Properties

Label 81.9.d.c.53.2
Level $81$
Weight $9$
Character 81.53
Analytic conductor $32.998$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,9,Mod(26,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.26"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9976674150\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 10x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.2
Root \(1.58114 - 2.73861i\) of defining polynomial
Character \(\chi\) \(=\) 81.53
Dual form 81.9.d.c.26.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(14.2302 - 8.21584i) q^{2} +(7.00000 - 12.1244i) q^{4} +(-369.986 - 213.612i) q^{5} +(339.500 + 588.031i) q^{7} +3976.47i q^{8} -7020.00 q^{10} +(11583.4 - 6687.69i) q^{11} +(15408.5 - 26688.3i) q^{13} +(9662.34 + 5578.55i) q^{14} +(34462.0 + 59689.9i) q^{16} -128266. i q^{17} -138391. q^{19} +(-5179.81 + 2990.57i) q^{20} +(109890. - 190335. i) q^{22} +(-263003. - 151845. i) q^{23} +(-104052. - 180224. i) q^{25} -506375. i q^{26} +9506.00 q^{28} +(1.14895e6 - 663347. i) q^{29} +(-176107. + 305026. i) q^{31} +(99213.3 + 57280.8i) q^{32} +(-1.05381e6 - 1.82525e6i) q^{34} -290085. i q^{35} +1.18999e6 q^{37} +(-1.96934e6 + 1.13700e6i) q^{38} +(849420. - 1.47124e6i) q^{40} +(947450. + 547011. i) q^{41} +(-3.12304e6 - 5.40927e6i) q^{43} -187255. i q^{44} -4.99014e6 q^{46} +(-2077.62 + 1199.51i) q^{47} +(2.65188e6 - 4.59319e6i) q^{49} +(-2.96139e6 - 1.70976e6i) q^{50} +(-215719. - 373636. i) q^{52} +1.25779e7i q^{53} -5.71428e6 q^{55} +(-2.33829e6 + 1.35001e6i) q^{56} +(1.08999e7 - 1.88792e7i) q^{58} +(9.12452e6 + 5.26804e6i) q^{59} +(-8.29020e6 - 1.43590e7i) q^{61} +5.78747e6i q^{62} -1.57621e7 q^{64} +(-1.14019e7 + 6.58287e6i) q^{65} +(-3.83358e6 + 6.63995e6i) q^{67} +(-1.55514e6 - 897860. i) q^{68} +(-2.38329e6 - 4.12798e6i) q^{70} -2.32211e7i q^{71} +2.49496e7 q^{73} +(1.69339e7 - 9.77677e6i) q^{74} +(-968737. + 1.67790e6i) q^{76} +(7.86514e6 + 4.54094e6i) q^{77} +(-2.08425e7 - 3.61003e7i) q^{79} -2.94460e7i q^{80} +1.79766e7 q^{82} +(3.87356e7 - 2.23640e7i) q^{83} +(-2.73991e7 + 4.74566e7i) q^{85} +(-8.88834e7 - 5.13168e7i) q^{86} +(2.65934e7 + 4.60611e7i) q^{88} -740707. i q^{89} +2.09247e7 q^{91} +(-3.68205e6 + 2.12583e6i) q^{92} +(-19710.0 + 34138.7i) q^{94} +(5.12028e7 + 2.95620e7i) q^{95} +(5.29630e7 + 9.17347e7i) q^{97} -8.71497e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 28 q^{4} + 1358 q^{7} - 28080 q^{10} + 61634 q^{13} + 137848 q^{16} - 553564 q^{19} + 439560 q^{22} - 416210 q^{25} + 38024 q^{28} - 704428 q^{31} - 4215240 q^{34} + 4759964 q^{37} + 3397680 q^{40}+ \cdots + 211852178 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 14.2302 8.21584i 0.889391 0.513490i 0.0156475 0.999878i \(-0.495019\pi\)
0.873743 + 0.486388i \(0.161686\pi\)
\(3\) 0 0
\(4\) 7.00000 12.1244i 0.0273438 0.0473608i
\(5\) −369.986 213.612i −0.591978 0.341779i 0.173901 0.984763i \(-0.444363\pi\)
−0.765879 + 0.642984i \(0.777696\pi\)
\(6\) 0 0
\(7\) 339.500 + 588.031i 0.141399 + 0.244911i 0.928024 0.372521i \(-0.121506\pi\)
−0.786624 + 0.617432i \(0.788173\pi\)
\(8\) 3976.47i 0.970817i
\(9\) 0 0
\(10\) −7020.00 −0.702000
\(11\) 11583.4 6687.69i 0.791163 0.456778i −0.0492086 0.998789i \(-0.515670\pi\)
0.840372 + 0.542010i \(0.182337\pi\)
\(12\) 0 0
\(13\) 15408.5 26688.3i 0.539494 0.934432i −0.459437 0.888210i \(-0.651949\pi\)
0.998931 0.0462213i \(-0.0147179\pi\)
\(14\) 9662.34 + 5578.55i 0.251519 + 0.145214i
\(15\) 0 0
\(16\) 34462.0 + 59689.9i 0.525848 + 0.910796i
\(17\) 128266.i 1.53573i −0.640612 0.767865i \(-0.721319\pi\)
0.640612 0.767865i \(-0.278681\pi\)
\(18\) 0 0
\(19\) −138391. −1.06192 −0.530962 0.847396i \(-0.678169\pi\)
−0.530962 + 0.847396i \(0.678169\pi\)
\(20\) −5179.81 + 2990.57i −0.0323738 + 0.0186910i
\(21\) 0 0
\(22\) 109890. 190335.i 0.469102 0.812509i
\(23\) −263003. 151845.i −0.939832 0.542612i −0.0499242 0.998753i \(-0.515898\pi\)
−0.889908 + 0.456141i \(0.849231\pi\)
\(24\) 0 0
\(25\) −104052. 180224.i −0.266374 0.461374i
\(26\) 506375.i 1.10810i
\(27\) 0 0
\(28\) 9506.00 0.0154656
\(29\) 1.14895e6 663347.i 1.62446 0.937883i 0.638755 0.769411i \(-0.279450\pi\)
0.985706 0.168472i \(-0.0538834\pi\)
\(30\) 0 0
\(31\) −176107. + 305026.i −0.190691 + 0.330286i −0.945479 0.325682i \(-0.894406\pi\)
0.754789 + 0.655968i \(0.227739\pi\)
\(32\) 99213.3 + 57280.8i 0.0946172 + 0.0546273i
\(33\) 0 0
\(34\) −1.05381e6 1.82525e6i −0.788582 1.36586i
\(35\) 290085.i 0.193309i
\(36\) 0 0
\(37\) 1.18999e6 0.634946 0.317473 0.948267i \(-0.397166\pi\)
0.317473 + 0.948267i \(0.397166\pi\)
\(38\) −1.96934e6 + 1.13700e6i −0.944465 + 0.545287i
\(39\) 0 0
\(40\) 849420. 1.47124e6i 0.331805 0.574703i
\(41\) 947450. + 547011.i 0.335290 + 0.193580i 0.658187 0.752854i \(-0.271323\pi\)
−0.322897 + 0.946434i \(0.604657\pi\)
\(42\) 0 0
\(43\) −3.12304e6 5.40927e6i −0.913491 1.58221i −0.809096 0.587676i \(-0.800043\pi\)
−0.104395 0.994536i \(-0.533291\pi\)
\(44\) 187255.i 0.0499601i
\(45\) 0 0
\(46\) −4.99014e6 −1.11450
\(47\) −2077.62 + 1199.51i −0.000425769 + 0.000245818i −0.500213 0.865902i \(-0.666745\pi\)
0.499787 + 0.866148i \(0.333412\pi\)
\(48\) 0 0
\(49\) 2.65188e6 4.59319e6i 0.460012 0.796765i
\(50\) −2.96139e6 1.70976e6i −0.473822 0.273561i
\(51\) 0 0
\(52\) −215719. 373636.i −0.0295036 0.0511017i
\(53\) 1.25779e7i 1.59406i 0.603938 + 0.797031i \(0.293598\pi\)
−0.603938 + 0.797031i \(0.706402\pi\)
\(54\) 0 0
\(55\) −5.71428e6 −0.624469
\(56\) −2.33829e6 + 1.35001e6i −0.237764 + 0.137273i
\(57\) 0 0
\(58\) 1.08999e7 1.88792e7i 0.963187 1.66829i
\(59\) 9.12452e6 + 5.26804e6i 0.753012 + 0.434752i 0.826781 0.562524i \(-0.190169\pi\)
−0.0737690 + 0.997275i \(0.523503\pi\)
\(60\) 0 0
\(61\) −8.29020e6 1.43590e7i −0.598750 1.03707i −0.993006 0.118065i \(-0.962331\pi\)
0.394256 0.919001i \(-0.371002\pi\)
\(62\) 5.78747e6i 0.391671i
\(63\) 0 0
\(64\) −1.57621e7 −0.939495
\(65\) −1.14019e7 + 6.58287e6i −0.638738 + 0.368776i
\(66\) 0 0
\(67\) −3.83358e6 + 6.63995e6i −0.190241 + 0.329508i −0.945330 0.326115i \(-0.894260\pi\)
0.755089 + 0.655623i \(0.227594\pi\)
\(68\) −1.55514e6 897860.i −0.0727333 0.0419926i
\(69\) 0 0
\(70\) −2.38329e6 4.12798e6i −0.0992624 0.171928i
