Properties

Label 900.2.i.e.301.3
Level $900$
Weight $2$
Character 900.301
Analytic conductor $7.187$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(301,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.301"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.142635249.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 3x^{6} + 3x^{5} - 11x^{4} + 6x^{3} + 12x^{2} - 24x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 301.3
Root \(0.818235 - 1.15347i\) of defining polynomial
Character \(\chi\) \(=\) 900.301
Dual form 900.2.i.e.601.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16098 + 1.28535i) q^{3} +(-2.49787 - 4.32643i) q^{7} +(-0.304233 + 2.98453i) q^{9} +(-1.99787 - 3.46041i) q^{11} +(0.771582 - 1.33642i) q^{13} +6.99574 q^{17} -2.25667 q^{19} +(2.66098 - 8.23355i) q^{21} +(3.89778 - 6.75116i) q^{23} +(-4.18937 + 3.07395i) q^{27} +(-3.08304 - 5.33998i) q^{29} +(0.271582 - 0.470394i) q^{31} +(2.12833 - 6.58543i) q^{33} +6.25240 q^{37} +(2.61356 - 0.559811i) q^{39} +(-0.0979532 + 0.169660i) q^{41} +(-0.0431636 - 0.0747616i) q^{43} +(-1.91483 - 3.31658i) q^{47} +(-8.97869 + 15.5515i) q^{49} +(8.12194 + 8.99195i) q^{51} -4.19164 q^{53} +(-2.61995 - 2.90060i) q^{57} +(-3.51278 + 6.08432i) q^{59} +(1.45470 + 2.51962i) q^{61} +(13.6723 - 6.13873i) q^{63} +(4.48295 - 7.76470i) q^{67} +(13.2028 - 2.82798i) q^{69} +8.79130 q^{71} +2.28650 q^{73} +(-9.98082 + 17.2873i) q^{77} +(6.32211 + 10.9502i) q^{79} +(-8.81488 - 1.81599i) q^{81} +(-6.98082 - 12.0911i) q^{83} +(3.28437 - 10.1624i) q^{87} -10.3577 q^{89} -7.70924 q^{91} +(0.919921 - 0.197042i) q^{93} +(4.66936 + 8.08758i) q^{97} +(10.9355 - 4.90993i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{3} - q^{7} + 5 q^{9} + 3 q^{11} + 2 q^{13} + 18 q^{17} - 8 q^{19} + 13 q^{21} + 3 q^{23} + 16 q^{27} - 9 q^{29} - 2 q^{31} + 12 q^{33} + 2 q^{37} - 17 q^{39} + 9 q^{41} + 8 q^{43} - 12 q^{47}+ \cdots + 33 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.16098 + 1.28535i 0.670294 + 0.742095i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.49787 4.32643i −0.944105 1.63524i −0.757533 0.652797i \(-0.773595\pi\)
−0.186573 0.982441i \(-0.559738\pi\)
\(8\) 0 0
\(9\) −0.304233 + 2.98453i −0.101411 + 0.994845i
\(10\) 0 0
\(11\) −1.99787 3.46041i −0.602380 1.04335i −0.992460 0.122571i \(-0.960886\pi\)
0.390080 0.920781i \(-0.372447\pi\)
\(12\) 0 0
\(13\) 0.771582 1.33642i 0.213998 0.370656i −0.738964 0.673745i \(-0.764685\pi\)
0.952962 + 0.303089i \(0.0980180\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.99574 1.69672 0.848358 0.529424i \(-0.177592\pi\)
0.848358 + 0.529424i \(0.177592\pi\)
\(18\) 0 0
\(19\) −2.25667 −0.517715 −0.258857 0.965916i \(-0.583346\pi\)
−0.258857 + 0.965916i \(0.583346\pi\)
\(20\) 0 0
\(21\) 2.66098 8.23355i 0.580674 1.79671i
\(22\) 0 0
\(23\) 3.89778 6.75116i 0.812744 1.40771i −0.0981929 0.995167i \(-0.531306\pi\)
0.910937 0.412546i \(-0.135360\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −4.18937 + 3.07395i −0.806245 + 0.591582i
\(28\) 0 0
\(29\) −3.08304 5.33998i −0.572506 0.991609i −0.996308 0.0858540i \(-0.972638\pi\)
0.423802 0.905755i \(-0.360695\pi\)
\(30\) 0 0
\(31\) 0.271582 0.470394i 0.0487775 0.0844852i −0.840606 0.541647i \(-0.817801\pi\)
0.889383 + 0.457162i \(0.151134\pi\)
\(32\) 0 0
\(33\) 2.12833 6.58543i 0.370495 1.14638i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.25240 1.02789 0.513944 0.857824i \(-0.328184\pi\)
0.513944 + 0.857824i \(0.328184\pi\)
\(38\) 0 0
\(39\) 2.61356 0.559811i 0.418504 0.0896414i
\(40\) 0 0
\(41\) −0.0979532 + 0.169660i −0.0152977 + 0.0264964i −0.873573 0.486693i \(-0.838203\pi\)
0.858275 + 0.513190i \(0.171536\pi\)
\(42\) 0 0
\(43\) −0.0431636 0.0747616i −0.00658239 0.0114010i 0.862715 0.505690i \(-0.168762\pi\)
−0.869298 + 0.494289i \(0.835429\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.91483 3.31658i −0.279307 0.483774i 0.691906 0.721988i \(-0.256771\pi\)
−0.971213 + 0.238214i \(0.923438\pi\)
\(48\) 0 0
\(49\) −8.97869 + 15.5515i −1.28267 + 2.22165i
\(50\) 0 0
\(51\) 8.12194 + 8.99195i 1.13730 + 1.25912i
\(52\) 0 0
\(53\) −4.19164 −0.575766 −0.287883 0.957666i \(-0.592951\pi\)
−0.287883 + 0.957666i \(0.592951\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.61995 2.90060i −0.347021 0.384194i
\(58\) 0 0
\(59\) −3.51278 + 6.08432i −0.457326 + 0.792111i −0.998819 0.0485942i \(-0.984526\pi\)
0.541493 + 0.840705i \(0.317859\pi\)
\(60\) 0 0
\(61\) 1.45470 + 2.51962i 0.186256 + 0.322604i 0.943999 0.329948i \(-0.107031\pi\)
−0.757743 + 0.652553i \(0.773698\pi\)
\(62\) 0 0
\(63\) 13.6723 6.13873i 1.72255 0.773407i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.48295 7.76470i 0.547680 0.948609i −0.450753 0.892649i \(-0.648845\pi\)
0.998433 0.0559605i \(-0.0178221\pi\)
\(68\) 0 0
\(69\) 13.2028 2.82798i 1.58944 0.340449i
\(70\) 0 0
\(71\) 8.79130 1.04334 0.521668 0.853149i \(-0.325310\pi\)
0.521668 + 0.853149i \(0.325310\pi\)
\(72\) 0 0
\(73\) 2.28650 0.267614 0.133807 0.991007i \(-0.457280\pi\)
0.133807 + 0.991007i \(0.457280\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.98082 + 17.2873i −1.13742 + 1.97007i
