.30499 + 12.6526i 0.619601 + 1.07318i 0.989559 + 0.144132i \(0.0460389\pi\)
−0.369958 + 0.929049i \(0.620628\pi\)
\(140\) 0 0
\(141\) 7.10409 10.8417i 0.598273 0.913039i
\(142\) 0 0
\(143\) 9.08178i 0.759457i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −7.07077 + 3.56628i −0.583187 + 0.294142i
\(148\) 0 0
\(149\) 0.0669350 + 0.115935i 0.00548353 + 0.00949775i 0.868754 0.495244i \(-0.164921\pi\)
−0.863271 + 0.504741i \(0.831588\pi\)
\(150\) 0 0
\(151\) −3.07249 + 5.32171i −0.250036 + 0.433075i −0.963535 0.267581i \(-0.913776\pi\)
0.713500 + 0.700656i \(0.247109\pi\)
\(152\) 0 0
\(153\) 0.473870 4.17858i 0.0383101 0.337818i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −12.7953 + 7.38736i −1.02117 + 0.589575i −0.914444 0.404713i \(-0.867372\pi\)
−0.106730 + 0.994288i \(0.534038\pi\)
\(158\) 0 0
\(159\) −22.6495 1.28017i −1.79622 0.101524i
\(160\) 0 0
\(161\) −0.366801 −0.0289079
\(162\) 0 0
\(163\) 15.9451i 1.24892i −0.781058 0.624458i \(-0.785320\pi\)
0.781058 0.624458i \(-0.214680\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.7529 + 10.2497i −1.37376 + 0.793143i −0.991400 0.130869i \(-0.958223\pi\)
−0.382364 + 0.924012i \(0.624890\pi\)
\(168\) 0 0
\(169\) −4.37160 + 7.57183i −0.336277 + 0.582448i
\(170\) 0 0
\(171\) −18.9500 2.14902i −1.44915 0.164340i
\(172\) 0 0
\(173\) −19.5647 11.2957i −1.48748 0.858796i −0.487580 0.873078i \(-0.662120\pi\)
−0.999898 + 0.0142821i \(0.995454\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 20.3816 10.2799i 1.53197 0.772681i
\(178\) 0 0
\(179\) −20.5879 −1.53881 −0.769407 0.638759i \(-0.779448\pi\)
−0.769407 + 0.638759i \(0.779448\pi\)
\(180\) 0 0
\(181\) −8.32830 −0.619038 −0.309519 0.950893i \(-0.600168\pi\)
−0.309519 + 0.950893i \(0.600168\pi\)
\(182\) 0 0
\(183\) 2.49852 + 1.63716i 0.184696 + 0.121023i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.34370 + 3.08519i 0.390770 + 0.225611i
\(188\) 0 0
\(189\) −11.2922 + 13.5991i −0.821384 + 0.989189i
\(190\) 0 0
\(191\) 4.39217 7.60747i 0.317807 0.550457i −0.662224 0.749306i \(-0.730387\pi\)
0.980030 + 0.198849i \(0.0637204\pi\)
\(192\) 0 0
\(193\) 6.26202 3.61538i 0.450750 0.260241i −0.257397 0.966306i \(-0.582865\pi\)
0.708147 + 0.706065i \(0.249531\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.17932i 0.297764i 0.988855 + 0.148882i \(0.0475675\pi\)
−0.988855 + 0.148882i \(0.952432\pi\)
\(198\) 0 0
\(199\) −15.6518 −1.10953 −0.554763 0.832009i \(-0.687191\pi\)
−0.554763 + 0.832009i \(0.687191\pi\)
\(200\) 0 0
\(201\) 9.65307 + 19.1388i 0.680875 + 1.34995i
\(202\) 0 0
\(203\) −26.7553 + 15.4472i −1.87785 + 1.08418i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.296581 + 0.129142i −0.0206138 + 0.00897598i
\(208\) 0 0
\(209\) 13.9914 24.2339i 0.967809 1.67629i
\(210\) 0 0
\(211\) 12.0770 + 20.9179i 0.831412 + 1.44005i 0.896918 + 0.442196i \(0.145801\pi\)
−0.0655057 + 0.997852i \(0.520866\pi\)
\(212\) 0 0
\(213\) 0.734001 12.9863i 0.0502929 0.889807i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 10.4204i 0.707381i
\(218\) 0 0
\(219\) 9.37339 + 0.529795i 0.633395 + 0.0358002i
\(220\) 0 0
\(221\) 1.44609 + 2.50470i 0.0972743 + 0.168484i
\(222\) 0 0
\(223\) −1.25263 0.723206i −0.0838823 0.0484295i 0.457472 0.889224i \(-0.348755\pi\)
−0.541354 + 0.840794i \(0.682088\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.7755 + 10.2627i 1.17980 + 0.681158i 0.955969 0.293469i \(-0.0948098\pi\)
0.223832 + 0.974628i \(0.428143\pi\)
\(228\) 0 0
\(229\) 10.4743 + 18.1420i 0.692160 + 1.19886i 0.971129 + 0.238556i \(0.0766741\pi\)
−0.278969 + 0.960300i \(0.589993\pi\)
\(230\) 0 0
\(231\) −11.6797 23.1569i −0.768466 1.52361i
\(232\) 0 0
\(233\) 9.90112i 0.648644i −0.945947 0.324322i \(-0.894864\pi\)
0.945947 0.324322i \(-0.105136\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 13.6705 + 8.95764i 0.887993 + 0.581861i
\(238\) 0 0
\(239\) 3.05391 + 5.28953i 0.197541 + 0.342151i 0.947731 0.319072i \(-0.103371\pi\)
−0.750189 + 0.661223i \(0.770038\pi\)
\(240\) 0 0
\(241\) 0.148392 0.257022i 0.00955875 0.0165562i −0.861206 0.508255i \(-0.830291\pi\)
0.870765 + 0.491699i \(0.163624\pi\)
\(242\) 0 0