\(71\) 2.32211e7i 0.913797i −0.889519 0.456898i \(-0.848960\pi\)
0.889519 0.456898i \(-0.151040\pi\)
\(72\) 0 0
\(73\) 2.49496e7 0.878563 0.439281 0.898350i \(-0.355233\pi\)
0.439281 + 0.898350i \(0.355233\pi\)
\(74\) 1.69339e7 9.77677e6i 0.564715 0.326038i
\(75\) 0 0
\(76\) −968737. + 1.67790e6i −0.0290370 + 0.0502935i
\(77\) 7.86514e6 + 4.54094e6i 0.223740 + 0.129176i
\(78\) 0 0
\(79\) −2.08425e7 3.61003e7i −0.535109 0.926836i −0.999158 0.0410266i \(-0.986937\pi\)
0.464049 0.885810i \(-0.346396\pi\)
\(80\) 2.94460e7i 0.718895i
\(81\) 0 0
\(82\) 1.79766e7 0.397605
\(83\) 3.87356e7 2.23640e7i 0.816202 0.471235i −0.0329028 0.999459i \(-0.510475\pi\)
0.849105 + 0.528224i \(0.177142\pi\)
\(84\) 0 0
\(85\) −2.73991e7 + 4.74566e7i −0.524880 + 0.909119i
\(86\) −8.88834e7 5.13168e7i −1.62490 0.938137i
\(87\) 0 0
\(88\) 2.65934e7 + 4.60611e7i 0.443448 + 0.768075i
\(89\) 740707.i 0.0118056i −0.999983 0.00590278i \(-0.998121\pi\)
0.999983 0.00590278i \(-0.00187892\pi\)
\(90\) 0 0
\(91\) 2.09247e7 0.305137
\(92\) −3.68205e6 + 2.12583e6i −0.0513971 + 0.0296741i
\(93\) 0 0
\(94\) −19710.0 + 34138.7i −0.000252450 + 0.000437256i
\(95\) 5.12028e7 + 2.95620e7i 0.628636 + 0.362943i
\(96\) 0 0
\(97\) 5.29630e7 + 9.17347e7i 0.598255 + 1.03621i 0.993079 + 0.117451i \(0.0374722\pi\)
−0.394824 + 0.918757i \(0.629194\pi\)
\(98\) 8.71497e7i 0.944847i
\(99\) 0 0
\(100\) −2.91347e6 −0.0291347
\(101\) −1.81799e7 + 1.04962e7i −0.174705 + 0.100866i −0.584803 0.811176i \(-0.698828\pi\)
0.410097 + 0.912042i \(0.365495\pi\)
\(102\) 0 0
\(103\) −1.29268e7 + 2.23898e7i −0.114853 + 0.198931i −0.917721 0.397226i \(-0.869973\pi\)
0.802868 + 0.596157i \(0.203306\pi\)
\(104\) 1.06125e8 + 6.12714e7i 0.907162 + 0.523750i
\(105\) 0 0
\(106\) 1.03338e8 + 1.78987e8i 0.818535 + 1.41774i
\(107\) 1.92732e8i 1.47035i 0.677879 + 0.735173i \(0.262899\pi\)
−0.677879 + 0.735173i \(0.737101\pi\)
\(108\) 0 0
\(109\) −1.09904e8 −0.778585 −0.389292 0.921114i \(-0.627280\pi\)
−0.389292 + 0.921114i \(0.627280\pi\)
\(110\) −8.13156e7 + 4.69476e7i −0.555397 + 0.320658i
\(111\) 0 0
\(112\) −2.33997e7 + 4.05295e7i −0.148709 + 0.257572i
\(113\) 2.32811e7 + 1.34414e7i 0.142787 + 0.0824384i 0.569692 0.821858i \(-0.307063\pi\)
−0.426904 + 0.904297i \(0.640396\pi\)
\(114\) 0 0
\(115\) 6.48718e7 + 1.12361e8i 0.370907 + 0.642429i
\(116\) 1.85737e7i 0.102581i
\(117\) 0 0
\(118\) 1.73126e8 0.892963
\(119\) 7.54242e7 4.35462e7i 0.376117 0.217151i
\(120\) 0 0
\(121\) −1.77290e7 + 3.07075e7i −0.0827070 + 0.143253i
\(122\) −2.35943e8 1.36222e8i −1.06505 0.614904i
\(123\) 0 0
\(124\) 2.46550e6 + 4.27037e6i 0.0104284 + 0.0180625i
\(125\) 2.55792e8i 1.04772i
\(126\) 0 0
\(127\) −2.16766e7 −0.0833253 −0.0416627 0.999132i \(-0.513265\pi\)
−0.0416627 + 0.999132i \(0.513265\pi\)
\(128\) −2.49697e8 + 1.44163e8i −0.930195 + 0.537048i
\(129\) 0 0
\(130\) −1.08168e8 + 1.87352e8i −0.378725 + 0.655971i
\(131\) 1.17598e8 + 6.78953e7i 0.399314 + 0.230544i 0.686188 0.727424i \(-0.259283\pi\)
−0.286874 + 0.957968i \(0.592616\pi\)
\(132\) 0 0
\(133\) −4.69837e7 8.13782e7i −0.150155 0.260077i
\(134\) 1.25984e8i 0.390748i
\(135\) 0 0
\(136\) 5.10044e8 1.49091
\(137\) −2.85177e6 + 1.64647e6i −0.00809529 + 0.00467382i −0.504042 0.863679i \(-0.668154\pi\)
0.495947 + 0.868353i \(0.334821\pi\)
\(138\) 0 0
\(139\) −4.10480e7 + 7.10972e7i −0.109959 + 0.190455i −0.915754 0.401740i \(-0.868405\pi\)
0.805794 + 0.592196i \(0.201739\pi\)
\(140\) −3.51709e6 2.03059e6i −0.00915528 0.00528580i
\(141\) 0 0
\(142\) −1.90781e8 3.30442e8i −0.469225 0.812722i
\(143\) 4.12189e8i 0.985718i
\(144\) 0 0
\(145\) −5.66795e8 −1.28219
\(146\) 3.55039e8 2.04982e8i 0.781385 0.451133i
\(147\) 0 0
\(148\) 8.32994e6 1.44279e7i 0.0173618 0.0300715i
\(149\) 6.21930e8 + 3.59072e8i 1.26182 + 0.728511i 0.973426 0.229002i \(-0.0735461\pi\)
0.288392 + 0.957512i \(0.406879\pi\)
\(150\) 0 0
\(151\) −2.49967e8 4.32956e8i −0.480812 0.832791i 0.518945 0.854807i \(-0.326325\pi\)
−0.999758 + 0.0220160i \(0.992992\pi\)
\(152\) 5.50307e8i 1.03093i
\(153\) 0 0
\(154\) 1.49231e8 0.265323
\(155\) 1.30314e8 7.52371e7i 0.225770 0.130348i
\(156\) 0 0
\(157\) 4.18020e8 7.24031e8i 0.688015 1.19168i −0.284463 0.958687i \(-0.591815\pi\)
0.972479 0.232991i \(-0.0748512\pi\)
\(158\) −5.93189e8 3.42478e8i −0.951842 0.549546i
\(159\) 0 0
\(160\) −2.44717e7 4.23863e7i −0.0373409 0.0646763i
\(161\) 2.06206e8i 0.306900i
\(162\) 0 0
\(163\) −7.36451e8 −1.04326 −0.521631 0.853171i \(-0.674676\pi\)
−0.521631 + 0.853171i \(0.674676\pi\)
\(164\) 1.32643e7 7.65815e6i 0.0183362 0.0105864i
\(165\) 0 0
\(166\) 3.67478e8 6.36491e8i 0.483948 0.838223i
\(167\) −1.10515e9 6.38060e8i −1.42088 0.820343i −0.424502 0.905427i \(-0.639551\pi\)
−0.996374 + 0.0850837i \(0.972884\pi\)
\(168\) 0 0
\(169\) −6.69784e7 1.16010e8i −0.0821084 0.142216i
\(170\) 9.00425e8i 1.07808i
\(171\) 0 0
\(172\) −8.74452e7 −0.0999130
\(173\) 3.48663e8 2.01301e8i 0.389243 0.224730i −0.292589 0.956238i \(-0.594517\pi\)
0.681832 + 0.731509i \(0.261183\pi\)
\(174\) 0 0
\(175\) 7.06516e7 1.22372e8i 0.0753304 0.130476i
\(176\) 7.98376e8 + 4.60943e8i 0.832064 + 0.480392i
\(177\) 0 0
\(178\) −6.08553e6 1.05404e7i −0.00606203 0.0104998i
\(179\) 1.44429e9i 1.40683i −0.710780 0.703414i \(-0.751658\pi\)
0.710780 0.703414i \(-0.248342\pi\)
\(180\) 0 0
\(181\) −1.32830e9 −1.23760 −0.618800 0.785548i \(-0.712381\pi\)
−0.618800 + 0.785548i \(0.712381\pi\)
\(182\) 2.97764e8 1.71914e8i 0.271386 0.156685i
\(183\) 0 0
\(184\) 6.03807e8 1.04582e9i 0.526777 0.912405i
\(185\) −4.40281e8 2.54196e8i −0.375874 0.217011i
\(186\) 0 0
\(187\) −8.57801e8 1.48576e9i −0.701488 1.21501i
\(188\) 33586.3i 2.68863e-5i
\(189\) 0 0
\(190\) 9.71505e8 0.745471
\(191\) −1.64673e9 + 9.50741e8i −1.23734 + 0.714379i −0.968550 0.248820i \(-0.919957\pi\)
−0.268791 + 0.963199i \(0.586624\pi\)
\(192\) 0 0
\(193\) −3.90686e8 + 6.76689e8i −0.281578 + 0.487708i −0.971774 0.235915i \(-0.924191\pi\)
0.690195 + 0.723623i \(0.257525\pi\)
\(194\) 1.50735e9 + 8.70272e8i 1.06416 + 0.614395i
\(195\) 0 0
\(196\) −3.71263e7 6.43047e7i −0.0251569 0.0435731i
\(197\) 2.18762e9i 1.45247i 0.687448 + 0.726234i \(0.258731\pi\)
−0.687448 + 0.726234i \(0.741269\pi\)
\(198\) 0 0
\(199\) 2.94513e8 0.187798 0.0938991 0.995582i \(-0.470067\pi\)
