Properties

Label 27.9.b.c.26.2
Level $27$
Weight $9$
Character 27.26
Analytic conductor $10.999$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,9,Mod(26,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.26"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 27.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.9992224717\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-30}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 30 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.2
Root \(5.47723i\) of defining polynomial
Character \(\chi\) \(=\) 27.26
Dual form 27.9.b.c.26.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.4317i q^{2} -14.0000 q^{4} +427.224i q^{5} -679.000 q^{7} +3976.47i q^{8} -7020.00 q^{10} +13375.4i q^{11} -30817.0 q^{13} -11157.1i q^{14} -68924.0 q^{16} -128266. i q^{17} -138391. q^{19} -5981.13i q^{20} -219780. q^{22} +303690. i q^{23} +208105. q^{25} -506375. i q^{26} +9506.00 q^{28} +1.32669e6i q^{29} +352214. q^{31} -114562. i q^{32} +2.10762e6 q^{34} -290085. i q^{35} +1.18999e6 q^{37} -2.27400e6i q^{38} -1.69884e6 q^{40} -1.09402e6i q^{41} +6.24609e6 q^{43} -187255. i q^{44} -4.99014e6 q^{46} -2399.02i q^{47} -5.30376e6 q^{49} +3.41951e6i q^{50} +431438. q^{52} +1.25779e7i q^{53} -5.71428e6 q^{55} -2.70002e6i q^{56} -2.17998e7 q^{58} -1.05361e7i q^{59} +1.65804e7 q^{61} +5.78747e6i q^{62} -1.57621e7 q^{64} -1.31657e7i q^{65} +7.66715e6 q^{67} +1.79572e6i q^{68} +4.76658e6 q^{70} -2.32211e7i q^{71} +2.49496e7 q^{73} +1.95535e7i q^{74} +1.93747e6 q^{76} -9.08189e6i q^{77} +4.16851e7 q^{79} -2.94460e7i q^{80} +1.79766e7 q^{82} +4.47280e7i q^{83} +5.47981e7 q^{85} +1.02634e8i q^{86} -5.31868e7 q^{88} -740707. i q^{89} +2.09247e7 q^{91} -4.25166e6i q^{92} +39420.0 q^{94} -5.91239e7i q^{95} -1.05926e8 q^{97} -8.71497e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 28 q^{4} - 1358 q^{7} - 14040 q^{10} - 61634 q^{13} - 137848 q^{16} - 276782 q^{19} - 439560 q^{22} + 416210 q^{25} + 19012 q^{28} + 704428 q^{31} + 4215240 q^{34} + 2379982 q^{37} - 3397680 q^{40}+ \cdots - 211852178 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.4317i 1.02698i 0.858096 + 0.513490i \(0.171648\pi\)
−0.858096 + 0.513490i \(0.828352\pi\)
\(3\) 0 0
\(4\) −14.0000 −0.0546875
\(5\) 427.224i 0.683558i 0.939780 + 0.341779i \(0.111029\pi\)
−0.939780 + 0.341779i \(0.888971\pi\)
\(6\) 0 0
\(7\) −679.000 −0.282799 −0.141399 0.989953i \(-0.545160\pi\)
−0.141399 + 0.989953i \(0.545160\pi\)
\(8\) 3976.47i 0.970817i
\(9\) 0 0
\(10\) −7020.00 −0.702000
\(11\) 13375.4i 0.913557i 0.889581 + 0.456778i \(0.150997\pi\)
−0.889581 + 0.456778i \(0.849003\pi\)
\(12\) 0 0
\(13\) −30817.0 −1.07899 −0.539494 0.841989i \(-0.681385\pi\)
−0.539494 + 0.841989i \(0.681385\pi\)
\(14\) − 11157.1i − 0.290429i
\(15\) 0 0
\(16\) −68924.0 −1.05170
\(17\) − 128266.i − 1.53573i −0.640612 0.767865i \(-0.721319\pi\)
0.640612 0.767865i \(-0.278681\pi\)
\(18\) 0 0
\(19\) −138391. −1.06192 −0.530962 0.847396i \(-0.678169\pi\)
−0.530962 + 0.847396i \(0.678169\pi\)
\(20\) − 5981.13i − 0.0373821i
\(21\) 0 0
\(22\) −219780. −0.938204
\(23\) 303690.i 1.08522i 0.839983 + 0.542612i \(0.182565\pi\)
−0.839983 + 0.542612i \(0.817435\pi\)
\(24\) 0 0
\(25\) 208105. 0.532749
\(26\) − 506375.i − 1.10810i
\(27\) 0 0
\(28\) 9506.00 0.0154656
\(29\) 1.32669e6i 1.87577i 0.346952 + 0.937883i \(0.387217\pi\)
−0.346952 + 0.937883i \(0.612783\pi\)
\(30\) 0 0
\(31\) 352214. 0.381382 0.190691 0.981650i \(-0.438927\pi\)
0.190691 + 0.981650i \(0.438927\pi\)
\(32\) − 114562.i − 0.109255i
\(33\) 0 0
\(34\) 2.10762e6 1.57716
\(35\) − 290085.i − 0.193309i
\(36\) 0 0
\(37\) 1.18999e6 0.634946 0.317473 0.948267i \(-0.397166\pi\)
0.317473 + 0.948267i \(0.397166\pi\)
\(38\) − 2.27400e6i − 1.09057i
\(39\) 0 0
\(40\) −1.69884e6 −0.663609
\(41\) − 1.09402e6i − 0.387160i −0.981085 0.193580i \(-0.937990\pi\)
0.981085 0.193580i \(-0.0620099\pi\)
\(42\) 0 0
\(43\) 6.24609e6 1.82698 0.913491 0.406860i \(-0.133376\pi\)
0.913491 + 0.406860i \(0.133376\pi\)
\(44\) − 187255.i − 0.0499601i
\(45\) 0 0
\(46\) −4.99014e6 −1.11450
\(47\) − 2399.02i 0 0.000491636i −1.00000 0.000245818i \(-0.999922\pi\)
1.00000 0.000245818i \(-7.82462e-5\pi\)
\(48\) 0 0
\(49\) −5.30376e6 −0.920025
\(50\) 3.41951e6i 0.547122i
\(51\) 0 0
\(52\) 431438. 0.0590072
\(53\) 1.25779e7i 1.59406i 0.603938 + 0.797031i \(0.293598\pi\)
−0.603938 + 0.797031i \(0.706402\pi\)
\(54\) 0 0
\(55\) −5.71428e6 −0.624469
\(56\) − 2.70002e6i − 0.274546i
\(57\) 0 0
\(58\) −2.17998e7 −1.92637
\(59\) − 1.05361e7i − 0.869504i −0.900550 0.434752i \(-0.856836\pi\)
0.900550 0.434752i \(-0.143164\pi\)
\(60\) 0 0
\(61\) 1.65804e7 1.19750 0.598750 0.800936i \(-0.295664\pi\)
0.598750 + 0.800936i \(0.295664\pi\)
\(62\) 5.78747e6i 0.391671i
\(63\) 0 0
\(64\) −1.57621e7 −0.939495
\(65\) − 1.31657e7i − 0.737551i
\(66\) 0 0
\(67\) 7.66715e6 0.380483 0.190241 0.981737i \(-0.439073\pi\)
