Properties

Label 2700.2.s.d.1549.8
Level $2700$
Weight $2$
Character 2700.1549
Analytic conductor $21.560$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2700,2,Mod(1549,2700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2700.1549"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.1333317747165888577536.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 3x^{14} + 5x^{12} + 15x^{10} + 45x^{8} + 60x^{6} + 80x^{4} + 192x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{10} \)
Twist minimal: no (minimal twist has level 900)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1549.8
Root \(1.15347 - 0.818235i\) of defining polynomial
Character \(\chi\) \(=\) 2700.1549
Dual form 2700.2.s.d.2449.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.32643 - 2.49787i) q^{7} +(1.99787 + 3.46041i) q^{11} +(-1.33642 - 0.771582i) q^{13} -6.99574i q^{17} +2.25667 q^{19} +(6.75116 + 3.89778i) q^{23} +(-3.08304 - 5.33998i) q^{29} +(0.271582 - 0.470394i) q^{31} +6.25240i q^{37} +(0.0979532 - 0.169660i) q^{41} +(-0.0747616 + 0.0431636i) q^{43} +(-3.31658 + 1.91483i) q^{47} +(8.97869 - 15.5515i) q^{49} -4.19164i q^{53} +(-3.51278 + 6.08432i) q^{59} +(1.45470 + 2.51962i) q^{61} +(7.76470 + 4.48295i) q^{67} -8.79130 q^{71} -2.28650i q^{73} +(17.2873 + 9.98082i) q^{77} +(-6.32211 - 10.9502i) q^{79} +(12.0911 - 6.98082i) q^{83} -10.3577 q^{89} -7.70924 q^{91} +(-8.08758 + 4.66936i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{11} + 16 q^{19} - 18 q^{29} - 4 q^{31} - 18 q^{41} + 18 q^{49} - 30 q^{59} + 2 q^{61} + 48 q^{71} - 14 q^{79} + 12 q^{89} - 44 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.32643 2.49787i 1.63524 0.944105i 0.652797 0.757533i \(-0.273595\pi\)
0.982441 0.186573i \(-0.0597379\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.99787 + 3.46041i 0.602380 + 1.04335i 0.992460 + 0.122571i \(0.0391141\pi\)
−0.390080 + 0.920781i \(0.627553\pi\)
\(12\) 0 0
\(13\) −1.33642 0.771582i −0.370656 0.213998i 0.303089 0.952962i \(-0.401982\pi\)
−0.673745 + 0.738964i \(0.735315\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.99574i 1.69672i −0.529424 0.848358i \(-0.677592\pi\)
0.529424 0.848358i \(-0.322408\pi\)
\(18\) 0 0
\(19\) 2.25667 0.517715 0.258857 0.965916i \(-0.416654\pi\)
0.258857 + 0.965916i \(0.416654\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.75116 + 3.89778i 1.40771 + 0.812744i 0.995167 0.0981929i \(-0.0313062\pi\)
0.412546 + 0.910937i \(0.364640\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.08304 5.33998i −0.572506 0.991609i −0.996308 0.0858540i \(-0.972638\pi\)
0.423802 0.905755i \(-0.360695\pi\)
\(30\) 0 0
\(31\) 0.271582 0.470394i 0.0487775 0.0844852i −0.840606 0.541647i \(-0.817801\pi\)
0.889383 + 0.457162i \(0.151134\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.25240i 1.02789i 0.857824 + 0.513944i \(0.171816\pi\)
−0.857824 + 0.513944i \(0.828184\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.0979532 0.169660i 0.0152977 0.0264964i −0.858275 0.513190i \(-0.828464\pi\)
0.873573 + 0.486693i \(0.161797\pi\)
\(42\) 0 0
\(43\) −0.0747616 + 0.0431636i −0.0114010 + 0.00658239i −0.505690 0.862715i \(-0.668762\pi\)
0.494289 + 0.869298i \(0.335429\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.31658 + 1.91483i −0.483774 + 0.279307i −0.721988 0.691906i \(-0.756771\pi\)
0.238214 + 0.971213i \(0.423438\pi\)
\(48\) 0 0
\(49\) 8.97869 15.5515i 1.28267 2.22165i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.19164i 0.575766i −0.957666 0.287883i \(-0.907049\pi\)
0.957666 0.287883i \(-0.0929515\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.51278 + 6.08432i −0.457326 + 0.792111i −0.998819 0.0485942i \(-0.984526\pi\)
0.541493 + 0.840705i \(0.317859\pi\)
\(60\) 0 0
\(61\) 1.45470 + 2.51962i 0.186256 + 0.322604i 0.943999 0.329948i \(-0.107031\pi\)
−0.757743 + 0.652553i \(0.773698\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.76470 + 4.48295i 0.948609 + 0.547680i 0.892649 0.450753i \(-0.148845\pi\)
0.0559605 + 0.998433i \(0.482178\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.79130 −1.04334 −0.521668 0.853149i \(-0.674690\pi\)
−0.521668 + 0.853149i \(0.674690\pi\)
\(72\) 0 0
\(73\) 2.28650i 0.267614i −0.991007 0.133807i \(-0.957280\pi\)