\(243\) −4.34248 + 14.9714i −0.278570 + 0.960416i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 11.3589 6.55806i 0.722749 0.417279i
\(248\) 0 0
\(249\) 8.51890 13.0009i 0.539864 0.823900i
\(250\) 0 0
\(251\) −4.51643 −0.285075 −0.142537 0.989789i \(-0.545526\pi\)
−0.142537 + 0.989789i \(0.545526\pi\)
\(252\) 0 0
\(253\) 0.474626i 0.0298395i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.7764 + 6.79911i −0.734591 + 0.424117i −0.820100 0.572221i \(-0.806082\pi\)
0.0855081 + 0.996337i \(0.472749\pi\)
\(258\) 0 0
\(259\) −3.32589 + 5.76061i −0.206661 + 0.357947i
\(260\) 0 0
\(261\) −16.1947 + 21.9099i −1.00242 + 1.35619i
\(262\) 0 0
\(263\) 6.16921 + 3.56179i 0.380409 + 0.219630i 0.677996 0.735065i \(-0.262848\pi\)
−0.297587 + 0.954695i \(0.596182\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.392506 6.94441i 0.0240210 0.424991i
\(268\) 0 0
\(269\) −8.80358 −0.536764 −0.268382 0.963313i \(-0.586489\pi\)
−0.268382 + 0.963313i \(0.586489\pi\)
\(270\) 0 0
\(271\) −9.95885 −0.604957 −0.302478 0.953156i \(-0.597814\pi\)
−0.302478 + 0.953156i \(0.597814\pi\)
\(272\) 0 0
\(273\) 0.686006 12.1372i 0.0415190 0.734575i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −7.73303 4.46467i −0.464633 0.268256i 0.249358 0.968411i \(-0.419781\pi\)
−0.713990 + 0.700156i \(0.753114\pi\)
\(278\) 0 0
\(279\) 3.66877 + 8.42550i 0.219643 + 0.504421i
\(280\) 0 0
\(281\) −16.0402 + 27.7825i −0.956879 + 1.65736i −0.226872 + 0.973925i \(0.572850\pi\)
−0.730008 + 0.683439i \(0.760484\pi\)
\(282\) 0 0
\(283\) −5.51437 + 3.18373i −0.327796 + 0.189253i −0.654862 0.755749i \(-0.727273\pi\)
0.327066 + 0.945001i \(0.393940\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 29.5811i 1.74612i
\(288\) 0 0
\(289\) 15.0350 0.884411
\(290\) 0 0
\(291\) −2.06094 + 3.14525i −0.120814 + 0.184378i
\(292\) 0 0
\(293\) 24.1631 13.9506i 1.41162 0.815000i 0.416081 0.909328i \(-0.363403\pi\)
0.995541 + 0.0943273i \(0.0300700\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −17.5967 14.6116i −1.02107 0.847854i
\(298\) 0 0
\(299\) 0.111233 0.192662i 0.00643278 0.0111419i
\(300\) 0 0
\(301\) −12.1213 20.9946i −0.698658 1.21011i
\(302\) 0 0
\(303\) −4.30849 2.82315i −0.247516 0.162186i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.2054i 0.696597i 0.937384 + 0.348299i \(0.113240\pi\)
−0.937384 + 0.348299i \(0.886760\pi\)
\(308\) 0 0
\(309\) 5.17558 + 10.2615i 0.294428 + 0.583755i
\(310\) 0 0
\(311\) 2.45123 + 4.24565i 0.138996 + 0.240749i 0.927117 0.374772i \(-0.122279\pi\)
−0.788121 + 0.615521i \(0.788946\pi\)
\(312\) 0 0
\(313\) 15.2322 + 8.79429i 0.860972 + 0.497083i 0.864338 0.502912i \(-0.167738\pi\)
−0.00336551 + 0.999994i \(0.501071\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.9500 + 9.78608i 0.952007 + 0.549641i 0.893704 0.448658i \(-0.148098\pi\)
0.0583028 + 0.998299i \(0.481431\pi\)
\(318\) 0 0
\(319\) −19.9880 34.6203i −1.11912 1.93836i
\(320\) 0 0
\(321\) 23.8431 + 1.34764i 1.33079 + 0.0752180i
\(322\) 0 0
\(323\) 8.91140i 0.495844i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.77251 + 31.3602i −0.0980201 + 1.73422i
\(328\) 0 0
\(329\) 12.7288 + 22.0469i 0.701759 + 1.21548i
\(330\) 0 0
\(331\) −7.29537 + 12.6360i −0.400990 + 0.694535i −0.993846 0.110774i \(-0.964667\pi\)
0.592856 + 0.805309i \(0.298000\pi\)
\(332\) 0 0
\(333\) −0.661009 + 5.82877i −0.0362231 + 0.319415i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.58108 4.95429i 0.467441 0.269877i −0.247727 0.968830i \(-0.579683\pi\)
0.715168 + 0.698953i \(0.246350\pi\)
\(338\) 0 0
\(339\) −0.0637896 0.126474i −0.00346458 0.00686911i
\(340\) 0 0
\(341\) −13.4836 −0.730176
\(342\) 0 0
\(343\) 8.25897i 0.445943i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.93739 + 5.16000i −0.479784 + 0.277004i −0.720327 0.693635i \(-0.756008\pi\)
0.240542 + 0.970639i \(0.422675\pi\)
\(348\) 0 0
\(349\) 8.56767 14.8396i 0.458617 0.794348i −0.540271 0.841491i \(-0.681678\pi\)
0.998888 + 0.0471429i \(0.0150116\pi\)
\(350\) 0 0
\(351\) −3.71853 10.0552i −0.198481 0.536705i
\(352\) 0 0
\(353\) 11.4845 + 6.63055i 0.611256 + 0.352909i 0.773457 0.633849i \(-0.218526\pi\)
−0.162201 + 0.986758i \(0.551859\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.90844 + 4.52678i 0.365634 + 0.239583i