0.190241 + 0.981737i \(0.439073\pi\)
\(68\) 1.79572e6i 0.0839852i
\(69\) 0 0
\(70\) 4.76658e6 0.198525
\(71\) − 2.32211e7i − 0.913797i −0.889519 0.456898i \(-0.848960\pi\)
0.889519 0.456898i \(-0.151040\pi\)
\(72\) 0 0
\(73\) 2.49496e7 0.878563 0.439281 0.898350i \(-0.355233\pi\)
0.439281 + 0.898350i \(0.355233\pi\)
\(74\) 1.95535e7i 0.652077i
\(75\) 0 0
\(76\) 1.93747e6 0.0580740
\(77\) − 9.08189e6i − 0.258353i
\(78\) 0 0
\(79\) 4.16851e7 1.07022 0.535109 0.844783i \(-0.320270\pi\)
0.535109 + 0.844783i \(0.320270\pi\)
\(80\) − 2.94460e7i − 0.718895i
\(81\) 0 0
\(82\) 1.79766e7 0.397605
\(83\) 4.47280e7i 0.942469i 0.882008 + 0.471235i \(0.156191\pi\)
−0.882008 + 0.471235i \(0.843809\pi\)
\(84\) 0 0
\(85\) 5.47981e7 1.04976
\(86\) 1.02634e8i 1.87627i
\(87\) 0 0
\(88\) −5.31868e7 −0.886896
\(89\) − 740707.i − 0.0118056i −0.999983 0.00590278i \(-0.998121\pi\)
0.999983 0.00590278i \(-0.00187892\pi\)
\(90\) 0 0
\(91\) 2.09247e7 0.305137
\(92\) − 4.25166e6i − 0.0593482i
\(93\) 0 0
\(94\) 39420.0 0.000504900 0
\(95\) − 5.91239e7i − 0.725886i
\(96\) 0 0
\(97\) −1.05926e8 −1.19651 −0.598255 0.801306i \(-0.704139\pi\)
−0.598255 + 0.801306i \(0.704139\pi\)
\(98\) − 8.71497e7i − 0.944847i
\(99\) 0 0
\(100\) −2.91347e6 −0.0291347
\(101\) − 2.09923e7i − 0.201732i −0.994900 0.100866i \(-0.967839\pi\)
0.994900 0.100866i \(-0.0321614\pi\)
\(102\) 0 0
\(103\) 2.58536e7 0.229706 0.114853 0.993383i \(-0.463360\pi\)
0.114853 + 0.993383i \(0.463360\pi\)
\(104\) − 1.22543e8i − 1.04750i
\(105\) 0 0
\(106\) −2.06676e8 −1.63707
\(107\) 1.92732e8i 1.47035i 0.677879 + 0.735173i \(0.262899\pi\)
−0.677879 + 0.735173i \(0.737101\pi\)
\(108\) 0 0
\(109\) −1.09904e8 −0.778585 −0.389292 0.921114i \(-0.627280\pi\)
−0.389292 + 0.921114i \(0.627280\pi\)
\(110\) − 9.38952e7i − 0.641317i
\(111\) 0 0
\(112\) 4.67994e7 0.297419
\(113\) − 2.68827e7i − 0.164877i −0.996596 0.0824384i \(-0.973729\pi\)
0.996596 0.0824384i \(-0.0262708\pi\)
\(114\) 0 0
\(115\) −1.29744e8 −0.741813
\(116\) − 1.85737e7i − 0.102581i
\(117\) 0 0
\(118\) 1.73126e8 0.892963
\(119\) 8.70924e7i 0.434303i
\(120\) 0 0
\(121\) 3.54580e7 0.165414
\(122\) 2.72444e8i 1.22981i
\(123\) 0 0
\(124\) −4.93100e6 −0.0208568
\(125\) 2.55792e8i 1.04772i
\(126\) 0 0
\(127\) −2.16766e7 −0.0833253 −0.0416627 0.999132i \(-0.513265\pi\)
−0.0416627 + 0.999132i \(0.513265\pi\)
\(128\) − 2.88326e8i − 1.07410i
\(129\) 0 0
\(130\) 2.16335e8 0.757450
\(131\) − 1.35791e8i − 0.461088i −0.973062 0.230544i \(-0.925949\pi\)
0.973062 0.230544i \(-0.0740506\pi\)
\(132\) 0 0
\(133\) 9.39675e7 0.300311
\(134\) 1.25984e8i 0.390748i
\(135\) 0 0
\(136\) 5.10044e8 1.49091
\(137\) − 3.29294e6i − 0.00934763i −0.999989 0.00467382i \(-0.998512\pi\)
0.999989 0.00467382i \(-0.00148773\pi\)
\(138\) 0 0
\(139\) 8.20959e7 0.219919 0.109959 0.993936i \(-0.464928\pi\)
0.109959 + 0.993936i \(0.464928\pi\)
\(140\) 4.06119e6i 0.0105716i
\(141\) 0 0
\(142\) 3.81562e8 0.938451
\(143\) − 4.12189e8i − 0.985718i
\(144\) 0 0
\(145\) −5.66795e8 −1.28219
\(146\) 4.09964e8i 0.902266i
\(147\) 0 0
\(148\) −1.66599e7 −0.0347236
\(149\) − 7.18143e8i − 1.45702i −0.685034 0.728511i \(-0.740213\pi\)
0.685034 0.728511i \(-0.259787\pi\)
\(150\) 0 0
\(151\) 4.99935e8 0.961625 0.480812 0.876824i \(-0.340342\pi\)
0.480812 + 0.876824i \(0.340342\pi\)
\(152\) − 5.50307e8i − 1.03093i
\(153\) 0 0
\(154\) 1.49231e8 0.265323
\(155\) 1.50474e8i 0.260696i
\(156\) 0 0
\(157\) −8.36039e8 −1.37603 −0.688015 0.725696i \(-0.741518\pi\)
−0.688015 + 0.725696i \(0.741518\pi\)
\(158\) 6.84956e8i 1.09909i
\(159\) 0 0
\(160\) 4.89434e7 0.0746818
\(161\) − 2.06206e8i − 0.306900i
\(162\) 0 0
\(163\) −7.36451e8 −1.04326 −0.521631 0.853171i \(-0.674676\pi\)
−0.521631 + 0.853171i \(0.674676\pi\)
\(164\) 1.53163e7i 0.0211728i
\(165\) 0 0
\(166\) −7.34956e8 −0.967897
\(167\) 1.27612e9i 1.64069i 0.571872 + 0.820343i \(0.306218\pi\)
−0.571872 + 0.820343i \(0.693782\pi\)
\(168\) 0 0
\(169\) 1.33957e8 0.164217
\(170\) 9.00425e8i 1.07808i
\(171\) 0 0
\(172\) −8.74452e7 −0.0999130
\(173\) 4.02601e8i 0.449460i 0.974421 + 0.224730i \(0.0721500\pi\)
−0.974421 + 0.224730i \(0.927850\pi\)
\(174\) 0 0
\(175\) −1.41303e8 −0.150661
\(176\) − 9.21885e8i − 0.960785i
\(177\) 0 0
\(178\) 1.21711e7 0.0121241
\(179\) − 1.44429e9i − 1.40683i −0.710780 0.703414i \(-0.751658\pi\)
0.710780 0.703414i \(-0.248342\pi\)
\(180\) 0 0
\(181\) −1.32830e9 −1.23760 −0.618800 0.785548i \(-0.712381\pi\)
−0.618800 + 0.785548i \(0.712381\pi\)
\(182\) 3.43829e8i 0.313369i
\(183\) 0 0
\(184\) −1.20761e9 −1.05355
\(185\) 5.08392e8i 0.434022i
\(186\) 0 0
\(187\) 1.71560e9 1.40298
\(188\) 33586.3i 0 2.68863e-5i
\(189\) 0 0
\(190\) 9.71505e8 0.745471
\(191\) − 1.90148e9i − 1.42876i −0.699759 0.714379i \(-0.746709\pi\)
0.699759 0.714379i \(-0.253291\pi\)
\(192\) 0 0
\(193\) 7.81373e8 0.563156 0.281578 0.959538i \(-0.409142\pi\)
0.281578 + 0.959538i \(0.409142\pi\)
\(194\) − 1.74054e9i − 1.22879i
