Properties

Label 2700.2.i.d.1801.1
Level $2700$
Weight $2$
Character 2700.1801
Analytic conductor $21.560$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2700,2,Mod(901,2700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2700.901"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-1,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.142635249.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 3x^{6} + 3x^{5} - 11x^{4} + 6x^{3} + 12x^{2} - 24x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: no (minimal twist has level 900)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1801.1
Root \(0.818235 + 1.15347i\) of defining polynomial
Character \(\chi\) \(=\) 2700.1801
Dual form 2700.2.i.d.901.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.49787 + 4.32643i) q^{7} +(1.99787 - 3.46041i) q^{11} +(0.771582 + 1.33642i) q^{13} -6.99574 q^{17} -2.25667 q^{19} +(-3.89778 - 6.75116i) q^{23} +(3.08304 - 5.33998i) q^{29} +(0.271582 + 0.470394i) q^{31} +6.25240 q^{37} +(0.0979532 + 0.169660i) q^{41} +(-0.0431636 + 0.0747616i) q^{43} +(1.91483 - 3.31658i) q^{47} +(-8.97869 - 15.5515i) q^{49} +4.19164 q^{53} +(3.51278 + 6.08432i) q^{59} +(1.45470 - 2.51962i) q^{61} +(4.48295 + 7.76470i) q^{67} -8.79130 q^{71} +2.28650 q^{73} +(9.98082 + 17.2873i) q^{77} +(6.32211 - 10.9502i) q^{79} +(6.98082 - 12.0911i) q^{83} +10.3577 q^{89} -7.70924 q^{91} +(4.66936 - 8.08758i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{7} - 3 q^{11} + 2 q^{13} - 18 q^{17} - 8 q^{19} - 3 q^{23} + 9 q^{29} - 2 q^{31} + 2 q^{37} - 9 q^{41} + 8 q^{43} + 12 q^{47} - 9 q^{49} - 24 q^{53} + 15 q^{59} + q^{61} + 11 q^{67} + 24 q^{71}+ \cdots + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.49787 + 4.32643i −0.944105 + 1.63524i −0.186573 + 0.982441i \(0.559738\pi\)
−0.757533 + 0.652797i \(0.773595\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.99787 3.46041i 0.602380 1.04335i −0.390080 0.920781i \(-0.627553\pi\)
0.992460 0.122571i \(-0.0391141\pi\)
\(12\) 0 0
\(13\) 0.771582 + 1.33642i 0.213998 + 0.370656i 0.952962 0.303089i \(-0.0980180\pi\)
−0.738964 + 0.673745i \(0.764685\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.99574 −1.69672 −0.848358 0.529424i \(-0.822408\pi\)
−0.848358 + 0.529424i \(0.822408\pi\)
\(18\) 0 0
\(19\) −2.25667 −0.517715 −0.258857 0.965916i \(-0.583346\pi\)
−0.258857 + 0.965916i \(0.583346\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.89778 6.75116i −0.812744 1.40771i −0.910937 0.412546i \(-0.864640\pi\)
0.0981929 0.995167i \(-0.468694\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.08304 5.33998i 0.572506 0.991609i −0.423802 0.905755i \(-0.639305\pi\)
0.996308 0.0858540i \(-0.0273619\pi\)
\(30\) 0 0
\(31\) 0.271582 + 0.470394i 0.0487775 + 0.0844852i 0.889383 0.457162i \(-0.151134\pi\)
−0.840606 + 0.541647i \(0.817801\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.25240 1.02789 0.513944 0.857824i \(-0.328184\pi\)
0.513944 + 0.857824i \(0.328184\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.0979532 + 0.169660i 0.0152977 + 0.0264964i 0.873573 0.486693i \(-0.161797\pi\)
−0.858275 + 0.513190i \(0.828464\pi\)
\(42\) 0 0
\(43\) −0.0431636 + 0.0747616i −0.00658239 + 0.0114010i −0.869298 0.494289i \(-0.835429\pi\)
0.862715 + 0.505690i \(0.168762\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.91483 3.31658i 0.279307 0.483774i −0.691906 0.721988i \(-0.743229\pi\)
0.971213 + 0.238214i \(0.0765620\pi\)
\(48\) 0 0
\(49\) −8.97869 15.5515i −1.28267 2.22165i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.19164 0.575766 0.287883 0.957666i \(-0.407049\pi\)
0.287883 + 0.957666i \(0.407049\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.51278 + 6.08432i 0.457326 + 0.792111i 0.998819 0.0485942i \(-0.0154741\pi\)
−0.541493 + 0.840705i \(0.682141\pi\)
\(60\) 0 0
\(61\) 1.45470 2.51962i 0.186256 0.322604i −0.757743 0.652553i \(-0.773698\pi\)
0.943999 + 0.329948i \(0.107031\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.48295 + 7.76470i 0.547680 + 0.948609i 0.998433 + 0.0559605i \(0.0178221\pi\)
−0.450753 + 0.892649i \(0.648845\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.79130 −1.04334 −0.521668 0.853149i \(-0.674690\pi\)
−0.521668 + 0.853149i \(0.674690\pi\)
\(72\) 0 0
\(73\) 2.28650 0.267614 0.133807 0.991007i \(-0.457280\pi\)