\(78\) 0 0
\(79\) 6.32211 + 10.9502i 0.711293 + 1.23199i 0.964372 + 0.264549i \(0.0852232\pi\)
−0.253080 + 0.967445i \(0.581443\pi\)
\(80\) 0 0
\(81\) −8.81488 1.81599i −0.979432 0.201776i
\(82\) 0 0
\(83\) −6.98082 12.0911i −0.766244 1.32717i −0.939586 0.342313i \(-0.888790\pi\)
0.173342 0.984862i \(-0.444544\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.28437 10.1624i 0.352121 1.08952i
\(88\) 0 0
\(89\) −10.3577 −1.09792 −0.548958 0.835850i \(-0.684975\pi\)
−0.548958 + 0.835850i \(0.684975\pi\)
\(90\) 0 0
\(91\) −7.70924 −0.808148
\(92\) 0 0
\(93\) 0.919921 0.197042i 0.0953914 0.0204324i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.66936 + 8.08758i 0.474102 + 0.821169i 0.999560 0.0296505i \(-0.00943942\pi\)
−0.525458 + 0.850819i \(0.676106\pi\)
\(98\) 0 0
\(99\) 10.9355 4.90993i 1.09906 0.493467i
\(100\) 0 0
\(101\) −3.98082 6.89498i −0.396106 0.686076i 0.597135 0.802140i \(-0.296306\pi\)
−0.993242 + 0.116064i \(0.962972\pi\)
\(102\) 0 0
\(103\) −8.20711 + 14.2151i −0.808670 + 1.40066i 0.105115 + 0.994460i \(0.466479\pi\)
−0.913785 + 0.406198i \(0.866854\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.3662 1.09882 0.549408 0.835554i \(-0.314853\pi\)
0.549408 + 0.835554i \(0.314853\pi\)
\(108\) 0 0
\(109\) −2.22683 −0.213292 −0.106646 0.994297i \(-0.534011\pi\)
−0.106646 + 0.994297i \(0.534011\pi\)
\(110\) 0 0
\(111\) 7.25894 + 8.03650i 0.688988 + 0.762791i
\(112\) 0 0
\(113\) −1.41696 + 2.45425i −0.133297 + 0.230877i −0.924945 0.380100i \(-0.875890\pi\)
0.791649 + 0.610976i \(0.209223\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.75385 + 2.70939i 0.347043 + 0.250484i
\(118\) 0 0
\(119\) −17.4744 30.2666i −1.60188 2.77453i
\(120\) 0 0
\(121\) −2.48295 + 4.30060i −0.225723 + 0.390963i
\(122\) 0 0
\(123\) −0.331794 + 0.0710686i −0.0299168 + 0.00640804i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −7.02130 −0.623040 −0.311520 0.950240i \(-0.600838\pi\)
−0.311520 + 0.950240i \(0.600838\pi\)
\(128\) 0 0
\(129\) 0.0459823 0.142277i 0.00404852 0.0125268i
\(130\) 0 0
\(131\) 4.18312 7.24538i 0.365481 0.633032i −0.623372 0.781925i \(-0.714238\pi\)
0.988853 + 0.148893i \(0.0475711\pi\)
\(132\) 0 0
\(133\) 5.63685 + 9.76331i 0.488777 + 0.846587i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.39565 + 2.41734i 0.119238 + 0.206527i 0.919466 0.393169i \(-0.128621\pi\)
−0.800228 + 0.599696i \(0.795288\pi\)
\(138\) 0 0
\(139\) 1.95799 3.39135i 0.166075 0.287650i −0.770962 0.636882i \(-0.780224\pi\)
0.937036 + 0.349231i \(0.113557\pi\)
\(140\) 0 0
\(141\) 2.03987 6.31172i 0.171788 0.531543i
\(142\) 0 0
\(143\) −6.16607 −0.515633
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −30.4132 + 6.51436i −2.50844 + 0.537296i
\(148\) 0 0
\(149\) 6.37860 11.0481i 0.522555 0.905093i −0.477100 0.878849i \(-0.658312\pi\)
0.999656 0.0262436i \(-0.00835456\pi\)
\(150\) 0 0
\(151\) 0.188545 + 0.326569i 0.0153436 + 0.0265758i 0.873595 0.486653i \(-0.161782\pi\)
−0.858252 + 0.513229i \(0.828449\pi\)
\(152\) 0 0
\(153\) −2.12833 + 20.8790i −0.172066 + 1.68797i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.04839 10.4761i 0.482714 0.836086i −0.517089 0.855932i \(-0.672984\pi\)
0.999803 + 0.0198461i \(0.00631762\pi\)
\(158\) 0 0
\(159\) −4.86643 5.38771i −0.385933 0.427273i
\(160\) 0 0
\(161\) −38.9446 −3.06926
\(162\) 0 0
\(163\) −10.8563 −0.850333 −0.425166 0.905115i \(-0.639784\pi\)
−0.425166 + 0.905115i \(0.639784\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.59369 4.49240i 0.200706 0.347632i −0.748050 0.663642i \(-0.769010\pi\)
0.948756 + 0.316010i \(0.102343\pi\)
\(168\) 0 0
\(169\) 5.30932 + 9.19602i 0.408409 + 0.707386i
\(170\) 0 0
\(171\) 0.686552 6.73509i 0.0525019 0.515046i
\(172\) 0 0
\(173\) −1.68739 2.92264i −0.128290 0.222204i 0.794724 0.606970i \(-0.207615\pi\)
−0.923014 + 0.384766i \(0.874282\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −11.8987 + 2.54865i −0.894365 + 0.191568i
\(178\) 0 0
\(179\) 19.5997 1.46495 0.732474 0.680795i \(-0.238366\pi\)
0.732474 + 0.680795i \(0.238366\pi\)
\(180\) 0 0
\(181\) 5.84865 0.434727 0.217363 0.976091i \(-0.430254\pi\)
0.217363 + 0.976091i \(0.430254\pi\)
\(182\) 0 0
\(183\) −1.54970 + 4.79504i −0.114557 + 0.354460i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −13.9766 24.2081i −1.02207 1.77027i
\(188\) 0 0
\(189\) 23.7637 + 10.4467i 1.72856 + 0.759886i
\(190\) 0 0
\(191\) 12.2956 + 21.2965i 0.889676 + 1.54096i 0.840259 + 0.542186i \(0.182403\pi\)
0.0494171 + 0.998778i \(0.484264\pi\)
\(192\) 0 0
\(193\) −5.17150 + 8.95729i −0.372252 + 0.644760i −0.989912 0.141686i \(-0.954748\pi\)
0.617659 + 0.786446i \(0.288081\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.0256 1.14177 0.570887 0.821028i \(-0.306599\pi\)
0.570887 + 0.821028i \(0.306599\pi\)
\(198\) 0 0
\(199\) −22.2353 −1.57622 −0.788111 0.615533i \(-0.788941\pi\)
−0.788111 + 0.615533i \(0.788941\pi\)
\(200\) 0 0
\(201\) 15.1850 3.25254i 1.07106 0.229417i
\(202\) 0 0
\(203\) −15.4020 + 26.6771i −1.08101 + 1.87237i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 18.9632 + 13.6870i 1.31804 + 0.951311i