\(358\) 0 0
\(359\) −14.2817 −0.753758 −0.376879 0.926263i \(-0.623003\pi\)
−0.376879 + 0.926263i \(0.623003\pi\)
\(360\) 0 0
\(361\) 21.4136 1.12703
\(362\) 0 0
\(363\) 12.9529 6.53307i 0.679852 0.342897i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.29749 + 4.79056i 0.433125 + 0.250065i 0.700677 0.713478i \(-0.252881\pi\)
−0.267552 + 0.963543i \(0.586215\pi\)
\(368\) 0 0
\(369\) −10.4148 23.9181i −0.542173 1.24513i
\(370\) 0 0
\(371\) 22.2775 38.5858i 1.15659 2.00328i
\(372\) 0 0
\(373\) −20.8763 + 12.0529i −1.08093 + 0.624076i −0.931148 0.364642i \(-0.881191\pi\)
−0.149784 + 0.988719i \(0.547858\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.7376i 0.965033i
\(378\) 0 0
\(379\) −2.73973 −0.140730 −0.0703651 0.997521i \(-0.522416\pi\)
−0.0703651 + 0.997521i \(0.522416\pi\)
\(380\) 0 0
\(381\) 37.3200 + 2.10937i 1.91196 + 0.108066i
\(382\) 0 0
\(383\) 18.4924 10.6766i 0.944917 0.545548i 0.0534187 0.998572i \(-0.482988\pi\)
0.891498 + 0.453024i \(0.149655\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −17.1925 12.7078i −0.873944 0.645975i
\(388\) 0 0
\(389\) −7.33485 + 12.7043i −0.371892 + 0.644136i −0.989857 0.142070i \(-0.954624\pi\)
0.617965 + 0.786206i \(0.287957\pi\)
\(390\) 0 0
\(391\) 0.0755745 + 0.130899i 0.00382197 + 0.00661984i
\(392\) 0 0
\(393\) −16.6832 + 8.41449i −0.841554 + 0.424455i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6.43065i 0.322745i −0.986894 0.161373i \(-0.948408\pi\)
0.986894 0.161373i \(-0.0515921\pi\)
\(398\) 0 0
\(399\) 20.5291 31.3300i 1.02774 1.56846i
\(400\) 0 0
\(401\) −9.03748 15.6534i −0.451310 0.781693i 0.547157 0.837030i \(-0.315710\pi\)
−0.998468 + 0.0553373i \(0.982377\pi\)
\(402\) 0 0
\(403\) −5.47329 3.16000i −0.272644 0.157411i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.45402 4.30358i −0.369482 0.213320i
\(408\) 0 0
\(409\) −9.39532 16.2732i −0.464569 0.804657i 0.534613 0.845097i \(-0.320457\pi\)
−0.999182 + 0.0404403i \(0.987124\pi\)
\(410\) 0 0
\(411\) −12.8246 + 19.5719i −0.632589 + 0.965411i
\(412\) 0 0
\(413\) 44.8333i 2.20610i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −22.5940 + 11.3958i −1.10643 + 0.558053i
\(418\) 0 0
\(419\) 19.8297 + 34.3461i 0.968745 + 1.67792i 0.699198 + 0.714928i \(0.253540\pi\)
0.269547 + 0.962987i \(0.413126\pi\)
\(420\) 0 0
\(421\) 18.7682 32.5076i 0.914708 1.58432i 0.107380 0.994218i \(-0.465754\pi\)
0.807328 0.590103i \(-0.200913\pi\)
\(422\) 0 0
\(423\) 18.0542 + 13.3447i 0.877823 + 0.648843i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5.08078 + 2.93339i −0.245876 + 0.141957i
\(428\) 0 0
\(429\) 15.7050 + 0.887666i 0.758247 + 0.0428569i
\(430\) 0 0
\(431\) 16.7357 0.806132 0.403066 0.915171i \(-0.367945\pi\)
0.403066 + 0.915171i \(0.367945\pi\)
\(432\) 0 0
\(433\) 21.0008i 1.00924i 0.863343 + 0.504618i \(0.168367\pi\)
−0.863343 + 0.504618i \(0.831633\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.593631 0.342733i 0.0283972 0.0163952i
\(438\) 0 0
\(439\) −3.01576 + 5.22345i −0.143934 + 0.249302i −0.928975 0.370143i \(-0.879309\pi\)
0.785041 + 0.619444i \(0.212642\pi\)
\(440\) 0 0
\(441\) −5.47604 12.5760i −0.260764 0.598856i
\(442\) 0 0
\(443\) −5.47803 3.16274i −0.260269 0.150266i 0.364188 0.931325i \(-0.381346\pi\)
−0.624457 + 0.781059i \(0.714680\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −0.207027 + 0.104418i −0.00979205 + 0.00493882i
\(448\) 0 0
\(449\) 18.6594 0.880593 0.440296 0.897853i \(-0.354873\pi\)
0.440296 + 0.897853i \(0.354873\pi\)
\(450\) 0 0
\(451\) 38.2769 1.80239
\(452\) 0 0
\(453\) −8.90248 5.83338i −0.418275 0.274076i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −23.8889 13.7923i −1.11748 0.645176i −0.176722 0.984261i \(-0.556549\pi\)
−0.940756 + 0.339085i \(0.889883\pi\)
\(458\) 0 0
\(459\) 7.17967 + 1.22788i 0.335118 + 0.0573125i
\(460\) 0 0
\(461\) 6.76442 11.7163i 0.315051 0.545684i −0.664398 0.747379i \(-0.731312\pi\)
0.979448 + 0.201696i \(0.0646452\pi\)
\(462\) 0 0
\(463\) 23.8020 13.7421i 1.10617 0.638650i 0.168338 0.985729i \(-0.446160\pi\)
0.937836 + 0.347079i \(0.112827\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 32.7515i 1.51556i −0.652511 0.757779i \(-0.726284\pi\)
