Properties

Label 2700.2.i.d.901.4
Level $2700$
Weight $2$
Character 2700.901
Analytic conductor $21.560$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2700,2,Mod(901,2700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2700.901"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-1,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.142635249.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 3x^{6} + 3x^{5} - 11x^{4} + 6x^{3} + 12x^{2} - 24x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: no (minimal twist has level 900)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 901.4
Root \(0.620769 + 1.27069i\) of defining polynomial
Character \(\chi\) \(=\) 2700.901
Dual form 2700.2.i.d.1801.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70089 + 2.94604i) q^{7} +(-2.20089 - 3.81206i) q^{11} +(-1.03160 + 1.78679i) q^{13} +1.40179 q^{17} -6.35717 q^{19} +(0.0539129 - 0.0933799i) q^{23} +(4.54089 + 7.86505i) q^{29} +(-1.53160 + 2.65281i) q^{31} +1.95538 q^{37} +(-4.34788 + 7.53074i) q^{41} +(3.56320 + 6.17165i) q^{43} +(-3.74179 - 6.48096i) q^{47} +(-2.28608 + 3.95961i) q^{49} -13.0975 q^{53} +(-6.58966 + 11.4136i) q^{59} +(0.862308 + 1.49356i) q^{61} +(6.18787 - 10.7177i) q^{67} +7.50961 q^{71} -5.42037 q^{73} +(7.48698 - 12.9678i) q^{77} +(-4.71806 - 8.17193i) q^{79} +(4.48698 + 7.77167i) q^{83} -4.01576 q^{89} -7.01858 q^{91} +(-1.08551 - 1.88017i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{7} - 3 q^{11} + 2 q^{13} - 18 q^{17} - 8 q^{19} - 3 q^{23} + 9 q^{29} - 2 q^{31} + 2 q^{37} - 9 q^{41} + 8 q^{43} + 12 q^{47} - 9 q^{49} - 24 q^{53} + 15 q^{59} + q^{61} + 11 q^{67} + 24 q^{71}+ \cdots + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.70089 + 2.94604i 0.642878 + 1.11350i 0.984787 + 0.173764i \(0.0555930\pi\)
−0.341910 + 0.939733i \(0.611074\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.20089 3.81206i −0.663595 1.14938i −0.979664 0.200644i \(-0.935697\pi\)
0.316070 0.948736i \(-0.397637\pi\)
\(12\) 0 0
\(13\) −1.03160 + 1.78679i −0.286115 + 0.495565i −0.972879 0.231315i \(-0.925697\pi\)
0.686764 + 0.726880i \(0.259031\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.40179 0.339984 0.169992 0.985445i \(-0.445626\pi\)
0.169992 + 0.985445i \(0.445626\pi\)
\(18\) 0 0
\(19\) −6.35717 −1.45843 −0.729217 0.684283i \(-0.760115\pi\)
−0.729217 + 0.684283i \(0.760115\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.0539129 0.0933799i 0.0112416 0.0194711i −0.860350 0.509704i \(-0.829755\pi\)
0.871591 + 0.490233i \(0.163088\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.54089 + 7.86505i 0.843222 + 1.46050i 0.887156 + 0.461469i \(0.152678\pi\)
−0.0439339 + 0.999034i \(0.513989\pi\)
\(30\) 0 0
\(31\) −1.53160 + 2.65281i −0.275084 + 0.476459i −0.970156 0.242481i \(-0.922039\pi\)
0.695073 + 0.718940i \(0.255372\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.95538 0.321462 0.160731 0.986998i \(-0.448615\pi\)
0.160731 + 0.986998i \(0.448615\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.34788 + 7.53074i −0.679024 + 1.17610i 0.296251 + 0.955110i \(0.404264\pi\)
−0.975275 + 0.220994i \(0.929070\pi\)
\(42\) 0 0
\(43\) 3.56320 + 6.17165i 0.543383 + 0.941167i 0.998707 + 0.0508414i \(0.0161903\pi\)
−0.455323 + 0.890326i \(0.650476\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.74179 6.48096i −0.545795 0.945345i −0.998556 0.0537135i \(-0.982894\pi\)
0.452761 0.891632i \(-0.350439\pi\)
\(48\) 0 0
\(49\) −2.28608 + 3.95961i −0.326583 + 0.565659i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13.0975 −1.79909 −0.899543 0.436833i \(-0.856100\pi\)
−0.899543 + 0.436833i \(0.856100\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.58966 + 11.4136i −0.857901 + 1.48593i 0.0160267 + 0.999872i \(0.494898\pi\)
−0.873928 + 0.486056i \(0.838435\pi\)
\(60\) 0 0
\(61\) 0.862308 + 1.49356i 0.110407 + 0.191231i 0.915935 0.401328i \(-0.131451\pi\)
−0.805527 + 0.592559i \(0.798118\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.18787 10.7177i 0.755969 1.30938i −0.188922 0.981992i \(-0.560499\pi\)
0.944891 0.327385i \(-0.106167\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.50961 0.891227 0.445614 0.895225i \(-0.352986\pi\)
0.445614 + 0.895225i \(0.352986\pi\)
\(72\) 0 0
\(73\) −5.42037 −0.634406 −0.317203 0.948358i \(-0.602744\pi\)