\(208\) 0 0
\(209\) 4.50852 + 7.80899i 0.311861 + 0.540159i
\(210\) 0 0
\(211\) −12.1779 + 21.0927i −0.838360 + 1.45208i 0.0529050 + 0.998600i \(0.483152\pi\)
−0.891265 + 0.453483i \(0.850181\pi\)
\(212\) 0 0
\(213\) 10.2066 + 11.2999i 0.699342 + 0.774254i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.71350 −0.184205
\(218\) 0 0
\(219\) 2.65459 + 2.93894i 0.179380 + 0.198595i
\(220\) 0 0
\(221\) 5.39778 9.34923i 0.363094 0.628897i
\(222\) 0 0
\(223\) 5.62407 + 9.74117i 0.376615 + 0.652317i 0.990567 0.137026i \(-0.0437545\pi\)
−0.613952 + 0.789343i \(0.710421\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.07451 + 8.78931i 0.336807 + 0.583367i 0.983830 0.179103i \(-0.0573197\pi\)
−0.647023 + 0.762470i \(0.723986\pi\)
\(228\) 0 0
\(229\) 1.18428 2.05123i 0.0782595 0.135549i −0.824240 0.566241i \(-0.808397\pi\)
0.902499 + 0.430692i \(0.141730\pi\)
\(230\) 0 0
\(231\) −33.8077 + 7.24145i −2.22439 + 0.476452i
\(232\) 0 0
\(233\) 24.1831 1.58429 0.792144 0.610334i \(-0.208965\pi\)
0.792144 + 0.610334i \(0.208965\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −6.73495 + 20.8391i −0.437482 + 1.35365i
\(238\) 0 0
\(239\) 0.897782 1.55500i 0.0580727 0.100585i −0.835528 0.549449i \(-0.814838\pi\)
0.893600 + 0.448864i \(0.148171\pi\)
\(240\) 0 0
\(241\) 7.43339 + 12.8750i 0.478827 + 0.829352i 0.999705 0.0242785i \(-0.00772884\pi\)
−0.520878 + 0.853631i \(0.674396\pi\)
\(242\) 0 0
\(243\) −7.89977 13.4385i −0.506770 0.862081i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.74120 + 3.01585i −0.110790 + 0.191894i
\(248\) 0 0
\(249\) 7.43668 23.0104i 0.471281 1.45822i
\(250\) 0 0
\(251\) −15.8297 −0.999159 −0.499580 0.866268i \(-0.666512\pi\)
−0.499580 + 0.866268i \(0.666512\pi\)
\(252\) 0 0
\(253\) −31.1490 −1.95832
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.9979 + 19.0489i −0.686028 + 1.18824i 0.287084 + 0.957905i \(0.407314\pi\)
−0.973113 + 0.230330i \(0.926019\pi\)
\(258\) 0 0
\(259\) −15.6177 27.0506i −0.970435 1.68084i
\(260\) 0 0
\(261\) 16.8753 7.57683i 1.04456 0.468994i
\(262\) 0 0
\(263\) −7.57664 13.1231i −0.467196 0.809207i 0.532102 0.846680i \(-0.321402\pi\)
−0.999298 + 0.0374737i \(0.988069\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −12.0251 13.3133i −0.735927 0.814758i
\(268\) 0 0
\(269\) −7.99147 −0.487249 −0.243624 0.969870i \(-0.578336\pi\)
−0.243624 + 0.969870i \(0.578336\pi\)
\(270\) 0 0
\(271\) 3.97248 0.241311 0.120656 0.992694i \(-0.461500\pi\)
0.120656 + 0.992694i \(0.461500\pi\)
\(272\) 0 0
\(273\) −8.95030 9.90904i −0.541697 0.599723i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.10702 + 15.7738i 0.547188 + 0.947757i 0.998466 + 0.0553736i \(0.0176350\pi\)
−0.451278 + 0.892383i \(0.649032\pi\)
\(278\) 0 0
\(279\) 1.32128 + 0.953654i 0.0791030 + 0.0570938i
\(280\) 0 0
\(281\) 11.1043 + 19.2333i 0.662429 + 1.14736i 0.979975 + 0.199119i \(0.0638079\pi\)
−0.317546 + 0.948243i \(0.602859\pi\)
\(282\) 0 0
\(283\) 5.82637 10.0916i 0.346342 0.599882i −0.639255 0.768995i \(-0.720757\pi\)
0.985597 + 0.169113i \(0.0540904\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.978696 0.0577706
\(288\) 0 0
\(289\) 31.9403 1.87884
\(290\) 0 0
\(291\) −4.97428 + 15.3913i −0.291598 + 0.902254i
\(292\) 0 0
\(293\) 3.09156 5.35473i 0.180611 0.312827i −0.761478 0.648191i \(-0.775526\pi\)
0.942089 + 0.335364i \(0.108859\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 19.0069 + 8.35559i 1.10289 + 0.484840i
\(298\) 0 0
\(299\) −6.01492 10.4181i −0.347852 0.602497i
\(300\) 0 0
\(301\) −0.215634 + 0.373489i −0.0124289 + 0.0215276i
\(302\) 0 0
\(303\) 4.24078 13.1217i 0.243626 0.753822i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.9872 0.741219 0.370610 0.928789i \(-0.379149\pi\)
0.370610 + 0.928789i \(0.379149\pi\)
\(308\) 0 0
\(309\) −27.7997 + 5.95455i −1.58147 + 0.338743i
\(310\) 0 0
\(311\) 11.0958 19.2185i 0.629186 1.08978i −0.358529 0.933519i \(-0.616722\pi\)
0.987715 0.156264i \(-0.0499451\pi\)
\(312\) 0 0
\(313\) −8.34609 14.4559i −0.471749 0.817093i 0.527729 0.849413i \(-0.323044\pi\)
−0.999478 + 0.0323199i \(0.989710\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.4787 28.5419i −0.925535 1.60307i −0.790698 0.612206i \(-0.790282\pi\)
−0.134837 0.990868i \(-0.543051\pi\)
\(318\) 0 0
\(319\) −12.3190 + 21.3371i −0.689732 + 1.19465i
\(320\) 0 0
\(321\) 13.1960 + 14.6096i 0.736530 + 0.815426i
\(322\) 0 0
\(323\) −15.7870 −0.878414
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2.58532 2.86225i −0.142968 0.158283i
\(328\) 0 0
\(329\) −9.56599 + 16.5688i −0.527390 + 0.913466i
\(330\) 0 0
\(331\) −14.3333 24.8260i −0.787830 1.36456i −0.927294 0.374334i \(-0.877871\pi\)
0.139464 0.990227i \(-0.455462\pi\)
\(332\) 0 0
\(333\) −1.90219 + 18.6605i −0.104239 + 1.02259i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −14.9270 + 25.8543i −0.813125 + 1.40837i 0.0975411 + 0.995231i \(0.468902\pi\)
−0.910666 + 0.413143i \(0.864431\pi\)
\(338\) 0 0
\(339\) −4.79964 + 1.02806i −0.260680 + 0.0558364i
\(340\) 0 0
\(341\) −2.17034 −0.117530
\(342\) 0 0
\(343\) 54.7401 2.95569