0.652511 0.757779i \(-0.273716\pi\)
\(468\) 0 0
\(469\) −42.0997 −1.94398
\(470\) 0 0
\(471\) −11.5243 22.8488i −0.531010 1.05282i
\(472\) 0 0
\(473\) 27.1663 15.6845i 1.24911 0.721172i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.42758 39.0424i 0.202725 1.78763i
\(478\) 0 0
\(479\) 2.92783 5.07116i 0.133776 0.231707i −0.791353 0.611359i \(-0.790623\pi\)
0.925129 + 0.379652i \(0.123956\pi\)
\(480\) 0 0
\(481\) −2.01717 3.49384i −0.0919750 0.159305i
\(482\) 0 0
\(483\) 0.0358516 0.634305i 0.00163131 0.0288619i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.4864i 0.747070i 0.927616 + 0.373535i \(0.121854\pi\)
−0.927616 + 0.373535i \(0.878146\pi\)
\(488\) 0 0
\(489\) 27.5737 + 1.55850i 1.24693 + 0.0704776i
\(490\) 0 0
\(491\) 6.85302 + 11.8698i 0.309272 + 0.535676i 0.978203 0.207649i \(-0.0665812\pi\)
−0.668931 + 0.743324i \(0.733248\pi\)
\(492\) 0 0
\(493\) 11.0251 + 6.36537i 0.496548 + 0.286682i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.1236 + 12.7731i 0.992379 + 0.572950i
\(498\) 0 0
\(499\) 2.23482 + 3.87082i 0.100044 + 0.173282i 0.911703 0.410851i \(-0.134768\pi\)
−0.811658 + 0.584132i \(0.801435\pi\)
\(500\) 0 0
\(501\) −15.9895 31.7018i −0.714356 1.41633i
\(502\) 0 0
\(503\) 18.1010i 0.807084i −0.914961 0.403542i \(-0.867779\pi\)
0.914961 0.403542i \(-0.132221\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −12.6666 8.29985i −0.562544 0.368609i
\(508\) 0 0
\(509\) −10.6044 18.3674i −0.470033 0.814120i 0.529380 0.848385i \(-0.322425\pi\)
−0.999413 + 0.0342644i \(0.989091\pi\)
\(510\) 0 0
\(511\) −9.21947 + 15.9686i −0.407846 + 0.706409i
\(512\) 0 0
\(513\) 5.56848 32.5601i 0.245855 1.43756i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −28.5278 + 16.4705i −1.25465 + 0.724374i
\(518\) 0 0
\(519\) 21.4458 32.7290i 0.941368 1.43665i
\(520\) 0 0
\(521\) −28.4507 −1.24645 −0.623224 0.782043i \(-0.714178\pi\)
−0.623224 + 0.782043i \(0.714178\pi\)
\(522\) 0 0
\(523\) 26.5111i 1.15925i 0.814884 + 0.579625i \(0.196801\pi\)
−0.814884 + 0.579625i \(0.803199\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.71868 2.14698i 0.161988 0.0935240i
\(528\) 0 0
\(529\) −11.4942 + 19.9085i −0.499747 + 0.865588i
\(530\) 0 0
\(531\) 15.7847 + 36.2504i 0.684999 + 1.57313i
\(532\) 0 0
\(533\) 15.5374 + 8.97055i 0.673001 + 0.388558i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2.01229 35.6025i 0.0868369 1.53636i
\(538\) 0 0
\(539\) 20.1257 0.866876
\(540\) 0 0
\(541\) −14.3132 −0.615372 −0.307686 0.951488i \(-0.599555\pi\)
−0.307686 + 0.951488i \(0.599555\pi\)
\(542\) 0 0
\(543\) 0.814020 14.4021i 0.0349329 0.618051i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11.8222 + 6.82556i 0.505482 + 0.291840i 0.730974 0.682405i \(-0.239066\pi\)
−0.225493 + 0.974245i \(0.572399\pi\)
\(548\) 0 0
\(549\) −3.07534 + 4.16065i −0.131252 + 0.177572i
\(550\) 0 0
\(551\) 28.8672 49.9994i 1.22978 2.13005i
\(552\) 0 0
\(553\) −27.7992 + 16.0499i −1.18214 + 0.682509i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.4665i 0.994306i 0.867663 + 0.497153i \(0.165621\pi\)
−0.867663 + 0.497153i \(0.834379\pi\)
\(558\) 0 0
\(559\) 14.7032 0.621880
\(560\) 0 0
\(561\) −5.85749 + 8.93927i −0.247303 + 0.377416i
\(562\) 0 0
\(563\) −0.504418 + 0.291226i −0.0212587 + 0.0122737i −0.510592 0.859823i \(-0.670574\pi\)
0.489333 + 0.872097i \(0.337240\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −22.4131 20.8566i −0.941261 0.875896i
\(568\) 0 0
\(569\) −2.77994 + 4.81500i −0.116541 + 0.201855i −0.918395 0.395665i \(-0.870514\pi\)
0.801854 + 0.597521i \(0.203847\pi\)
\(570\) 0 0
\(571\) 11.3706 + 19.6945i 0.475845 + 0.824188i 0.999617 0.0276708i \(-0.00880903\pi\)
−0.523772 + 0.851858i \(0.675476\pi\)
\(572\) 0 0
\(573\) 12.7262 + 8.33891i 0.531646 + 0.348363i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 30.5522i 1.27191i 0.771728 + 0.635953i \(0.219393\pi\)
−0.771728 + 0.635953i \(0.780607\pi\)
\(578\) 0 0
\(579\) 5.63998 + 11.1822i 0.234390 + 0.464718i
\(580\) 0 0
\(581\) 15.2638 + 26.4376i 0.633247 + 1.09682i
\(582\) 0 0
\(583\) 49.9286 + 28.8263i 2.06783 + 1.19386i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.6353 + 10.1817i 0.727886 + 0.420245i 0.817648 0.575718i \(-0.195278\pi\)