\(195\) 0 0
\(196\) 7.42526e7 0.0503139
\(197\) 2.18762e9i 1.45247i 0.687448 + 0.726234i \(0.258731\pi\)
−0.687448 + 0.726234i \(0.741269\pi\)
\(198\) 0 0
\(199\) 2.94513e8 0.187798 0.0938991 0.995582i \(-0.470067\pi\)
0.0938991 + 0.995582i \(0.470067\pi\)
\(200\) 8.27522e8i 0.517202i
\(201\) 0 0
\(202\) 3.44939e8 0.207175
\(203\) − 9.00825e8i − 0.530464i
\(204\) 0 0
\(205\) 4.67392e8 0.264646
\(206\) 4.24817e8i 0.235903i
\(207\) 0 0
\(208\) 2.12403e9 1.13477
\(209\) − 1.85103e9i − 0.970128i
\(210\) 0 0
\(211\) 3.34050e9 1.68532 0.842659 0.538447i \(-0.180989\pi\)
0.842659 + 0.538447i \(0.180989\pi\)
\(212\) − 1.76091e8i − 0.0871753i
\(213\) 0 0
\(214\) −3.16692e9 −1.51002
\(215\) 2.66848e9i 1.24885i
\(216\) 0 0
\(217\) −2.39153e8 −0.107854
\(218\) − 1.80590e9i − 0.799591i
\(219\) 0 0
\(220\) 7.99999e7 0.0341506
\(221\) 3.95276e9i 1.65704i
\(222\) 0 0
\(223\) 2.70744e9 1.09481 0.547405 0.836868i \(-0.315616\pi\)
0.547405 + 0.836868i \(0.315616\pi\)
\(224\) 7.77874e7i 0.0308970i
\(225\) 0 0
\(226\) 4.41728e8 0.169325
\(227\) 5.22445e9i 1.96760i 0.179267 + 0.983800i \(0.442627\pi\)
−0.179267 + 0.983800i \(0.557373\pi\)
\(228\) 0 0
\(229\) −2.18619e8 −0.0794960 −0.0397480 0.999210i \(-0.512656\pi\)
−0.0397480 + 0.999210i \(0.512656\pi\)
\(230\) − 2.13191e9i − 0.761827i
\(231\) 0 0
\(232\) −5.27555e9 −1.82103
\(233\) − 4.81293e9i − 1.63300i −0.577346 0.816499i \(-0.695912\pi\)
0.577346 0.816499i \(-0.304088\pi\)
\(234\) 0 0
\(235\) 1.02492e6 0.000336061 0
\(236\) 1.47505e8i 0.0475510i
\(237\) 0 0
\(238\) −1.43107e9 −0.446020
\(239\) 1.14772e8i 0.0351759i 0.999845 + 0.0175880i \(0.00559871\pi\)
−0.999845 + 0.0175880i \(0.994401\pi\)
\(240\) 0 0
\(241\) −4.11453e9 −1.21970 −0.609848 0.792518i \(-0.708770\pi\)
−0.609848 + 0.792518i \(0.708770\pi\)
\(242\) 5.82634e8i 0.169877i
\(243\) 0 0
\(244\) −2.32126e8 −0.0654883
\(245\) − 2.26589e9i − 0.628890i
\(246\) 0 0
\(247\) 4.26480e9 1.14580
\(248\) 1.40057e9i 0.370252i
\(249\) 0 0
\(250\) −4.20308e9 −1.07599
\(251\) − 5.13492e9i − 1.29371i −0.762611 0.646857i \(-0.776083\pi\)
0.762611 0.646857i \(-0.223917\pi\)
\(252\) 0 0
\(253\) −4.06197e9 −0.991414
\(254\) − 3.56184e8i − 0.0855734i
\(255\) 0 0
\(256\) 7.02574e8 0.163581
\(257\) − 2.59521e9i − 0.594895i −0.954738 0.297448i \(-0.903865\pi\)
0.954738 0.297448i \(-0.0961354\pi\)
\(258\) 0 0
\(259\) −8.08004e8 −0.179562
\(260\) 1.84320e8i 0.0403348i
\(261\) 0 0
\(262\) 2.23127e9 0.473529
\(263\) − 4.85698e8i − 0.101518i −0.998711 0.0507590i \(-0.983836\pi\)
0.998711 0.0507590i \(-0.0161641\pi\)
\(264\) 0 0
\(265\) −5.37359e9 −1.08963
\(266\) 1.54404e9i 0.308413i
\(267\) 0 0
\(268\) −1.07340e8 −0.0208076
\(269\) 2.94120e8i 0.0561714i 0.999606 + 0.0280857i \(0.00894114\pi\)
−0.999606 + 0.0280857i \(0.991059\pi\)
\(270\) 0 0
\(271\) 5.47200e9 1.01454 0.507270 0.861787i \(-0.330655\pi\)
0.507270 + 0.861787i \(0.330655\pi\)
\(272\) 8.84058e9i 1.61512i
\(273\) 0 0
\(274\) 5.41085e7 0.00959983
\(275\) 2.78348e9i 0.486696i
\(276\) 0 0
\(277\) 3.67450e9 0.624137 0.312068 0.950060i \(-0.398978\pi\)
0.312068 + 0.950060i \(0.398978\pi\)
\(278\) 1.34897e9i 0.225852i
\(279\) 0 0
\(280\) 1.15351e9 0.187668
\(281\) 4.81620e9i 0.772465i 0.922401 + 0.386233i \(0.126224\pi\)
−0.922401 + 0.386233i \(0.873776\pi\)
\(282\) 0 0
\(283\) 9.24187e9 1.44083 0.720417 0.693541i \(-0.243950\pi\)
0.720417 + 0.693541i \(0.243950\pi\)
\(284\) 3.25096e8i 0.0499733i
\(285\) 0 0
\(286\) 6.77296e9 1.01231
\(287\) 7.42840e8i 0.109488i
\(288\) 0 0
\(289\) −9.47632e9 −1.35847
\(290\) − 9.31339e9i − 1.31679i
\(291\) 0 0
\(292\) −3.49295e8 −0.0480464
\(293\) − 6.34803e9i − 0.861328i −0.902512 0.430664i \(-0.858279\pi\)
0.902512 0.430664i \(-0.141721\pi\)
\(294\) 0 0
\(295\) 4.50127e9 0.594356
\(296\) 4.73196e9i 0.616416i
\(297\) 0 0
\(298\) 1.18003e10 1.49633
\(299\) − 9.35882e9i − 1.17094i
\(300\) 0 0
\(301\) −4.24109e9 −0.516668
\(302\) 8.21477e9i 0.987569i
\(303\) 0 0
\(304\) 9.53846e9 1.11682
\(305\) 7.08354e9i 0.818561i
\(306\) 0 0
\(307\) −5.37906e9 −0.605554 −0.302777 0.953061i \(-0.597914\pi\)
−0.302777 + 0.953061i \(0.597914\pi\)
\(308\) 1.27146e8i 0.0141287i
\(309\) 0 0
\(310\) −2.47254e9 −0.267730
\(311\) − 6.35655e9i − 0.679485i −0.940518 0.339743i \(-0.889660\pi\)
0.940518 0.339743i \(-0.110340\pi\)
\(312\) 0 0
\(313\) 1.11484e9 0.116154 0.0580772 0.998312i \(-0.481503\pi\)
0.0580772 + 0.998312i \(0.481503\pi\)
\(314\) − 1.37375e10i − 1.41316i
\(315\) 0 0
\(316\) −5.83591e8 −0.0585276
\(317\) − 1.38485e9i − 0.137140i −0.997646 0.0685702i \(-0.978156\pi\)
0.997646 0.0685702i \(-0.0218437\pi\)
\(318\) 0 0
\(319\) −1.77450e10 −1.71362
\(320\) − 6.73394e9i − 0.642199i
\(321\) 0 0
\(322\) 3.38831e9 0.315180
\(323\) 1.77508e10i 1.63083i
\(324\) 0 0
\(325\) −6.41317e9 −0.574830
\(326\) − 1.21011e10i − 1.07141i
\(327\) 0 0
\(328\) 4.35034e9 0.375861
\(329\) 1.62894e6i 0 0.000139034i
\(330\) 0 0