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.41910 + 4.19000i −0.129864 + 0.224931i −0.923624 0.383301i \(-0.874787\pi\)
0.793760 + 0.608231i \(0.208121\pi\)
\(348\) 0 0
\(349\) 16.0325 + 27.7691i 0.858200 + 1.48645i 0.873644 + 0.486566i \(0.161751\pi\)
−0.0154438 + 0.999881i \(0.504916\pi\)
\(350\) 0 0
\(351\) 0.875644 + 7.97056i 0.0467384 + 0.425437i
\(352\) 0 0
\(353\) −4.92975 8.53857i −0.262384 0.454462i 0.704491 0.709713i \(-0.251175\pi\)
−0.966875 + 0.255251i \(0.917842\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 18.6155 57.5997i 0.985239 3.04850i
\(358\) 0 0
\(359\) 9.93266 0.524226 0.262113 0.965037i \(-0.415581\pi\)
0.262113 + 0.965037i \(0.415581\pi\)
\(360\) 0 0
\(361\) −13.9075 −0.731972
\(362\) 0 0
\(363\) −8.41043 + 1.80147i −0.441433 + 0.0945527i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 9.51065 + 16.4729i 0.496452 + 0.859880i 0.999992 0.00409206i \(-0.00130255\pi\)
−0.503540 + 0.863972i \(0.667969\pi\)
\(368\) 0 0
\(369\) −0.476555 0.343961i −0.0248085 0.0179059i
\(370\) 0 0
\(371\) 10.4702 + 18.1349i 0.543584 + 0.941515i
\(372\) 0 0
\(373\) −0.939241 + 1.62681i −0.0486320 + 0.0842332i −0.889317 0.457292i \(-0.848820\pi\)
0.840685 + 0.541525i \(0.182153\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9.51526 −0.490061
\(378\) 0 0
\(379\) 22.8435 1.17339 0.586697 0.809807i \(-0.300428\pi\)
0.586697 + 0.809807i \(0.300428\pi\)
\(380\) 0 0
\(381\) −8.15162 9.02481i −0.417620 0.462355i
\(382\) 0 0
\(383\) −2.35133 + 4.07262i −0.120147 + 0.208101i −0.919826 0.392327i \(-0.871670\pi\)
0.799678 + 0.600429i \(0.205003\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.236260 0.106078i 0.0120098 0.00539227i
\(388\) 0 0
\(389\) 5.38287 + 9.32340i 0.272922 + 0.472715i 0.969609 0.244661i \(-0.0786765\pi\)
−0.696687 + 0.717376i \(0.745343\pi\)
\(390\) 0 0
\(391\) 27.2679 47.2293i 1.37899 2.38849i
\(392\) 0 0
\(393\) 14.1694 3.03501i 0.714750 0.153096i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.10958 0.407008 0.203504 0.979074i \(-0.434767\pi\)
0.203504 + 0.979074i \(0.434767\pi\)
\(398\) 0 0
\(399\) −6.00495 + 18.5804i −0.300624 + 0.930182i
\(400\) 0 0
\(401\) 6.22744 10.7862i 0.310984 0.538640i −0.667592 0.744527i \(-0.732675\pi\)
0.978576 + 0.205888i \(0.0660082\pi\)
\(402\) 0 0
\(403\) −0.419095 0.725894i −0.0208766 0.0361594i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.4915 21.6359i −0.619179 1.07245i
\(408\) 0 0
\(409\) 15.7166 27.2219i 0.777136 1.34604i −0.156450 0.987686i \(-0.550005\pi\)
0.933586 0.358353i \(-0.116662\pi\)
\(410\) 0 0
\(411\) −1.48679 + 4.60038i −0.0733379 + 0.226920i
\(412\) 0 0
\(413\) 35.0979 1.72705
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 6.63226 1.42060i 0.324783 0.0695669i
\(418\) 0 0
\(419\) −13.1848 + 22.8368i −0.644121 + 1.11565i 0.340383 + 0.940287i \(0.389443\pi\)
−0.984504 + 0.175363i \(0.943890\pi\)
\(420\) 0 0
\(421\) 6.61555 + 11.4585i 0.322422 + 0.558451i 0.980987 0.194072i \(-0.0621696\pi\)
−0.658565 + 0.752524i \(0.728836\pi\)
\(422\) 0 0
\(423\) 10.4810 4.70586i 0.509604 0.228807i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.26732 12.5874i 0.351690 0.609145i
\(428\) 0 0
\(429\) −7.15871 7.92554i −0.345626 0.382649i
\(430\) 0 0
\(431\) 24.2895 1.16999 0.584993 0.811039i \(-0.301097\pi\)
0.584993 + 0.811039i \(0.301097\pi\)
\(432\) 0 0
\(433\) 17.9840 0.864258 0.432129 0.901812i \(-0.357763\pi\)
0.432129 + 0.901812i \(0.357763\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.79599 + 15.2351i −0.420769 + 0.728794i
\(438\) 0 0
\(439\) −11.3577 19.6721i −0.542074 0.938900i −0.998785 0.0492847i \(-0.984306\pi\)
0.456711 0.889615i \(-0.349028\pi\)
\(440\) 0 0
\(441\) −43.6825 31.5285i −2.08012 1.50136i
\(442\) 0 0
\(443\) 11.4578 + 19.8455i 0.544377 + 0.942888i 0.998646 + 0.0520235i \(0.0165671\pi\)
−0.454269 + 0.890864i \(0.650100\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 21.6060 4.62791i 1.02193 0.218892i
\(448\) 0 0
\(449\) −5.36966 −0.253410 −0.126705 0.991940i \(-0.540440\pi\)
−0.126705 + 0.991940i \(0.540440\pi\)
\(450\) 0 0
\(451\) 0.782790 0.0368601
\(452\) 0 0
\(453\) −0.200857 + 0.621487i −0.00943710 + 0.0292000i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.62309 16.6677i −0.450149 0.779682i 0.548246 0.836317i \(-0.315296\pi\)
−0.998395 + 0.0566358i \(0.981963\pi\)
\(458\) 0 0
\(459\) −29.3077 + 21.5045i −1.36797 + 1.00375i
\(460\) 0 0
\(461\) −17.6870 30.6347i −0.823763 1.42680i −0.902861 0.429933i \(-0.858537\pi\)
0.0790973 0.996867i \(-0.474796\pi\)
\(462\) 0 0
\(463\) 8.56075 14.8277i 0.397852 0.689100i −0.595609 0.803275i \(-0.703089\pi\)
0.993461 + 0.114175i \(0.0364225\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.9318 1.19998 0.599990 0.800007i \(-0.295171\pi\)
0.599990 + 0.800007i \(0.295171\pi\)
\(468\) 0 0
\(469\) −44.7913 −2.06827
\(470\) 0 0
\(471\) 20.4875 4.38833i 0.944016 0.202203i
\(472\) 0 0
\(473\) −0.172471 + 0.298728i −0.00793020 + 0.0137355i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.27524 12.5101i 0.0583890 0.572798i
\(478\) 0 0
\(479\) 10.4574 + 18.1127i 0.477810 + 0.827591i 0.999676 0.0254364i \(-0.00809754\pi\)