0.133807 + 0.991007i \(0.457280\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.98082 + 17.2873i 1.13742 + 1.97007i
\(78\) 0 0
\(79\) 6.32211 10.9502i 0.711293 1.23199i −0.253080 0.967445i \(-0.581443\pi\)
0.964372 0.264549i \(-0.0852232\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.98082 12.0911i 0.766244 1.32717i −0.173342 0.984862i \(-0.555456\pi\)
0.939586 0.342313i \(-0.111210\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.3577 1.09792 0.548958 0.835850i \(-0.315025\pi\)
0.548958 + 0.835850i \(0.315025\pi\)
\(90\) 0 0
\(91\) −7.70924 −0.808148
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.66936 8.08758i 0.474102 0.821169i −0.525458 0.850819i \(-0.676106\pi\)
0.999560 + 0.0296505i \(0.00943942\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.98082 6.89498i 0.396106 0.686076i −0.597135 0.802140i \(-0.703694\pi\)
0.993242 + 0.116064i \(0.0370278\pi\)
\(102\) 0 0
\(103\) −8.20711 14.2151i −0.808670 1.40066i −0.913785 0.406198i \(-0.866854\pi\)
0.105115 0.994460i \(-0.466479\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.3662 −1.09882 −0.549408 0.835554i \(-0.685147\pi\)
−0.549408 + 0.835554i \(0.685147\pi\)
\(108\) 0 0
\(109\) −2.22683 −0.213292 −0.106646 0.994297i \(-0.534011\pi\)
−0.106646 + 0.994297i \(0.534011\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.41696 + 2.45425i 0.133297 + 0.230877i 0.924945 0.380100i \(-0.124110\pi\)
−0.791649 + 0.610976i \(0.790777\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 17.4744 30.2666i 1.60188 2.77453i
\(120\) 0 0
\(121\) −2.48295 4.30060i −0.225723 0.390963i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −7.02130 −0.623040 −0.311520 0.950240i \(-0.600838\pi\)
−0.311520 + 0.950240i \(0.600838\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.18312 7.24538i −0.365481 0.633032i 0.623372 0.781925i \(-0.285762\pi\)
−0.988853 + 0.148893i \(0.952429\pi\)
\(132\) 0 0
\(133\) 5.63685 9.76331i 0.488777 0.846587i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.39565 + 2.41734i −0.119238 + 0.206527i −0.919466 0.393169i \(-0.871379\pi\)
0.800228 + 0.599696i \(0.204712\pi\)
\(138\) 0 0
\(139\) 1.95799 + 3.39135i 0.166075 + 0.287650i 0.937036 0.349231i \(-0.113557\pi\)
−0.770962 + 0.636882i \(0.780224\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.16607 0.515633
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.37860 11.0481i −0.522555 0.905093i −0.999656 0.0262436i \(-0.991645\pi\)
0.477100 0.878849i \(-0.341688\pi\)
\(150\) 0 0
\(151\) 0.188545 0.326569i 0.0153436 0.0265758i −0.858252 0.513229i \(-0.828449\pi\)
0.873595 + 0.486653i \(0.161782\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.04839 + 10.4761i 0.482714 + 0.836086i 0.999803 0.0198461i \(-0.00631762\pi\)
−0.517089 + 0.855932i \(0.672984\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 38.9446 3.06926
\(162\) 0 0
\(163\) −10.8563 −0.850333 −0.425166 0.905115i \(-0.639784\pi\)
−0.425166 + 0.905115i \(0.639784\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.59369 4.49240i −0.200706 0.347632i 0.748050 0.663642i \(-0.230990\pi\)
−0.948756 + 0.316010i \(0.897657\pi\)
\(168\) 0 0
\(169\) 5.30932 9.19602i 0.408409 0.707386i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.68739 2.92264i 0.128290 0.222204i −0.794724 0.606970i \(-0.792385\pi\)
0.923014 + 0.384766i \(0.125718\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −19.5997 −1.46495 −0.732474 0.680795i \(-0.761634\pi\)
−0.732474 + 0.680795i \(0.761634\pi\)
\(180\) 0 0
\(181\) 5.84865 0.434727 0.217363 0.976091i \(-0.430254\pi\)
0.217363 + 0.976091i \(0.430254\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −13.9766 + 24.2081i −1.02207 + 1.77027i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.2956 + 21.2965i −0.889676 + 1.54096i −0.0494171 + 0.998778i \(0.515736\pi\)
−0.840259 + 0.542186i \(0.817597\pi\)
\(192\) 0 0
\(193\) −5.17150 8.95729i −0.372252 0.644760i 0.617659 0.786446i \(-0.288081\pi\)
−0.989912 + 0.141686i \(0.954748\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.0256 −1.14177 −0.570887 0.821028i \(-0.693401\pi\)
−0.570887 + 0.821028i \(0.693401\pi\)
\(198\) 0 0
\(199\) −22.2353 −1.57622 −0.788111 0.615533i \(-0.788941\pi\)