0.991007 0.133807i \(-0.0427203\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 17.2873 + 9.98082i 1.97007 + 1.13742i
\(78\) 0 0
\(79\) −6.32211 10.9502i −0.711293 1.23199i −0.964372 0.264549i \(-0.914777\pi\)
0.253080 0.967445i \(-0.418557\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.0911 6.98082i 1.32717 0.766244i 0.342313 0.939586i \(-0.388790\pi\)
0.984862 + 0.173342i \(0.0554565\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.3577 −1.09792 −0.548958 0.835850i \(-0.684975\pi\)
−0.548958 + 0.835850i \(0.684975\pi\)
\(90\) 0 0
\(91\) −7.70924 −0.808148
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −8.08758 + 4.66936i −0.821169 + 0.474102i −0.850819 0.525458i \(-0.823894\pi\)
0.0296505 + 0.999560i \(0.490561\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.98082 + 6.89498i 0.396106 + 0.686076i 0.993242 0.116064i \(-0.0370278\pi\)
−0.597135 + 0.802140i \(0.703694\pi\)
\(102\) 0 0
\(103\) 14.2151 + 8.20711i 1.40066 + 0.808670i 0.994460 0.105115i \(-0.0335211\pi\)
0.406198 + 0.913785i \(0.366854\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.3662i 1.09882i −0.835554 0.549408i \(-0.814853\pi\)
0.835554 0.549408i \(-0.185147\pi\)
\(108\) 0 0
\(109\) 2.22683 0.213292 0.106646 0.994297i \(-0.465989\pi\)
0.106646 + 0.994297i \(0.465989\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.45425 1.41696i −0.230877 0.133297i 0.380100 0.924945i \(-0.375890\pi\)
−0.610976 + 0.791649i \(0.709223\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −17.4744 30.2666i −1.60188 2.77453i
\(120\) 0 0
\(121\) −2.48295 + 4.30060i −0.225723 + 0.390963i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.02130i 0.623040i −0.950240 0.311520i \(-0.899162\pi\)
0.950240 0.311520i \(-0.100838\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.18312 + 7.24538i −0.365481 + 0.633032i −0.988853 0.148893i \(-0.952429\pi\)
0.623372 + 0.781925i \(0.285762\pi\)
\(132\) 0 0
\(133\) 9.76331 5.63685i 0.846587 0.488777i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.41734 1.39565i 0.206527 0.119238i −0.393169 0.919466i \(-0.628621\pi\)
0.599696 + 0.800228i \(0.295288\pi\)
\(138\) 0 0
\(139\) −1.95799 + 3.39135i −0.166075 + 0.287650i −0.937036 0.349231i \(-0.886443\pi\)
0.770962 + 0.636882i \(0.219776\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.16607i 0.515633i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.37860 11.0481i 0.522555 0.905093i −0.477100 0.878849i \(-0.658312\pi\)
0.999656 0.0262436i \(-0.00835456\pi\)
\(150\) 0 0
\(151\) 0.188545 + 0.326569i 0.0153436 + 0.0265758i 0.873595 0.486653i \(-0.161782\pi\)
−0.858252 + 0.513229i \(0.828449\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.4761 + 6.04839i 0.836086 + 0.482714i 0.855932 0.517089i \(-0.172984\pi\)
−0.0198461 + 0.999803i \(0.506318\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 38.9446 3.06926
\(162\) 0 0
\(163\) 10.8563i 0.850333i 0.905115 + 0.425166i \(0.139784\pi\)
−0.905115 + 0.425166i \(0.860216\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.49240 2.59369i −0.347632 0.200706i 0.316010 0.948756i \(-0.397657\pi\)
−0.663642 + 0.748050i \(0.730990\pi\)
\(168\) 0 0
\(169\) −5.30932 9.19602i −0.408409 0.707386i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.92264 1.68739i 0.222204 0.128290i −0.384766 0.923014i \(-0.625718\pi\)
0.606970 + 0.794724i \(0.292385\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 19.5997 1.46495 0.732474 0.680795i \(-0.238366\pi\)
0.732474 + 0.680795i \(0.238366\pi\)
\(180\) 0 0
\(181\) 5.84865 0.434727 0.217363 0.976091i \(-0.430254\pi\)
0.217363 + 0.976091i \(0.430254\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 24.2081 13.9766i 1.77027 1.02207i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.2956 21.2965i −0.889676 1.54096i −0.840259 0.542186i \(-0.817597\pi\)
−0.0494171 0.998778i \(-0.515736\pi\)
\(192\) 0 0
\(193\) 8.95729 + 5.17150i 0.644760 + 0.372252i 0.786446 0.617659i \(-0.211919\pi\)
−0.141686 + 0.989912i \(0.545252\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.0256i 1.14177i −0.821028 0.570887i \(-0.806599\pi\)
0.821028 0.570887i \(-0.193401\pi\)
\(198\) 0 0
\(199\) 22.2353 1.57622 0.788111 0.615533i \(-0.211059\pi\)
0.788111 + 0.615533i \(0.211059\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −26.6771 15.4020i −1.87237 1.08101i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.50852 + 7.80899i 0.311861 + 0.540159i