0.0938991 + 0.995582i \(0.470067\pi\)
\(200\) 7.16655e8 4.13761e8i 0.447910 0.258601i
\(201\) 0 0
\(202\) −1.72470e8 + 2.98726e8i −0.103587 + 0.179419i
\(203\) 7.80137e8 + 4.50412e8i 0.459396 + 0.265232i
\(204\) 0 0
\(205\) −2.33696e8 4.04773e8i −0.132323 0.229190i
\(206\) 4.24817e8i 0.235903i
\(207\) 0 0
\(208\) 2.12403e9 1.13477
\(209\) −1.60304e9 + 9.25516e8i −0.840155 + 0.485064i
\(210\) 0 0
\(211\) −1.67025e9 + 2.89296e9i −0.842659 + 1.45953i 0.0449795 + 0.998988i \(0.485678\pi\)
−0.887639 + 0.460541i \(0.847656\pi\)
\(212\) 1.52499e8 + 8.80455e7i 0.0754960 + 0.0435877i
\(213\) 0 0
\(214\) 1.58346e9 + 2.74263e9i 0.755008 + 1.30771i
\(215\) 2.66848e9i 1.24885i
\(216\) 0 0
\(217\) −2.39153e8 −0.107854
\(218\) −1.56396e9 + 9.02950e8i −0.692466 + 0.399795i
\(219\) 0 0
\(220\) −4.00000e7 + 6.92820e7i −0.0170753 + 0.0295753i
\(221\) −3.42319e9 1.97638e9i −1.43503 0.828518i
\(222\) 0 0
\(223\) −1.35372e9 2.34471e9i −0.547405 0.948133i −0.998451 0.0556326i \(-0.982282\pi\)
0.451046 0.892500i \(-0.351051\pi\)
\(224\) 7.77874e7i 0.0308970i
\(225\) 0 0
\(226\) 4.41728e8 0.169325
\(227\) 4.52451e9 2.61222e9i 1.70399 0.983800i 0.762363 0.647150i \(-0.224039\pi\)
0.941630 0.336651i \(-0.109294\pi\)
\(228\) 0 0
\(229\) 1.09309e8 1.89329e8i 0.0397480 0.0688456i −0.845467 0.534028i \(-0.820678\pi\)
0.885215 + 0.465182i \(0.154011\pi\)
\(230\) 1.84628e9 + 1.06595e9i 0.659762 + 0.380914i
\(231\) 0 0
\(232\) 2.63778e9 + 4.56876e9i 0.910513 + 1.57705i
\(233\) 4.81293e9i 1.63300i −0.577346 0.816499i \(-0.695912\pi\)
0.577346 0.816499i \(-0.304088\pi\)
\(234\) 0 0
\(235\) 1.02492e6 0.000336061
\(236\) 1.27743e8 7.37526e7i 0.0411804 0.0237755i
\(237\) 0 0
\(238\) 7.15537e8 1.23935e9i 0.223010 0.386265i
\(239\) −9.93958e7 5.73862e7i −0.0304633 0.0175880i 0.484691 0.874685i \(-0.338932\pi\)
−0.515154 + 0.857097i \(0.672265\pi\)
\(240\) 0 0
\(241\) 2.05726e9 + 3.56328e9i 0.609848 + 1.05629i 0.991265 + 0.131885i \(0.0421028\pi\)
−0.381417 + 0.924403i \(0.624564\pi\)
\(242\) 5.82634e8i 0.169877i
\(243\) 0 0
\(244\) −2.32126e8 −0.0654883
\(245\) −1.96232e9 + 1.13295e9i −0.544635 + 0.314445i
\(246\) 0 0
\(247\) −2.13240e9 + 3.69342e9i −0.572902 + 0.992296i
\(248\) −1.21293e9 7.00283e8i −0.320647 0.185126i
\(249\) 0 0
\(250\) 2.10154e9 + 3.63998e9i 0.537995 + 0.931834i
\(251\) 5.13492e9i 1.29371i −0.762611 0.646857i \(-0.776083\pi\)
0.762611 0.646857i \(-0.223917\pi\)
\(252\) 0 0
\(253\) −4.06197e9 −0.991414
\(254\) −3.08464e8 + 1.78092e8i −0.0741088 + 0.0427867i
\(255\) 0 0
\(256\) −3.51287e8 + 6.08447e8i −0.0817904 + 0.141665i
\(257\) 2.24752e9 + 1.29761e9i 0.515194 + 0.297448i 0.734966 0.678104i \(-0.237198\pi\)
−0.219772 + 0.975551i \(0.570531\pi\)
\(258\) 0 0
\(259\) 4.04002e8 + 6.99752e8i 0.0897810 + 0.155505i
\(260\) 1.84320e8i 0.0403348i
\(261\) 0 0
\(262\) 2.23127e9 0.473529
\(263\) −4.20627e8 + 2.42849e8i −0.0879172 + 0.0507590i −0.543314 0.839530i \(-0.682831\pi\)
0.455397 + 0.890289i \(0.349497\pi\)
\(264\) 0 0
\(265\) 2.68679e9 4.65366e9i 0.544817 0.943651i
\(266\) −1.33718e9 7.72022e8i −0.267094 0.154207i
\(267\) 0 0
\(268\) 5.36701e7 + 9.29593e7i 0.0104038 + 0.0180200i
\(269\) 2.94120e8i 0.0561714i 0.999606 + 0.0280857i \(0.00894114\pi\)
−0.999606 + 0.0280857i \(0.991059\pi\)
\(270\) 0 0
\(271\) 5.47200e9 1.01454 0.507270 0.861787i \(-0.330655\pi\)
0.507270 + 0.861787i \(0.330655\pi\)
\(272\) 7.65617e9 4.42029e9i 1.39874 0.807561i
\(273\) 0 0
\(274\) −2.70543e7 + 4.68594e7i −0.00479992 + 0.00831370i
\(275\) −2.41057e9 1.39174e9i −0.421491 0.243348i
\(276\) 0 0
\(277\) −1.83725e9 3.18221e9i −0.312068 0.540518i 0.666742 0.745289i \(-0.267688\pi\)
−0.978810 + 0.204771i \(0.934355\pi\)
\(278\) 1.34897e9i 0.225852i
\(279\) 0 0
\(280\) 1.15351e9 0.187668
\(281\) 4.17095e9 2.40810e9i 0.668974 0.386233i −0.126713 0.991939i \(-0.540443\pi\)
0.795688 + 0.605707i \(0.207110\pi\)
\(282\) 0 0
\(283\) −4.62093e9 + 8.00369e9i −0.720417 + 1.24780i 0.240416 + 0.970670i \(0.422716\pi\)
−0.960833 + 0.277129i \(0.910617\pi\)
\(284\) −2.81541e8 1.62548e8i −0.0432781 0.0249866i
\(285\) 0 0
\(286\) −3.38648e9 5.86556e9i −0.506156 0.876688i
\(287\) 7.42840e8i 0.109488i
\(288\) 0 0
\(289\) −9.47632e9 −1.35847
\(290\) −8.06563e9 + 4.65669e9i −1.14037 + 0.658394i
\(291\) 0 0
\(292\) 1.74647e8 3.02498e8i 0.0240232 0.0416094i
\(293\) 5.49756e9 + 3.17402e9i 0.745932 + 0.430664i 0.824222 0.566267i \(-0.191613\pi\)
−0.0782902 + 0.996931i \(0.524946\pi\)
\(294\) 0 0
\(295\) −2.25063e9 3.89821e9i −0.297178 0.514727i
\(296\) 4.73196e9i 0.616416i
\(297\) 0 0
\(298\) 1.18003e10 1.49633
\(299\) −8.10498e9 + 4.67941e9i −1.01407 + 0.585472i
\(300\) 0 0
\(301\) 2.12055e9 3.67289e9i 0.258334 0.447448i
\(302\) −7.11420e9 4.10738e9i −0.855260 0.493785i
\(303\) 0 0
\(304\) −4.76923e9 8.26055e9i −0.558411 0.967196i
\(305\) 7.08354e9i 0.818561i
\(306\) 0 0
\(307\) −5.37906e9 −0.605554 −0.302777 0.953061i \(-0.597914\pi\)
−0.302777 + 0.953061i \(0.597914\pi\)
\(308\) 1.10112e8 6.35732e7i 0.0122358 0.00706433i
\(309\) 0 0
\(310\) 1.23627e9 2.14128e9i 0.133865 0.231861i
\(311\) 5.50494e9 + 3.17828e9i 0.588452 + 0.339743i 0.764485 0.644641i \(-0.222993\pi\)
−0.176033 + 0.984384i \(0.556327\pi\)
\(312\) 0 0
\(313\) −5.57421e8 9.65481e8i −0.0580772 0.100593i 0.835525 0.549452i \(-0.185164\pi\)
−0.893602 + 0.448860i \(0.851830\pi\)
\(314\) 1.37375e10i 1.41316i
\(315\) 0 0
\(316\) −5.83591e8 −0.0585276
\(317\) −1.19931e9 + 6.92425e8i −0.118767 + 0.0685702i −0.558207 0.829702i \(-0.688510\pi\)
0.439440 + 0.898272i \(0.355177\pi\)
\(318\) 0 0
\(319\) 8.87252e9 1.53677e10i 0.856809 1.48404i
\(320\) 5.83177e9 + 3.36697e9i 0.556160 + 0.321099i
\(321\) 0 0
\(322\) −1.69415e9 2.93436e9i −0.157590 0.272954i
\(323\) 1.77508e10i 1.63083i
\(324\) 0 0
\(325\) −6.41317e9 −0.574830
\(326\) −1.04799e10 + 6.05056e9i −0.927867 + 0.535704i
\(327\) 0 0
\(328\) −2.17517e9 + 3.76750e9i −0.187931 + 0.325505i
\(329\) −1.41070e6 814469.i −0.000120407 6.95170e-5i
\(330\) 0 0
\(331\) −4.68265e9 8.11058e9i −0.390103 0.675678i 0.602360 0.798225i \(-0.294227\pi\)
−0.992463 + 0.122546i \(0.960894\pi\)
\(332\) 6.26192e8i 0.0515413i
\(333\) 0 0
\(334\) −2.09688e10 −1.68495
\(335\) 2.83674e9 1.63779e9i 0.225238 0.130041i