−0.521867 + 0.853027i \(0.674764\pi\)
\(480\) 0 0
\(481\) 4.82424 8.35583i 0.219966 0.380993i
\(482\) 0 0
\(483\) −45.2140 50.0573i −2.05731 2.27769i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −20.2373 −0.917039 −0.458520 0.888684i \(-0.651620\pi\)
−0.458520 + 0.888684i \(0.651620\pi\)
\(488\) 0 0
\(489\) −12.6040 13.9541i −0.569973 0.631028i
\(490\) 0 0
\(491\) 7.10009 12.2977i 0.320422 0.554988i −0.660153 0.751131i \(-0.729509\pi\)
0.980575 + 0.196143i \(0.0628418\pi\)
\(492\) 0 0
\(493\) −21.5681 37.3571i −0.971379 1.68248i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −21.9595 38.0350i −0.985018 1.70610i
\(498\) 0 0
\(499\) 14.1384 24.4884i 0.632920 1.09625i −0.354032 0.935233i \(-0.615189\pi\)
0.986952 0.161016i \(-0.0514772\pi\)
\(500\) 0 0
\(501\) 8.78552 1.88182i 0.392508 0.0840733i
\(502\) 0 0
\(503\) 17.4165 0.776565 0.388282 0.921540i \(-0.373069\pi\)
0.388282 + 0.921540i \(0.373069\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −5.65603 + 17.5007i −0.251193 + 0.777236i
\(508\) 0 0
\(509\) −11.1060 + 19.2362i −0.492267 + 0.852631i −0.999960 0.00890659i \(-0.997165\pi\)
0.507694 + 0.861538i \(0.330498\pi\)
\(510\) 0 0
\(511\) −5.71137 9.89238i −0.252656 0.437613i
\(512\) 0 0
\(513\) 9.45401 6.93688i 0.417405 0.306271i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −7.65116 + 13.2522i −0.336498 + 0.582831i
\(518\) 0 0
\(519\) 1.79758 5.56201i 0.0789049 0.244145i
\(520\) 0 0
\(521\) 5.48898 0.240477 0.120238 0.992745i \(-0.461634\pi\)
0.120238 + 0.992745i \(0.461634\pi\)
\(522\) 0 0
\(523\) −26.0991 −1.14123 −0.570617 0.821216i \(-0.693296\pi\)
−0.570617 + 0.821216i \(0.693296\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.89991 3.29075i 0.0827616 0.143347i
\(528\) 0 0
\(529\) −18.8854 32.7105i −0.821105 1.42220i
\(530\) 0 0
\(531\) −17.0902 12.3351i −0.741650 0.535297i
\(532\) 0 0
\(533\) 0.151158 + 0.261813i 0.00654737 + 0.0113404i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 22.7549 + 25.1924i 0.981946 + 1.08713i
\(538\) 0 0
\(539\) 71.7529 3.09062
\(540\) 0 0
\(541\) 18.7828 0.807534 0.403767 0.914862i \(-0.367701\pi\)
0.403767 + 0.914862i \(0.367701\pi\)
\(542\) 0 0
\(543\) 6.79019 + 7.51754i 0.291395 + 0.322609i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −4.52825 7.84315i −0.193614 0.335349i 0.752831 0.658213i \(-0.228688\pi\)
−0.946445 + 0.322864i \(0.895354\pi\)
\(548\) 0 0
\(549\) −7.96246 + 3.57506i −0.339830 + 0.152580i
\(550\) 0 0
\(551\) 6.95738 + 12.0505i 0.296395 + 0.513370i
\(552\) 0 0
\(553\) 31.5836 54.7044i 1.34307 2.32627i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.8467 1.05279 0.526394 0.850241i \(-0.323544\pi\)
0.526394 + 0.850241i \(0.323544\pi\)
\(558\) 0 0
\(559\) −0.133217 −0.00563448
\(560\) 0 0
\(561\) 14.8893 46.0699i 0.628625 1.94507i
\(562\) 0 0
\(563\) 11.6767 20.2247i 0.492115 0.852369i −0.507843 0.861449i \(-0.669557\pi\)
0.999959 + 0.00908064i \(0.00289050\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 14.1617 + 42.6731i 0.594734 + 1.79210i
\(568\) 0 0
\(569\) 7.54510 + 13.0685i 0.316307 + 0.547860i 0.979714 0.200398i \(-0.0642236\pi\)
−0.663407 + 0.748258i \(0.730890\pi\)
\(570\) 0 0
\(571\) 3.26786 5.66011i 0.136756 0.236868i −0.789511 0.613736i \(-0.789666\pi\)
0.926267 + 0.376868i \(0.122999\pi\)
\(572\) 0 0
\(573\) −13.0985 + 40.5290i −0.547197 + 1.69312i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8.12662 0.338316 0.169158 0.985589i \(-0.445895\pi\)
0.169158 + 0.985589i \(0.445895\pi\)
\(578\) 0 0
\(579\) −17.5173 + 3.75211i −0.727992 + 0.155932i
\(580\) 0 0
\(581\) −34.8743 + 60.4041i −1.44683 + 2.50598i
\(582\) 0 0
\(583\) 8.37435 + 14.5048i 0.346830 + 0.600727i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.54937 11.3438i −0.270321 0.468210i 0.698623 0.715490i \(-0.253797\pi\)
−0.968944 + 0.247280i \(0.920463\pi\)
\(588\) 0 0
\(589\) −0.612869 + 1.06152i −0.0252528 + 0.0437392i
\(590\) 0 0
\(591\) 18.6054 + 20.5984i 0.765325 + 0.847305i
\(592\) 0 0
\(593\) 8.60478 0.353356 0.176678 0.984269i \(-0.443465\pi\)
0.176678 + 0.984269i \(0.443465\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −25.8149 28.5801i −1.05653 1.16971i
\(598\) 0 0
\(599\) −12.1827 + 21.1010i −0.497771 + 0.862165i −0.999997 0.00257140i \(-0.999181\pi\)
0.502225 + 0.864737i \(0.332515\pi\)
\(600\) 0 0
\(601\) 12.0900 + 20.9404i 0.493160 + 0.854179i 0.999969 0.00787996i \(-0.00250829\pi\)
−0.506809 + 0.862059i \(0.669175\pi\)
\(602\) 0 0
\(603\) 21.8101 + 15.7418i 0.888178 + 0.641056i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −0.713502 + 1.23582i −0.0289602 + 0.0501605i −0.880142 0.474710i \(-0.842553\pi\)
0.851182 + 0.524871i \(0.175886\pi\)
\(608\) 0 0
\(609\) −52.1709 + 11.1747i −2.11407 + 0.452823i
\(610\) 0 0
\(611\) −5.90979 −0.239085
\(612\) 0 0
\(613\) 6.92878 0.279851 0.139925 0.990162i \(-0.455314\pi\)
0.139925 + 0.990162i \(0.455314\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.2466 22.9437i 0.533286 0.923679i −0.465958 0.884807i \(-0.654290\pi\)
0.999244 0.0388718i \(-0.0123764\pi\)
\(618\) 0 0