\(210\) 0 0
\(211\) −12.1779 + 21.0927i −0.838360 + 1.45208i 0.0529050 + 0.998600i \(0.483152\pi\)
−0.891265 + 0.453483i \(0.850181\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.71350i 0.184205i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5.39778 + 9.34923i −0.363094 + 0.628897i
\(222\) 0 0
\(223\) 9.74117 5.62407i 0.652317 0.376615i −0.137026 0.990567i \(-0.543754\pi\)
0.789343 + 0.613952i \(0.210421\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.78931 5.07451i 0.583367 0.336807i −0.179103 0.983830i \(-0.557320\pi\)
0.762470 + 0.647023i \(0.223986\pi\)
\(228\) 0 0
\(229\) −1.18428 + 2.05123i −0.0782595 + 0.135549i −0.902499 0.430692i \(-0.858270\pi\)
0.824240 + 0.566241i \(0.191603\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.1831i 1.58429i 0.610334 + 0.792144i \(0.291035\pi\)
−0.610334 + 0.792144i \(0.708965\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.897782 1.55500i 0.0580727 0.100585i −0.835528 0.549449i \(-0.814838\pi\)
0.893600 + 0.448864i \(0.148171\pi\)
\(240\) 0 0
\(241\) 7.43339 + 12.8750i 0.478827 + 0.829352i 0.999705 0.0242785i \(-0.00772884\pi\)
−0.520878 + 0.853631i \(0.674396\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.01585 1.74120i −0.191894 0.110790i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.8297 0.999159 0.499580 0.866268i \(-0.333488\pi\)
0.499580 + 0.866268i \(0.333488\pi\)
\(252\) 0 0
\(253\) 31.1490i 1.95832i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.0489 + 10.9979i 1.18824 + 0.686028i 0.957905 0.287084i \(-0.0926860\pi\)
0.230330 + 0.973113i \(0.426019\pi\)
\(258\) 0 0
\(259\) 15.6177 + 27.0506i 0.970435 + 1.68084i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.1231 7.57664i 0.809207 0.467196i −0.0374737 0.999298i \(-0.511931\pi\)
0.846680 + 0.532102i \(0.178598\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.99147 −0.487249 −0.243624 0.969870i \(-0.578336\pi\)
−0.243624 + 0.969870i \(0.578336\pi\)
\(270\) 0 0
\(271\) 3.97248 0.241311 0.120656 0.992694i \(-0.461500\pi\)
0.120656 + 0.992694i \(0.461500\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.7738 + 9.10702i −0.947757 + 0.547188i −0.892383 0.451278i \(-0.850968\pi\)
−0.0553736 + 0.998466i \(0.517635\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.1043 19.2333i −0.662429 1.14736i −0.979975 0.199119i \(-0.936192\pi\)
0.317546 0.948243i \(-0.397141\pi\)
\(282\) 0 0
\(283\) −10.0916 5.82637i −0.599882 0.346342i 0.169113 0.985597i \(-0.445910\pi\)
−0.768995 + 0.639255i \(0.779243\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.978696i 0.0577706i
\(288\) 0 0
\(289\) −31.9403 −1.87884
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.35473 + 3.09156i 0.312827 + 0.180611i 0.648191 0.761478i \(-0.275526\pi\)
−0.335364 + 0.942089i \(0.608859\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.01492 10.4181i −0.347852 0.602497i
\(300\) 0 0
\(301\) −0.215634 + 0.373489i −0.0124289 + 0.0215276i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.9872i 0.741219i 0.928789 + 0.370610i \(0.120851\pi\)
−0.928789 + 0.370610i \(0.879149\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.0958 + 19.2185i −0.629186 + 1.08978i 0.358529 + 0.933519i \(0.383278\pi\)
−0.987715 + 0.156264i \(0.950055\pi\)
\(312\) 0 0
\(313\) −14.4559 + 8.34609i −0.817093 + 0.471749i −0.849413 0.527729i \(-0.823044\pi\)
0.0323199 + 0.999478i \(0.489710\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −28.5419 + 16.4787i −1.60307 + 0.925535i −0.612206 + 0.790698i \(0.709718\pi\)
−0.990868 + 0.134837i \(0.956949\pi\)
\(318\) 0 0
\(319\) 12.3190 21.3371i 0.689732 1.19465i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 15.7870i 0.878414i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.56599 + 16.5688i −0.527390 + 0.913466i
\(330\) 0 0
\(331\) −14.3333 24.8260i −0.787830 1.36456i −0.927294 0.374334i \(-0.877871\pi\)
0.139464 0.990227i \(-0.455462\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −25.8543 14.9270i −1.40837 0.813125i −0.413143 0.910666i \(-0.635569\pi\)
−0.995231 + 0.0975411i \(0.968902\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.17034 0.117530
\(342\) 0 0
\(343\) 54.7401i 2.95569i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.19000 + 2.41910i 0.224931 + 0.129864i 0.608231 0.793760i \(-0.291879\pi\)