−0.788111 + 0.615533i \(0.788941\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.4020 + 26.6771i 1.08101 + 1.87237i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.50852 + 7.80899i −0.311861 + 0.540159i
\(210\) 0 0
\(211\) −12.1779 21.0927i −0.838360 1.45208i −0.891265 0.453483i \(-0.850181\pi\)
0.0529050 0.998600i \(-0.483152\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.71350 −0.184205
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5.39778 9.34923i −0.363094 0.628897i
\(222\) 0 0
\(223\) 5.62407 9.74117i 0.376615 0.652317i −0.613952 0.789343i \(-0.710421\pi\)
0.990567 + 0.137026i \(0.0437545\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.07451 + 8.78931i −0.336807 + 0.583367i −0.983830 0.179103i \(-0.942680\pi\)
0.647023 + 0.762470i \(0.276014\pi\)
\(228\) 0 0
\(229\) 1.18428 + 2.05123i 0.0782595 + 0.135549i 0.902499 0.430692i \(-0.141730\pi\)
−0.824240 + 0.566241i \(0.808397\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −24.1831 −1.58429 −0.792144 0.610334i \(-0.791035\pi\)
−0.792144 + 0.610334i \(0.791035\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.897782 1.55500i −0.0580727 0.100585i 0.835528 0.549449i \(-0.185162\pi\)
−0.893600 + 0.448864i \(0.851829\pi\)
\(240\) 0 0
\(241\) 7.43339 12.8750i 0.478827 0.829352i −0.520878 0.853631i \(-0.674396\pi\)
0.999705 + 0.0242785i \(0.00772884\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.74120 3.01585i −0.110790 0.191894i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.8297 0.999159 0.499580 0.866268i \(-0.333488\pi\)
0.499580 + 0.866268i \(0.333488\pi\)
\(252\) 0 0
\(253\) −31.1490 −1.95832
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.9979 + 19.0489i 0.686028 + 1.18824i 0.973113 + 0.230330i \(0.0739807\pi\)
−0.287084 + 0.957905i \(0.592686\pi\)
\(258\) 0 0
\(259\) −15.6177 + 27.0506i −0.970435 + 1.68084i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.57664 13.1231i 0.467196 0.809207i −0.532102 0.846680i \(-0.678598\pi\)
0.999298 + 0.0374737i \(0.0119310\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.99147 0.487249 0.243624 0.969870i \(-0.421664\pi\)
0.243624 + 0.969870i \(0.421664\pi\)
\(270\) 0 0
\(271\) 3.97248 0.241311 0.120656 0.992694i \(-0.461500\pi\)
0.120656 + 0.992694i \(0.461500\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.10702 15.7738i 0.547188 0.947757i −0.451278 0.892383i \(-0.649032\pi\)
0.998466 0.0553736i \(-0.0176350\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.1043 + 19.2333i −0.662429 + 1.14736i 0.317546 + 0.948243i \(0.397141\pi\)
−0.979975 + 0.199119i \(0.936192\pi\)
\(282\) 0 0
\(283\) 5.82637 + 10.0916i 0.346342 + 0.599882i 0.985597 0.169113i \(-0.0540904\pi\)
−0.639255 + 0.768995i \(0.720757\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.978696 −0.0577706
\(288\) 0 0
\(289\) 31.9403 1.87884
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.09156 5.35473i −0.180611 0.312827i 0.761478 0.648191i \(-0.224474\pi\)
−0.942089 + 0.335364i \(0.891141\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.01492 10.4181i 0.347852 0.602497i
\(300\) 0 0
\(301\) −0.215634 0.373489i −0.0124289 0.0215276i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.9872 0.741219 0.370610 0.928789i \(-0.379149\pi\)
0.370610 + 0.928789i \(0.379149\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.0958 19.2185i −0.629186 1.08978i −0.987715 0.156264i \(-0.950055\pi\)
0.358529 0.933519i \(-0.383278\pi\)
\(312\) 0 0
\(313\) −8.34609 + 14.4559i −0.471749 + 0.817093i −0.999478 0.0323199i \(-0.989710\pi\)
0.527729 + 0.849413i \(0.323044\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.4787 28.5419i 0.925535 1.60307i 0.134837 0.990868i \(-0.456949\pi\)
0.790698 0.612206i \(-0.209718\pi\)
\(318\) 0 0
\(319\) −12.3190 21.3371i −0.689732 1.19465i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 15.7870 0.878414
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.56599 + 16.5688i 0.527390 + 0.913466i
\(330\) 0 0
\(331\) −14.3333 + 24.8260i −0.787830 + 1.36456i 0.139464 + 0.990227i \(0.455462\pi\)
−0.927294 + 0.374334i \(0.877871\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −14.9270 25.8543i −0.813125 1.40837i −0.910666 0.413143i \(-0.864431\pi\)
0.0975411 0.995231i \(-0.468902\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.17034 0.117530
\(342\) 0 0
\(343\) 54.7401 2.95569