\(619\) 13.4798 + 23.3478i 0.541801 + 0.938426i 0.998801 + 0.0489597i \(0.0155906\pi\)
−0.457000 + 0.889467i \(0.651076\pi\)
\(620\) 0 0
\(621\) 4.42347 + 40.2647i 0.177508 + 1.61577i
\(622\) 0 0
\(623\) 25.8722 + 44.8120i 1.03655 + 1.79535i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −4.80294 + 14.8611i −0.191811 + 0.593496i
\(628\) 0 0
\(629\) 43.7401 1.74403
\(630\) 0 0
\(631\) −15.9350 −0.634361 −0.317181 0.948365i \(-0.602736\pi\)
−0.317181 + 0.948365i \(0.602736\pi\)
\(632\) 0 0
\(633\) −41.2498 + 8.83550i −1.63953 + 0.351179i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 13.8556 + 23.9986i 0.548978 + 0.950858i
\(638\) 0 0
\(639\) −2.67460 + 26.2379i −0.105806 + 1.03796i
\(640\) 0 0
\(641\) 3.58090 + 6.20231i 0.141437 + 0.244976i 0.928038 0.372485i \(-0.121494\pi\)
−0.786601 + 0.617462i \(0.788161\pi\)
\(642\) 0 0
\(643\) −3.53154 + 6.11680i −0.139270 + 0.241223i −0.927221 0.374516i \(-0.877809\pi\)
0.787950 + 0.615739i \(0.211142\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.4037 1.03804 0.519019 0.854763i \(-0.326297\pi\)
0.519019 + 0.854763i \(0.326297\pi\)
\(648\) 0 0
\(649\) 28.0723 1.10193
\(650\) 0 0
\(651\) −3.15033 3.48779i −0.123471 0.136697i
\(652\) 0 0
\(653\) 3.85985 6.68545i 0.151048 0.261622i −0.780565 0.625074i \(-0.785069\pi\)
0.931613 + 0.363452i \(0.118402\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −0.695628 + 6.82413i −0.0271390 + 0.266235i
\(658\) 0 0
\(659\) 11.1426 + 19.2996i 0.434055 + 0.751806i 0.997218 0.0745403i \(-0.0237489\pi\)
−0.563163 + 0.826346i \(0.690416\pi\)
\(660\) 0 0
\(661\) −16.0544 + 27.8070i −0.624442 + 1.08157i 0.364207 + 0.931318i \(0.381340\pi\)
−0.988648 + 0.150247i \(0.951993\pi\)
\(662\) 0 0
\(663\) 18.2837 3.91629i 0.710082 0.152096i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −48.0680 −1.86120
\(668\) 0 0
\(669\) −5.99133 + 18.5382i −0.231638 + 0.716729i
\(670\) 0 0
\(671\) 5.81261 10.0677i 0.224393 0.388661i
\(672\) 0 0
\(673\) −3.91580 6.78237i −0.150943 0.261441i 0.780631 0.624992i \(-0.214898\pi\)
−0.931574 + 0.363551i \(0.881564\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.00171 15.5914i −0.345964 0.599227i 0.639565 0.768737i \(-0.279115\pi\)
−0.985528 + 0.169511i \(0.945781\pi\)
\(678\) 0 0
\(679\) 23.3269 40.4034i 0.895205 1.55054i
\(680\) 0 0
\(681\) −5.40588 + 16.7267i −0.207154 + 0.640970i
\(682\) 0 0
\(683\) −30.3356 −1.16076 −0.580379 0.814347i \(-0.697096\pi\)
−0.580379 + 0.814347i \(0.697096\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 4.01148 0.859238i 0.153047 0.0327820i
\(688\) 0 0
\(689\) −3.23419 + 5.60179i −0.123213 + 0.213411i
\(690\) 0 0
\(691\) −14.0575 24.3482i −0.534771 0.926251i −0.999174 0.0406267i \(-0.987065\pi\)
0.464403 0.885624i \(-0.346269\pi\)
\(692\) 0 0
\(693\) −48.5580 35.0475i −1.84457 1.33134i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.685255 + 1.18690i −0.0259559 + 0.0449569i
\(698\) 0 0
\(699\) 28.0762 + 31.0837i 1.06194 + 1.17569i
\(700\) 0 0
\(701\) 28.4378 1.07408 0.537041 0.843556i \(-0.319542\pi\)
0.537041 + 0.843556i \(0.319542\pi\)
\(702\) 0 0
\(703\) −14.1096 −0.532153
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −19.8871 + 34.4455i −0.747932 + 1.29546i
\(708\) 0 0
\(709\) −15.4500 26.7602i −0.580237 1.00500i −0.995451 0.0952767i \(-0.969626\pi\)
0.415213 0.909724i \(-0.363707\pi\)
\(710\) 0 0
\(711\) −34.6047 + 15.5371i −1.29778 + 0.582688i
\(712\) 0 0
\(713\) −2.11713 3.66698i −0.0792873 0.137330i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.04103 0.651374i 0.113569 0.0243260i
\(718\) 0 0
\(719\) −21.2462 −0.792349 −0.396175 0.918175i \(-0.629662\pi\)
−0.396175 + 0.918175i \(0.629662\pi\)
\(720\) 0 0
\(721\) 82.0011 3.05388
\(722\) 0 0
\(723\) −7.91881 + 24.5022i −0.294504 + 0.911245i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 12.4910 + 21.6351i 0.463267 + 0.802402i 0.999121 0.0419082i \(-0.0133437\pi\)
−0.535854 + 0.844310i \(0.680010\pi\)
\(728\) 0 0
\(729\) 8.10165 25.7558i 0.300061 0.953920i
\(730\) 0 0
\(731\) −0.301961 0.523013i −0.0111684 0.0193443i
\(732\) 0 0
\(733\) −5.23384 + 9.06528i −0.193316 + 0.334834i −0.946347 0.323151i \(-0.895258\pi\)
0.753031 + 0.657985i \(0.228591\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −35.8254 −1.31964
\(738\) 0 0
\(739\) 35.6244 1.31046 0.655232 0.755428i \(-0.272571\pi\)
0.655232 + 0.755428i \(0.272571\pi\)
\(740\) 0 0
\(741\) −5.89792 + 1.26331i −0.216666 + 0.0464087i
\(742\) 0 0
\(743\) 5.02770 8.70823i 0.184448 0.319474i −0.758942 0.651158i \(-0.774283\pi\)
0.943391 + 0.331684i \(0.107617\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 38.2102 17.1560i 1.39804 0.627704i
\(748\) 0 0
\(749\) −28.3914 49.1753i −1.03740 1.79683i
\(750\) 0 0
\(751\) −8.86740 + 15.3588i −0.323576 + 0.560450i −0.981223 0.192876i \(-0.938219\pi\)
0.657647 + 0.753326i \(0.271552\pi\)
\(752\) 0 0
\(753\) −18.3780 20.3466i −0.669731 0.741472i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 6.42042 0.233354 0.116677 0.993170i \(-0.462776\pi\)
0.116677 + 0.993170i \(0.462776\pi\)
\(758\) 0 0
\(759\) −36.1635 40.0373i −1.31265 1.45326i