\(336\) 0 0
\(337\) 7.72518e9 1.33804e10i 0.598948 1.03741i −0.394029 0.919098i \(-0.628919\pi\)
0.992977 0.118310i \(-0.0377476\pi\)
\(338\) −1.90624e9 1.10057e9i −0.146053 0.0843237i
\(339\) 0 0
\(340\) 3.83587e8 + 6.64392e8i 0.0287044 + 0.0497174i
\(341\) 4.71100e9i 0.348414i
\(342\) 0 0
\(343\) 7.51555e9 0.542981
\(344\) 2.15098e10 1.24187e10i 1.53604 0.886832i
\(345\) 0 0
\(346\) 3.30771e9 5.72912e9i 0.230793 0.399745i
\(347\) −1.27197e8 7.34370e7i −0.00877320 0.00506521i 0.495607 0.868547i \(-0.334946\pi\)
−0.504380 + 0.863482i \(0.668279\pi\)
\(348\) 0 0
\(349\) 1.37452e10 + 2.38074e10i 0.926508 + 1.60476i 0.789118 + 0.614241i \(0.210538\pi\)
0.137389 + 0.990517i \(0.456129\pi\)
\(350\) 2.32185e9i 0.154726i
\(351\) 0 0
\(352\) 1.53231e9 0.0998102
\(353\) 1.65208e10 9.53828e9i 1.06398 0.614287i 0.137447 0.990509i \(-0.456110\pi\)
0.926529 + 0.376222i \(0.122777\pi\)
\(354\) 0 0
\(355\) −4.96030e9 + 8.59150e9i −0.312316 + 0.540948i
\(356\) −8.98060e6 5.18495e6i −0.000559120 0.000322808i
\(357\) 0 0
\(358\) −1.18660e10 2.05525e10i −0.722392 1.25122i
\(359\) 6.80030e9i 0.409402i −0.978825 0.204701i \(-0.934378\pi\)
0.978825 0.204701i \(-0.0656222\pi\)
\(360\) 0 0
\(361\) 2.16851e9 0.127683
\(362\) −1.89020e10 + 1.09131e10i −1.10071 + 0.635495i
\(363\) 0 0
\(364\) 1.46473e8 2.53699e8i 0.00834358 0.0144515i
\(365\) −9.23103e9 5.32954e9i −0.520090 0.300274i
\(366\) 0 0
\(367\) 7.78861e8 + 1.34903e9i 0.0429334 + 0.0743629i 0.886694 0.462358i \(-0.152996\pi\)
−0.843760 + 0.536720i \(0.819663\pi\)
\(368\) 2.09315e10i 1.14133i
\(369\) 0 0
\(370\) −8.35374e9 −0.445732
\(371\) −7.39621e9 + 4.27020e9i −0.390403 + 0.225400i
\(372\) 0 0
\(373\) 1.02627e9 1.77755e9i 0.0530184 0.0918306i −0.838298 0.545212i \(-0.816449\pi\)
0.891317 + 0.453381i \(0.149782\pi\)
\(374\) −2.44135e10 1.40951e10i −1.24779 0.720414i
\(375\) 0 0
\(376\) −4.76982e6 8.26157e6i −0.000238644 0.000413344i
\(377\) 4.08847e10i 2.02393i
\(378\) 0 0
\(379\) 2.21941e10 1.07567 0.537837 0.843049i \(-0.319241\pi\)
0.537837 + 0.843049i \(0.319241\pi\)
\(380\) 7.16839e8 4.13867e8i 0.0343785 0.0198485i
\(381\) 0 0
\(382\) −1.56223e10 + 2.70586e10i −0.733653 + 1.27072i
\(383\) 1.58171e10 + 9.13201e9i 0.735075 + 0.424396i 0.820276 0.571968i \(-0.193820\pi\)
−0.0852009 + 0.996364i \(0.527153\pi\)
\(384\) 0 0
\(385\) −1.94000e9 3.36018e9i −0.0882995 0.152939i
\(386\) 1.28393e10i 0.578350i
\(387\) 0 0
\(388\) 1.48297e9 0.0654341
\(389\) 6.57693e9 3.79719e9i 0.287227 0.165830i −0.349464 0.936950i \(-0.613636\pi\)
0.636690 + 0.771119i \(0.280303\pi\)
\(390\) 0 0
\(391\) −1.94765e10 + 3.37343e10i −0.833306 + 1.44333i
\(392\) 1.82647e10 + 1.05451e10i 0.773513 + 0.446588i
\(393\) 0 0
\(394\) 1.79731e10 + 3.11303e10i 0.745828 + 1.29181i
\(395\) 1.78089e10i 0.731556i
\(396\) 0 0
\(397\) 3.83153e10 1.54245 0.771223 0.636564i \(-0.219645\pi\)
0.771223 + 0.636564i \(0.219645\pi\)
\(398\) 4.19099e9 2.41967e9i 0.167026 0.0964325i
\(399\) 0 0
\(400\) 7.17171e9 1.24218e10i 0.280145 0.485226i
\(401\) 7.41009e8 + 4.27822e8i 0.0286580 + 0.0165457i 0.514261 0.857634i \(-0.328066\pi\)
−0.485603 + 0.874180i \(0.661400\pi\)
\(402\) 0 0
\(403\) 5.42709e9 + 9.39999e9i 0.205753 + 0.356375i
\(404\) 2.93893e8i 0.0110322i
\(405\) 0 0
\(406\) 1.48021e10 0.544776
\(407\) 1.37842e10 7.95829e9i 0.502346 0.290030i
\(408\) 0 0
\(409\) 1.57822e9 2.73355e9i 0.0563992 0.0976863i −0.836447 0.548047i \(-0.815371\pi\)
0.892847 + 0.450361i \(0.148705\pi\)
\(410\) −6.65110e9 3.84001e9i −0.235374 0.135893i
\(411\) 0 0
\(412\) 1.80975e8 + 3.13458e8i 0.00628101 + 0.0108790i
\(413\) 7.15400e9i 0.245895i
\(414\) 0 0
\(415\) −1.91089e10 −0.644232
\(416\) 3.05746e9 1.76522e9i 0.102091 0.0589422i
\(417\) 0 0
\(418\) −1.52078e10 + 2.63407e10i −0.498151 + 0.862823i
\(419\) −5.95341e9 3.43720e9i −0.193157 0.111519i 0.400303 0.916383i \(-0.368905\pi\)
−0.593459 + 0.804864i \(0.702238\pi\)
\(420\) 0 0
\(421\) 7.65029e9 + 1.32507e10i 0.243528 + 0.421804i 0.961717 0.274045i \(-0.0883618\pi\)
−0.718188 + 0.695849i \(0.755028\pi\)
\(422\) 5.48901e10i 1.73079i
\(423\) 0 0
\(424\) −5.00157e10 −1.54754
\(425\) −2.31166e10 + 1.33464e10i −0.708546 + 0.409079i
\(426\) 0 0
\(427\) 5.62905e9 9.74979e9i 0.169326 0.293281i
\(428\) 2.33676e9 + 1.34913e9i 0.0696367 + 0.0402048i
\(429\) 0 0
\(430\) 2.19238e10 + 3.79731e10i 0.641270 + 1.11071i
\(431\) 3.16429e9i 0.0916996i 0.998948 + 0.0458498i \(0.0145996\pi\)
−0.998948 + 0.0458498i \(0.985400\pi\)
\(432\) 0 0
\(433\) 6.22045e10 1.76958 0.884791 0.465989i \(-0.154301\pi\)
0.884791 + 0.465989i \(0.154301\pi\)
\(434\) −3.40321e9 + 1.96484e9i −0.0959246 + 0.0553821i
\(435\) 0 0
\(436\) −7.69325e8 + 1.33251e9i −0.0212894 + 0.0368744i
\(437\) 3.63973e10 + 2.10140e10i 0.998030 + 0.576213i
\(438\) 0 0
\(439\) 1.15143e10 + 1.99433e10i 0.310012 + 0.536957i 0.978365 0.206888i \(-0.0663335\pi\)
−0.668352 + 0.743845i \(0.733000\pi\)
\(440\) 2.27226e10i 0.606245i
\(441\) 0 0
\(442\) −6.49505e10 −1.70174
\(443\) −3.41001e10 + 1.96877e10i −0.885402 + 0.511187i −0.872436 0.488729i \(-0.837461\pi\)
−0.0129661 + 0.999916i \(0.504127\pi\)
\(444\) 0 0
\(445\) −1.58224e8 + 2.74052e8i −0.00403489 + 0.00698863i
\(446\) −3.85275e10 2.22439e10i −0.973714 0.562174i
\(447\) 0 0
\(448\) −5.35123e9 9.26861e9i −0.132844 0.230093i
\(449\) 5.66523e10i 1.39390i 0.717119 + 0.696951i \(0.245461\pi\)
−0.717119 + 0.696951i \(0.754539\pi\)
\(450\) 0 0
\(451\) 1.46330e10 0.353692
\(452\) 3.25936e8 1.88179e8i 0.00780869 0.00450835i
\(453\) 0 0
\(454\) 4.29232e10 7.43452e10i 1.01034 1.74997i
\(455\) −7.74187e9 4.46977e9i −0.180634 0.104289i
\(456\) 0 0
\(457\) 1.67428e10 + 2.89993e10i 0.383851 + 0.664849i 0.991609 0.129273i \(-0.0412643\pi\)
−0.607758 + 0.794122i \(0.707931\pi\)
\(458\) 3.59227e9i 0.0816408i
\(459\) 0 0
\(460\) 1.81641e9 0.0405679
\(461\) −4.23738e10 + 2.44645e10i −0.938196 + 0.541668i −0.889395 0.457140i \(-0.848874\pi\)
−0.0488020 + 0.998808i \(0.515540\pi\)
\(462\) 0 0
\(463\) −1.70190e10 + 2.94777e10i −0.370347 + 0.641461i −0.989619 0.143716i \(-0.954095\pi\)
0.619271 + 0.785177i \(0.287428\pi\)
\(464\) 7.91903e10 + 4.57205e10i 1.70844 + 0.986368i
\(465\) 0 0
\(466\) −3.95423e10 6.84892e10i −0.838528 1.45237i