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.41910 + 4.19000i 0.129864 + 0.224931i 0.923624 0.383301i \(-0.125213\pi\)
−0.793760 + 0.608231i \(0.791879\pi\)
\(348\) 0 0
\(349\) 16.0325 27.7691i 0.858200 1.48645i −0.0154438 0.999881i \(-0.504916\pi\)
0.873644 0.486566i \(-0.161751\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.92975 8.53857i 0.262384 0.454462i −0.704491 0.709713i \(-0.748825\pi\)
0.966875 + 0.255251i \(0.0821580\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.93266 −0.524226 −0.262113 0.965037i \(-0.584419\pi\)
−0.262113 + 0.965037i \(0.584419\pi\)
\(360\) 0 0
\(361\) −13.9075 −0.731972
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 9.51065 16.4729i 0.496452 0.859880i −0.503540 0.863972i \(-0.667969\pi\)
0.999992 + 0.00409206i \(0.00130255\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.4702 + 18.1349i −0.543584 + 0.941515i
\(372\) 0 0
\(373\) −0.939241 1.62681i −0.0486320 0.0842332i 0.840685 0.541525i \(-0.182153\pi\)
−0.889317 + 0.457292i \(0.848820\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.51526 0.490061
\(378\) 0 0
\(379\) 22.8435 1.17339 0.586697 0.809807i \(-0.300428\pi\)
0.586697 + 0.809807i \(0.300428\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.35133 + 4.07262i 0.120147 + 0.208101i 0.919826 0.392327i \(-0.128330\pi\)
−0.799678 + 0.600429i \(0.794997\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.38287 + 9.32340i −0.272922 + 0.472715i −0.969609 0.244661i \(-0.921323\pi\)
0.696687 + 0.717376i \(0.254657\pi\)
\(390\) 0 0
\(391\) 27.2679 + 47.2293i 1.37899 + 2.38849i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.10958 0.407008 0.203504 0.979074i \(-0.434767\pi\)
0.203504 + 0.979074i \(0.434767\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.22744 10.7862i −0.310984 0.538640i 0.667592 0.744527i \(-0.267325\pi\)
−0.978576 + 0.205888i \(0.933992\pi\)
\(402\) 0 0
\(403\) −0.419095 + 0.725894i −0.0208766 + 0.0361594i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.4915 21.6359i 0.619179 1.07245i
\(408\) 0 0
\(409\) 15.7166 + 27.2219i 0.777136 + 1.34604i 0.933586 + 0.358353i \(0.116662\pi\)
−0.156450 + 0.987686i \(0.550005\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −35.0979 −1.72705
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.1848 + 22.8368i 0.644121 + 1.11565i 0.984504 + 0.175363i \(0.0561100\pi\)
−0.340383 + 0.940287i \(0.610557\pi\)
\(420\) 0 0
\(421\) 6.61555 11.4585i 0.322422 0.558451i −0.658565 0.752524i \(-0.728836\pi\)
0.980987 + 0.194072i \(0.0621696\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.26732 + 12.5874i 0.351690 + 0.609145i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.2895 −1.16999 −0.584993 0.811039i \(-0.698903\pi\)
−0.584993 + 0.811039i \(0.698903\pi\)
\(432\) 0 0
\(433\) 17.9840 0.864258 0.432129 0.901812i \(-0.357763\pi\)
0.432129 + 0.901812i \(0.357763\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.79599 + 15.2351i 0.420769 + 0.728794i
\(438\) 0 0
\(439\) −11.3577 + 19.6721i −0.542074 + 0.938900i 0.456711 + 0.889615i \(0.349028\pi\)
−0.998785 + 0.0492847i \(0.984306\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11.4578 + 19.8455i −0.544377 + 0.942888i 0.454269 + 0.890864i \(0.349900\pi\)
−0.998646 + 0.0520235i \(0.983433\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.36966 0.253410 0.126705 0.991940i \(-0.459560\pi\)
0.126705 + 0.991940i \(0.459560\pi\)
\(450\) 0 0
\(451\) 0.782790 0.0368601
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.62309 + 16.6677i −0.450149 + 0.779682i −0.998395 0.0566358i \(-0.981963\pi\)
0.548246 + 0.836317i \(0.315296\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.6870 30.6347i 0.823763 1.42680i −0.0790973 0.996867i \(-0.525204\pi\)
0.902861 0.429933i \(-0.141463\pi\)
\(462\) 0 0
\(463\) 8.56075 + 14.8277i 0.397852 + 0.689100i 0.993461 0.114175i \(-0.0364225\pi\)
−0.595609 + 0.803275i \(0.703089\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −25.9318 −1.19998 −0.599990 0.800007i \(-0.704829\pi\)
−0.599990 + 0.800007i \(0.704829\pi\)
\(468\) 0 0
\(469\) −44.7913 −2.06827
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.172471 + 0.298728i 0.00793020 + 0.0137355i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.4574 + 18.1127i −0.477810 + 0.827591i −0.999676 0.0254364i \(-0.991902\pi\)