\(331\) 9.36529e9 0.780206 0.390103 0.920771i \(-0.372439\pi\)
0.390103 + 0.920771i \(0.372439\pi\)
\(332\) − 6.26192e8i − 0.0515413i
\(333\) 0 0
\(334\) −2.09688e10 −1.68495
\(335\) 3.27559e9i 0.260082i
\(336\) 0 0
\(337\) −1.54504e10 −1.19790 −0.598948 0.800788i \(-0.704414\pi\)
−0.598948 + 0.800788i \(0.704414\pi\)
\(338\) 2.20113e9i 0.168647i
\(339\) 0 0
\(340\) −7.67174e8 −0.0574087
\(341\) 4.71100e9i 0.348414i
\(342\) 0 0
\(343\) 7.51555e9 0.542981
\(344\) 2.48373e10i 1.77366i
\(345\) 0 0
\(346\) −6.61541e9 −0.461586
\(347\) 1.46874e8i 0.0101304i 0.999987 + 0.00506521i \(0.00161231\pi\)
−0.999987 + 0.00506521i \(0.998388\pi\)
\(348\) 0 0
\(349\) −2.74904e10 −1.85302 −0.926508 0.376276i \(-0.877204\pi\)
−0.926508 + 0.376276i \(0.877204\pi\)
\(350\) − 2.32185e9i − 0.154726i
\(351\) 0 0
\(352\) 1.53231e9 0.0998102
\(353\) 1.90766e10i 1.22857i 0.789083 + 0.614287i \(0.210556\pi\)
−0.789083 + 0.614287i \(0.789444\pi\)
\(354\) 0 0
\(355\) 9.92061e9 0.624633
\(356\) 1.03699e7i 0 0.000645616i
\(357\) 0 0
\(358\) 2.37320e10 1.44478
\(359\) − 6.80030e9i − 0.409402i −0.978825 0.204701i \(-0.934378\pi\)
0.978825 0.204701i \(-0.0656222\pi\)
\(360\) 0 0
\(361\) 2.16851e9 0.127683
\(362\) − 2.18261e10i − 1.27099i
\(363\) 0 0
\(364\) −2.92946e8 −0.0166872
\(365\) 1.06591e10i 0.600548i
\(366\) 0 0
\(367\) −1.55772e9 −0.0858668 −0.0429334 0.999078i \(-0.513670\pi\)
−0.0429334 + 0.999078i \(0.513670\pi\)
\(368\) − 2.09315e10i − 1.14133i
\(369\) 0 0
\(370\) −8.35374e9 −0.445732
\(371\) − 8.54041e9i − 0.450799i
\(372\) 0 0
\(373\) −2.05254e9 −0.106037 −0.0530184 0.998594i \(-0.516884\pi\)
−0.0530184 + 0.998594i \(0.516884\pi\)
\(374\) 2.81902e10i 1.44083i
\(375\) 0 0
\(376\) 9.53964e6 0.000477288 0
\(377\) − 4.08847e10i − 2.02393i
\(378\) 0 0
\(379\) 2.21941e10 1.07567 0.537837 0.843049i \(-0.319241\pi\)
0.537837 + 0.843049i \(0.319241\pi\)
\(380\) 8.27735e8i 0.0396969i
\(381\) 0 0
\(382\) 3.12445e10 1.46731
\(383\) − 1.82640e10i − 0.848792i −0.905477 0.424396i \(-0.860487\pi\)
0.905477 0.424396i \(-0.139513\pi\)
\(384\) 0 0
\(385\) 3.88000e9 0.176599
\(386\) 1.28393e10i 0.578350i
\(387\) 0 0
\(388\) 1.48297e9 0.0654341
\(389\) 7.59438e9i 0.331661i 0.986154 + 0.165830i \(0.0530304\pi\)
−0.986154 + 0.165830i \(0.946970\pi\)
\(390\) 0 0
\(391\) 3.89530e10 1.66661
\(392\) − 2.10902e10i − 0.893176i
\(393\) 0 0
\(394\) −3.59462e10 −1.49166
\(395\) 1.78089e10i 0.731556i
\(396\) 0 0
\(397\) 3.83153e10 1.54245 0.771223 0.636564i \(-0.219645\pi\)
0.771223 + 0.636564i \(0.219645\pi\)
\(398\) 4.83933e9i 0.192865i
\(399\) 0 0
\(400\) −1.43434e10 −0.560290
\(401\) − 8.55644e8i − 0.0330914i −0.999863 0.0165457i \(-0.994733\pi\)
0.999863 0.0165457i \(-0.00526690\pi\)
\(402\) 0 0
\(403\) −1.08542e10 −0.411507
\(404\) 2.93893e8i 0.0110322i
\(405\) 0 0
\(406\) 1.48021e10 0.544776
\(407\) 1.59166e10i 0.580059i
\(408\) 0 0
\(409\) −3.15643e9 −0.112798 −0.0563992 0.998408i \(-0.517962\pi\)
−0.0563992 + 0.998408i \(0.517962\pi\)
\(410\) 7.68003e9i 0.271786i
\(411\) 0 0
\(412\) −3.61950e8 −0.0125620
\(413\) 7.15400e9i 0.245895i
\(414\) 0 0
\(415\) −1.91089e10 −0.644232
\(416\) 3.53045e9i 0.117884i
\(417\) 0 0
\(418\) 3.04156e10 0.996302
\(419\) 6.87440e9i 0.223038i 0.993762 + 0.111519i \(0.0355716\pi\)
−0.993762 + 0.111519i \(0.964428\pi\)
\(420\) 0 0
\(421\) −1.53006e10 −0.487057 −0.243528 0.969894i \(-0.578305\pi\)
−0.243528 + 0.969894i \(0.578305\pi\)
\(422\) 5.48901e10i 1.73079i
\(423\) 0 0
\(424\) −5.00157e10 −1.54754
\(425\) − 2.66927e10i − 0.818158i
\(426\) 0 0
\(427\) −1.12581e10 −0.338652
\(428\) − 2.69825e9i − 0.0804096i
\(429\) 0 0
\(430\) −4.38475e10 −1.28254
\(431\) 3.16429e9i 0.0916996i 0.998948 + 0.0458498i \(0.0145996\pi\)
−0.998948 + 0.0458498i \(0.985400\pi\)
\(432\) 0 0
\(433\) 6.22045e10 1.76958 0.884791 0.465989i \(-0.154301\pi\)
0.884791 + 0.465989i \(0.154301\pi\)
\(434\) − 3.92969e9i − 0.110764i
\(435\) 0 0
\(436\) 1.53865e9 0.0425789
\(437\) − 4.20280e10i − 1.15243i
\(438\) 0 0
\(439\) −2.30286e10 −0.620024 −0.310012 0.950733i \(-0.600333\pi\)
−0.310012 + 0.950733i \(0.600333\pi\)
\(440\) − 2.27226e10i − 0.606245i
\(441\) 0 0
\(442\) −6.49505e10 −1.70174
\(443\) − 3.93754e10i − 1.02237i −0.859470 0.511187i \(-0.829206\pi\)
0.859470 0.511187i \(-0.170794\pi\)
\(444\) 0 0
\(445\) 3.16448e8 0.00806978
\(446\) 4.44877e10i 1.12435i
\(447\) 0 0
\(448\) 1.07025e10 0.265688
\(449\) 5.66523e10i 1.39390i 0.717119 + 0.696951i \(0.245461\pi\)
−0.717119 + 0.696951i \(0.754539\pi\)
\(450\) 0 0
\(451\) 1.46330e10 0.353692
\(452\) 3.76358e8i 0.00901670i
\(453\) 0 0
\(454\) −8.58464e10 −2.02069
\(455\) 8.93954e9i 0.208579i
\(456\) 0 0
\(457\) −3.34855e10 −0.767702 −0.383851 0.923395i \(-0.625402\pi\)
−0.383851 + 0.923395i \(0.625402\pi\)
\(458\) − 3.59227e9i − 0.0816408i
\(459\) 0 0
\(460\) 1.81641e9 0.0405679
\(461\) − 4.89291e10i − 1.08334i −0.840593 0.541668i \(-0.817793\pi\)
0.840593 0.541668i \(-0.182207\pi\)
\(462\) 0 0