\(760\) 0 0
\(761\) −12.6955 + 21.9892i −0.460211 + 0.797108i −0.998971 0.0453506i \(-0.985559\pi\)
0.538760 + 0.842459i \(0.318893\pi\)
\(762\) 0 0
\(763\) 5.56234 + 9.63425i 0.201370 + 0.348783i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.42080 + 9.38910i 0.195734 + 0.339021i
\(768\) 0 0
\(769\) 7.40088 12.8187i 0.266883 0.462254i −0.701173 0.712992i \(-0.747340\pi\)
0.968055 + 0.250737i \(0.0806731\pi\)
\(770\) 0 0
\(771\) −37.2527 + 7.97935i −1.34162 + 0.287369i
\(772\) 0 0
\(773\) −7.48046 −0.269053 −0.134527 0.990910i \(-0.542951\pi\)
−0.134527 + 0.990910i \(0.542951\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 16.6375 51.4794i 0.596868 1.84681i
\(778\) 0 0
\(779\) 0.221048 0.382866i 0.00791985 0.0137176i
\(780\) 0 0
\(781\) −17.5639 30.4215i −0.628484 1.08857i
\(782\) 0 0
\(783\) 29.3308 + 12.8940i 1.04820 + 0.460795i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −26.1587 + 45.3082i −0.932457 + 1.61506i −0.153350 + 0.988172i \(0.549006\pi\)
−0.779107 + 0.626891i \(0.784327\pi\)
\(788\) 0 0
\(789\) 8.07141 24.9743i 0.287350 0.889110i
\(790\) 0 0
\(791\) 14.1575 0.503384
\(792\) 0 0
\(793\) 4.48969 0.159434
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −26.8679 + 46.5366i −0.951711 + 1.64841i −0.209991 + 0.977703i \(0.567343\pi\)
−0.741721 + 0.670709i \(0.765990\pi\)
\(798\) 0 0
\(799\) −13.3957 23.2019i −0.473904 0.820826i
\(800\) 0 0
\(801\) 3.15116 30.9130i 0.111341 1.09226i
\(802\) 0 0
\(803\) −4.56812 7.91222i −0.161205 0.279216i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −9.27797 10.2718i −0.326600 0.361585i
\(808\) 0 0
\(809\) −26.1908 −0.920819 −0.460410 0.887707i \(-0.652297\pi\)
−0.460410 + 0.887707i \(0.652297\pi\)
\(810\) 0 0
\(811\) −52.3506 −1.83828 −0.919140 0.393931i \(-0.871115\pi\)
−0.919140 + 0.393931i \(0.871115\pi\)
\(812\) 0 0
\(813\) 4.61199 + 5.10602i 0.161750 + 0.179076i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.0974059 + 0.168712i 0.00340780 + 0.00590249i
\(818\) 0 0
\(819\) 2.34540 23.0085i 0.0819550 0.803981i
\(820\) 0 0
\(821\) 2.42932 + 4.20771i 0.0847839 + 0.146850i 0.905299 0.424775i \(-0.139647\pi\)
−0.820515 + 0.571625i \(0.806313\pi\)
\(822\) 0 0
\(823\) 0.588886 1.01998i 0.0205273 0.0355543i −0.855579 0.517672i \(-0.826799\pi\)
0.876107 + 0.482117i \(0.160132\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −32.7188 −1.13775 −0.568873 0.822426i \(-0.692620\pi\)
−0.568873 + 0.822426i \(0.692620\pi\)
\(828\) 0 0
\(829\) −5.99342 −0.208160 −0.104080 0.994569i \(-0.533190\pi\)
−0.104080 + 0.994569i \(0.533190\pi\)
\(830\) 0 0
\(831\) −9.70173 + 30.0188i −0.336549 + 1.04134i
\(832\) 0 0
\(833\) −62.8125 + 108.794i −2.17632 + 3.76951i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0.308210 + 2.80548i 0.0106533 + 0.0969716i
\(838\) 0 0
\(839\) 19.1933 + 33.2439i 0.662628 + 1.14771i 0.979923 + 0.199378i \(0.0638922\pi\)
−0.317295 + 0.948327i \(0.602774\pi\)
\(840\) 0 0
\(841\) −4.51023 + 7.81195i −0.155525 + 0.269378i
\(842\) 0 0
\(843\) −11.8295 + 36.6025i −0.407429 + 1.26066i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 24.8083 0.852425
\(848\) 0 0
\(849\) 19.7355 4.22724i 0.677320 0.145079i
\(850\) 0 0
\(851\) 24.3705 42.2109i 0.835410 1.44697i
\(852\) 0 0
\(853\) 10.8595 + 18.8092i 0.371822 + 0.644015i 0.989846 0.142145i \(-0.0453998\pi\)
−0.618024 + 0.786159i \(0.712067\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.29983 3.98342i −0.0785607 0.136071i 0.824068 0.566490i \(-0.191699\pi\)
−0.902629 + 0.430419i \(0.858366\pi\)
\(858\) 0 0
\(859\) −7.45896 + 12.9193i −0.254496 + 0.440801i −0.964759 0.263137i \(-0.915243\pi\)
0.710262 + 0.703937i \(0.248576\pi\)
\(860\) 0 0
\(861\) 1.13625 + 1.25796i 0.0387233 + 0.0428713i
\(862\) 0 0
\(863\) −11.4089 −0.388362 −0.194181 0.980966i \(-0.562205\pi\)
−0.194181 + 0.980966i \(0.562205\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 37.0822 + 41.0544i 1.25938 + 1.39428i
\(868\) 0 0
\(869\) 25.2615 43.7541i 0.856937 1.48426i
\(870\) 0 0
\(871\) −6.91793 11.9822i −0.234405 0.406001i
\(872\) 0 0
\(873\) −25.5582 + 11.4754i −0.865015 + 0.388382i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.9642 24.1867i 0.471537 0.816727i −0.527932 0.849286i \(-0.677033\pi\)
0.999470 + 0.0325596i \(0.0103659\pi\)
\(878\) 0 0
\(879\) 10.4719 2.24304i 0.353210 0.0756557i
\(880\) 0 0
\(881\) −42.3270 −1.42603 −0.713017 0.701147i \(-0.752672\pi\)
−0.713017 + 0.701147i \(0.752672\pi\)
\(882\) 0 0
\(883\) 20.3895 0.686161 0.343081 0.939306i \(-0.388530\pi\)
0.343081 + 0.939306i \(0.388530\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 19.7725 34.2471i 0.663897 1.14990i −0.315686 0.948864i \(-0.602235\pi\)
0.979583 0.201040i \(-0.0644321\pi\)
\(888\) 0 0
\(889\) 17.5383 + 30.3772i 0.588215 + 1.01882i
\(890\) 0 0
\(891\) 11.3269 + 34.1312i 0.379466 + 1.14344i
\(892\) 0 0
\(893\) 4.32113 + 7.48442i 0.144601 + 0.250457i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 6.40770 19.8265i 0.213947 0.661989i
\(898\) 0 0
\(899\) −3.34919 −0.111702
\(900\) 0 0
\(901\) −29.3236 −0.976911
\(902\) 0 0