−0.317203 + 0.948358i \(0.602744\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.48698 12.9678i 0.853220 1.47782i
\(78\) 0 0
\(79\) −4.71806 8.17193i −0.530824 0.919413i −0.999353 0.0359656i \(-0.988549\pi\)
0.468529 0.883448i \(-0.344784\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.48698 + 7.77167i 0.492510 + 0.853052i 0.999963 0.00862744i \(-0.00274623\pi\)
−0.507453 + 0.861679i \(0.669413\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.01576 −0.425670 −0.212835 0.977088i \(-0.568270\pi\)
−0.212835 + 0.977088i \(0.568270\pi\)
\(90\) 0 0
\(91\) −7.01858 −0.735747
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.08551 1.88017i −0.110217 0.190902i 0.805641 0.592405i \(-0.201821\pi\)
−0.915858 + 0.401503i \(0.868488\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.48698 + 2.57552i 0.147960 + 0.256274i 0.930473 0.366360i \(-0.119396\pi\)
−0.782513 + 0.622634i \(0.786063\pi\)
\(102\) 0 0
\(103\) −3.31768 + 5.74640i −0.326901 + 0.566209i −0.981895 0.189425i \(-0.939338\pi\)
0.654994 + 0.755634i \(0.272671\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.7878 −1.33292 −0.666459 0.745541i \(-0.732191\pi\)
−0.666459 + 0.745541i \(0.732191\pi\)
\(108\) 0 0
\(109\) −18.1347 −1.73699 −0.868495 0.495699i \(-0.834912\pi\)
−0.868495 + 0.495699i \(0.834912\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.0408909 + 0.0708250i −0.00384669 + 0.00666266i −0.867942 0.496665i \(-0.834558\pi\)
0.864096 + 0.503328i \(0.167891\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.38429 + 4.12972i 0.218568 + 0.378571i
\(120\) 0 0
\(121\) −4.18787 + 7.25361i −0.380716 + 0.659419i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 21.5811 1.91501 0.957507 0.288410i \(-0.0931266\pi\)
0.957507 + 0.288410i \(0.0931266\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.39391 + 9.34253i −0.471268 + 0.816260i −0.999460 0.0328649i \(-0.989537\pi\)
0.528192 + 0.849125i \(0.322870\pi\)
\(132\) 0 0
\(133\) −10.8129 18.7284i −0.937594 1.62396i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.75481 + 11.6997i 0.577102 + 0.999570i 0.995810 + 0.0914491i \(0.0291499\pi\)
−0.418708 + 0.908121i \(0.637517\pi\)
\(138\) 0 0
\(139\) −7.30499 + 12.6526i −0.619601 + 1.07318i 0.369958 + 0.929049i \(0.379372\pi\)
−0.989559 + 0.144132i \(0.953961\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.08178 0.759457
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.0669350 0.115935i 0.00548353 0.00949775i −0.863271 0.504741i \(-0.831588\pi\)
0.868754 + 0.495244i \(0.164921\pi\)
\(150\) 0 0
\(151\) −3.07249 5.32171i −0.250036 0.433075i 0.713500 0.700656i \(-0.247109\pi\)
−0.963535 + 0.267581i \(0.913776\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.38736 + 12.7953i −0.589575 + 1.02117i 0.404713 + 0.914444i \(0.367372\pi\)
−0.994288 + 0.106730i \(0.965962\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.366801 0.0289079
\(162\) 0 0
\(163\) −15.9451 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.2497 17.7529i 0.793143 1.37376i −0.130869 0.991400i \(-0.541777\pi\)
0.924012 0.382364i \(-0.124890\pi\)
\(168\) 0 0
\(169\) 4.37160 + 7.57183i 0.336277 + 0.582448i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.2957 + 19.5647i 0.858796 + 1.48748i 0.873078 + 0.487580i \(0.162120\pi\)
−0.0142821 + 0.999898i \(0.504546\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.5879 −1.53881 −0.769407 0.638759i \(-0.779448\pi\)
−0.769407 + 0.638759i \(0.779448\pi\)
\(180\) 0 0
\(181\) −8.32830 −0.619038 −0.309519 0.950893i \(-0.600168\pi\)
−0.309519 + 0.950893i \(0.600168\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3.08519 5.34370i −0.225611 0.390770i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.39217 7.60747i −0.317807 0.550457i 0.662224 0.749306i \(-0.269613\pi\)
−0.980030 + 0.198849i \(0.936280\pi\)
\(192\) 0 0
\(193\) −3.61538 + 6.26202i −0.260241 + 0.450750i −0.966306 0.257397i \(-0.917135\pi\)
0.706065 + 0.708147i \(0.250469\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.17932 0.297764 0.148882 0.988855i \(-0.452432\pi\)
0.148882 + 0.988855i \(0.452432\pi\)
\(198\) 0 0
\(199\) 15.6518 1.10953 0.554763 0.832009i \(-0.312809\pi\)