\(463\) 3.40379e10 0.740695 0.370347 0.928893i \(-0.379239\pi\)
0.370347 + 0.928893i \(0.379239\pi\)
\(464\) − 9.14410e10i − 1.97274i
\(465\) 0 0
\(466\) 7.90845e10 1.67706
\(467\) − 7.93796e10i − 1.66894i −0.551052 0.834471i \(-0.685773\pi\)
0.551052 0.834471i \(-0.314227\pi\)
\(468\) 0 0
\(469\) −5.20600e9 −0.107600
\(470\) 1.68412e7i 0 0.000345128i
\(471\) 0 0
\(472\) 4.18964e10 0.844129
\(473\) 8.35438e10i 1.66905i
\(474\) 0 0
\(475\) −2.87999e10 −0.565739
\(476\) − 1.21929e9i − 0.0237509i
\(477\) 0 0
\(478\) −1.88590e9 −0.0361250
\(479\) 9.07702e10i 1.72425i 0.506692 + 0.862127i \(0.330868\pi\)
−0.506692 + 0.862127i \(0.669132\pi\)
\(480\) 0 0
\(481\) −3.66720e10 −0.685100
\(482\) − 6.76086e10i − 1.25260i
\(483\) 0 0
\(484\) −4.96411e8 −0.00904608
\(485\) − 4.52541e10i − 0.817883i
\(486\) 0 0
\(487\) 2.51505e10 0.447127 0.223563 0.974689i \(-0.428231\pi\)
0.223563 + 0.974689i \(0.428231\pi\)
\(488\) 6.59314e10i 1.16255i
\(489\) 0 0
\(490\) 3.72324e10 0.645857
\(491\) 9.74682e10i 1.67702i 0.544890 + 0.838508i \(0.316572\pi\)
−0.544890 + 0.838508i \(0.683428\pi\)
\(492\) 0 0
\(493\) 1.70169e11 2.88067
\(494\) 7.00777e10i 1.17672i
\(495\) 0 0
\(496\) −2.42760e10 −0.401098
\(497\) 1.57671e10i 0.258421i
\(498\) 0 0
\(499\) −6.95297e10 −1.12142 −0.560709 0.828013i \(-0.689472\pi\)
−0.560709 + 0.828013i \(0.689472\pi\)
\(500\) − 3.58108e9i − 0.0572973i
\(501\) 0 0
\(502\) 8.43753e10 1.32862
\(503\) 2.66836e10i 0.416842i 0.978039 + 0.208421i \(0.0668325\pi\)
−0.978039 + 0.208421i \(0.933168\pi\)
\(504\) 0 0
\(505\) 8.96842e9 0.137896
\(506\) − 6.67450e10i − 1.01816i
\(507\) 0 0
\(508\) 3.03473e8 0.00455685
\(509\) 1.54473e10i 0.230134i 0.993358 + 0.115067i \(0.0367082\pi\)
−0.993358 + 0.115067i \(0.963292\pi\)
\(510\) 0 0
\(511\) −1.69408e10 −0.248456
\(512\) − 6.22669e10i − 0.906102i
\(513\) 0 0
\(514\) 4.26437e10 0.610945
\(515\) 1.10453e10i 0.157017i
\(516\) 0 0
\(517\) 3.20879e7 0.000449137 0
\(518\) − 1.32769e10i − 0.184407i
\(519\) 0 0
\(520\) 5.23532e10 0.716027
\(521\) − 7.64491e9i − 0.103758i −0.998653 0.0518790i \(-0.983479\pi\)
0.998653 0.0518790i \(-0.0165210\pi\)
\(522\) 0 0
\(523\) −7.26324e10 −0.970787 −0.485393 0.874296i \(-0.661324\pi\)
−0.485393 + 0.874296i \(0.661324\pi\)
\(524\) 1.90107e9i 0.0252158i
\(525\) 0 0
\(526\) 7.98083e9 0.104257
\(527\) − 4.51770e10i − 0.585699i
\(528\) 0 0
\(529\) −1.39168e10 −0.177712
\(530\) − 8.82970e10i − 1.11903i
\(531\) 0 0
\(532\) −1.31554e9 −0.0164233
\(533\) 3.37144e10i 0.417741i
\(534\) 0 0
\(535\) −8.23398e10 −1.00507
\(536\) 3.04882e10i 0.369379i
\(537\) 0 0
\(538\) −4.83289e9 −0.0576869
\(539\) − 7.09398e10i − 0.840495i
\(540\) 0 0
\(541\) 3.77715e10 0.440935 0.220468 0.975394i \(-0.429242\pi\)
0.220468 + 0.975394i \(0.429242\pi\)
\(542\) 8.99141e10i 1.04191i
\(543\) 0 0
\(544\) −1.46943e10 −0.167785
\(545\) − 4.69534e10i − 0.532208i
\(546\) 0 0
\(547\) −6.24076e10 −0.697089 −0.348544 0.937292i \(-0.613324\pi\)
−0.348544 + 0.937292i \(0.613324\pi\)
\(548\) 4.61012e7i 0 0.000511199i
\(549\) 0 0
\(550\) −4.57373e10 −0.499827
\(551\) − 1.83602e11i − 1.99192i
\(552\) 0 0
\(553\) −2.83042e10 −0.302656
\(554\) 6.03783e10i 0.640976i
\(555\) 0 0
\(556\) −1.14934e9 −0.0120268
\(557\) 6.15741e10i 0.639702i 0.947468 + 0.319851i \(0.103633\pi\)
−0.947468 + 0.319851i \(0.896367\pi\)
\(558\) 0 0
\(559\) −1.92486e11 −1.97129
\(560\) 1.99938e10i 0.203303i
\(561\) 0 0
\(562\) −7.91382e10 −0.793306
\(563\) − 2.94000e10i − 0.292626i −0.989238 0.146313i \(-0.953259\pi\)
0.989238 0.146313i \(-0.0467407\pi\)
\(564\) 0 0
\(565\) 1.14849e10 0.112703
\(566\) 1.51859e11i 1.47971i
\(567\) 0 0
\(568\) 9.23380e10 0.887129
\(569\) − 4.27721e9i − 0.0408049i −0.999792 0.0204024i \(-0.993505\pi\)
0.999792 0.0204024i \(-0.00649475\pi\)
\(570\) 0 0
\(571\) 7.14732e10 0.672356 0.336178 0.941799i \(-0.390866\pi\)
0.336178 + 0.941799i \(0.390866\pi\)
\(572\) 5.77065e9i 0.0539064i
\(573\) 0 0
\(574\) −1.22061e10 −0.112442
\(575\) 6.31995e10i 0.578152i
\(576\) 0 0
\(577\) −1.09889e10 −0.0991404 −0.0495702 0.998771i \(-0.515785\pi\)
−0.0495702 + 0.998771i \(0.515785\pi\)
\(578\) − 1.55712e11i − 1.39512i
\(579\) 0 0
\(580\) 7.93513e9 0.0701200
\(581\) − 3.03703e10i − 0.266529i
\(582\) 0 0
\(583\) −1.68235e11 −1.45627
\(584\) 9.92114e10i 0.852923i
\(585\) 0 0
\(586\) 1.04309e11 0.884567
\(587\) 1.22636e11i 1.03292i 0.856312 + 0.516459i \(0.172750\pi\)
−0.856312 + 0.516459i \(0.827250\pi\)
\(588\) 0 0
\(589\) −4.87432e10 −0.404998
\(590\) 7.39633e10i 0.610392i
\(591\) 0 0
\(592\) −8.20189e10 −0.667771
\(593\) 1.00435e11i 0.812206i 0.913827 + 0.406103i \(0.133113\pi\)
−0.913827 + 0.406103i \(0.866887\pi\)
\(594\) 0 0
\(595\) −3.72079e10 −0.296871
\(596\) 1.00540e10i 0.0796809i
\(597\) 0 0
\(598\) 1.53781e11 1.20254
\(599\) − 1.14078e11i − 0.886125i −0.896491 0.443063i \(-0.853892\pi\)
0.896491 0.443063i \(-0.146108\pi\)
\(600\) 0 0