−0.0897626 + 0.995963i \(0.528611\pi\)
\(588\) 0 0
\(589\) −9.73664 16.8644i −0.401191 0.694884i
\(590\) 0 0
\(591\) −7.22726 0.408493i −0.297290 0.0168032i
\(592\) 0 0
\(593\) 15.5199i 0.637326i 0.947868 + 0.318663i \(0.103234\pi\)
−0.947868 + 0.318663i \(0.896766\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.52983 27.0665i 0.0626117 1.10776i
\(598\) 0 0
\(599\) 14.6288 + 25.3379i 0.597717 + 1.03528i 0.993157 + 0.116785i \(0.0372588\pi\)
−0.395440 + 0.918492i \(0.629408\pi\)
\(600\) 0 0
\(601\) 9.15254 15.8527i 0.373340 0.646644i −0.616737 0.787169i \(-0.711546\pi\)
0.990077 + 0.140526i \(0.0448792\pi\)
\(602\) 0 0
\(603\) −34.0401 + 14.8223i −1.38622 + 0.603611i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −14.5845 + 8.42037i −0.591967 + 0.341772i −0.765875 0.642990i \(-0.777694\pi\)
0.173908 + 0.984762i \(0.444360\pi\)
\(608\) 0 0
\(609\) −24.0975 47.7774i −0.976481 1.93604i
\(610\) 0 0
\(611\) −15.4401 −0.624640
\(612\) 0 0
\(613\) 13.5954i 0.549113i 0.961571 + 0.274556i \(0.0885310\pi\)
−0.961571 + 0.274556i \(0.911469\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 25.3861 14.6567i 1.02201 0.590056i 0.107322 0.994224i \(-0.465772\pi\)
0.914685 + 0.404168i \(0.132439\pi\)
\(618\) 0 0
\(619\) 6.08211 10.5345i 0.244461 0.423418i −0.717519 0.696539i \(-0.754722\pi\)
0.961980 + 0.273121i \(0.0880558\pi\)
\(620\) 0 0
\(621\) −0.194336 0.525497i −0.00779842 0.0210875i
\(622\) 0 0
\(623\) 11.8306 + 6.83038i 0.473982 + 0.273653i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 40.5399 + 26.5639i 1.61901 + 1.06086i
\(628\) 0 0
\(629\) 2.74103 0.109292
\(630\) 0 0
\(631\) 5.45471 0.217148 0.108574 0.994088i \(-0.465371\pi\)
0.108574 + 0.994088i \(0.465371\pi\)
\(632\) 0 0
\(633\) −37.3536 + 18.8400i −1.48467 + 0.748824i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 8.16948 + 4.71665i 0.323687 + 0.186881i
\(638\) 0 0
\(639\) 22.3854 + 2.53860i 0.885551 + 0.100425i
\(640\) 0 0
\(641\) 0.839996 1.45492i 0.0331779 0.0574657i −0.848960 0.528458i \(-0.822771\pi\)
0.882138 + 0.470992i \(0.156104\pi\)
\(642\) 0 0
\(643\) −4.92202 + 2.84173i −0.194106 + 0.112067i −0.593903 0.804537i \(-0.702414\pi\)
0.399797 + 0.916603i \(0.369080\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 34.3064i 1.34872i 0.738401 + 0.674361i \(0.235581\pi\)
−0.738401 + 0.674361i \(0.764419\pi\)
\(648\) 0 0
\(649\) −58.0126 −2.27719
\(650\) 0 0
\(651\) −18.0198 1.01850i −0.706253 0.0399182i
\(652\) 0 0
\(653\) 10.9377 6.31486i 0.428024 0.247120i −0.270480 0.962725i \(-0.587183\pi\)
0.698504 + 0.715606i \(0.253849\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.83234 + 16.1575i −0.0714863 + 0.630366i
\(658\) 0 0
\(659\) −3.16697 + 5.48535i −0.123368 + 0.213679i −0.921094 0.389341i \(-0.872703\pi\)
0.797726 + 0.603020i \(0.206036\pi\)
\(660\) 0 0
\(661\) 18.8448 + 32.6401i 0.732978 + 1.26955i 0.955605 + 0.294651i \(0.0952033\pi\)
−0.222628 + 0.974904i \(0.571463\pi\)
\(662\) 0 0
\(663\) −4.47269 + 2.25589i −0.173705 + 0.0876116i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.979251i 0.0379167i
\(668\) 0 0
\(669\) 1.37307 2.09547i 0.0530859 0.0810157i
\(670\) 0 0
\(671\) −3.79570 6.57434i −0.146531 0.253800i
\(672\) 0 0
\(673\) −26.5477 15.3273i −1.02334 0.590824i −0.108268 0.994122i \(-0.534531\pi\)
−0.915069 + 0.403298i \(0.867864\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 25.0035 + 14.4358i 0.960964 + 0.554813i 0.896470 0.443105i \(-0.146123\pi\)
0.0644945 + 0.997918i \(0.479456\pi\)
\(678\) 0 0
\(679\) −3.69269 6.39593i −0.141712 0.245453i
\(680\) 0 0
\(681\) −19.4846 + 29.7359i −0.746650 + 1.13948i
\(682\) 0 0
\(683\) 47.0352i 1.79975i −0.436147 0.899875i \(-0.643657\pi\)
0.436147 0.899875i \(-0.356343\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −32.3965 + 16.3399i −1.23601 + 0.623404i
\(688\) 0 0
\(689\) 13.5114 + 23.4025i 0.514745 + 0.891564i
\(690\) 0 0
\(691\) −0.425186 + 0.736443i −0.0161748 + 0.0280156i −0.874000 0.485927i \(-0.838482\pi\)
0.857825 + 0.513942i \(0.171815\pi\)
\(692\) 0 0