\(467\) 7.93796e10i 1.66894i −0.551052 0.834471i \(-0.685773\pi\)
0.551052 0.834471i \(-0.314227\pi\)
\(468\) 0 0
\(469\) −5.20600e9 −0.107600
\(470\) 1.45849e7 8.42058e6i 0.000298890 0.000172564i
\(471\) 0 0
\(472\) −2.09482e10 + 3.62833e10i −0.422064 + 0.731037i
\(473\) −7.23511e10 4.17719e10i −1.44544 0.834526i
\(474\) 0 0
\(475\) 1.43999e10 + 2.49414e10i 0.282869 + 0.489944i
\(476\) 1.21929e9i 0.0237509i
\(477\) 0 0
\(478\) −1.88590e9 −0.0361250
\(479\) 7.86093e10 4.53851e10i 1.49325 0.862127i 0.493278 0.869872i \(-0.335799\pi\)
0.999970 + 0.00774485i \(0.00246529\pi\)
\(480\) 0 0
\(481\) 1.83360e10 3.17588e10i 0.342550 0.593314i
\(482\) 5.85507e10 + 3.38043e10i 1.08479 + 0.626302i
\(483\) 0 0
\(484\) 2.48206e8 + 4.29905e8i 0.00452304 + 0.00783413i
\(485\) 4.52541e10i 0.817883i
\(486\) 0 0
\(487\) 2.51505e10 0.447127 0.223563 0.974689i \(-0.428231\pi\)
0.223563 + 0.974689i \(0.428231\pi\)
\(488\) 5.70983e10 3.29657e10i 1.00680 0.581277i
\(489\) 0 0
\(490\) −1.86162e10 + 3.22442e10i −0.322929 + 0.559329i
\(491\) −8.44100e10 4.87341e10i −1.45234 0.838508i −0.453724 0.891142i \(-0.649905\pi\)
−0.998614 + 0.0526344i \(0.983238\pi\)
\(492\) 0 0
\(493\) −8.50846e10 1.47371e11i −1.44033 2.49473i
\(494\) 7.00777e10i 1.17672i
\(495\) 0 0
\(496\) −2.42760e10 −0.401098
\(497\) 1.36547e10 7.88357e9i 0.223799 0.129210i
\(498\) 0 0
\(499\) 3.47648e10 6.02144e10i 0.560709 0.971177i −0.436725 0.899595i \(-0.643862\pi\)
0.997435 0.0715823i \(-0.0228049\pi\)
\(500\) 3.10131e9 + 1.79054e9i 0.0496209 + 0.0286487i
\(501\) 0 0
\(502\) −4.21876e10 7.30711e10i −0.664309 1.15062i
\(503\) 2.66836e10i 0.416842i 0.978039 + 0.208421i \(0.0668325\pi\)
−0.978039 + 0.208421i \(0.933168\pi\)
\(504\) 0 0
\(505\) 8.96842e9 0.137896
\(506\) −5.78029e10 + 3.33725e10i −0.881754 + 0.509081i
\(507\) 0 0
\(508\) −1.51736e8 + 2.62815e8i −0.00227843 + 0.00394635i
\(509\) −1.33777e10 7.72363e9i −0.199302 0.115067i 0.397028 0.917806i \(-0.370042\pi\)
−0.596330 + 0.802740i \(0.703375\pi\)
\(510\) 0 0
\(511\) 8.47040e9 + 1.46712e10i 0.124228 + 0.215170i
\(512\) 6.22669e10i 0.906102i
\(513\) 0 0
\(514\) 4.26437e10 0.610945
\(515\) 9.56547e9 5.52263e9i 0.135981 0.0785085i
\(516\) 0 0
\(517\) −1.60439e7 + 2.77889e7i −0.000224569 + 0.000388964i
\(518\) 1.14981e10 + 6.63843e9i 0.159701 + 0.0922033i
\(519\) 0 0
\(520\) −2.61766e10 4.53392e10i −0.358014 0.620098i
\(521\) 7.64491e9i 0.103758i −0.998653 0.0518790i \(-0.983479\pi\)
0.998653 0.0518790i \(-0.0165210\pi\)
\(522\) 0 0
\(523\) −7.26324e10 −0.970787 −0.485393 0.874296i \(-0.661324\pi\)
−0.485393 + 0.874296i \(0.661324\pi\)
\(524\) 1.64637e9 9.50534e8i 0.0218375 0.0126079i
\(525\) 0 0
\(526\) −3.99042e9 + 6.91161e9i −0.0521285 + 0.0902892i
\(527\) 3.91244e10 + 2.25885e10i 0.507230 + 0.292850i
\(528\) 0 0
\(529\) 6.95839e9 + 1.20523e10i 0.0888559 + 0.153903i
\(530\) 8.82970e10i 1.11903i
\(531\) 0 0
\(532\) −1.31554e9 −0.0164233
\(533\) 2.91976e10 1.68572e10i 0.361774 0.208871i
\(534\) 0 0
\(535\) 4.11699e10 7.13084e10i 0.502533 0.870413i
\(536\) −2.64035e10 1.52441e10i −0.319892 0.184690i
\(537\) 0 0
\(538\) 2.41644e9 + 4.18540e9i 0.0288435 + 0.0499583i
\(539\) 7.09398e10i 0.840495i
\(540\) 0 0
\(541\) 3.77715e10 0.440935 0.220468 0.975394i \(-0.429242\pi\)
0.220468 + 0.975394i \(0.429242\pi\)
\(542\) 7.78679e10 4.49571e10i 0.902322 0.520956i
\(543\) 0 0
\(544\) 7.34716e9 1.27257e10i 0.0838927 0.145306i
\(545\) 4.06628e10 + 2.34767e10i 0.460905 + 0.266104i
\(546\) 0 0
\(547\) 3.12038e10 + 5.40466e10i 0.348544 + 0.603697i 0.985991 0.166798i \(-0.0533427\pi\)
−0.637447 + 0.770494i \(0.720009\pi\)
\(548\) 4.61012e7i 0.000511199i
\(549\) 0 0
\(550\) −4.57373e10 −0.499827
\(551\) −1.59004e11 + 9.18012e10i −1.72505 + 0.995960i
\(552\) 0 0
\(553\) 1.41521e10 2.45121e10i 0.151328 0.262108i
\(554\) −5.22891e10 3.01891e10i −0.555101 0.320488i
\(555\) 0 0
\(556\) 5.74672e8 + 9.95360e8i 0.00601341 + 0.0104155i
\(557\) 6.15741e10i 0.639702i 0.947468 + 0.319851i \(0.103633\pi\)
−0.947468 + 0.319851i \(0.896367\pi\)
\(558\) 0 0
\(559\) −1.92486e11 −1.97129
\(560\) 1.73151e10 9.99690e9i 0.176065 0.101651i
\(561\) 0 0
\(562\) 3.95691e10 6.85357e10i 0.396653 0.687023i
\(563\) 2.54611e10 + 1.47000e10i 0.253422 + 0.146313i 0.621330 0.783549i \(-0.286593\pi\)
−0.367908 + 0.929862i \(0.619926\pi\)
\(564\) 0 0
\(565\) −5.74247e9 9.94624e9i −0.0563514 0.0976035i
\(566\) 1.51859e11i 1.47971i
\(567\) 0 0
\(568\) 9.23380e10 0.887129
\(569\) −3.70418e9 + 2.13861e9i −0.0353380 + 0.0204024i −0.517565 0.855644i \(-0.673161\pi\)
0.482227 + 0.876046i \(0.339828\pi\)
\(570\) 0 0
\(571\) −3.57366e10 + 6.18976e10i −0.336178 + 0.582277i −0.983710 0.179761i \(-0.942468\pi\)
0.647533 + 0.762038i \(0.275801\pi\)
\(572\) −4.99753e9 2.88532e9i −0.0466843 0.0269532i
\(573\) 0 0
\(574\) 6.10306e9 + 1.05708e10i 0.0562212 + 0.0973779i
\(575\) 6.31995e10i 0.578152i
\(576\) 0 0
\(577\) −1.09889e10 −0.0991404 −0.0495702 0.998771i \(-0.515785\pi\)
−0.0495702 + 0.998771i \(0.515785\pi\)
\(578\) −1.34850e11 + 7.78559e10i −1.20821 + 0.697558i
\(579\) 0 0
\(580\) −3.96756e9 + 6.87202e9i −0.0350600 + 0.0607257i
\(581\) 2.63015e10 + 1.51852e10i 0.230821 + 0.133265i
\(582\) 0 0
\(583\) 8.41173e10 + 1.45695e11i 0.728133 + 1.26116i
\(584\) 9.92114e10i 0.852923i
\(585\) 0 0
\(586\) 1.04309e11 0.884567
\(587\) 1.06206e11 6.13180e10i 0.894533 0.516459i 0.0191105 0.999817i \(-0.493917\pi\)
0.875423 + 0.483358i \(0.160583\pi\)
\(588\) 0 0
\(589\) 2.43716e10 4.22129e10i 0.202499 0.350739i
\(590\) −6.40541e10 3.69817e10i −0.528615 0.305196i
\(591\) 0 0
\(592\) 4.10095e10 + 7.10305e10i 0.333885 + 0.578306i
\(593\) 1.00435e11i 0.812206i 0.913827 + 0.406103i \(0.133113\pi\)
−0.913827 + 0.406103i \(0.866887\pi\)
\(594\) 0 0
\(595\) −3.72079e10 −0.296871
\(596\) 8.70702e9 5.02700e9i 0.0690057 0.0398404i
\(597\) 0 0
\(598\) −7.68906e10 + 1.33178e11i −0.601268 + 1.04143i
\(599\) 9.87946e10 + 5.70391e10i 0.767407 + 0.443063i 0.831949 0.554852i \(-0.187225\pi\)
−0.0645417 + 0.997915i \(0.520559\pi\)
\(600\) 0 0
\(601\) −3.16891e10 5.48871e10i −0.242891 0.420700i 0.718646 0.695377i \(-0.244762\pi\)
−0.961537 + 0.274677i \(0.911429\pi\)
\(602\) 6.96883e10i 0.530608i
\(603\) 0 0
\(604\) −6.99909e9 −0.0525889