0.554763 + 0.832009i \(0.312809\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −15.4472 + 26.7553i −1.08418 + 1.87785i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 13.9914 + 24.2339i 0.967809 + 1.67629i
\(210\) 0 0
\(211\) 12.0770 20.9179i 0.831412 1.44005i −0.0655057 0.997852i \(-0.520866\pi\)
0.896918 0.442196i \(-0.145801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −10.4204 −0.707381
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.44609 + 2.50470i −0.0972743 + 0.168484i
\(222\) 0 0
\(223\) −0.723206 1.25263i −0.0484295 0.0838823i 0.840794 0.541354i \(-0.182088\pi\)
−0.889224 + 0.457472i \(0.848755\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.2627 + 17.7755i 0.681158 + 1.17980i 0.974628 + 0.223832i \(0.0718569\pi\)
−0.293469 + 0.955969i \(0.594810\pi\)
\(228\) 0 0
\(229\) −10.4743 + 18.1420i −0.692160 + 1.19886i 0.278969 + 0.960300i \(0.410007\pi\)
−0.971129 + 0.238556i \(0.923326\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.90112 0.648644 0.324322 0.945947i \(-0.394864\pi\)
0.324322 + 0.945947i \(0.394864\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.05391 5.28953i 0.197541 0.342151i −0.750189 0.661223i \(-0.770038\pi\)
0.947731 + 0.319072i \(0.103371\pi\)
\(240\) 0 0
\(241\) 0.148392 + 0.257022i 0.00955875 + 0.0165562i 0.870765 0.491699i \(-0.163624\pi\)
−0.861206 + 0.508255i \(0.830291\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.55806 11.3589i 0.417279 0.722749i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.51643 0.285075 0.142537 0.989789i \(-0.454474\pi\)
0.142537 + 0.989789i \(0.454474\pi\)
\(252\) 0 0
\(253\) −0.474626 −0.0298395
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.79911 11.7764i 0.424117 0.734591i −0.572221 0.820100i \(-0.693918\pi\)
0.996337 + 0.0855081i \(0.0272514\pi\)
\(258\) 0 0
\(259\) 3.32589 + 5.76061i 0.206661 + 0.357947i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.56179 6.16921i −0.219630 0.380409i 0.735065 0.677996i \(-0.237152\pi\)
−0.954695 + 0.297587i \(0.903818\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.80358 −0.536764 −0.268382 0.963313i \(-0.586489\pi\)
−0.268382 + 0.963313i \(0.586489\pi\)
\(270\) 0 0
\(271\) −9.95885 −0.604957 −0.302478 0.953156i \(-0.597814\pi\)
−0.302478 + 0.953156i \(0.597814\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4.46467 + 7.73303i 0.268256 + 0.464633i 0.968411 0.249358i \(-0.0802194\pi\)
−0.700156 + 0.713990i \(0.746886\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.0402 + 27.7825i 0.956879 + 1.65736i 0.730008 + 0.683439i \(0.239516\pi\)
0.226872 + 0.973925i \(0.427150\pi\)
\(282\) 0 0
\(283\) 3.18373 5.51437i 0.189253 0.327796i −0.755749 0.654862i \(-0.772727\pi\)
0.945001 + 0.327066i \(0.106060\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −29.5811 −1.74612
\(288\) 0 0
\(289\) −15.0350 −0.884411
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.9506 24.1631i 0.815000 1.41162i −0.0943273 0.995541i \(-0.530070\pi\)
0.909328 0.416081i \(-0.136597\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.111233 + 0.192662i 0.00643278 + 0.0111419i
\(300\) 0 0
\(301\) −12.1213 + 20.9946i −0.698658 + 1.21011i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −12.2054 −0.696597 −0.348299 0.937384i \(-0.613240\pi\)
−0.348299 + 0.937384i \(0.613240\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.45123 + 4.24565i −0.138996 + 0.240749i −0.927117 0.374772i \(-0.877721\pi\)
0.788121 + 0.615521i \(0.211054\pi\)
\(312\) 0 0
\(313\) 8.79429 + 15.2322i 0.497083 + 0.860972i 0.999994 0.00336551i \(-0.00107128\pi\)
−0.502912 + 0.864338i \(0.667738\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.78608 + 16.9500i 0.549641 + 0.952007i 0.998299 + 0.0583028i \(0.0185689\pi\)
−0.448658 + 0.893704i \(0.648098\pi\)
\(318\) 0 0
\(319\) 19.9880 34.6203i 1.11912 1.93836i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.91140 −0.495844
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.7288 22.0469i 0.701759 1.21548i
\(330\) 0 0
\(331\) −7.29537 12.6360i −0.400990 0.694535i 0.592856 0.805309i \(-0.298000\pi\)
−0.993846 + 0.110774i \(0.964667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4.95429 8.58108i 0.269877 0.467441i −0.698953 0.715168i \(-0.746350\pi\)
0.968830 + 0.247727i \(0.0796835\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 13.4836 0.730176
\(342\) 0 0