\(601\) 6.33781e10 0.485782 0.242891 0.970054i \(-0.421904\pi\)
0.242891 + 0.970054i \(0.421904\pi\)
\(602\) − 6.96883e10i − 0.530608i
\(603\) 0 0
\(604\) −6.99909e9 −0.0525889
\(605\) 1.51485e10i 0.113070i
\(606\) 0 0
\(607\) 2.66309e11 1.96169 0.980846 0.194786i \(-0.0624011\pi\)
0.980846 + 0.194786i \(0.0624011\pi\)
\(608\) 1.58543e10i 0.116020i
\(609\) 0 0
\(610\) −1.16394e11 −0.840645
\(611\) 7.39307e7i 0 0.000530469i
\(612\) 0 0
\(613\) 2.39412e11 1.69552 0.847761 0.530378i \(-0.177950\pi\)
0.847761 + 0.530378i \(0.177950\pi\)
\(614\) − 8.83870e10i − 0.621892i
\(615\) 0 0
\(616\) 3.61138e10 0.250813
\(617\) − 1.05956e11i − 0.731112i −0.930789 0.365556i \(-0.880879\pi\)
0.930789 0.365556i \(-0.119121\pi\)
\(618\) 0 0
\(619\) −2.13868e10 −0.145674 −0.0728372 0.997344i \(-0.523205\pi\)
−0.0728372 + 0.997344i \(0.523205\pi\)
\(620\) − 2.10664e9i − 0.0142568i
\(621\) 0 0
\(622\) 1.04449e11 0.697818
\(623\) 5.02940e8i 0.00333860i
\(624\) 0 0
\(625\) −2.79892e10 −0.183430
\(626\) 1.83187e10i 0.119288i
\(627\) 0 0
\(628\) 1.17046e10 0.0752517
\(629\) − 1.52635e11i − 0.975105i
\(630\) 0 0
\(631\) −1.12422e11 −0.709145 −0.354573 0.935028i \(-0.615374\pi\)
−0.354573 + 0.935028i \(0.615374\pi\)
\(632\) 1.65759e11i 1.03899i
\(633\) 0 0
\(634\) 2.27554e10 0.140840
\(635\) − 9.26077e9i − 0.0569577i
\(636\) 0 0
\(637\) 1.63446e11 0.992697
\(638\) − 2.91581e11i − 1.75985i
\(639\) 0 0
\(640\) 1.23179e11 0.734207
\(641\) − 1.44527e11i − 0.856086i −0.903758 0.428043i \(-0.859203\pi\)
0.903758 0.428043i \(-0.140797\pi\)
\(642\) 0 0
\(643\) 5.57505e10 0.326140 0.163070 0.986614i \(-0.447860\pi\)
0.163070 + 0.986614i \(0.447860\pi\)
\(644\) 2.88688e9i 0.0167836i
\(645\) 0 0
\(646\) −2.91676e11 −1.67483
\(647\) 5.47913e10i 0.312676i 0.987704 + 0.156338i \(0.0499689\pi\)
−0.987704 + 0.156338i \(0.950031\pi\)
\(648\) 0 0
\(649\) 1.40924e11 0.794341
\(650\) − 1.05379e11i − 0.590339i
\(651\) 0 0
\(652\) 1.03103e10 0.0570534
\(653\) 1.37326e11i 0.755264i 0.925956 + 0.377632i \(0.123261\pi\)
−0.925956 + 0.377632i \(0.876739\pi\)
\(654\) 0 0
\(655\) 5.80129e10 0.315181
\(656\) 7.54043e10i 0.407175i
\(657\) 0 0
\(658\) −2.67662e7 −0.000142785 0
\(659\) 2.32347e11i 1.23196i 0.787763 + 0.615978i \(0.211239\pi\)
−0.787763 + 0.615978i \(0.788761\pi\)
\(660\) 0 0
\(661\) 1.27504e11 0.667912 0.333956 0.942589i \(-0.391616\pi\)
0.333956 + 0.942589i \(0.391616\pi\)
\(662\) 1.53887e11i 0.801256i
\(663\) 0 0
\(664\) −1.77859e11 −0.914965
\(665\) 4.01451e10i 0.205280i
\(666\) 0 0
\(667\) −4.02904e11 −2.03563
\(668\) − 1.78657e10i − 0.0897250i
\(669\) 0 0
\(670\) −5.38234e10 −0.267099
\(671\) 2.21769e11i 1.09398i
\(672\) 0 0
\(673\) −6.54382e9 −0.0318986 −0.0159493 0.999873i \(-0.505077\pi\)
−0.0159493 + 0.999873i \(0.505077\pi\)
\(674\) − 2.53875e11i − 1.23021i
\(675\) 0 0
\(676\) −1.87539e9 −0.00898061
\(677\) 2.32186e11i 1.10530i 0.833412 + 0.552652i \(0.186384\pi\)
−0.833412 + 0.552652i \(0.813616\pi\)
\(678\) 0 0
\(679\) 7.19238e10 0.338371
\(680\) 2.17903e11i 1.01912i
\(681\) 0 0
\(682\) −7.74096e10 −0.357814
\(683\) 4.94502e10i 0.227240i 0.993524 + 0.113620i \(0.0362446\pi\)
−0.993524 + 0.113620i \(0.963755\pi\)
\(684\) 0 0
\(685\) 1.40682e9 0.00638965
\(686\) 1.23493e11i 0.557630i
\(687\) 0 0
\(688\) −4.30505e11 −1.92143
\(689\) − 3.87614e11i − 1.71998i
\(690\) 0 0
\(691\) 1.15283e11 0.505652 0.252826 0.967512i \(-0.418640\pi\)
0.252826 + 0.967512i \(0.418640\pi\)
\(692\) − 5.63642e9i − 0.0245798i
\(693\) 0 0
\(694\) −2.41339e9 −0.0104037
\(695\) 3.50733e10i 0.150327i
\(696\) 0 0
\(697\) −1.40325e11 −0.594573
\(698\) − 4.51713e11i − 1.90301i
\(699\) 0 0
\(700\) 1.97825e9 0.00823926
\(701\) 2.53572e10i 0.105009i 0.998621 + 0.0525047i \(0.0167205\pi\)
−0.998621 + 0.0525047i \(0.983280\pi\)
\(702\) 0 0
\(703\) −1.64684e11 −0.674264
\(704\) − 2.10824e11i − 0.858282i
\(705\) 0 0
\(706\) −3.13460e11 −1.26172
\(707\) 1.42538e10i 0.0570496i
\(708\) 0 0
\(709\) 2.47270e11 0.978558 0.489279 0.872127i \(-0.337260\pi\)
0.489279 + 0.872127i \(0.337260\pi\)
\(710\) 1.63012e11i 0.641485i
\(711\) 0 0
\(712\) 2.94540e9 0.0114610
\(713\) 1.06964e11i 0.413885i
\(714\) 0 0
\(715\) 1.76097e11 0.673795
\(716\) 2.02200e10i 0.0769359i
\(717\) 0 0
\(718\) 1.11740e11 0.420448
\(719\) − 1.96339e10i − 0.0734668i −0.999325 0.0367334i \(-0.988305\pi\)
0.999325 0.0367334i \(-0.0116952\pi\)
\(720\) 0 0
\(721\) −1.75546e10 −0.0649605
\(722\) 3.56322e10i 0.131127i
\(723\) 0 0
\(724\) 1.85961e10 0.0676813
\(725\) 2.76092e11i 0.999312i
\(726\) 0 0
\(727\) 6.17310e10 0.220986 0.110493 0.993877i \(-0.464757\pi\)
0.110493 + 0.993877i \(0.464757\pi\)
\(728\) 8.32065e10i 0.296232i
\(729\) 0 0
\(730\) −1.75146e11 −0.616751
\(731\) − 8.01158e11i − 2.80575i
\(732\) 0 0
\(733\) −1.78735e11 −0.619145 −0.309573 0.950876i \(-0.600186\pi\)
−0.309573 + 0.950876i \(0.600186\pi\)
\(734\) − 2.55960e10i − 0.0881835i
\(735\) 0 0
\(736\) 3.47913e10 0.118566
\(737\) 1.02551e11i 0.347593i