0.521867 + 0.853027i \(0.325236\pi\)
\(480\) 0 0
\(481\) 4.82424 + 8.35583i 0.219966 + 0.380993i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −20.2373 −0.917039 −0.458520 0.888684i \(-0.651620\pi\)
−0.458520 + 0.888684i \(0.651620\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.10009 12.2977i −0.320422 0.554988i 0.660153 0.751131i \(-0.270491\pi\)
−0.980575 + 0.196143i \(0.937158\pi\)
\(492\) 0 0
\(493\) −21.5681 + 37.3571i −0.971379 + 1.68248i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 21.9595 38.0350i 0.985018 1.70610i
\(498\) 0 0
\(499\) 14.1384 + 24.4884i 0.632920 + 1.09625i 0.986952 + 0.161016i \(0.0514772\pi\)
−0.354032 + 0.935233i \(0.615189\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17.4165 −0.776565 −0.388282 0.921540i \(-0.626931\pi\)
−0.388282 + 0.921540i \(0.626931\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.1060 + 19.2362i 0.492267 + 0.852631i 0.999960 0.00890659i \(-0.00283509\pi\)
−0.507694 + 0.861538i \(0.669502\pi\)
\(510\) 0 0
\(511\) −5.71137 + 9.89238i −0.252656 + 0.437613i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −7.65116 13.2522i −0.336498 0.582831i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.48898 −0.240477 −0.120238 0.992745i \(-0.538366\pi\)
−0.120238 + 0.992745i \(0.538366\pi\)
\(522\) 0 0
\(523\) −26.0991 −1.14123 −0.570617 0.821216i \(-0.693296\pi\)
−0.570617 + 0.821216i \(0.693296\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.89991 3.29075i −0.0827616 0.143347i
\(528\) 0 0
\(529\) −18.8854 + 32.7105i −0.821105 + 1.42220i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.151158 + 0.261813i −0.00654737 + 0.0113404i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −71.7529 −3.09062
\(540\) 0 0
\(541\) 18.7828 0.807534 0.403767 0.914862i \(-0.367701\pi\)
0.403767 + 0.914862i \(0.367701\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −4.52825 + 7.84315i −0.193614 + 0.335349i −0.946445 0.322864i \(-0.895354\pi\)
0.752831 + 0.658213i \(0.228688\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.95738 + 12.0505i −0.296395 + 0.513370i
\(552\) 0 0
\(553\) 31.5836 + 54.7044i 1.34307 + 2.32627i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −24.8467 −1.05279 −0.526394 0.850241i \(-0.676456\pi\)
−0.526394 + 0.850241i \(0.676456\pi\)
\(558\) 0 0
\(559\) −0.133217 −0.00563448
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −11.6767 20.2247i −0.492115 0.852369i 0.507843 0.861449i \(-0.330443\pi\)
−0.999959 + 0.00908064i \(0.997110\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.54510 + 13.0685i −0.316307 + 0.547860i −0.979714 0.200398i \(-0.935776\pi\)
0.663407 + 0.748258i \(0.269110\pi\)
\(570\) 0 0
\(571\) 3.26786 + 5.66011i 0.136756 + 0.236868i 0.926267 0.376868i \(-0.122999\pi\)
−0.789511 + 0.613736i \(0.789666\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8.12662 0.338316 0.169158 0.985589i \(-0.445895\pi\)
0.169158 + 0.985589i \(0.445895\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 34.8743 + 60.4041i 1.44683 + 2.50598i
\(582\) 0 0
\(583\) 8.37435 14.5048i 0.346830 0.600727i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.54937 11.3438i 0.270321 0.468210i −0.698623 0.715490i \(-0.746203\pi\)
0.968944 + 0.247280i \(0.0795367\pi\)
\(588\) 0 0
\(589\) −0.612869 1.06152i −0.0252528 0.0437392i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.60478 −0.353356 −0.176678 0.984269i \(-0.556535\pi\)
−0.176678 + 0.984269i \(0.556535\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.1827 + 21.1010i 0.497771 + 0.862165i 0.999997 0.00257140i \(-0.000818504\pi\)
−0.502225 + 0.864737i \(0.667485\pi\)
\(600\) 0 0
\(601\) 12.0900 20.9404i 0.493160 0.854179i −0.506809 0.862059i \(-0.669175\pi\)
0.999969 + 0.00787996i \(0.00250829\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −0.713502 1.23582i −0.0289602 0.0501605i 0.851182 0.524871i \(-0.175886\pi\)
−0.880142 + 0.474710i \(0.842553\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.90979 0.239085
\(612\) 0 0
\(613\) 6.92878 0.279851 0.139925 0.990162i \(-0.455314\pi\)
0.139925 + 0.990162i \(0.455314\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.2466 22.9437i −0.533286 0.923679i −0.999244 0.0388718i \(-0.987624\pi\)
0.465958 0.884807i \(-0.345710\pi\)