−0.383301 + 0.923624i \(0.625213\pi\)
\(348\) 0 0
\(349\) −16.0325 27.7691i −0.858200 1.48645i −0.873644 0.486566i \(-0.838249\pi\)
0.0154438 0.999881i \(-0.495084\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.53857 4.92975i 0.454462 0.262384i −0.255251 0.966875i \(-0.582158\pi\)
0.709713 + 0.704491i \(0.248825\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.93266 0.524226 0.262113 0.965037i \(-0.415581\pi\)
0.262113 + 0.965037i \(0.415581\pi\)
\(360\) 0 0
\(361\) −13.9075 −0.731972
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −16.4729 + 9.51065i −0.859880 + 0.496452i −0.863972 0.503540i \(-0.832031\pi\)
0.00409206 + 0.999992i \(0.498697\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.4702 18.1349i −0.543584 0.941515i
\(372\) 0 0
\(373\) 1.62681 + 0.939241i 0.0842332 + 0.0486320i 0.541525 0.840685i \(-0.317847\pi\)
−0.457292 + 0.889317i \(0.651180\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.51526i 0.490061i
\(378\) 0 0
\(379\) −22.8435 −1.17339 −0.586697 0.809807i \(-0.699572\pi\)
−0.586697 + 0.809807i \(0.699572\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.07262 2.35133i −0.208101 0.120147i 0.392327 0.919826i \(-0.371670\pi\)
−0.600429 + 0.799678i \(0.705003\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.38287 + 9.32340i 0.272922 + 0.472715i 0.969609 0.244661i \(-0.0786765\pi\)
−0.696687 + 0.717376i \(0.745343\pi\)
\(390\) 0 0
\(391\) 27.2679 47.2293i 1.37899 2.38849i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.10958i 0.407008i 0.979074 + 0.203504i \(0.0652330\pi\)
−0.979074 + 0.203504i \(0.934767\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.22744 + 10.7862i −0.310984 + 0.538640i −0.978576 0.205888i \(-0.933992\pi\)
0.667592 + 0.744527i \(0.267325\pi\)
\(402\) 0 0
\(403\) −0.725894 + 0.419095i −0.0361594 + 0.0208766i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −21.6359 + 12.4915i −1.07245 + 0.619179i
\(408\) 0 0
\(409\) −15.7166 + 27.2219i −0.777136 + 1.34604i 0.156450 + 0.987686i \(0.449995\pi\)
−0.933586 + 0.358353i \(0.883338\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 35.0979i 1.72705i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.1848 + 22.8368i −0.644121 + 1.11565i 0.340383 + 0.940287i \(0.389443\pi\)
−0.984504 + 0.175363i \(0.943890\pi\)
\(420\) 0 0
\(421\) 6.61555 + 11.4585i 0.322422 + 0.558451i 0.980987 0.194072i \(-0.0621696\pi\)
−0.658565 + 0.752524i \(0.728836\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 12.5874 + 7.26732i 0.609145 + 0.351690i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.2895 −1.16999 −0.584993 0.811039i \(-0.698903\pi\)
−0.584993 + 0.811039i \(0.698903\pi\)
\(432\) 0 0
\(433\) 17.9840i 0.864258i −0.901812 0.432129i \(-0.857763\pi\)
0.901812 0.432129i \(-0.142237\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.2351 + 8.79599i 0.728794 + 0.420769i
\(438\) 0 0
\(439\) 11.3577 + 19.6721i 0.542074 + 0.938900i 0.998785 + 0.0492847i \(0.0156942\pi\)
−0.456711 + 0.889615i \(0.650972\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −19.8455 + 11.4578i −0.942888 + 0.544377i −0.890864 0.454269i \(-0.849900\pi\)
−0.0520235 + 0.998646i \(0.516567\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.36966 −0.253410 −0.126705 0.991940i \(-0.540440\pi\)
−0.126705 + 0.991940i \(0.540440\pi\)
\(450\) 0 0
\(451\) 0.782790 0.0368601
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 16.6677 9.62309i 0.779682 0.450149i −0.0566358 0.998395i \(-0.518037\pi\)
0.836317 + 0.548246i \(0.184704\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.6870 + 30.6347i 0.823763 + 1.42680i 0.902861 + 0.429933i \(0.141463\pi\)
−0.0790973 + 0.996867i \(0.525204\pi\)
\(462\) 0 0
\(463\) −14.8277 8.56075i −0.689100 0.397852i 0.114175 0.993461i \(-0.463578\pi\)
−0.803275 + 0.595609i \(0.796911\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.9318i 1.19998i −0.800007 0.599990i \(-0.795171\pi\)
0.800007 0.599990i \(-0.204829\pi\)
\(468\) 0 0
\(469\) 44.7913 2.06827
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.298728 0.172471i −0.0137355 0.00793020i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.4574 + 18.1127i 0.477810 + 0.827591i 0.999676 0.0254364i \(-0.00809754\pi\)