\(605\) 1.31190e10 7.57424e9i 0.0979215 0.0565350i
\(606\) 0 0
\(607\) −1.33154e11 + 2.30630e11i −0.980846 + 1.69887i −0.321734 + 0.946830i \(0.604266\pi\)
−0.659112 + 0.752045i \(0.729068\pi\)
\(608\) −1.37302e10 7.92715e9i −0.100476 0.0580100i
\(609\) 0 0
\(610\) 5.81972e10 + 1.00801e11i 0.420323 + 0.728020i
\(611\) 7.39307e7i 0.000530469i
\(612\) 0 0
\(613\) 2.39412e11 1.69552 0.847761 0.530378i \(-0.177950\pi\)
0.847761 + 0.530378i \(0.177950\pi\)
\(614\) −7.65454e10 + 4.41935e10i −0.538574 + 0.310946i
\(615\) 0 0
\(616\) −1.80569e10 + 3.12755e10i −0.125407 + 0.217211i
\(617\) 9.17604e10 + 5.29779e10i 0.633162 + 0.365556i 0.781976 0.623309i \(-0.214212\pi\)
−0.148814 + 0.988865i \(0.547545\pi\)
\(618\) 0 0
\(619\) 1.06934e10 + 1.85215e10i 0.0728372 + 0.126158i 0.900144 0.435593i \(-0.143461\pi\)
−0.827306 + 0.561751i \(0.810128\pi\)
\(620\) 2.10664e9i 0.0142568i
\(621\) 0 0
\(622\) 1.04449e11 0.697818
\(623\) 4.35559e8 2.51470e8i 0.00289131 0.00166930i
\(624\) 0 0
\(625\) 1.39946e10 2.42393e10i 0.0917150 0.158855i
\(626\) −1.58645e10 9.15936e9i −0.103307 0.0596441i
\(627\) 0 0
\(628\) −5.85228e9 1.01364e10i −0.0376258 0.0651699i
\(629\) 1.52635e11i 0.975105i
\(630\) 0 0
\(631\) −1.12422e11 −0.709145 −0.354573 0.935028i \(-0.615374\pi\)
−0.354573 + 0.935028i \(0.615374\pi\)
\(632\) 1.43552e11 8.28797e10i 0.899788 0.519493i
\(633\) 0 0
\(634\) −1.13777e10 + 1.97068e10i −0.0704202 + 0.121971i
\(635\) 8.02006e9 + 4.63039e9i 0.0493268 + 0.0284788i
\(636\) 0 0
\(637\) −8.17230e10 1.41548e11i −0.496348 0.859700i
\(638\) 2.91581e11i 1.75985i
\(639\) 0 0
\(640\) 1.23179e11 0.734207
\(641\) −1.25164e11 + 7.22636e10i −0.741392 + 0.428043i −0.822575 0.568656i \(-0.807463\pi\)
0.0811832 + 0.996699i \(0.474130\pi\)
\(642\) 0 0
\(643\) −2.78752e10 + 4.82813e10i −0.163070 + 0.282446i −0.935968 0.352084i \(-0.885473\pi\)
0.772898 + 0.634530i \(0.218806\pi\)
\(644\) −2.50011e9 1.44344e9i −0.0145350 0.00839180i
\(645\) 0 0
\(646\) 1.45838e11 + 2.52599e11i 0.837414 + 1.45044i
\(647\) 5.47913e10i 0.312676i 0.987704 + 0.156338i \(0.0499689\pi\)
−0.987704 + 0.156338i \(0.950031\pi\)
\(648\) 0 0
\(649\) 1.40924e11 0.794341
\(650\) −9.12610e10 + 5.26896e10i −0.511248 + 0.295169i
\(651\) 0 0
\(652\) −5.15515e9 + 8.92899e9i −0.0285267 + 0.0494097i
\(653\) −1.18927e11 6.86628e10i −0.654078 0.377632i 0.135939 0.990717i \(-0.456595\pi\)
−0.790017 + 0.613085i \(0.789928\pi\)
\(654\) 0 0
\(655\) −2.90065e10 5.02407e10i −0.157590 0.272954i
\(656\) 7.54043e10i 0.407175i
\(657\) 0 0
\(658\) −2.67662e7 −0.000142785
\(659\) 2.01218e11 1.16173e11i 1.06691 0.615978i 0.139571 0.990212i \(-0.455428\pi\)
0.927334 + 0.374234i \(0.122094\pi\)
\(660\) 0 0
\(661\) −6.37522e10 + 1.10422e11i −0.333956 + 0.578429i −0.983284 0.182080i \(-0.941717\pi\)
0.649328 + 0.760509i \(0.275050\pi\)
\(662\) −1.33270e11 7.69437e10i −0.693908 0.400628i
\(663\) 0 0
\(664\) 8.89297e10 + 1.54031e11i 0.457483 + 0.792383i
\(665\) 4.01451e10i 0.205280i
\(666\) 0 0
\(667\) −4.02904e11 −2.03563
\(668\) −1.54721e10 + 8.93284e9i −0.0777042 + 0.0448625i
\(669\) 0 0
\(670\) 2.69117e10 4.66124e10i 0.133549 0.231314i
\(671\) −1.92058e11 1.10885e11i −0.947418 0.546992i
\(672\) 0 0
\(673\) 3.27191e9 + 5.66712e9i 0.0159493 + 0.0276250i 0.873890 0.486124i \(-0.161590\pi\)
−0.857941 + 0.513749i \(0.828256\pi\)
\(674\) 2.53875e11i 1.23021i
\(675\) 0 0
\(676\) −1.87539e9 −0.00898061
\(677\) 2.01079e11 1.16093e11i 0.957221 0.552652i 0.0619041 0.998082i \(-0.480283\pi\)
0.895316 + 0.445431i \(0.146949\pi\)
\(678\) 0 0
\(679\) −3.59619e10 + 6.22879e10i −0.169186 + 0.293038i
\(680\) −1.88709e11 1.08951e11i −0.882588 0.509562i
\(681\) 0 0
\(682\) 3.87048e10 + 6.70387e10i 0.178907 + 0.309876i
\(683\) 4.94502e10i 0.227240i 0.993524 + 0.113620i \(0.0362446\pi\)
−0.993524 + 0.113620i \(0.963755\pi\)
\(684\) 0 0
\(685\) 1.40682e9 0.00638965
\(686\) 1.06948e11 6.17466e10i 0.482922 0.278815i
\(687\) 0 0
\(688\) 2.15253e11 3.72828e11i 0.960715 1.66401i
\(689\) 3.35683e11 + 1.93807e11i 1.48954 + 0.859988i
\(690\) 0 0
\(691\) −5.76414e10 9.98378e10i −0.252826 0.437908i 0.711477 0.702710i \(-0.248027\pi\)
−0.964303 + 0.264802i \(0.914693\pi\)
\(692\) 5.63642e9i 0.0245798i
\(693\) 0 0
\(694\) −2.41339e9 −0.0104037
\(695\) 3.03744e10 1.75367e10i 0.130187 0.0751636i
\(696\) 0 0
\(697\) 7.01627e10 1.21525e11i 0.297286 0.514915i
\(698\) 3.91195e11 + 2.25856e11i 1.64805 + 0.951505i
\(699\) 0 0
\(700\) −9.89123e8 1.71321e9i −0.00411963 0.00713541i
\(701\) 2.53572e10i 0.105009i 0.998621 + 0.0525047i \(0.0167205\pi\)
−0.998621 + 0.0525047i \(0.983280\pi\)
\(702\) 0 0
\(703\) −1.64684e11 −0.674264
\(704\) −1.82579e11 + 1.05412e11i −0.743294 + 0.429141i
\(705\) 0 0
\(706\) 1.56730e11 2.71464e11i 0.630860 1.09268i
\(707\) −1.23441e10 7.12689e9i −0.0494064 0.0285248i
\(708\) 0 0
\(709\) −1.23635e11 2.14142e11i −0.489279 0.847456i 0.510645 0.859792i \(-0.329407\pi\)
−0.999924 + 0.0123356i \(0.996073\pi\)
\(710\) 1.63012e11i 0.641485i
\(711\) 0 0
\(712\) 2.94540e9 0.0114610
\(713\) 9.26335e10 5.34820e10i 0.358435 0.206942i
\(714\) 0 0
\(715\) −8.80485e10 + 1.52504e11i −0.336897 + 0.583523i
\(716\) −1.75110e10 1.01100e10i −0.0666284 0.0384679i
\(717\) 0 0
\(718\) −5.58701e10 9.67699e10i −0.210224 0.364118i
\(719\) 1.96339e10i 0.0734668i −0.999325 0.0367334i \(-0.988305\pi\)
0.999325 0.0367334i \(-0.0116952\pi\)
\(720\) 0 0
\(721\) −1.75546e10 −0.0649605
\(722\) 3.08584e10 1.78161e10i 0.113560 0.0655637i
\(723\) 0 0
\(724\) −9.29807e9 + 1.61047e10i −0.0338406 + 0.0586137i
\(725\) −2.39102e11 1.38046e11i −0.865430 0.499656i
\(726\) 0 0
\(727\) −3.08655e10 5.34606e10i −0.110493 0.191380i 0.805476 0.592628i \(-0.201910\pi\)
−0.915969 + 0.401249i \(0.868576\pi\)
\(728\) 8.32065e10i 0.296232i
\(729\) 0 0
\(730\) −1.75146e11 −0.616751
\(731\) −6.93824e11 + 4.00579e11i −2.42985 + 1.40287i
\(732\) 0 0
\(733\) 8.93673e10 1.54789e11i 0.309573 0.536196i −0.668696 0.743536i \(-0.733147\pi\)
0.978269 + 0.207340i \(0.0664807\pi\)
\(734\) 2.21668e10 + 1.27980e10i 0.0763692 + 0.0440918i
\(735\) 0 0
\(736\) −1.73956e10 3.01301e10i −0.0592828 0.102681i
\(737\) 1.02551e11i 0.347593i
\(738\) 0 0
\(739\) 2.19706e11 0.736655 0.368328 0.929696i \(-0.379931\pi\)
