Defining parameters
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(27\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(27, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 27 | 11 | 16 |
Cusp forms | 21 | 11 | 10 |
Eisenstein series | 6 | 0 | 6 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(27, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
27.9.b.a | $1$ | $10.999$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(239\) | \(q+2^{8}q^{4}+239q^{7}+56447q^{13}+2^{16}q^{16}+\cdots\) |
27.9.b.b | $2$ | $10.999$ | \(\Q(\sqrt{-6}) \) | None | \(0\) | \(0\) | \(0\) | \(3934\) | \(q+\beta q^{2}-608q^{4}-28\beta q^{5}+1967q^{7}+\cdots\) |
27.9.b.c | $2$ | $10.999$ | \(\Q(\sqrt{-30}) \) | None | \(0\) | \(0\) | \(0\) | \(-1358\) | \(q+\beta q^{2}-14q^{4}+26\beta q^{5}-679q^{7}+\cdots\) |
27.9.b.d | $6$ | $10.999$ | 6.0.6171673600.1 | None | \(0\) | \(0\) | \(0\) | \(-1698\) | \(q+\beta _{1}q^{2}+(-131+\beta _{2})q^{4}+(20\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{9}^{\mathrm{old}}(27, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)