\(343\) 8.25897 0.445943
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.16000 8.93739i 0.277004 0.479784i −0.693635 0.720327i \(-0.743992\pi\)
0.970639 + 0.240542i \(0.0773253\pi\)
\(348\) 0 0
\(349\) −8.56767 14.8396i −0.458617 0.794348i 0.540271 0.841491i \(-0.318322\pi\)
−0.998888 + 0.0471429i \(0.984988\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.63055 11.4845i −0.352909 0.611256i 0.633849 0.773457i \(-0.281474\pi\)
−0.986758 + 0.162201i \(0.948141\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −14.2817 −0.753758 −0.376879 0.926263i \(-0.623003\pi\)
−0.376879 + 0.926263i \(0.623003\pi\)
\(360\) 0 0
\(361\) 21.4136 1.12703
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4.79056 8.29749i −0.250065 0.433125i 0.713478 0.700677i \(-0.247119\pi\)
−0.963543 + 0.267552i \(0.913785\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −22.2775 38.5858i −1.15659 2.00328i
\(372\) 0 0
\(373\) 12.0529 20.8763i 0.624076 1.08093i −0.364642 0.931148i \(-0.618809\pi\)
0.988719 0.149784i \(-0.0478579\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.7376 −0.965033
\(378\) 0 0
\(379\) 2.73973 0.140730 0.0703651 0.997521i \(-0.477584\pi\)
0.0703651 + 0.997521i \(0.477584\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.6766 18.4924i 0.545548 0.944917i −0.453024 0.891498i \(-0.649655\pi\)
0.998572 0.0534187i \(-0.0170118\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.33485 12.7043i −0.371892 0.644136i 0.617965 0.786206i \(-0.287957\pi\)
−0.989857 + 0.142070i \(0.954624\pi\)
\(390\) 0 0
\(391\) 0.0755745 0.130899i 0.00382197 0.00661984i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6.43065 0.322745 0.161373 0.986894i \(-0.448408\pi\)
0.161373 + 0.986894i \(0.448408\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.03748 15.6534i 0.451310 0.781693i −0.547157 0.837030i \(-0.684290\pi\)
0.998468 + 0.0553373i \(0.0176234\pi\)
\(402\) 0 0
\(403\) −3.16000 5.47329i −0.157411 0.272644i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.30358 7.45402i −0.213320 0.369482i
\(408\) 0 0
\(409\) 9.39532 16.2732i 0.464569 0.804657i −0.534613 0.845097i \(-0.679543\pi\)
0.999182 + 0.0404403i \(0.0128761\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −44.8333 −2.20610
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 19.8297 34.3461i 0.968745 1.67792i 0.269547 0.962987i \(-0.413126\pi\)
0.699198 0.714928i \(-0.253540\pi\)
\(420\) 0 0
\(421\) 18.7682 + 32.5076i 0.914708 + 1.58432i 0.807328 + 0.590103i \(0.200913\pi\)
0.107380 + 0.994218i \(0.465754\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.93339 + 5.08078i −0.141957 + 0.245876i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.7357 −0.806132 −0.403066 0.915171i \(-0.632055\pi\)
−0.403066 + 0.915171i \(0.632055\pi\)
\(432\) 0 0
\(433\) 21.0008 1.00924 0.504618 0.863343i \(-0.331633\pi\)
0.504618 + 0.863343i \(0.331633\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.342733 + 0.593631i −0.0163952 + 0.0283972i
\(438\) 0 0
\(439\) 3.01576 + 5.22345i 0.143934 + 0.249302i 0.928975 0.370143i \(-0.120691\pi\)
−0.785041 + 0.619444i \(0.787358\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.16274 + 5.47803i 0.150266 + 0.260269i 0.931325 0.364188i \(-0.118654\pi\)
−0.781059 + 0.624457i \(0.785320\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.6594 0.880593 0.440296 0.897853i \(-0.354873\pi\)
0.440296 + 0.897853i \(0.354873\pi\)
\(450\) 0 0
\(451\) 38.2769 1.80239
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13.7923 + 23.8889i 0.645176 + 1.11748i 0.984261 + 0.176722i \(0.0565494\pi\)
−0.339085 + 0.940756i \(0.610117\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.76442 11.7163i −0.315051 0.545684i 0.664398 0.747379i \(-0.268688\pi\)
−0.979448 + 0.201696i \(0.935355\pi\)
\(462\) 0 0
\(463\) −13.7421 + 23.8020i −0.638650 + 1.10617i 0.347079 + 0.937836i \(0.387173\pi\)
−0.985729 + 0.168338i \(0.946160\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −32.7515 −1.51556 −0.757779 0.652511i \(-0.773716\pi\)
−0.757779 + 0.652511i \(0.773716\pi\)
\(468\) 0 0
\(469\) 42.0997 1.94398
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15.6845 27.1663i 0.721172 1.24911i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.92783 + 5.07116i 0.133776 + 0.231707i 0.925129 0.379652i \(-0.123956\pi\)