−0.521867 + 0.853027i \(0.674764\pi\)
\(480\) 0 0
\(481\) 4.82424 8.35583i 0.219966 0.380993i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 20.2373i 0.917039i −0.888684 0.458520i \(-0.848380\pi\)
0.888684 0.458520i \(-0.151620\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.10009 + 12.2977i −0.320422 + 0.554988i −0.980575 0.196143i \(-0.937158\pi\)
0.660153 + 0.751131i \(0.270491\pi\)
\(492\) 0 0
\(493\) −37.3571 + 21.5681i −1.68248 + 0.971379i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −38.0350 + 21.9595i −1.70610 + 0.985018i
\(498\) 0 0
\(499\) −14.1384 + 24.4884i −0.632920 + 1.09625i 0.354032 + 0.935233i \(0.384811\pi\)
−0.986952 + 0.161016i \(0.948523\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.4165i 0.776565i 0.921540 + 0.388282i \(0.126931\pi\)
−0.921540 + 0.388282i \(0.873069\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.1060 + 19.2362i −0.492267 + 0.852631i −0.999960 0.00890659i \(-0.997165\pi\)
0.507694 + 0.861538i \(0.330498\pi\)
\(510\) 0 0
\(511\) −5.71137 9.89238i −0.252656 0.437613i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −13.2522 7.65116i −0.582831 0.336498i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.48898 −0.240477 −0.120238 0.992745i \(-0.538366\pi\)
−0.120238 + 0.992745i \(0.538366\pi\)
\(522\) 0 0
\(523\) 26.0991i 1.14123i 0.821216 + 0.570617i \(0.193296\pi\)
−0.821216 + 0.570617i \(0.806704\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.29075 1.89991i −0.143347 0.0827616i
\(528\) 0 0
\(529\) 18.8854 + 32.7105i 0.821105 + 1.42220i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.261813 + 0.151158i −0.0113404 + 0.00654737i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 71.7529 3.09062
\(540\) 0 0
\(541\) 18.7828 0.807534 0.403767 0.914862i \(-0.367701\pi\)
0.403767 + 0.914862i \(0.367701\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 7.84315 4.52825i 0.335349 0.193614i −0.322864 0.946445i \(-0.604646\pi\)
0.658213 + 0.752831i \(0.271312\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.95738 12.0505i −0.296395 0.513370i
\(552\) 0 0
\(553\) −54.7044 31.5836i −2.32627 1.34307i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.8467i 1.05279i −0.850241 0.526394i \(-0.823544\pi\)
0.850241 0.526394i \(-0.176456\pi\)
\(558\) 0 0
\(559\) 0.133217 0.00563448
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 20.2247 + 11.6767i 0.852369 + 0.492115i 0.861449 0.507843i \(-0.169557\pi\)
−0.00908064 + 0.999959i \(0.502890\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.54510 + 13.0685i 0.316307 + 0.547860i 0.979714 0.200398i \(-0.0642236\pi\)
−0.663407 + 0.748258i \(0.730890\pi\)
\(570\) 0 0
\(571\) 3.26786 5.66011i 0.136756 0.236868i −0.789511 0.613736i \(-0.789666\pi\)
0.926267 + 0.376868i \(0.122999\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8.12662i 0.338316i 0.985589 + 0.169158i \(0.0541047\pi\)
−0.985589 + 0.169158i \(0.945895\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 34.8743 60.4041i 1.44683 2.50598i
\(582\) 0 0
\(583\) 14.5048 8.37435i 0.600727 0.346830i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.3438 + 6.54937i −0.468210 + 0.270321i −0.715490 0.698623i \(-0.753797\pi\)
0.247280 + 0.968944i \(0.420463\pi\)
\(588\) 0 0
\(589\) 0.612869 1.06152i 0.0252528 0.0437392i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 8.60478i 0.353356i 0.984269 + 0.176678i \(0.0565351\pi\)
−0.984269 + 0.176678i \(0.943465\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.1827 + 21.1010i −0.497771 + 0.862165i −0.999997 0.00257140i \(-0.999181\pi\)
0.502225 + 0.864737i \(0.332515\pi\)
\(600\) 0 0
\(601\) 12.0900 + 20.9404i 0.493160 + 0.854179i 0.999969 0.00787996i \(-0.00250829\pi\)
−0.506809 + 0.862059i \(0.669175\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.23582 0.713502i −0.0501605 0.0289602i 0.474710 0.880142i \(-0.342553\pi\)
−0.524871 + 0.851182i \(0.675886\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.90979 0.239085
\(612\) 0 0
\(613\) 6.92878i 0.279851i −0.990162 0.139925i \(-0.955314\pi\)
0.990162 0.139925i \(-0.0446863\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −22.9437 13.2466i −0.923679 0.533286i −0.0388718 0.999244i \(-0.512376\pi\)
−0.884807 + 0.465958i \(0.845710\pi\)
\(618\) 0 0
\(619\) −13.4798 23.3478i −0.541801 0.938426i −0.998801 0.0489597i \(-0.984409\pi\)