\(618\) 0 0
\(619\) 13.4798 23.3478i 0.541801 0.938426i −0.457000 0.889467i \(-0.651076\pi\)
0.998801 0.0489597i \(-0.0155906\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −25.8722 + 44.8120i −1.03655 + 1.79535i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −43.7401 −1.74403
\(630\) 0 0
\(631\) −15.9350 −0.634361 −0.317181 0.948365i \(-0.602736\pi\)
−0.317181 + 0.948365i \(0.602736\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 13.8556 23.9986i 0.548978 0.950858i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.58090 + 6.20231i −0.141437 + 0.244976i −0.928038 0.372485i \(-0.878506\pi\)
0.786601 + 0.617462i \(0.211839\pi\)
\(642\) 0 0
\(643\) −3.53154 6.11680i −0.139270 0.241223i 0.787950 0.615739i \(-0.211142\pi\)
−0.927221 + 0.374516i \(0.877809\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −26.4037 −1.03804 −0.519019 0.854763i \(-0.673703\pi\)
−0.519019 + 0.854763i \(0.673703\pi\)
\(648\) 0 0
\(649\) 28.0723 1.10193
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.85985 6.68545i −0.151048 0.261622i 0.780565 0.625074i \(-0.214931\pi\)
−0.931613 + 0.363452i \(0.881598\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −11.1426 + 19.2996i −0.434055 + 0.751806i −0.997218 0.0745403i \(-0.976251\pi\)
0.563163 + 0.826346i \(0.309584\pi\)
\(660\) 0 0
\(661\) −16.0544 27.8070i −0.624442 1.08157i −0.988648 0.150247i \(-0.951993\pi\)
0.364207 0.931318i \(-0.381340\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −48.0680 −1.86120
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.81261 10.0677i −0.224393 0.388661i
\(672\) 0 0
\(673\) −3.91580 + 6.78237i −0.150943 + 0.261441i −0.931574 0.363551i \(-0.881564\pi\)
0.780631 + 0.624992i \(0.214898\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.00171 15.5914i 0.345964 0.599227i −0.639565 0.768737i \(-0.720885\pi\)
0.985528 + 0.169511i \(0.0542187\pi\)
\(678\) 0 0
\(679\) 23.3269 + 40.4034i 0.895205 + 1.55054i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.3356 1.16076 0.580379 0.814347i \(-0.302904\pi\)
0.580379 + 0.814347i \(0.302904\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.23419 + 5.60179i 0.123213 + 0.213411i
\(690\) 0 0
\(691\) −14.0575 + 24.3482i −0.534771 + 0.926251i 0.464403 + 0.885624i \(0.346269\pi\)
−0.999174 + 0.0406267i \(0.987065\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.685255 1.18690i −0.0259559 0.0449569i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −28.4378 −1.07408 −0.537041 0.843556i \(-0.680458\pi\)
−0.537041 + 0.843556i \(0.680458\pi\)
\(702\) 0 0
\(703\) −14.1096 −0.532153
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19.8871 + 34.4455i 0.747932 + 1.29546i
\(708\) 0 0
\(709\) −15.4500 + 26.7602i −0.580237 + 1.00500i 0.415213 + 0.909724i \(0.363707\pi\)
−0.995451 + 0.0952767i \(0.969626\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.11713 3.66698i 0.0792873 0.137330i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21.2462 0.792349 0.396175 0.918175i \(-0.370338\pi\)
0.396175 + 0.918175i \(0.370338\pi\)
\(720\) 0 0
\(721\) 82.0011 3.05388
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 12.4910 21.6351i 0.463267 0.802402i −0.535854 0.844310i \(-0.680010\pi\)
0.999121 + 0.0419082i \(0.0133437\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.301961 0.523013i 0.0111684 0.0193443i
\(732\) 0 0
\(733\) −5.23384 9.06528i −0.193316 0.334834i 0.753031 0.657985i \(-0.228591\pi\)
−0.946347 + 0.323151i \(0.895258\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 35.8254 1.31964
\(738\) 0 0
\(739\) 35.6244 1.31046 0.655232 0.755428i \(-0.272571\pi\)
0.655232 + 0.755428i \(0.272571\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.02770 8.70823i −0.184448 0.319474i 0.758942 0.651158i \(-0.225717\pi\)
−0.943391 + 0.331684i \(0.892383\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 28.3914 49.1753i 1.03740 1.79683i
\(750\) 0 0
\(751\) −8.86740 15.3588i −0.323576 0.560450i 0.657647 0.753326i \(-0.271552\pi\)
−0.981223 + 0.192876i \(0.938219\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 6.42042 0.233354 0.116677 0.993170i \(-0.462776\pi\)
0.116677 + 0.993170i \(0.462776\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 12.6955 + 21.9892i 0.460211 + 0.797108i 0.998971 0.0453506i \(-0.0144405\pi\)