−0.791353 + 0.611359i \(0.790623\pi\)
\(480\) 0 0
\(481\) −2.01717 + 3.49384i −0.0919750 + 0.159305i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −16.4864 −0.747070 −0.373535 0.927616i \(-0.621854\pi\)
−0.373535 + 0.927616i \(0.621854\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.85302 + 11.8698i −0.309272 + 0.535676i −0.978203 0.207649i \(-0.933419\pi\)
0.668931 + 0.743324i \(0.266752\pi\)
\(492\) 0 0
\(493\) 6.36537 + 11.0251i 0.286682 + 0.496548i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.7731 + 22.1236i 0.572950 + 0.992379i
\(498\) 0 0
\(499\) −2.23482 + 3.87082i −0.100044 + 0.173282i −0.911703 0.410851i \(-0.865232\pi\)
0.811658 + 0.584132i \(0.198565\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.1010 0.807084 0.403542 0.914961i \(-0.367779\pi\)
0.403542 + 0.914961i \(0.367779\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.6044 + 18.3674i −0.470033 + 0.814120i −0.999413 0.0342644i \(-0.989091\pi\)
0.529380 + 0.848385i \(0.322425\pi\)
\(510\) 0 0
\(511\) −9.21947 15.9686i −0.407846 0.706409i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −16.4705 + 28.5278i −0.724374 + 1.25465i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 28.4507 1.24645 0.623224 0.782043i \(-0.285822\pi\)
0.623224 + 0.782043i \(0.285822\pi\)
\(522\) 0 0
\(523\) 26.5111 1.15925 0.579625 0.814884i \(-0.303199\pi\)
0.579625 + 0.814884i \(0.303199\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.14698 + 3.71868i −0.0935240 + 0.161988i
\(528\) 0 0
\(529\) 11.4942 + 19.9085i 0.499747 + 0.865588i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −8.97055 15.5374i −0.388558 0.673001i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 20.1257 0.866876
\(540\) 0 0
\(541\) −14.3132 −0.615372 −0.307686 0.951488i \(-0.599555\pi\)
−0.307686 + 0.951488i \(0.599555\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −6.82556 11.8222i −0.291840 0.505482i 0.682405 0.730974i \(-0.260934\pi\)
−0.974245 + 0.225493i \(0.927601\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −28.8672 49.9994i −1.22978 2.13005i
\(552\) 0 0
\(553\) 16.0499 27.7992i 0.682509 1.18214i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.4665 0.994306 0.497153 0.867663i \(-0.334379\pi\)
0.497153 + 0.867663i \(0.334379\pi\)
\(558\) 0 0
\(559\) −14.7032 −0.621880
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.291226 + 0.504418i −0.0122737 + 0.0212587i −0.872097 0.489333i \(-0.837240\pi\)
0.859823 + 0.510592i \(0.170574\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.77994 4.81500i −0.116541 0.201855i 0.801854 0.597521i \(-0.203847\pi\)
−0.918395 + 0.395665i \(0.870514\pi\)
\(570\) 0 0
\(571\) 11.3706 19.6945i 0.475845 0.824188i −0.523772 0.851858i \(-0.675476\pi\)
0.999617 + 0.0276708i \(0.00880903\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −30.5522 −1.27191 −0.635953 0.771728i \(-0.719393\pi\)
−0.635953 + 0.771728i \(0.719393\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −15.2638 + 26.4376i −0.633247 + 1.09682i
\(582\) 0 0
\(583\) 28.8263 + 49.9286i 1.19386 + 2.06783i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.1817 + 17.6353i 0.420245 + 0.727886i 0.995963 0.0897626i \(-0.0286108\pi\)
−0.575718 + 0.817648i \(0.695278\pi\)
\(588\) 0 0
\(589\) 9.73664 16.8644i 0.401191 0.694884i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.5199 −0.637326 −0.318663 0.947868i \(-0.603234\pi\)
−0.318663 + 0.947868i \(0.603234\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.6288 25.3379i 0.597717 1.03528i −0.395440 0.918492i \(-0.629408\pi\)
0.993157 0.116785i \(-0.0372588\pi\)
\(600\) 0 0
\(601\) 9.15254 + 15.8527i 0.373340 + 0.646644i 0.990077 0.140526i \(-0.0448792\pi\)
−0.616737 + 0.787169i \(0.711546\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −8.42037 + 14.5845i −0.341772 + 0.591967i −0.984762 0.173908i \(-0.944360\pi\)
0.642990 + 0.765875i \(0.277694\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.4401 0.624640
\(612\) 0 0
\(613\) 13.5954 0.549113 0.274556 0.961571i \(-0.411469\pi\)
0.274556 + 0.961571i \(0.411469\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14.6567 + 25.3861i −0.590056 + 1.02201i 0.404168 + 0.914685i \(0.367561\pi\)
−0.994224 + 0.107322i \(0.965772\pi\)
\(618\) 0 0