0.457000 0.889467i \(-0.348924\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −44.8120 + 25.8722i −1.79535 + 1.03655i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 43.7401 1.74403
\(630\) 0 0
\(631\) −15.9350 −0.634361 −0.317181 0.948365i \(-0.602736\pi\)
−0.317181 + 0.948365i \(0.602736\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −23.9986 + 13.8556i −0.950858 + 0.548978i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.58090 6.20231i −0.141437 0.244976i 0.786601 0.617462i \(-0.211839\pi\)
−0.928038 + 0.372485i \(0.878506\pi\)
\(642\) 0 0
\(643\) 6.11680 + 3.53154i 0.241223 + 0.139270i 0.615739 0.787950i \(-0.288858\pi\)
−0.374516 + 0.927221i \(0.622191\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.4037i 1.03804i −0.854763 0.519019i \(-0.826297\pi\)
0.854763 0.519019i \(-0.173703\pi\)
\(648\) 0 0
\(649\) −28.0723 −1.10193
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.68545 + 3.85985i 0.261622 + 0.151048i 0.625074 0.780565i \(-0.285069\pi\)
−0.363452 + 0.931613i \(0.618402\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 11.1426 + 19.2996i 0.434055 + 0.751806i 0.997218 0.0745403i \(-0.0237489\pi\)
−0.563163 + 0.826346i \(0.690416\pi\)
\(660\) 0 0
\(661\) −16.0544 + 27.8070i −0.624442 + 1.08157i 0.364207 + 0.931318i \(0.381340\pi\)
−0.988648 + 0.150247i \(0.951993\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 48.0680i 1.86120i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.81261 + 10.0677i −0.224393 + 0.388661i
\(672\) 0 0
\(673\) −6.78237 + 3.91580i −0.261441 + 0.150943i −0.624992 0.780631i \(-0.714898\pi\)
0.363551 + 0.931574i \(0.381564\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.5914 + 9.00171i −0.599227 + 0.345964i −0.768737 0.639565i \(-0.779115\pi\)
0.169511 + 0.985528i \(0.445781\pi\)
\(678\) 0 0
\(679\) −23.3269 + 40.4034i −0.895205 + 1.55054i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.3356i 1.16076i −0.814347 0.580379i \(-0.802904\pi\)
0.814347 0.580379i \(-0.197096\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.23419 + 5.60179i −0.123213 + 0.213411i
\(690\) 0 0
\(691\) −14.0575 24.3482i −0.534771 0.926251i −0.999174 0.0406267i \(-0.987065\pi\)
0.464403 0.885624i \(-0.346269\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.18690 0.685255i −0.0449569 0.0259559i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −28.4378 −1.07408 −0.537041 0.843556i \(-0.680458\pi\)
−0.537041 + 0.843556i \(0.680458\pi\)
\(702\) 0 0
\(703\) 14.1096i 0.532153i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 34.4455 + 19.8871i 1.29546 + 0.747932i
\(708\) 0 0
\(709\) 15.4500 + 26.7602i 0.580237 + 1.00500i 0.995451 + 0.0952767i \(0.0303736\pi\)
−0.415213 + 0.909724i \(0.636293\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.66698 2.11713i 0.137330 0.0792873i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.2462 −0.792349 −0.396175 0.918175i \(-0.629662\pi\)
−0.396175 + 0.918175i \(0.629662\pi\)
\(720\) 0 0
\(721\) 82.0011 3.05388
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −21.6351 + 12.4910i −0.802402 + 0.463267i −0.844310 0.535854i \(-0.819990\pi\)
0.0419082 + 0.999121i \(0.486656\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.301961 + 0.523013i 0.0111684 + 0.0193443i
\(732\) 0 0
\(733\) 9.06528 + 5.23384i 0.334834 + 0.193316i 0.657985 0.753031i \(-0.271409\pi\)
−0.323151 + 0.946347i \(0.604742\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 35.8254i 1.31964i
\(738\) 0 0
\(739\) −35.6244 −1.31046 −0.655232 0.755428i \(-0.727429\pi\)
−0.655232 + 0.755428i \(0.727429\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.70823 + 5.02770i 0.319474 + 0.184448i 0.651158 0.758942i \(-0.274283\pi\)
−0.331684 + 0.943391i \(0.607617\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −28.3914 49.1753i −1.03740 1.79683i
\(750\) 0 0
\(751\) −8.86740 + 15.3588i −0.323576 + 0.560450i −0.981223 0.192876i \(-0.938219\pi\)
0.657647 + 0.753326i \(0.271552\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 6.42042i 0.233354i 0.993170 + 0.116677i \(0.0372243\pi\)
−0.993170 + 0.116677i \(0.962776\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 12.6955 21.9892i 0.460211 0.797108i −0.538760 0.842459i \(-0.681107\pi\)
0.998971 + 0.0453506i \(0.0144405\pi\)