0.368328 + 0.929696i \(0.379931\pi\)
\(740\) −6.16393e9 + 3.55875e9i −0.0205556 + 0.0118678i
\(741\) 0 0
\(742\) −7.01666e10 + 1.21532e11i −0.231481 + 0.400936i
\(743\) 3.07763e11 + 1.77687e11i 1.00986 + 0.583042i 0.911150 0.412074i \(-0.135196\pi\)
0.0987084 + 0.995116i \(0.468529\pi\)
\(744\) 0 0
\(745\) −1.53404e11 2.65703e11i −0.497979 0.862525i
\(746\) 3.37267e10i 0.108898i
\(747\) 0 0
\(748\) −2.40184e10 −0.0767253
\(749\) −1.13333e11 + 6.54327e10i −0.360104 + 0.207906i
\(750\) 0 0
\(751\) −4.15260e10 + 7.19252e10i −0.130545 + 0.226111i −0.923887 0.382666i \(-0.875006\pi\)
0.793342 + 0.608777i \(0.208339\pi\)
\(752\) −1.43198e8 8.26752e7i −0.000447780 0.000258526i
\(753\) 0 0
\(754\) −3.35902e11 5.81800e11i −1.03927 1.80006i
\(755\) 2.13584e11i 0.657326i
\(756\) 0 0
\(757\) −1.47694e11 −0.449759 −0.224879 0.974387i \(-0.572199\pi\)
−0.224879 + 0.974387i \(0.572199\pi\)
\(758\) 3.15828e11 1.82343e11i 0.956695 0.552348i
\(759\) 0 0
\(760\) −1.17552e11 + 2.03606e11i −0.352351 + 0.610290i
\(761\) −3.42783e11 1.97906e11i −1.02207 0.590093i −0.107367 0.994219i \(-0.534242\pi\)
−0.914703 + 0.404127i \(0.867575\pi\)
\(762\) 0 0
\(763\) −3.73123e10 6.46268e10i −0.110091 0.190684i
\(764\) 2.66207e10i 0.0781352i
\(765\) 0 0
\(766\) 3.00108e11 0.871692
\(767\) 2.81190e11 1.62345e11i 0.812492 0.469092i
\(768\) 0 0
\(769\) 3.09706e11 5.36427e11i 0.885615 1.53393i 0.0406078 0.999175i \(-0.487071\pi\)
0.845007 0.534755i \(-0.179596\pi\)
\(770\) −5.52133e10 3.18774e10i −0.157066 0.0906818i
\(771\) 0 0
\(772\) 5.46961e9 + 9.47364e9i 0.0153988 + 0.0266715i
\(773\) 8.71283e10i 0.244029i −0.992528 0.122014i \(-0.961065\pi\)
0.992528 0.122014i \(-0.0389354\pi\)
\(774\) 0 0
\(775\) 7.32975e10 0.203181
\(776\) −3.64780e11 + 2.10606e11i −1.00597 + 0.580796i
\(777\) 0 0
\(778\) 6.23942e10 1.08070e11i 0.170304 0.294976i
\(779\) −1.31119e11 7.57013e10i −0.356053 0.205567i
\(780\) 0 0
\(781\) −1.55296e11 2.68980e11i −0.417403 0.722963i
\(782\) 6.40064e11i 1.71158i
\(783\) 0 0
\(784\) 3.65556e11 0.967587
\(785\) −3.09323e11 + 1.78588e11i −0.814581 + 0.470298i
\(786\) 0 0
\(787\) −2.43548e11 + 4.21837e11i −0.634870 + 1.09963i 0.351673 + 0.936123i \(0.385613\pi\)
−0.986543 + 0.163504i \(0.947720\pi\)
\(788\) 2.65235e10 + 1.53133e10i 0.0687900 + 0.0397159i
\(789\) 0 0
\(790\) 1.46315e11 + 2.53424e11i 0.375647 + 0.650639i
\(791\) 1.82534e10i 0.0466269i
\(792\) 0 0
\(793\) −5.10958e11 −1.29209
\(794\) 5.45236e11 3.14792e11i 1.37184 0.792031i
\(795\) 0 0
\(796\) 2.06159e9 3.57077e9i 0.00513511 0.00889427i
\(797\) 3.39906e11 + 1.96245e11i 0.842415 + 0.486368i 0.858084 0.513509i \(-0.171655\pi\)
−0.0156696 + 0.999877i \(0.504988\pi\)
\(798\) 0 0
\(799\) 1.53856e8 + 2.66487e8i 0.000377510 + 0.000653866i
\(800\) 2.38409e10i 0.0582052i
\(801\) 0 0
\(802\) 1.40597e10 0.0339842
\(803\) 2.89002e11 1.66855e11i 0.695087 0.401308i
\(804\) 0 0
\(805\) −4.40480e10 + 7.62933e10i −0.104892 + 0.181678i
\(806\) 1.54458e11 + 8.91762e10i 0.365990 + 0.211304i
\(807\) 0 0
\(808\) −4.17376e10 7.22917e10i −0.0979225 0.169607i
\(809\) 6.95054e11i 1.62265i −0.584597 0.811324i \(-0.698747\pi\)
0.584597 0.811324i \(-0.301253\pi\)
\(810\) 0 0
\(811\) −5.75064e11 −1.32933 −0.664665 0.747142i \(-0.731426\pi\)
−0.664665 + 0.747142i \(0.731426\pi\)
\(812\) 1.09219e10 6.30577e9i 0.0251232 0.0145049i
\(813\) 0 0
\(814\) 1.30768e11 2.26497e11i 0.297855 0.515899i
\(815\) 2.72477e11 + 1.57315e11i 0.617588 + 0.356565i
\(816\) 0 0
\(817\) 4.32201e11 + 7.48594e11i 0.970058 + 1.68019i
\(818\) 5.18655e10i 0.115842i
\(819\) 0 0
\(820\) −6.54348e9 −0.0144728
\(821\) −8.10334e8 + 4.67846e8i −0.00178357 + 0.00102975i −0.500892 0.865510i \(-0.666994\pi\)
0.499108 + 0.866540i \(0.333661\pi\)
\(822\) 0 0
\(823\) 3.29715e9 5.71082e9i 0.00718685 0.0124480i −0.862410 0.506211i \(-0.831046\pi\)
0.869596 + 0.493763i \(0.164379\pi\)
\(824\) −8.90324e10 5.14029e10i −0.193125 0.111501i
\(825\) 0 0
\(826\) 5.87761e10 + 1.01803e11i 0.126264 + 0.218696i
\(827\) 8.55938e11i 1.82987i −0.403601 0.914935i \(-0.632242\pi\)
0.403601 0.914935i \(-0.367758\pi\)
\(828\) 0 0
\(829\) 8.38807e11 1.77600 0.888002 0.459839i \(-0.152093\pi\)
0.888002 + 0.459839i \(0.152093\pi\)
\(830\) −2.71924e11 + 1.56995e11i −0.572974 + 0.330807i
\(831\) 0 0
\(832\) −2.42870e11 + 4.20664e11i −0.506852 + 0.877894i
\(833\) −5.89149e11 3.40145e11i −1.22362 0.706455i
\(834\) 0 0
\(835\) 2.72594e11 + 4.72147e11i 0.560752 + 0.971251i
\(836\) 2.59145e10i 0.0530539i
\(837\) 0 0
\(838\) −1.12958e11 −0.229056
\(839\) 9.33975e10 5.39231e10i 0.188490 0.108825i −0.402786 0.915294i \(-0.631958\pi\)
0.591275 + 0.806470i \(0.298625\pi\)
\(840\) 0 0
\(841\) 6.29935e11 1.09108e12i 1.25925 2.18108i
\(842\) 2.17731e11 + 1.25707e11i 0.433184 + 0.250099i
\(843\) 0 0
\(844\) 2.33835e10 + 4.05014e10i 0.0460829 + 0.0798180i
\(845\) 5.72295e10i 0.112252i
\(846\) 0 0
\(847\) −2.40760e10 −0.0467789
\(848\) −7.50775e11 + 4.33460e11i −1.45187 + 0.838235i
\(849\) 0 0
\(850\) −2.19303e11 + 3.79844e11i −0.420116 + 0.727662i
\(851\) −3.12972e11 1.80694e11i −0.596742 0.344529i
\(852\) 0 0
\(853\) 3.17218e11 + 5.49438e11i 0.599187 + 1.03782i 0.992941 + 0.118606i \(0.0378427\pi\)
−0.393754 + 0.919216i \(0.628824\pi\)
\(854\) 1.84989e11i 0.347788i
\(855\) 0 0
\(856\) −7.66394e11 −1.42744
\(857\) 6.55178e11 3.78267e11i 1.21461 0.701254i 0.250848 0.968026i \(-0.419290\pi\)
0.963760 + 0.266772i \(0.0859571\pi\)
\(858\) 0 0
\(859\) −5.28165e11 + 9.14808e11i −0.970055 + 1.68019i −0.274685 + 0.961534i \(0.588573\pi\)
−0.695371 + 0.718651i \(0.744760\pi\)
\(860\) 3.23535e10 + 1.86793e10i 0.0591464 + 0.0341482i
\(861\) 0 0
\(862\) 2.59973e10 + 4.50287e10i 0.0470868 + 0.0815567i
\(863\) 4.06826e11i 0.733441i 0.930331 + 0.366720i \(0.119519\pi\)
−0.930331 + 0.366720i \(0.880481\pi\)
\(864\) 0 0
\(865\) −1.72001e11 −0.307232
\(866\) 8.85186e11 5.11062e11i 1.57385 0.908662i
\(867\) 0 0
\(868\) −1.67407e9 + 2.89958e9i −0.00294914 + 0.00510806i
\(869\) −4.82856e11 2.78777e11i −0.846718 0.488853i
\(870\) 0 0
\(871\) 1.18139e11 + 2.04623e11i 0.205268 + 0.355535i
\(872\) 4.37028e11i 0.755863i
\(873\) 0 0
\(874\) 6.90590e11 1.18352
\(875\) −1.50413e11 + 8.68412e10i −0.256599 + 0.148147i