−0.538760 + 0.842459i \(0.681107\pi\)
\(762\) 0 0
\(763\) 5.56234 9.63425i 0.201370 0.348783i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.42080 + 9.38910i −0.195734 + 0.339021i
\(768\) 0 0
\(769\) 7.40088 + 12.8187i 0.266883 + 0.462254i 0.968055 0.250737i \(-0.0806731\pi\)
−0.701173 + 0.712992i \(0.747340\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.48046 0.269053 0.134527 0.990910i \(-0.457049\pi\)
0.134527 + 0.990910i \(0.457049\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.221048 0.382866i −0.00791985 0.0137176i
\(780\) 0 0
\(781\) −17.5639 + 30.4215i −0.628484 + 1.08857i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −26.1587 45.3082i −0.932457 1.61506i −0.779107 0.626891i \(-0.784327\pi\)
−0.153350 0.988172i \(-0.549006\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −14.1575 −0.503384
\(792\) 0 0
\(793\) 4.48969 0.159434
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 26.8679 + 46.5366i 0.951711 + 1.64841i 0.741721 + 0.670709i \(0.234010\pi\)
0.209991 + 0.977703i \(0.432657\pi\)
\(798\) 0 0
\(799\) −13.3957 + 23.2019i −0.473904 + 0.820826i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.56812 7.91222i 0.161205 0.279216i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 26.1908 0.920819 0.460410 0.887707i \(-0.347703\pi\)
0.460410 + 0.887707i \(0.347703\pi\)
\(810\) 0 0
\(811\) −52.3506 −1.83828 −0.919140 0.393931i \(-0.871115\pi\)
−0.919140 + 0.393931i \(0.871115\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.0974059 0.168712i 0.00340780 0.00590249i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.42932 + 4.20771i −0.0847839 + 0.146850i −0.905299 0.424775i \(-0.860353\pi\)
0.820515 + 0.571625i \(0.193687\pi\)
\(822\) 0 0
\(823\) 0.588886 + 1.01998i 0.0205273 + 0.0355543i 0.876107 0.482117i \(-0.160132\pi\)
−0.855579 + 0.517672i \(0.826799\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.7188 1.13775 0.568873 0.822426i \(-0.307380\pi\)
0.568873 + 0.822426i \(0.307380\pi\)
\(828\) 0 0
\(829\) −5.99342 −0.208160 −0.104080 0.994569i \(-0.533190\pi\)
−0.104080 + 0.994569i \(0.533190\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 62.8125 + 108.794i 2.17632 + 3.76951i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.1933 + 33.2439i −0.662628 + 1.14771i 0.317295 + 0.948327i \(0.397226\pi\)
−0.979923 + 0.199378i \(0.936108\pi\)
\(840\) 0 0
\(841\) −4.51023 7.81195i −0.155525 0.269378i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 24.8083 0.852425
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −24.3705 42.2109i −0.835410 1.44697i
\(852\) 0 0
\(853\) 10.8595 18.8092i 0.371822 0.644015i −0.618024 0.786159i \(-0.712067\pi\)
0.989846 + 0.142145i \(0.0453998\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.29983 3.98342i 0.0785607 0.136071i −0.824068 0.566490i \(-0.808301\pi\)
0.902629 + 0.430419i \(0.141634\pi\)
\(858\) 0 0
\(859\) −7.45896 12.9193i −0.254496 0.440801i 0.710262 0.703937i \(-0.248576\pi\)
−0.964759 + 0.263137i \(0.915243\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 11.4089 0.388362 0.194181 0.980966i \(-0.437795\pi\)
0.194181 + 0.980966i \(0.437795\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −25.2615 43.7541i −0.856937 1.48426i
\(870\) 0 0
\(871\) −6.91793 + 11.9822i −0.234405 + 0.406001i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.9642 + 24.1867i 0.471537 + 0.816727i 0.999470 0.0325596i \(-0.0103659\pi\)
−0.527932 + 0.849286i \(0.677033\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42.3270 1.42603 0.713017 0.701147i \(-0.247328\pi\)
0.713017 + 0.701147i \(0.247328\pi\)
\(882\) 0 0
\(883\) 20.3895 0.686161 0.343081 0.939306i \(-0.388530\pi\)
0.343081 + 0.939306i \(0.388530\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −19.7725 34.2471i −0.663897 1.14990i −0.979583 0.201040i \(-0.935568\pi\)
0.315686 0.948864i \(-0.397765\pi\)
\(888\) 0 0
\(889\) 17.5383 30.3772i 0.588215 1.01882i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.32113 + 7.48442i −0.144601 + 0.250457i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.34919 0.111702
\(900\) 0 0
\(901\) −29.3236 −0.976911
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 18.4798 32.0080i 0.613613 1.06281i −0.377013 0.926208i \(-0.623049\pi\)