\(738\) 0 0
\(739\) 2.19706e11 0.736655 0.368328 0.929696i \(-0.379931\pi\)
0.368328 + 0.929696i \(0.379931\pi\)
\(740\) − 7.11749e9i − 0.0237356i
\(741\) 0 0
\(742\) 1.40333e11 0.462962
\(743\) − 3.55374e11i − 1.16608i −0.812442 0.583042i \(-0.801862\pi\)
0.812442 0.583042i \(-0.198138\pi\)
\(744\) 0 0
\(745\) 3.06808e11 0.995958
\(746\) − 3.37267e10i − 0.108898i
\(747\) 0 0
\(748\) −2.40184e10 −0.0767253
\(749\) − 1.30865e11i − 0.415812i
\(750\) 0 0
\(751\) 8.30521e10 0.261090 0.130545 0.991442i \(-0.458327\pi\)
0.130545 + 0.991442i \(0.458327\pi\)
\(752\) 1.65350e8i 0 0.000517052i
\(753\) 0 0
\(754\) 6.71804e11 2.07854
\(755\) 2.13584e11i 0.657326i
\(756\) 0 0
\(757\) −1.47694e11 −0.449759 −0.224879 0.974387i \(-0.572199\pi\)
−0.224879 + 0.974387i \(0.572199\pi\)
\(758\) 3.64686e11i 1.10470i
\(759\) 0 0
\(760\) 2.35104e11 0.704703
\(761\) 3.95812e11i 1.18019i 0.807336 + 0.590093i \(0.200909\pi\)
−0.807336 + 0.590093i \(0.799091\pi\)
\(762\) 0 0
\(763\) 7.46245e10 0.220183
\(764\) 2.66207e10i 0.0781352i
\(765\) 0 0
\(766\) 3.00108e11 0.871692
\(767\) 3.24691e11i 0.938185i
\(768\) 0 0
\(769\) −6.19413e11 −1.77123 −0.885615 0.464420i \(-0.846263\pi\)
−0.885615 + 0.464420i \(0.846263\pi\)
\(770\) 6.37548e10i 0.181364i
\(771\) 0 0
\(772\) −1.09392e10 −0.0307976
\(773\) − 8.71283e10i − 0.244029i −0.992528 0.122014i \(-0.961065\pi\)
0.992528 0.122014i \(-0.0389354\pi\)
\(774\) 0 0
\(775\) 7.32975e10 0.203181
\(776\) − 4.21211e11i − 1.16159i
\(777\) 0 0
\(778\) −1.24788e11 −0.340609
\(779\) 1.51403e11i 0.411134i
\(780\) 0 0
\(781\) 3.10591e11 0.834805
\(782\) 6.40064e11i 1.71158i
\(783\) 0 0
\(784\) 3.65556e11 0.967587
\(785\) − 3.57176e11i − 0.940597i
\(786\) 0 0
\(787\) 4.87095e11 1.26974 0.634870 0.772619i \(-0.281054\pi\)
0.634870 + 0.772619i \(0.281054\pi\)
\(788\) − 3.06267e10i − 0.0794318i
\(789\) 0 0
\(790\) −2.92629e11 −0.751293
\(791\) 1.82534e10i 0.0466269i
\(792\) 0 0
\(793\) −5.10958e11 −1.29209
\(794\) 6.29585e11i 1.58406i
\(795\) 0 0
\(796\) −4.12318e9 −0.0102702
\(797\) − 3.92490e11i − 0.972737i −0.873754 0.486368i \(-0.838321\pi\)
0.873754 0.486368i \(-0.161679\pi\)
\(798\) 0 0
\(799\) −3.07713e8 −0.000755019 0
\(800\) − 2.38409e10i − 0.0582052i
\(801\) 0 0
\(802\) 1.40597e10 0.0339842
\(803\) 3.33711e11i 0.802617i
\(804\) 0 0
\(805\) 8.80959e10 0.209784
\(806\) − 1.78352e11i − 0.422609i
\(807\) 0 0
\(808\) 8.34752e10 0.195845
\(809\) − 6.95054e11i − 1.62265i −0.584597 0.811324i \(-0.698747\pi\)
0.584597 0.811324i \(-0.301253\pi\)
\(810\) 0 0
\(811\) −5.75064e11 −1.32933 −0.664665 0.747142i \(-0.731426\pi\)
−0.664665 + 0.747142i \(0.731426\pi\)
\(812\) 1.26115e10i 0.0290098i
\(813\) 0 0
\(814\) −2.61536e11 −0.595709
\(815\) − 3.14629e11i − 0.713129i
\(816\) 0 0
\(817\) −8.64402e11 −1.94012
\(818\) − 5.18655e10i − 0.115842i
\(819\) 0 0
\(820\) −6.54348e9 −0.0144728
\(821\) − 9.35693e8i − 0.00205949i −0.999999 0.00102975i \(-0.999672\pi\)
0.999999 0.00102975i \(-0.000327779\pi\)
\(822\) 0 0
\(823\) −6.59429e9 −0.0143737 −0.00718685 0.999974i \(-0.502288\pi\)
−0.00718685 + 0.999974i \(0.502288\pi\)
\(824\) 1.02806e11i 0.223002i
\(825\) 0 0
\(826\) −1.17552e11 −0.252529
\(827\) − 8.55938e11i − 1.82987i −0.403601 0.914935i \(-0.632242\pi\)
0.403601 0.914935i \(-0.367758\pi\)
\(828\) 0 0
\(829\) 8.38807e11 1.77600 0.888002 0.459839i \(-0.152093\pi\)
0.888002 + 0.459839i \(0.152093\pi\)
\(830\) − 3.13991e11i − 0.661613i
\(831\) 0 0
\(832\) 4.85741e11 1.01370
\(833\) 6.80290e11i 1.41291i
\(834\) 0 0
\(835\) −5.45188e11 −1.12150
\(836\) 2.59145e10i 0.0530539i
\(837\) 0 0
\(838\) −1.12958e11 −0.229056
\(839\) 1.07846e11i 0.217649i 0.994061 + 0.108825i \(0.0347087\pi\)
−0.994061 + 0.108825i \(0.965291\pi\)
\(840\) 0 0
\(841\) −1.25987e12 −2.51850
\(842\) − 2.51414e11i − 0.500197i
\(843\) 0 0
\(844\) −4.67670e10 −0.0921658
\(845\) 5.72295e10i 0.112252i
\(846\) 0 0
\(847\) −2.40760e10 −0.0467789
\(848\) − 8.66921e11i − 1.67647i
\(849\) 0 0
\(850\) 4.38606e11 0.840232
\(851\) 3.61389e11i 0.689059i
\(852\) 0 0
\(853\) −6.34437e11 −1.19837 −0.599187 0.800609i \(-0.704509\pi\)
−0.599187 + 0.800609i \(0.704509\pi\)
\(854\) − 1.84989e11i − 0.347788i
\(855\) 0 0
\(856\) −7.66394e11 −1.42744
\(857\) 7.56535e11i 1.40251i 0.712911 + 0.701254i \(0.247376\pi\)
−0.712911 + 0.701254i \(0.752624\pi\)
\(858\) 0 0
\(859\) 1.05633e12 1.94011 0.970055 0.242883i \(-0.0780932\pi\)
0.970055 + 0.242883i \(0.0780932\pi\)
\(860\) − 3.73587e10i − 0.0682963i
\(861\) 0 0
\(862\) −5.19946e10 −0.0941736
\(863\) 4.06826e11i 0.733441i 0.930331 + 0.366720i \(0.119519\pi\)
−0.930331 + 0.366720i \(0.880481\pi\)
\(864\) 0 0
\(865\) −1.72001e11 −0.307232
\(866\) 1.02212e12i 1.81732i
\(867\) 0 0
\(868\) 3.34815e9 0.00589828
\(869\) 5.57554e11i 0.977705i
\(870\) 0 0
\(871\) −2.36279e11 −0.410537
\(872\) − 4.37028e11i − 0.755863i
\(873\) 0 0
\(874\) 6.90590e11 1.18352
\(875\) − 1.73682e11i − 0.296295i
\(876\) 0 0