\(619\) −6.08211 10.5345i −0.244461 0.423418i 0.717519 0.696539i \(-0.245278\pi\)
−0.961980 + 0.273121i \(0.911944\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.83038 11.8306i −0.273653 0.473982i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.74103 0.109292
\(630\) 0 0
\(631\) 5.45471 0.217148 0.108574 0.994088i \(-0.465371\pi\)
0.108574 + 0.994088i \(0.465371\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −4.71665 8.16948i −0.186881 0.323687i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.839996 1.45492i −0.0331779 0.0574657i 0.848960 0.528458i \(-0.177229\pi\)
−0.882138 + 0.470992i \(0.843896\pi\)
\(642\) 0 0
\(643\) 2.84173 4.92202i 0.112067 0.194106i −0.804537 0.593903i \(-0.797586\pi\)
0.916603 + 0.399797i \(0.130920\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 34.3064 1.34872 0.674361 0.738401i \(-0.264419\pi\)
0.674361 + 0.738401i \(0.264419\pi\)
\(648\) 0 0
\(649\) 58.0126 2.27719
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.31486 10.9377i 0.247120 0.428024i −0.715606 0.698504i \(-0.753849\pi\)
0.962725 + 0.270480i \(0.0871826\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.16697 5.48535i −0.123368 0.213679i 0.797726 0.603020i \(-0.206036\pi\)
−0.921094 + 0.389341i \(0.872703\pi\)
\(660\) 0 0
\(661\) 18.8448 32.6401i 0.732978 1.26955i −0.222628 0.974904i \(-0.571463\pi\)
0.955605 0.294651i \(-0.0952033\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.979251 0.0379167
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.79570 6.57434i 0.146531 0.253800i
\(672\) 0 0
\(673\) −15.3273 26.5477i −0.590824 1.02334i −0.994122 0.108268i \(-0.965469\pi\)
0.403298 0.915069i \(-0.367864\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.4358 + 25.0035i 0.554813 + 0.960964i 0.997918 + 0.0644945i \(0.0205435\pi\)
−0.443105 + 0.896470i \(0.646123\pi\)
\(678\) 0 0
\(679\) 3.69269 6.39593i 0.141712 0.245453i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 47.0352 1.79975 0.899875 0.436147i \(-0.143657\pi\)
0.899875 + 0.436147i \(0.143657\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 13.5114 23.4025i 0.514745 0.891564i
\(690\) 0 0
\(691\) −0.425186 0.736443i −0.0161748 0.0280156i 0.857825 0.513942i \(-0.171815\pi\)
−0.874000 + 0.485927i \(0.838482\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −6.09480 + 10.5565i −0.230857 + 0.399856i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 35.6821 1.34770 0.673848 0.738870i \(-0.264640\pi\)
0.673848 + 0.738870i \(0.264640\pi\)
\(702\) 0 0
\(703\) −12.4307 −0.468831
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.05838 + 8.76138i −0.190240 + 0.329506i
\(708\) 0 0
\(709\) −7.69543 13.3289i −0.289008 0.500576i 0.684565 0.728951i \(-0.259992\pi\)
−0.973573 + 0.228375i \(0.926659\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.165146 + 0.286042i 0.00618477 + 0.0107123i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −25.5846 −0.954144 −0.477072 0.878864i \(-0.658302\pi\)
−0.477072 + 0.878864i \(0.658302\pi\)
\(720\) 0 0
\(721\) −22.5721 −0.840630
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −3.06867 5.31509i −0.113811 0.197126i 0.803493 0.595314i \(-0.202972\pi\)
−0.917304 + 0.398188i \(0.869639\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.99486 + 8.65135i 0.184741 + 0.319982i
\(732\) 0 0
\(733\) −2.56520 + 4.44306i −0.0947478 + 0.164108i −0.909503 0.415697i \(-0.863538\pi\)
0.814756 + 0.579805i \(0.196871\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −54.4754 −2.00663
\(738\) 0 0
\(739\) 18.8784 0.694454 0.347227 0.937781i \(-0.387123\pi\)
0.347227 + 0.937781i \(0.387123\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.9784 19.0152i 0.402759 0.697600i −0.591298 0.806453i \(-0.701384\pi\)
0.994058 + 0.108853i \(0.0347178\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −23.4516 40.6194i −0.856904 1.48420i
\(750\) 0 0
\(751\) 1.58037 2.73728i 0.0576686 0.0998849i −0.835750 0.549110i \(-0.814967\pi\)
0.893418 + 0.449225i \(0.148300\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 39.1753 1.42385 0.711926 0.702255i \(-0.247823\pi\)
0.711926 + 0.702255i \(0.247823\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.03916 8.72807i 0.182669 0.316392i −0.760119 0.649783i \(-0.774860\pi\)
0.942789 + 0.333391i \(0.108193\pi\)