\(693\) 41.1867 17.9342i 1.56455 0.681262i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −10.5565 + 6.09480i −0.399856 + 0.230857i
\(698\) 0 0
\(699\) 17.1219 + 0.967750i 0.647610 + 0.0366037i
\(700\) 0 0
\(701\) −35.6821 −1.34770 −0.673848 0.738870i \(-0.735360\pi\)
−0.673848 + 0.738870i \(0.735360\pi\)
\(702\) 0 0
\(703\) 12.4307i 0.468831i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.76138 5.05838i 0.329506 0.190240i
\(708\) 0 0
\(709\) 7.69543 13.3289i 0.289008 0.500576i −0.684565 0.728951i \(-0.740008\pi\)
0.973573 + 0.228375i \(0.0733413\pi\)
\(710\) 0 0
\(711\) −16.8265 + 22.7647i −0.631044 + 0.853743i
\(712\) 0 0
\(713\) −0.286042 0.165146i −0.0107123 0.00618477i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9.44563 + 4.76410i −0.352754 + 0.177918i
\(718\) 0 0
\(719\) −25.5846 −0.954144 −0.477072 0.878864i \(-0.658302\pi\)
−0.477072 + 0.878864i \(0.658302\pi\)
\(720\) 0 0
\(721\) −22.5721 −0.840630
\(722\) 0 0
\(723\) 0.429962 + 0.281734i 0.0159904 + 0.0104778i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 5.31509 + 3.06867i 0.197126 + 0.113811i 0.595314 0.803493i \(-0.297028\pi\)
−0.398188 + 0.917304i \(0.630361\pi\)
\(728\) 0 0
\(729\) −25.4655 8.97274i −0.943165 0.332324i
\(730\) 0 0
\(731\) −4.99486 + 8.65135i −0.184741 + 0.319982i
\(732\) 0 0
\(733\) 4.44306 2.56520i 0.164108 0.0947478i −0.415697 0.909503i \(-0.636462\pi\)
0.579805 + 0.814756i \(0.303129\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 54.4754i 2.00663i
\(738\) 0 0
\(739\) −18.8784 −0.694454 −0.347227 0.937781i \(-0.612877\pi\)
−0.347227 + 0.937781i \(0.612877\pi\)
\(740\) 0 0
\(741\) 10.2306 + 20.2838i 0.375829 + 0.745145i
\(742\) 0 0
\(743\) 19.0152 10.9784i 0.697600 0.402759i −0.108853 0.994058i \(-0.534718\pi\)
0.806453 + 0.591298i \(0.201384\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 21.6497 + 16.0024i 0.792122 + 0.585497i
\(748\) 0 0
\(749\) −23.4516 + 40.6194i −0.856904 + 1.48420i
\(750\) 0 0
\(751\) 1.58037 + 2.73728i 0.0576686 + 0.0998849i 0.893418 0.449225i \(-0.148300\pi\)
−0.835750 + 0.549110i \(0.814967\pi\)
\(752\) 0 0
\(753\) 0.441442 7.81022i 0.0160871 0.284620i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 39.1753i 1.42385i −0.702255 0.711926i \(-0.747823\pi\)
0.702255 0.711926i \(-0.252177\pi\)
\(758\) 0 0
\(759\) 0.820767 + 0.0463907i 0.0297920 + 0.00168387i
\(760\) 0 0
\(761\) −5.03916 8.72807i −0.182669 0.316392i 0.760119 0.649783i \(-0.225140\pi\)
−0.942789 + 0.333391i \(0.891807\pi\)
\(762\) 0 0
\(763\) −53.4255 30.8452i −1.93413 1.11667i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.5486 13.5958i −0.850292 0.490916i
\(768\) 0 0
\(769\) 10.5790 + 18.3233i 0.381487 + 0.660755i 0.991275 0.131810i \(-0.0420787\pi\)
−0.609788 + 0.792565i \(0.708745\pi\)
\(770\) 0 0
\(771\) −10.6066 21.0294i −0.381987 0.757354i
\(772\) 0 0
\(773\) 43.2543i 1.55575i 0.628420 + 0.777874i \(0.283702\pi\)
−0.628420 + 0.777874i \(0.716298\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −9.63669 6.31448i −0.345714 0.226531i
\(778\) 0 0
\(779\) 27.6402 + 47.8742i 0.990312 + 1.71527i
\(780\) 0 0
\(781\) −16.5279 + 28.6271i −0.591414 + 1.02436i
\(782\) 0 0
\(783\) −36.3056 30.1468i −1.29746 1.07736i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.02189 0.589986i 0.0364263 0.0210307i −0.481676 0.876349i \(-0.659972\pi\)
0.518103 + 0.855318i \(0.326639\pi\)
\(788\) 0 0
\(789\) −6.76236 + 10.3202i −0.240746 + 0.367409i
\(790\) 0 0
\(791\) 0.278204 0.00989180
\(792\) 0 0
\(793\) 3.55823i 0.126357i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.989706 0.571407i 0.0350572 0.0202403i −0.482369 0.875968i \(-0.660224\pi\)
0.517426 + 0.855728i \(0.326890\pi\)
\(798\) 0 0
\(799\) 5.24519 9.08494i 0.185562 0.321402i
\(800\) 0 0
\(801\) 11.9705 + 1.35751i 0.422959 + 0.0479654i
\(802\) 0 0
\(803\) −20.6628 11.9297i −0.729173 0.420988i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0.860474 15.2239i 0.0302901 0.535908i
\(808\) 0 0
\(809\) 11.3723 0.399828 0.199914 0.979813i \(-0.435934\pi\)
0.199914 + 0.979813i \(0.435934\pi\)
\(810\) 0 0
\(811\) 2.08590 0.0732459 0.0366230 0.999329i \(-0.488340\pi\)
0.0366230 + 0.999329i \(0.488340\pi\)
\(812\) 0 0