\(762\) 0 0
\(763\) 9.63425 5.56234i 0.348783 0.201370i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.38910 5.42080i 0.339021 0.195734i
\(768\) 0 0
\(769\) −7.40088 + 12.8187i −0.266883 + 0.462254i −0.968055 0.250737i \(-0.919327\pi\)
0.701173 + 0.712992i \(0.252660\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.48046i 0.269053i −0.990910 0.134527i \(-0.957049\pi\)
0.990910 0.134527i \(-0.0429514\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.221048 0.382866i 0.00791985 0.0137176i
\(780\) 0 0
\(781\) −17.5639 30.4215i −0.628484 1.08857i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −45.3082 26.1587i −1.61506 0.932457i −0.988172 0.153350i \(-0.950994\pi\)
−0.626891 0.779107i \(-0.715673\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −14.1575 −0.503384
\(792\) 0 0
\(793\) 4.48969i 0.159434i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.5366 + 26.8679i 1.64841 + 0.951711i 0.977703 + 0.209991i \(0.0673434\pi\)
0.670709 + 0.741721i \(0.265990\pi\)
\(798\) 0 0
\(799\) 13.3957 + 23.2019i 0.473904 + 0.820826i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.91222 4.56812i 0.279216 0.161205i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −26.1908 −0.920819 −0.460410 0.887707i \(-0.652297\pi\)
−0.460410 + 0.887707i \(0.652297\pi\)
\(810\) 0 0
\(811\) −52.3506 −1.83828 −0.919140 0.393931i \(-0.871115\pi\)
−0.919140 + 0.393931i \(0.871115\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.168712 + 0.0974059i −0.00590249 + 0.00340780i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.42932 4.20771i −0.0847839 0.146850i 0.820515 0.571625i \(-0.193687\pi\)
−0.905299 + 0.424775i \(0.860353\pi\)
\(822\) 0 0
\(823\) −1.01998 0.588886i −0.0355543 0.0205273i 0.482117 0.876107i \(-0.339868\pi\)
−0.517672 + 0.855579i \(0.673201\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.7188i 1.13775i 0.822426 + 0.568873i \(0.192620\pi\)
−0.822426 + 0.568873i \(0.807380\pi\)
\(828\) 0 0
\(829\) 5.99342 0.208160 0.104080 0.994569i \(-0.466810\pi\)
0.104080 + 0.994569i \(0.466810\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −108.794 62.8125i −3.76951 2.17632i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 19.1933 + 33.2439i 0.662628 + 1.14771i 0.979923 + 0.199378i \(0.0638922\pi\)
−0.317295 + 0.948327i \(0.602774\pi\)
\(840\) 0 0
\(841\) −4.51023 + 7.81195i −0.155525 + 0.269378i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 24.8083i 0.852425i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −24.3705 + 42.2109i −0.835410 + 1.44697i
\(852\) 0 0
\(853\) 18.8092 10.8595i 0.644015 0.371822i −0.142145 0.989846i \(-0.545400\pi\)
0.786159 + 0.618024i \(0.212067\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.98342 + 2.29983i −0.136071 + 0.0785607i −0.566490 0.824068i \(-0.691699\pi\)
0.430419 + 0.902629i \(0.358366\pi\)
\(858\) 0 0
\(859\) 7.45896 12.9193i 0.254496 0.440801i −0.710262 0.703937i \(-0.751424\pi\)
0.964759 + 0.263137i \(0.0847570\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 11.4089i 0.388362i −0.980966 0.194181i \(-0.937795\pi\)
0.980966 0.194181i \(-0.0622050\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 25.2615 43.7541i 0.856937 1.48426i
\(870\) 0 0
\(871\) −6.91793 11.9822i −0.234405 0.406001i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 24.1867 + 13.9642i 0.816727 + 0.471537i 0.849286 0.527932i \(-0.177033\pi\)
−0.0325596 + 0.999470i \(0.510366\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42.3270 1.42603 0.713017 0.701147i \(-0.247328\pi\)
0.713017 + 0.701147i \(0.247328\pi\)
\(882\) 0 0
\(883\) 20.3895i 0.686161i −0.939306 0.343081i \(-0.888530\pi\)
0.939306 0.343081i \(-0.111470\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −34.2471 19.7725i −1.14990 0.663897i −0.201040 0.979583i \(-0.564432\pi\)
−0.948864 + 0.315686i \(0.897765\pi\)
\(888\) 0 0
\(889\) −17.5383 30.3772i −0.588215 1.01882i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.48442 + 4.32113i −0.250457 + 0.144601i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.34919 −0.111702
\(900\) 0 0
\(901\) −29.3236 −0.976911
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −32.0080 + 18.4798i −1.06281 + 0.613613i −0.926208 0.377013i \(-0.876951\pi\)