\(762\) 0 0
\(763\) −30.8452 53.4255i −1.11667 1.93413i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.5958 23.5486i −0.490916 0.850292i
\(768\) 0 0
\(769\) −10.5790 + 18.3233i −0.381487 + 0.660755i −0.991275 0.131810i \(-0.957921\pi\)
0.609788 + 0.792565i \(0.291255\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −43.2543 −1.55575 −0.777874 0.628420i \(-0.783702\pi\)
−0.777874 + 0.628420i \(0.783702\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 27.6402 47.8742i 0.990312 1.71527i
\(780\) 0 0
\(781\) −16.5279 28.6271i −0.591414 1.02436i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0.589986 1.02189i 0.0210307 0.0364263i −0.855318 0.518103i \(-0.826639\pi\)
0.876349 + 0.481676i \(0.159972\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.278204 −0.00989180
\(792\) 0 0
\(793\) −3.55823 −0.126357
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.571407 + 0.989706i −0.0202403 + 0.0350572i −0.875968 0.482369i \(-0.839776\pi\)
0.855728 + 0.517426i \(0.173110\pi\)
\(798\) 0 0
\(799\) −5.24519 9.08494i −0.185562 0.321402i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 11.9297 + 20.6628i 0.420988 + 0.729173i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 11.3723 0.399828 0.199914 0.979813i \(-0.435934\pi\)
0.199914 + 0.979813i \(0.435934\pi\)
\(810\) 0 0
\(811\) 2.08590 0.0732459 0.0366230 0.999329i \(-0.488340\pi\)
0.0366230 + 0.999329i \(0.488340\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −22.6519 39.2342i −0.792489 1.37263i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.89564 + 13.6757i 0.275560 + 0.477284i 0.970276 0.242000i \(-0.0778034\pi\)
−0.694716 + 0.719284i \(0.744470\pi\)
\(822\) 0 0
\(823\) −3.66042 + 6.34003i −0.127594 + 0.221000i −0.922744 0.385413i \(-0.874059\pi\)
0.795150 + 0.606413i \(0.207392\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.8401 0.516040 0.258020 0.966140i \(-0.416930\pi\)
0.258020 + 0.966140i \(0.416930\pi\)
\(828\) 0 0
\(829\) −23.3346 −0.810444 −0.405222 0.914218i \(-0.632806\pi\)
−0.405222 + 0.914218i \(0.632806\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.20461 + 5.55054i −0.111033 + 0.192315i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7.33826 12.7102i −0.253345 0.438806i 0.711100 0.703091i \(-0.248197\pi\)
−0.964445 + 0.264285i \(0.914864\pi\)
\(840\) 0 0
\(841\) −26.7394 + 46.3140i −0.922048 + 1.59703i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −28.4925 −0.979014
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.105420 0.182593i 0.00361375 0.00625920i
\(852\) 0 0
\(853\) −12.2611 21.2369i −0.419812 0.727136i 0.576108 0.817374i \(-0.304571\pi\)
−0.995920 + 0.0902375i \(0.971237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.79396 + 4.83929i 0.0954400 + 0.165307i 0.909792 0.415064i \(-0.136241\pi\)
−0.814352 + 0.580371i \(0.802908\pi\)
\(858\) 0 0
\(859\) 20.0309 34.6946i 0.683447 1.18376i −0.290476 0.956882i \(-0.593814\pi\)
0.973922 0.226882i \(-0.0728531\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27.2157 0.926432 0.463216 0.886246i \(-0.346695\pi\)
0.463216 + 0.886246i \(0.346695\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −20.7679 + 35.9711i −0.704503 + 1.22024i
\(870\) 0 0
\(871\) 12.7668 + 22.1128i 0.432588 + 0.749264i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 11.9399 20.6806i 0.403183 0.698334i −0.590925 0.806727i \(-0.701237\pi\)
0.994108 + 0.108393i \(0.0345704\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −28.3585 −0.955421 −0.477710 0.878517i \(-0.658533\pi\)
−0.477710 + 0.878517i \(0.658533\pi\)
\(882\) 0 0
\(883\) 28.3449 0.953881 0.476941 0.878936i \(-0.341746\pi\)
0.476941 + 0.878936i \(0.341746\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.257544 0.446080i 0.00864749 0.0149779i −0.861669 0.507470i \(-0.830581\pi\)
0.870317 + 0.492492i \(0.163914\pi\)
\(888\) 0 0
\(889\) 36.7072 + 63.5787i 1.23112 + 2.13236i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 23.7871 + 41.2005i 0.796007 + 1.37872i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −27.8193 −0.927827
\(900\) 0 0
\(901\) −18.3600 −0.611660
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.08211 1.87426i −0.0359308 0.0622339i 0.847501 0.530794i \(-0.178106\pi\)