\(813\) 0.973392 17.2217i 0.0341384 0.603993i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 39.2342 + 22.6519i 1.37263 + 0.792489i
\(818\) 0 0
\(819\) 20.9216 + 2.37261i 0.731061 + 0.0829056i
\(820\) 0 0
\(821\) −7.89564 + 13.6757i −0.275560 + 0.477284i −0.970276 0.242000i \(-0.922197\pi\)
0.694716 + 0.719284i \(0.255530\pi\)
\(822\) 0 0
\(823\) 6.34003 3.66042i 0.221000 0.127594i −0.385413 0.922744i \(-0.625941\pi\)
0.606413 + 0.795150i \(0.292608\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.8401i 0.516040i 0.966140 + 0.258020i \(0.0830701\pi\)
−0.966140 + 0.258020i \(0.916930\pi\)
\(828\) 0 0
\(829\) 23.3346 0.810444 0.405222 0.914218i \(-0.367194\pi\)
0.405222 + 0.914218i \(0.367194\pi\)
\(830\) 0 0
\(831\) 8.47654 12.9363i 0.294048 0.448754i
\(832\) 0 0
\(833\) −5.55054 + 3.20461i −0.192315 + 0.111033i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −14.9287 + 5.52084i −0.516012 + 0.190828i
\(838\) 0 0
\(839\) −7.33826 + 12.7102i −0.253345 + 0.438806i −0.964445 0.264285i \(-0.914864\pi\)
0.711100 + 0.703091i \(0.248197\pi\)
\(840\) 0 0
\(841\) −26.7394 46.3140i −0.922048 1.59703i
\(842\) 0 0
\(843\) −46.4762 30.4537i −1.60072 1.04888i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 28.4925i 0.979014i
\(848\) 0 0
\(849\) −4.96660 9.84714i −0.170453 0.337953i
\(850\) 0 0
\(851\) −0.105420 0.182593i −0.00361375 0.00625920i
\(852\) 0 0
\(853\) −21.2369 12.2611i −0.727136 0.419812i 0.0902375 0.995920i \(-0.471237\pi\)
−0.817374 + 0.576108i \(0.804571\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.83929 + 2.79396i 0.165307 + 0.0954400i 0.580371 0.814352i \(-0.302908\pi\)
−0.415064 + 0.909792i \(0.636241\pi\)
\(858\) 0 0
\(859\) −20.0309 34.6946i −0.683447 1.18376i −0.973922 0.226882i \(-0.927147\pi\)
0.290476 0.956882i \(-0.406186\pi\)
\(860\) 0 0
\(861\) 51.1543 + 2.89130i 1.74334 + 0.0985353i
\(862\) 0 0
\(863\) 27.2157i 0.926432i −0.886246 0.463216i \(-0.846695\pi\)
0.886246 0.463216i \(-0.153305\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.46954 + 25.9999i −0.0499082 + 0.883002i
\(868\) 0 0
\(869\) −20.7679 35.9711i −0.704503 1.22024i
\(870\) 0 0
\(871\) 12.7668 22.1128i 0.432588 0.749264i
\(872\) 0 0
\(873\) −5.23762 3.87139i −0.177267 0.131027i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 20.6806 11.9399i 0.698334 0.403183i −0.108393 0.994108i \(-0.534570\pi\)
0.806727 + 0.590925i \(0.201237\pi\)
\(878\) 0 0
\(879\) 21.7628 + 43.1485i 0.734042 + 1.45536i
\(880\) 0 0
\(881\) 28.3585 0.955421 0.477710 0.878517i \(-0.341467\pi\)
0.477710 + 0.878517i \(0.341467\pi\)
\(882\) 0 0
\(883\) 28.3449i 0.953881i 0.878936 + 0.476941i \(0.158254\pi\)
−0.878936 + 0.476941i \(0.841746\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −0.446080 + 0.257544i −0.0149779 + 0.00864749i −0.507470 0.861669i \(-0.669419\pi\)
0.492492 + 0.870317i \(0.336086\pi\)
\(888\) 0 0
\(889\) −36.7072 + 63.5787i −1.23112 + 2.13236i
\(890\) 0 0
\(891\) 26.9877 29.0017i 0.904123 0.971593i
\(892\) 0 0
\(893\) −41.2005 23.7871i −1.37872 0.796007i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.322296 + 0.211186i 0.0107611 + 0.00705128i
\(898\) 0 0
\(899\) −27.8193 −0.927827
\(900\) 0 0
\(901\) −18.3600 −0.611660
\(902\) 0 0
\(903\) 37.4906 18.9091i 1.24761 0.629257i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.87426 + 1.08211i 0.0622339 + 0.0359308i 0.530794 0.847501i \(-0.321894\pi\)
−0.468560 + 0.883432i \(0.655227\pi\)
\(908\) 0 0
\(909\) 5.30317 7.17469i 0.175895 0.237969i
\(910\) 0 0
\(911\) −19.2332 + 33.3129i −0.637226 + 1.10371i 0.348813 + 0.937192i \(0.386585\pi\)
−0.986039 + 0.166515i \(0.946749\pi\)
\(912\) 0 0
\(913\) −34.2093 + 19.7507i −1.13216 + 0.653654i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 36.6979i 1.21187i
\(918\) 0 0
\(919\) −18.6992 −0.616830 −0.308415 0.951252i \(-0.599799\pi\)
−0.308415 + 0.951252i \(0.599799\pi\)
\(920\) 0 0
\(921\) −21.1066 1.19297i −0.695487 0.0393097i
\(922\) 0 0
\(923\) −13.4181 + 7.74693i −0.441661 + 0.254993i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −18.2509 + 7.94711i −0.599439 + 0.261017i
\(928\) 0 0
\(929\) −1.10335 + 1.91106i −0.0361999 + 0.0627000i −0.883558 0.468322i \(-0.844859\pi\)