−0.136601 + 0.990626i \(0.543618\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.92335 8.52749i −0.163118 0.282528i 0.772867 0.634568i \(-0.218822\pi\)
−0.935985 + 0.352039i \(0.885488\pi\)
\(912\) 0 0
\(913\) 48.3130 + 27.8935i 1.59893 + 0.923140i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 41.7955i 1.38021i
\(918\) 0 0
\(919\) 8.42079 0.277776 0.138888 0.990308i \(-0.455647\pi\)
0.138888 + 0.990308i \(0.455647\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11.7489 + 6.78321i 0.386718 + 0.223272i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.1938 + 24.5843i 0.465683 + 0.806586i 0.999232 0.0391829i \(-0.0124755\pi\)
−0.533549 + 0.845769i \(0.679142\pi\)
\(930\) 0 0
\(931\) 20.2619 35.0946i 0.664057 1.15018i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.69342i 0.153327i 0.997057 + 0.0766637i \(0.0244268\pi\)
−0.997057 + 0.0766637i \(0.975573\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.51278 16.4766i 0.310108 0.537123i −0.668278 0.743912i \(-0.732968\pi\)
0.978385 + 0.206789i \(0.0663015\pi\)
\(942\) 0 0
\(943\) 1.32259 0.763600i 0.0430696 0.0248662i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11.0997 + 6.40843i −0.360693 + 0.208246i −0.669385 0.742916i \(-0.733442\pi\)
0.308692 + 0.951162i \(0.400109\pi\)
\(948\) 0 0
\(949\) −1.76422 + 3.05572i −0.0572690 + 0.0991928i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 45.9701i 1.48912i 0.667556 + 0.744560i \(0.267340\pi\)
−0.667556 + 0.744560i \(0.732660\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.97230 12.0764i 0.225147 0.389967i
\(960\) 0 0
\(961\) 15.3525 + 26.5913i 0.495242 + 0.857783i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.45751 + 2.57354i 0.143344 + 0.0827596i 0.569957 0.821675i \(-0.306960\pi\)
−0.426613 + 0.904434i \(0.640293\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 10.3875 0.333352 0.166676 0.986012i \(-0.446697\pi\)
0.166676 + 0.986012i \(0.446697\pi\)
\(972\) 0 0
\(973\) 19.5632i 0.627169i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −34.2618 19.7811i −1.09613 0.632852i −0.160930 0.986966i \(-0.551449\pi\)
−0.935202 + 0.354113i \(0.884783\pi\)
\(978\) 0 0
\(979\) −20.6933 35.8419i −0.661362 1.14551i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.7292 + 10.2360i −0.565474 + 0.326477i −0.755340 0.655333i \(-0.772528\pi\)
0.189865 + 0.981810i \(0.439195\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.672970 −0.0213992
\(990\) 0 0
\(991\) −19.2415 −0.611228 −0.305614 0.952156i \(-0.598862\pi\)
−0.305614 + 0.952156i \(0.598862\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 20.1251 11.6193i 0.637370 0.367986i −0.146231 0.989250i \(-0.546714\pi\)
0.783601 + 0.621265i \(0.213381\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.2.s.d.1549.8 16
3.2 odd 2 900.2.s.d.49.7 16
5.2 odd 4 2700.2.i.e.901.4 8
5.3 odd 4 2700.2.i.d.901.1 8
5.4 even 2 inner 2700.2.s.d.1549.1 16
9.2 odd 6 900.2.s.d.349.2 16
9.4 even 3 8100.2.d.s.649.8 8
9.5 odd 6 8100.2.d.q.649.8 8
9.7 even 3 inner 2700.2.s.d.2449.1 16
15.2 even 4 900.2.i.d.301.2 8
15.8 even 4 900.2.i.e.301.3 yes 8
15.14 odd 2 900.2.s.d.49.2 16
45.2 even 12 900.2.i.d.601.2 yes 8
45.4 even 6 8100.2.d.s.649.1 8
45.7 odd 12 2700.2.i.e.1801.4 8
45.13 odd 12 8100.2.a.ba.1.4 4
45.14 odd 6 8100.2.d.q.649.1 8
45.22 odd 12 8100.2.a.y.1.1 4
45.23 even 12 8100.2.a.z.1.4 4
45.29 odd 6 900.2.s.d.349.7 16
45.32 even 12 8100.2.a.x.1.1 4
45.34 even 6 inner 2700.2.s.d.2449.8 16
45.38 even 12 900.2.i.e.601.3 yes 8
45.43 odd 12 2700.2.i.d.1801.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.2.i.d.301.2 8 15.2 even 4
900.2.i.d.601.2 yes 8 45.2 even 12
900.2.i.e.301.3 yes 8 15.8 even 4
900.2.i.e.601.3 yes 8 45.38 even 12
900.2.s.d.49.2 16 15.14 odd 2
900.2.s.d.49.7 16 3.2 odd 2
900.2.s.d.349.2 16 9.2 odd 6
900.2.s.d.349.7 16 45.29 odd 6
2700.2.i.d.901.1 8 5.3 odd 4
2700.2.i.d.1801.1 8 45.43 odd 12
2700.2.i.e.901.4 8 5.2 odd 4
2700.2.i.e.1801.4 8 45.7 odd 12
2700.2.s.d.1549.1 16 5.4 even 2 inner
2700.2.s.d.1549.8 16 1.1 even 1 trivial
2700.2.s.d.2449.1 16 9.7 even 3 inner
2700.2.s.d.2449.8 16 45.34 even 6 inner
8100.2.a.x.1.1 4 45.32 even 12
8100.2.a.y.1.1 4 45.22 odd 12
8100.2.a.z.1.4 4 45.23 even 12
8100.2.a.ba.1.4 4 45.13 odd 12
8100.2.d.q.649.1 8 45.14 odd 6
8100.2.d.q.649.8 8 9.5 odd 6
8100.2.d.s.649.1 8 45.4 even 6
8100.2.d.s.649.8 8 9.4 even 3