−0.883432 + 0.468560i \(0.844773\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19.2332 + 33.3129i 0.637226 + 1.10371i 0.986039 + 0.166515i \(0.0532513\pi\)
−0.348813 + 0.937192i \(0.613415\pi\)
\(912\) 0 0
\(913\) 19.7507 34.2093i 0.653654 1.13216i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −36.6979 −1.21187
\(918\) 0 0
\(919\) 18.6992 0.616830 0.308415 0.951252i \(-0.400201\pi\)
0.308415 + 0.951252i \(0.400201\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7.74693 + 13.4181i −0.254993 + 0.441661i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.10335 1.91106i −0.0361999 0.0627000i 0.847358 0.531022i \(-0.178192\pi\)
−0.883558 + 0.468322i \(0.844859\pi\)
\(930\) 0 0
\(931\) 14.5330 25.1719i 0.476300 0.824976i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −21.3429 −0.697242 −0.348621 0.937264i \(-0.613350\pi\)
−0.348621 + 0.937264i \(0.613350\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.589661 + 1.02132i −0.0192224 + 0.0332942i −0.875477 0.483261i \(-0.839452\pi\)
0.856254 + 0.516555i \(0.172786\pi\)
\(942\) 0 0
\(943\) 0.468813 + 0.812008i 0.0152667 + 0.0264426i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11.8445 20.5152i −0.384894 0.666655i 0.606861 0.794808i \(-0.292428\pi\)
−0.991754 + 0.128153i \(0.959095\pi\)
\(948\) 0 0
\(949\) 5.59166 9.68504i 0.181513 0.314390i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12.8125 0.415038 0.207519 0.978231i \(-0.433461\pi\)
0.207519 + 0.978231i \(0.433461\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −22.9784 + 39.7998i −0.742012 + 1.28520i
\(960\) 0 0
\(961\) 10.8084 + 18.7207i 0.348658 + 0.603893i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 5.46326 9.46264i 0.175686 0.304298i −0.764712 0.644372i \(-0.777119\pi\)
0.940399 + 0.340074i \(0.110452\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.7933 −0.506831 −0.253415 0.967358i \(-0.581554\pi\)
−0.253415 + 0.967358i \(0.581554\pi\)
\(972\) 0 0
\(973\) −49.7001 −1.59331
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.7490 32.4742i 0.599833 1.03894i −0.393012 0.919533i \(-0.628567\pi\)
0.992845 0.119409i \(-0.0380998\pi\)
\(978\) 0 0
\(979\) 8.83826 + 15.3083i 0.282472 + 0.489256i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −11.7661 20.3795i −0.375280 0.650004i 0.615089 0.788458i \(-0.289120\pi\)
−0.990369 + 0.138454i \(0.955787\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.768410 0.0244340
\(990\) 0 0
\(991\) 46.7019 1.48353 0.741767 0.670658i \(-0.233988\pi\)
0.741767 + 0.670658i \(0.233988\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 21.4290 + 37.1161i 0.678663 + 1.17548i 0.975384 + 0.220514i \(0.0707736\pi\)
−0.296721 + 0.954964i \(0.595893\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.2.i.d.901.4 8
3.2 odd 2 900.2.i.e.301.4 yes 8
5.2 odd 4 2700.2.s.d.1549.2 16
5.3 odd 4 2700.2.s.d.1549.7 16
5.4 even 2 2700.2.i.e.901.1 8
9.2 odd 6 900.2.i.e.601.4 yes 8
9.4 even 3 8100.2.a.ba.1.1 4
9.5 odd 6 8100.2.a.z.1.1 4
9.7 even 3 inner 2700.2.i.d.1801.4 8
15.2 even 4 900.2.s.d.49.4 16
15.8 even 4 900.2.s.d.49.5 16
15.14 odd 2 900.2.i.d.301.1 8
45.2 even 12 900.2.s.d.349.5 16
45.4 even 6 8100.2.a.y.1.4 4
45.7 odd 12 2700.2.s.d.2449.7 16
45.13 odd 12 8100.2.d.s.649.7 8
45.14 odd 6 8100.2.a.x.1.4 4
45.22 odd 12 8100.2.d.s.649.2 8
45.23 even 12 8100.2.d.q.649.7 8
45.29 odd 6 900.2.i.d.601.1 yes 8
45.32 even 12 8100.2.d.q.649.2 8
45.34 even 6 2700.2.i.e.1801.1 8
45.38 even 12 900.2.s.d.349.4 16
45.43 odd 12 2700.2.s.d.2449.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.2.i.d.301.1 8 15.14 odd 2
900.2.i.d.601.1 yes 8 45.29 odd 6
900.2.i.e.301.4 yes 8 3.2 odd 2
900.2.i.e.601.4 yes 8 9.2 odd 6
900.2.s.d.49.4 16 15.2 even 4
900.2.s.d.49.5 16 15.8 even 4
900.2.s.d.349.4 16 45.38 even 12
900.2.s.d.349.5 16 45.2 even 12
2700.2.i.d.901.4 8 1.1 even 1 trivial
2700.2.i.d.1801.4 8 9.7 even 3 inner
2700.2.i.e.901.1 8 5.4 even 2
2700.2.i.e.1801.1 8 45.34 even 6
2700.2.s.d.1549.2 16 5.2 odd 4
2700.2.s.d.1549.7 16 5.3 odd 4
2700.2.s.d.2449.2 16 45.43 odd 12
2700.2.s.d.2449.7 16 45.7 odd 12
8100.2.a.x.1.4 4 45.14 odd 6
8100.2.a.y.1.4 4 45.4 even 6
8100.2.a.z.1.1 4 9.5 odd 6
8100.2.a.ba.1.1 4 9.4 even 3
8100.2.d.q.649.2 8 45.32 even 12
8100.2.d.q.649.7 8 45.23 even 12
8100.2.d.s.649.2 8 45.22 odd 12
8100.2.d.s.649.7 8 45.13 odd 12