0.990626 0.136601i \(-0.0436179\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.92335 + 8.52749i −0.163118 + 0.282528i −0.935985 0.352039i \(-0.885488\pi\)
0.772867 + 0.634568i \(0.218822\pi\)
\(912\) 0 0
\(913\) −27.8935 48.3130i −0.923140 1.59893i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 41.7955 1.38021
\(918\) 0 0
\(919\) −8.42079 −0.277776 −0.138888 0.990308i \(-0.544353\pi\)
−0.138888 + 0.990308i \(0.544353\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.78321 11.7489i −0.223272 0.386718i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −14.1938 + 24.5843i −0.465683 + 0.806586i −0.999232 0.0391829i \(-0.987524\pi\)
0.533549 + 0.845769i \(0.320858\pi\)
\(930\) 0 0
\(931\) 20.2619 + 35.0946i 0.664057 + 1.15018i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.69342 0.153327 0.0766637 0.997057i \(-0.475573\pi\)
0.0766637 + 0.997057i \(0.475573\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.51278 + 16.4766i 0.310108 + 0.537123i 0.978385 0.206789i \(-0.0663015\pi\)
−0.668278 + 0.743912i \(0.732968\pi\)
\(942\) 0 0
\(943\) 0.763600 1.32259i 0.0248662 0.0430696i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.40843 11.0997i 0.208246 0.360693i −0.742916 0.669385i \(-0.766558\pi\)
0.951162 + 0.308692i \(0.0998912\pi\)
\(948\) 0 0
\(949\) 1.76422 + 3.05572i 0.0572690 + 0.0991928i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −45.9701 −1.48912 −0.744560 0.667556i \(-0.767340\pi\)
−0.744560 + 0.667556i \(0.767340\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.97230 12.0764i −0.225147 0.389967i
\(960\) 0 0
\(961\) 15.3525 26.5913i 0.495242 0.857783i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.57354 + 4.45751i 0.0827596 + 0.143344i 0.904434 0.426613i \(-0.140293\pi\)
−0.821675 + 0.569957i \(0.806960\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 10.3875 0.333352 0.166676 0.986012i \(-0.446697\pi\)
0.166676 + 0.986012i \(0.446697\pi\)
\(972\) 0 0
\(973\) −19.5632 −0.627169
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −19.7811 34.2618i −0.632852 1.09613i −0.986966 0.160930i \(-0.948551\pi\)
0.354113 0.935202i \(-0.384783\pi\)
\(978\) 0 0
\(979\) 20.6933 35.8419i 0.661362 1.14551i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10.2360 + 17.7292i −0.326477 + 0.565474i −0.981810 0.189865i \(-0.939195\pi\)
0.655333 + 0.755340i \(0.272528\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.672970 0.0213992
\(990\) 0 0
\(991\) −19.2415 −0.611228 −0.305614 0.952156i \(-0.598862\pi\)
−0.305614 + 0.952156i \(0.598862\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −11.6193 + 20.1251i −0.367986 + 0.637370i −0.989250 0.146231i \(-0.953286\pi\)
0.621265 + 0.783601i \(0.286619\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.2.i.d.1801.1 8
3.2 odd 2 900.2.i.e.601.3 yes 8
5.2 odd 4 2700.2.s.d.2449.1 16
5.3 odd 4 2700.2.s.d.2449.8 16
5.4 even 2 2700.2.i.e.1801.4 8
9.2 odd 6 8100.2.a.z.1.4 4
9.4 even 3 inner 2700.2.i.d.901.1 8
9.5 odd 6 900.2.i.e.301.3 yes 8
9.7 even 3 8100.2.a.ba.1.4 4
15.2 even 4 900.2.s.d.349.2 16
15.8 even 4 900.2.s.d.349.7 16
15.14 odd 2 900.2.i.d.601.2 yes 8
45.2 even 12 8100.2.d.q.649.8 8
45.4 even 6 2700.2.i.e.901.4 8
45.7 odd 12 8100.2.d.s.649.8 8
45.13 odd 12 2700.2.s.d.1549.1 16
45.14 odd 6 900.2.i.d.301.2 8
45.22 odd 12 2700.2.s.d.1549.8 16
45.23 even 12 900.2.s.d.49.2 16
45.29 odd 6 8100.2.a.x.1.1 4
45.32 even 12 900.2.s.d.49.7 16
45.34 even 6 8100.2.a.y.1.1 4
45.38 even 12 8100.2.d.q.649.1 8
45.43 odd 12 8100.2.d.s.649.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.2.i.d.301.2 8 45.14 odd 6
900.2.i.d.601.2 yes 8 15.14 odd 2
900.2.i.e.301.3 yes 8 9.5 odd 6
900.2.i.e.601.3 yes 8 3.2 odd 2
900.2.s.d.49.2 16 45.23 even 12
900.2.s.d.49.7 16 45.32 even 12
900.2.s.d.349.2 16 15.2 even 4
900.2.s.d.349.7 16 15.8 even 4
2700.2.i.d.901.1 8 9.4 even 3 inner
2700.2.i.d.1801.1 8 1.1 even 1 trivial
2700.2.i.e.901.4 8 45.4 even 6
2700.2.i.e.1801.4 8 5.4 even 2
2700.2.s.d.1549.1 16 45.13 odd 12
2700.2.s.d.1549.8 16 45.22 odd 12
2700.2.s.d.2449.1 16 5.2 odd 4
2700.2.s.d.2449.8 16 5.3 odd 4
8100.2.a.x.1.1 4 45.29 odd 6
8100.2.a.y.1.1 4 45.34 even 6
8100.2.a.z.1.4 4 9.2 odd 6
8100.2.a.ba.1.4 4 9.7 even 3
8100.2.d.q.649.1 8 45.38 even 12
8100.2.d.q.649.8 8 45.2 even 12
8100.2.d.s.649.1 8 45.43 odd 12
8100.2.d.s.649.8 8 45.7 odd 12