0.847358 + 0.531022i \(0.178192\pi\)
\(930\) 0 0
\(931\) 14.5330 + 25.1719i 0.476300 + 0.824976i
\(932\) 0 0
\(933\) −7.58156 + 3.82391i −0.248209 + 0.125189i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21.3429i 0.697242i 0.937264 + 0.348621i \(0.113350\pi\)
−0.937264 + 0.348621i \(0.886650\pi\)
\(938\) 0 0
\(939\) −16.6967 + 25.4813i −0.544876 + 0.831549i
\(940\) 0 0
\(941\) 0.589661 + 1.02132i 0.0192224 + 0.0332942i 0.875477 0.483261i \(-0.160548\pi\)
−0.856254 + 0.516555i \(0.827214\pi\)
\(942\) 0 0
\(943\) 0.812008 + 0.468813i 0.0264426 + 0.0152667i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.5152 11.8445i −0.666655 0.384894i 0.128153 0.991754i \(-0.459095\pi\)
−0.794808 + 0.606861i \(0.792428\pi\)
\(948\) 0 0
\(949\) −5.59166 9.68504i −0.181513 0.314390i
\(950\) 0 0
\(951\) −18.5797 + 28.3550i −0.602488 + 0.919473i
\(952\) 0 0
\(953\) 12.8125i 0.415038i −0.978231 0.207519i \(-0.933461\pi\)
0.978231 0.207519i \(-0.0665389\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 61.8222 31.1813i 1.99843 1.00795i
\(958\) 0 0
\(959\) −22.9784 39.7998i −0.742012 1.28520i
\(960\) 0 0
\(961\) 10.8084 18.7207i 0.348658 0.603893i
\(962\) 0 0
\(963\) −4.66093 + 41.1000i −0.150196 + 1.32443i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 9.46264 5.46326i 0.304298 0.175686i −0.340074 0.940399i \(-0.610452\pi\)
0.644372 + 0.764712i \(0.277119\pi\)
\(968\) 0 0
\(969\) −15.4104 0.871013i −0.495054 0.0279810i
\(970\) 0 0
\(971\) 15.7933 0.506831 0.253415 0.967358i \(-0.418446\pi\)
0.253415 + 0.967358i \(0.418446\pi\)
\(972\) 0 0
\(973\) 49.7001i 1.59331i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −32.4742 + 18.7490i −1.03894 + 0.599833i −0.919533 0.393012i \(-0.871433\pi\)
−0.119409 + 0.992845i \(0.538100\pi\)
\(978\) 0 0
\(979\) −8.83826 + 15.3083i −0.282472 + 0.489256i
\(980\) 0 0
\(981\) −54.0576 6.13038i −1.72593 0.195728i
\(982\) 0 0
\(983\) 20.3795 + 11.7661i 0.650004 + 0.375280i 0.788458 0.615089i \(-0.210880\pi\)
−0.138454 + 0.990369i \(0.544213\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −39.3696 + 19.8568i −1.25315 + 0.632050i
\(988\) 0 0
\(989\) 0.768410 0.0244340
\(990\) 0 0
\(991\) 46.7019 1.48353 0.741767 0.670658i \(-0.233988\pi\)
0.741767 + 0.670658i \(0.233988\pi\)
\(992\) 0 0
\(993\) −21.1382 13.8509i −0.670800 0.439544i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −37.1161 21.4290i −1.17548 0.678663i −0.220514 0.975384i \(-0.570774\pi\)
−0.954964 + 0.296721i \(0.904107\pi\)
\(998\) 0 0
\(999\) −10.0150 1.71279i −0.316861 0.0541902i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.s.d.349.4 16
3.2 odd 2 2700.2.s.d.2449.2 16
5.2 odd 4 900.2.i.e.601.4 yes 8
5.3 odd 4 900.2.i.d.601.1 yes 8
5.4 even 2 inner 900.2.s.d.349.5 16
9.2 odd 6 8100.2.d.s.649.7 8
9.4 even 3 inner 900.2.s.d.49.5 16
9.5 odd 6 2700.2.s.d.1549.7 16
9.7 even 3 8100.2.d.q.649.7 8
15.2 even 4 2700.2.i.d.1801.4 8
15.8 even 4 2700.2.i.e.1801.1 8
15.14 odd 2 2700.2.s.d.2449.7 16
45.2 even 12 8100.2.a.ba.1.1 4
45.4 even 6 inner 900.2.s.d.49.4 16
45.7 odd 12 8100.2.a.z.1.1 4
45.13 odd 12 900.2.i.d.301.1 8
45.14 odd 6 2700.2.s.d.1549.2 16
45.22 odd 12 900.2.i.e.301.4 yes 8
45.23 even 12 2700.2.i.e.901.1 8
45.29 odd 6 8100.2.d.s.649.2 8
45.32 even 12 2700.2.i.d.901.4 8
45.34 even 6 8100.2.d.q.649.2 8
45.38 even 12 8100.2.a.y.1.4 4
45.43 odd 12 8100.2.a.x.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.2.i.d.301.1 8 45.13 odd 12
900.2.i.d.601.1 yes 8 5.3 odd 4
900.2.i.e.301.4 yes 8 45.22 odd 12
900.2.i.e.601.4 yes 8 5.2 odd 4
900.2.s.d.49.4 16 45.4 even 6 inner
900.2.s.d.49.5 16 9.4 even 3 inner
900.2.s.d.349.4 16 1.1 even 1 trivial
900.2.s.d.349.5 16 5.4 even 2 inner
2700.2.i.d.901.4 8 45.32 even 12
2700.2.i.d.1801.4 8 15.2 even 4
2700.2.i.e.901.1 8 45.23 even 12
2700.2.i.e.1801.1 8 15.8 even 4
2700.2.s.d.1549.2 16 45.14 odd 6
2700.2.s.d.1549.7 16 9.5 odd 6
2700.2.s.d.2449.2 16 3.2 odd 2
2700.2.s.d.2449.7 16 15.14 odd 2
8100.2.a.x.1.4 4 45.43 odd 12
8100.2.a.y.1.4 4 45.38 even 12
8100.2.a.z.1.1 4 45.7 odd 12
8100.2.a.ba.1.1 4 45.2 even 12
8100.2.d.q.649.2 8 45.34 even 6
8100.2.d.q.649.7 8 9.7 even 3
8100.2.d.s.649.2 8 45.29 odd 6
8100.2.d.s.649.7 8 9.2 odd 6