\(877\) −3.11948e11 −0.527332 −0.263666 0.964614i \(-0.584932\pi\)
−0.263666 + 0.964614i \(0.584932\pi\)
\(878\) − 3.78398e11i − 0.636753i
\(879\) 0 0
\(880\) 3.93851e11 0.656752
\(881\) 1.97724e11i 0.328213i 0.986443 + 0.164107i \(0.0524741\pi\)
−0.986443 + 0.164107i \(0.947526\pi\)
\(882\) 0 0
\(883\) 1.84908e11 0.304168 0.152084 0.988368i \(-0.451402\pi\)
0.152084 + 0.988368i \(0.451402\pi\)
\(884\) − 5.53387e10i − 0.0906191i
\(885\) 0 0
\(886\) 6.47003e11 1.04996
\(887\) 1.38337e11i 0.223482i 0.993737 + 0.111741i \(0.0356427\pi\)
−0.993737 + 0.111741i \(0.964357\pi\)
\(888\) 0 0
\(889\) 1.47184e10 0.0235643
\(890\) 5.19976e9i 0.00828750i
\(891\) 0 0
\(892\) −3.79041e10 −0.0598724
\(893\) 3.32003e8i 0 0.000522080i
\(894\) 0 0
\(895\) 6.17033e11 0.961648
\(896\) 1.95773e11i 0.303753i
\(897\) 0 0
\(898\) −9.30893e11 −1.43151
\(899\) 4.67280e11i 0.715383i
\(900\) 0 0
\(901\) 1.61332e12 2.44805
\(902\) 2.40444e11i 0.363235i
\(903\) 0 0
\(904\) 1.06898e11 0.160065
\(905\) − 5.67479e11i − 0.845971i
\(906\) 0 0
\(907\) −6.41021e10 −0.0947203 −0.0473601 0.998878i \(-0.515081\pi\)
−0.0473601 + 0.998878i \(0.515081\pi\)
\(908\) − 7.31423e10i − 0.107603i
\(909\) 0 0
\(910\) −1.46892e11 −0.214206
\(911\) − 6.83733e11i − 0.992688i −0.868126 0.496344i \(-0.834675\pi\)
0.868126 0.496344i \(-0.165325\pi\)
\(912\) 0 0
\(913\) −5.98254e11 −0.860999
\(914\) − 5.50224e11i − 0.788414i
\(915\) 0 0
\(916\) 3.06066e9 0.00434744
\(917\) 9.22018e10i 0.130395i
\(918\) 0 0
\(919\) 1.30518e11 0.182982 0.0914908 0.995806i \(-0.470837\pi\)
0.0914908 + 0.995806i \(0.470837\pi\)
\(920\) − 5.15921e11i − 0.720165i
\(921\) 0 0
\(922\) 8.03987e11 1.11256
\(923\) 7.15605e11i 0.985977i
\(924\) 0 0
\(925\) 2.47643e11 0.338267
\(926\) 5.59300e11i 0.760679i
\(927\) 0 0
\(928\) 1.51988e11 0.204936
\(929\) − 5.69894e11i − 0.765123i −0.923930 0.382562i \(-0.875042\pi\)
0.923930 0.382562i \(-0.124958\pi\)
\(930\) 0 0
\(931\) 7.33993e11 0.976996
\(932\) 6.73810e10i 0.0893046i
\(933\) 0 0
\(934\) 1.30434e12 1.71397
\(935\) 7.32946e11i 0.959015i
\(936\) 0 0
\(937\) −4.64545e11 −0.602656 −0.301328 0.953521i \(-0.597430\pi\)
−0.301328 + 0.953521i \(0.597430\pi\)
\(938\) − 8.55433e10i − 0.110503i
\(939\) 0 0
\(940\) −1.43489e7 −1.83784e−5 0
\(941\) − 1.44687e12i − 1.84532i −0.385617 0.922659i \(-0.626011\pi\)
0.385617 0.922659i \(-0.373989\pi\)
\(942\) 0 0
\(943\) 3.32244e11 0.420155
\(944\) 7.26189e11i 0.914454i
\(945\) 0 0
\(946\) −1.37276e12 −1.71408
\(947\) − 7.23887e11i − 0.900059i −0.893014 0.450030i \(-0.851413\pi\)
0.893014 0.450030i \(-0.148587\pi\)
\(948\) 0 0
\(949\) −7.68873e11 −0.947959
\(950\) − 4.73230e11i − 0.581002i
\(951\) 0 0
\(952\) −3.46320e11 −0.421628
\(953\) − 3.62461e11i − 0.439430i −0.975564 0.219715i \(-0.929487\pi\)
0.975564 0.219715i \(-0.0705127\pi\)
\(954\) 0 0
\(955\) 8.12358e11 0.976639
\(956\) − 1.60681e9i − 0.00192368i
\(957\) 0 0
\(958\) −1.49151e12 −1.77077
\(959\) 2.23591e9i 0.00264350i
\(960\) 0 0
\(961\) −7.28836e11 −0.854548
\(962\) − 6.02582e11i − 0.703583i
\(963\) 0 0
\(964\) 5.76034e10 0.0667021
\(965\) 3.33821e11i 0.384950i
\(966\) 0 0
\(967\) 1.37227e12 1.56939 0.784697 0.619879i \(-0.212818\pi\)
0.784697 + 0.619879i \(0.212818\pi\)
\(968\) 1.40997e11i 0.160587i
\(969\) 0 0
\(970\) 7.43601e11 0.839949
\(971\) − 4.29812e11i − 0.483505i −0.970338 0.241753i \(-0.922278\pi\)
0.970338 0.241753i \(-0.0777223\pi\)
\(972\) 0 0
\(973\) −5.57431e10 −0.0621928
\(974\) 4.13265e11i 0.459190i
\(975\) 0 0
\(976\) −1.14279e12 −1.25941
\(977\) − 4.14853e11i − 0.455319i −0.973741 0.227659i \(-0.926893\pi\)
0.973741 0.227659i \(-0.0731073\pi\)
\(978\) 0 0
\(979\) 9.90724e9 0.0107850
\(980\) 3.17225e10i 0.0343924i
\(981\) 0 0
\(982\) −1.60157e12 −1.72226
\(983\) 8.03059e11i 0.860069i 0.902812 + 0.430035i \(0.141499\pi\)
−0.902812 + 0.430035i \(0.858501\pi\)
\(984\) 0 0
\(985\) −9.34602e11 −0.992846
\(986\) 2.79617e12i 2.95839i
\(987\) 0 0
\(988\) −5.97071e10 −0.0626612
\(989\) 1.89688e12i 1.98268i
\(990\) 0 0
\(991\) 6.15925e11 0.638606 0.319303 0.947653i \(-0.396551\pi\)
0.319303 + 0.947653i \(0.396551\pi\)
\(992\) − 4.03502e10i − 0.0416677i
\(993\) 0 0
\(994\) −2.59080e11 −0.265393
\(995\) 1.25823e11i 0.128371i
\(996\) 0 0
\(997\) 8.73230e11 0.883788 0.441894 0.897067i \(-0.354307\pi\)
0.441894 + 0.897067i \(0.354307\pi\)
\(998\) − 1.14249e12i − 1.15167i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.9.b.c.26.2 yes 2
3.2 odd 2 inner 27.9.b.c.26.1 2
4.3 odd 2 432.9.e.f.161.2 2
9.2 odd 6 81.9.d.c.53.1 4
9.4 even 3 81.9.d.c.26.1 4
9.5 odd 6 81.9.d.c.26.2 4
9.7 even 3 81.9.d.c.53.2 4
12.11 even 2 432.9.e.f.161.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.9.b.c.26.1 2 3.2 odd 2 inner
27.9.b.c.26.2 yes 2 1.1 even 1 trivial
81.9.d.c.26.1 4 9.4 even 3
81.9.d.c.26.2 4 9.5 odd 6
81.9.d.c.53.1 4 9.2 odd 6
81.9.d.c.53.2 4 9.7 even 3
432.9.e.f.161.1 2 12.11 even 2
432.9.e.f.161.2 2 4.3 odd 2