\(903\) −0.730411 + 0.156450i −0.0243066 + 0.00520634i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 18.4798 + 32.0080i 0.613613 + 1.06281i 0.990626 + 0.136601i \(0.0436179\pi\)
−0.377013 + 0.926208i \(0.623049\pi\)
\(908\) 0 0
\(909\) 21.7894 9.78321i 0.722709 0.324489i
\(910\) 0 0
\(911\) 4.92335 + 8.52749i 0.163118 + 0.282528i 0.935985 0.352039i \(-0.114512\pi\)
−0.772867 + 0.634568i \(0.781178\pi\)
\(912\) 0 0
\(913\) −27.8935 + 48.3130i −0.923140 + 1.59893i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −41.7955 −1.38021
\(918\) 0 0
\(919\) −8.42079 −0.277776 −0.138888 0.990308i \(-0.544353\pi\)
−0.138888 + 0.990308i \(0.544353\pi\)
\(920\) 0 0
\(921\) 15.0779 + 16.6931i 0.496835 + 0.550055i
\(922\) 0 0
\(923\) 6.78321 11.7489i 0.223272 0.386718i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −39.9286 28.8191i −1.31143 0.946543i
\(928\) 0 0
\(929\) 14.1938 + 24.5843i 0.465683 + 0.806586i 0.999232 0.0391829i \(-0.0124755\pi\)
−0.533549 + 0.845769i \(0.679142\pi\)
\(930\) 0 0
\(931\) 20.2619 35.0946i 0.664057 1.15018i
\(932\) 0 0
\(933\) 37.5845 8.05042i 1.23046 0.263559i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.69342 0.153327 0.0766637 0.997057i \(-0.475573\pi\)
0.0766637 + 0.997057i \(0.475573\pi\)
\(938\) 0 0
\(939\) 8.89111 27.5106i 0.290150 0.897776i
\(940\) 0 0
\(941\) −9.51278 + 16.4766i −0.310108 + 0.537123i −0.978385 0.206789i \(-0.933699\pi\)
0.668278 + 0.743912i \(0.267032\pi\)
\(942\) 0 0
\(943\) 0.763600 + 1.32259i 0.0248662 + 0.0430696i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.40843 11.0997i −0.208246 0.360693i 0.742916 0.669385i \(-0.233442\pi\)
−0.951162 + 0.308692i \(0.900109\pi\)
\(948\) 0 0
\(949\) 1.76422 3.05572i 0.0572690 0.0991928i
\(950\) 0 0
\(951\) 17.5548 54.3175i 0.569253 1.76137i
\(952\) 0 0
\(953\) 45.9701 1.48912 0.744560 0.667556i \(-0.232660\pi\)
0.744560 + 0.667556i \(0.232660\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −41.7278 + 8.93788i −1.34887 + 0.288921i
\(958\) 0 0
\(959\) 6.97230 12.0764i 0.225147 0.389967i
\(960\) 0 0
\(961\) 15.3525 + 26.5913i 0.495242 + 0.857783i
\(962\) 0 0
\(963\) −3.45799 + 33.9229i −0.111432 + 1.09315i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.57354 4.45751i 0.0827596 0.143344i −0.821675 0.569957i \(-0.806960\pi\)
0.904434 + 0.426613i \(0.140293\pi\)
\(968\) 0 0
\(969\) −18.3285 20.2918i −0.588796 0.651867i
\(970\) 0 0
\(971\) −10.3875 −0.333352 −0.166676 0.986012i \(-0.553303\pi\)
−0.166676 + 0.986012i \(0.553303\pi\)
\(972\) 0 0
\(973\) −19.5632 −0.627169
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.7811 34.2618i 0.632852 1.09613i −0.354113 0.935202i \(-0.615217\pi\)
0.986966 0.160930i \(-0.0514493\pi\)
\(978\) 0 0
\(979\) 20.6933 + 35.8419i 0.661362 + 1.14551i
\(980\) 0 0
\(981\) 0.677476 6.64606i 0.0216301 0.212192i
\(982\) 0 0
\(983\) 10.2360 + 17.7292i 0.326477 + 0.565474i 0.981810 0.189865i \(-0.0608052\pi\)
−0.655333 + 0.755340i \(0.727472\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −32.4026 + 6.94047i −1.03139 + 0.220918i
\(988\) 0 0
\(989\) −0.672970 −0.0213992
\(990\) 0 0
\(991\) −19.2415 −0.611228 −0.305614 0.952156i \(-0.598862\pi\)
−0.305614 + 0.952156i \(0.598862\pi\)
\(992\) 0 0
\(993\) 15.2693 47.2459i 0.484557 1.49930i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −11.6193 20.1251i −0.367986 0.637370i 0.621265 0.783601i \(-0.286619\pi\)
−0.989250 + 0.146231i \(0.953286\pi\)
\(998\) 0 0
\(999\) −26.1936 + 19.2196i −0.828730 + 0.608080i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.i.e.301.3 yes 8
3.2 odd 2 2700.2.i.d.901.1 8
5.2 odd 4 900.2.s.d.49.7 16
5.3 odd 4 900.2.s.d.49.2 16
5.4 even 2 900.2.i.d.301.2 8
9.2 odd 6 2700.2.i.d.1801.1 8
9.4 even 3 8100.2.a.z.1.4 4
9.5 odd 6 8100.2.a.ba.1.4 4
9.7 even 3 inner 900.2.i.e.601.3 yes 8
15.2 even 4 2700.2.s.d.1549.8 16
15.8 even 4 2700.2.s.d.1549.1 16
15.14 odd 2 2700.2.i.e.901.4 8
45.2 even 12 2700.2.s.d.2449.1 16
45.4 even 6 8100.2.a.x.1.1 4
45.7 odd 12 900.2.s.d.349.2 16
45.13 odd 12 8100.2.d.q.649.1 8
45.14 odd 6 8100.2.a.y.1.1 4
45.22 odd 12 8100.2.d.q.649.8 8
45.23 even 12 8100.2.d.s.649.1 8
45.29 odd 6 2700.2.i.e.1801.4 8
45.32 even 12 8100.2.d.s.649.8 8
45.34 even 6 900.2.i.d.601.2 yes 8
45.38 even 12 2700.2.s.d.2449.8 16
45.43 odd 12 900.2.s.d.349.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.2.i.d.301.2 8 5.4 even 2
900.2.i.d.601.2 yes 8 45.34 even 6
900.2.i.e.301.3 yes 8 1.1 even 1 trivial
900.2.i.e.601.3 yes 8 9.7 even 3 inner
900.2.s.d.49.2 16 5.3 odd 4
900.2.s.d.49.7 16 5.2 odd 4
900.2.s.d.349.2 16 45.7 odd 12
900.2.s.d.349.7 16 45.43 odd 12
2700.2.i.d.901.1 8 3.2 odd 2
2700.2.i.d.1801.1 8 9.2 odd 6
2700.2.i.e.901.4 8 15.14 odd 2
2700.2.i.e.1801.4 8 45.29 odd 6
2700.2.s.d.1549.1 16 15.8 even 4
2700.2.s.d.1549.8 16 15.2 even 4
2700.2.s.d.2449.1 16 45.2 even 12
2700.2.s.d.2449.8 16 45.38 even 12
8100.2.a.x.1.1 4 45.4 even 6
8100.2.a.y.1.1 4 45.14 odd 6
8100.2.a.z.1.4 4 9.4 even 3
8100.2.a.ba.1.4 4 9.5 odd 6
8100.2.d.q.649.1 8 45.13 odd 12
8100.2.d.q.649.8 8 45.22 odd 12
8100.2.d.s.649.1 8 45.23 even 12
8100.2.d.s.649.8 8 45.32 even 12