\(876\) 0 0
\(877\) 1.55974e11 2.70155e11i 0.263666 0.456683i −0.703547 0.710649i \(-0.748402\pi\)
0.967213 + 0.253965i \(0.0817350\pi\)
\(878\) 3.27702e11 + 1.89199e11i 0.551444 + 0.318376i
\(879\) 0 0
\(880\) −1.96926e11 3.41085e11i −0.328376 0.568764i
\(881\) 1.97724e11i 0.328213i 0.986443 + 0.164107i \(0.0524741\pi\)
−0.986443 + 0.164107i \(0.947526\pi\)
\(882\) 0 0
\(883\) 1.84908e11 0.304168 0.152084 0.988368i \(-0.451402\pi\)
0.152084 + 0.988368i \(0.451402\pi\)
\(884\) −4.79247e10 + 2.76693e10i −0.0784784 + 0.0453096i
\(885\) 0 0
\(886\) −3.23502e11 + 5.60321e11i −0.524979 + 0.909290i
\(887\) −1.19803e11 6.91683e10i −0.193541 0.111741i 0.400098 0.916472i \(-0.368976\pi\)
−0.593639 + 0.804731i \(0.702309\pi\)
\(888\) 0 0
\(889\) −7.35922e9 1.27465e10i −0.0117822 0.0204073i
\(890\) 5.19976e9i 0.00828750i
\(891\) 0 0
\(892\) −3.79041e10 −0.0598724
\(893\) 2.87523e8 1.66002e8i 0.000452134 0.000261040i
\(894\) 0 0
\(895\) −3.08516e11 + 5.34366e11i −0.480824 + 0.832812i
\(896\) −1.69544e11 9.78865e10i −0.263058 0.151877i
\(897\) 0 0
\(898\) 4.65446e11 + 8.06177e11i 0.715755 + 1.23972i
\(899\) 4.67280e11i 0.715383i
\(900\) 0 0
\(901\) 1.61332e12 2.44805
\(902\) 2.08231e11 1.20222e11i 0.314571 0.181618i
\(903\) 0 0
\(904\) −5.34491e10 + 9.25766e10i −0.0800326 + 0.138620i
\(905\) 4.91451e11 + 2.83740e11i 0.732633 + 0.422986i
\(906\) 0 0
\(907\) 3.20510e10 + 5.55140e10i 0.0473601 + 0.0820302i 0.888734 0.458424i \(-0.151586\pi\)
−0.841374 + 0.540454i \(0.818252\pi\)
\(908\) 7.31423e10i 0.107603i
\(909\) 0 0
\(910\) −1.46892e11 −0.214206
\(911\) −5.92130e11 + 3.41866e11i −0.859693 + 0.496344i −0.863910 0.503647i \(-0.831991\pi\)
0.00421617 + 0.999991i \(0.498658\pi\)
\(912\) 0 0
\(913\) 2.99127e11 5.18103e11i 0.430500 0.745647i
\(914\) 4.76508e11 + 2.75112e11i 0.682787 + 0.394207i
\(915\) 0 0
\(916\) −1.53033e9 2.65061e9i −0.00217372 0.00376499i
\(917\) 9.22018e10i 0.130395i
\(918\) 0 0
\(919\) 1.30518e11 0.182982 0.0914908 0.995806i \(-0.470837\pi\)
0.0914908 + 0.995806i \(0.470837\pi\)
\(920\) −4.46801e11 + 2.57961e11i −0.623681 + 0.360083i
\(921\) 0 0
\(922\) −4.01993e11 + 6.96273e11i −0.556282 + 0.963509i
\(923\) −6.19732e11 3.57803e11i −0.853881 0.492988i
\(924\) 0 0
\(925\) −1.23822e11 2.14465e11i −0.169133 0.292948i
\(926\) 5.59300e11i 0.760679i
\(927\) 0 0
\(928\) 1.51988e11 0.204936
\(929\) −4.93543e11 + 2.84947e11i −0.662616 + 0.382562i −0.793273 0.608866i \(-0.791625\pi\)
0.130657 + 0.991428i \(0.458291\pi\)
\(930\) 0 0
\(931\) −3.66996e11 + 6.35656e11i −0.488498 + 0.846104i
\(932\) −5.83537e10 3.36905e10i −0.0773401 0.0446523i
\(933\) 0 0
\(934\) −6.52170e11 1.12959e12i −0.856985 1.48434i
\(935\) 7.32946e11i 0.959015i
\(936\) 0 0
\(937\) −4.64545e11 −0.602656 −0.301328 0.953521i \(-0.597430\pi\)
−0.301328 + 0.953521i \(0.597430\pi\)
\(938\) −7.40826e10 + 4.27716e10i −0.0956985 + 0.0552515i
\(939\) 0 0
\(940\) 7.17444e6 1.24265e7i 9.18918e−6 1.59161e-5i
\(941\) 1.25303e12 + 7.23435e11i 1.59809 + 0.922659i 0.991855 + 0.127375i \(0.0406553\pi\)
0.606238 + 0.795284i \(0.292678\pi\)
\(942\) 0 0
\(943\) −1.66122e11 2.87731e11i −0.210078 0.363865i
\(944\) 7.26189e11i 0.914454i
\(945\) 0 0
\(946\) −1.37276e12 −1.71408
\(947\) −6.26905e11 + 3.61944e11i −0.779474 + 0.450030i −0.836244 0.548358i \(-0.815253\pi\)
0.0567698 + 0.998387i \(0.481920\pi\)
\(948\) 0 0
\(949\) 3.84436e11 6.65863e11i 0.473980 0.820957i
\(950\) 4.09829e11 + 2.36615e11i 0.503163 + 0.290501i
\(951\) 0 0
\(952\) 1.73160e11 + 2.99922e11i 0.210814 + 0.365141i
\(953\) 3.62461e11i 0.439430i −0.975564 0.219715i \(-0.929487\pi\)
0.975564 0.219715i \(-0.0705127\pi\)
\(954\) 0 0
\(955\) 8.12358e11 0.976639
\(956\) −1.39154e9 + 8.03407e8i −0.00166596 + 0.000961842i
\(957\) 0 0
\(958\) 7.45753e11 1.29168e12i 0.885387 1.53354i
\(959\) −1.93635e9 1.11795e9i −0.00228934 0.00132175i
\(960\) 0 0
\(961\) 3.64418e11 + 6.31191e11i 0.427274 + 0.740060i
\(962\) 6.02582e11i 0.703583i
\(963\) 0 0
\(964\) 5.76034e10 0.0667021
\(965\) 2.89097e11 1.66910e11i 0.333376 0.192475i
\(966\) 0 0
\(967\) −6.86133e11 + 1.18842e12i −0.784697 + 1.35914i 0.144482 + 0.989507i \(0.453848\pi\)
−0.929180 + 0.369628i \(0.879485\pi\)
\(968\) −1.22107e11 7.04987e10i −0.139072 0.0802934i
\(969\) 0 0
\(970\) −3.71801e11 6.43977e11i −0.419975 0.727417i
\(971\) 4.29812e11i 0.483505i −0.970338 0.241753i \(-0.922278\pi\)
0.970338 0.241753i \(-0.0777223\pi\)
\(972\) 0 0
\(973\) −5.57431e10 −0.0621928
\(974\) 3.57898e11 2.06632e11i 0.397670 0.229595i
\(975\) 0 0
\(976\) 5.71394e11 9.89683e11i 0.629704 1.09068i
\(977\) 3.59273e11 + 2.07426e11i 0.394318 + 0.227659i 0.684029 0.729455i \(-0.260226\pi\)
−0.289712 + 0.957114i \(0.593559\pi\)
\(978\) 0 0
\(979\) −4.95362e9 8.57992e9i −0.00539252 0.00934012i
\(980\) 3.17225e10i 0.0343924i
\(981\) 0 0
\(982\) −1.60157e12 −1.72226
\(983\) 6.95470e11 4.01530e11i 0.744842 0.430035i −0.0789852 0.996876i \(-0.525168\pi\)
0.823827 + 0.566841i \(0.191835\pi\)
\(984\) 0 0
\(985\) 4.67301e11 8.09389e11i 0.496423 0.859830i
\(986\) −2.42155e12 1.39808e12i −2.56204 1.47919i
\(987\) 0 0
\(988\) 2.98536e10 + 5.17079e10i 0.0313306 + 0.0542662i
\(989\) 1.89688e12i 1.98268i
\(990\) 0 0
\(991\) 6.15925e11 0.638606 0.319303 0.947653i \(-0.396551\pi\)
0.319303 + 0.947653i \(0.396551\pi\)
\(992\) −3.49443e10 + 2.01751e10i −0.0360853 + 0.0208338i
\(993\) 0 0
\(994\) 1.29540e11 2.24370e11i 0.132696 0.229837i
\(995\) −1.08966e11 6.29114e10i −0.111172 0.0641855i
\(996\) 0 0
\(997\) −4.36615e11 7.56240e11i −0.441894 0.765383i 0.555936 0.831225i \(-0.312360\pi\)
−0.997830 + 0.0658422i \(0.979027\pi\)
\(998\) 1.14249e12i 1.15167i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.9.d.c.53.2 4
3.2 odd 2 inner 81.9.d.c.53.1 4
9.2 odd 6 inner 81.9.d.c.26.2 4
9.4 even 3 27.9.b.c.26.2 yes 2
9.5 odd 6 27.9.b.c.26.1 2
9.7 even 3 inner 81.9.d.c.26.1 4
36.23 even 6 432.9.e.f.161.1 2
36.31 odd 6 432.9.e.f.161.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.9.b.c.26.1 2 9.5 odd 6
27.9.b.c.26.2 yes 2 9.4 even 3
81.9.d.c.26.1 4 9.7 even 3 inner
81.9.d.c.26.2 4 9.2 odd 6 inner
81.9.d.c.53.1 4 3.2 odd 2 inner
81.9.d.c.53.2 4 1.1 even 1 trivial
432.9.e.f.161.1 2 36.23 even 6
432.9.e.f.161.2 2 36.31 odd 6