Properties

Label 27.9
Level 27
Weight 9
Dimension 163
Nonzero newspaces 3
Newform subspaces 6
Sturm bound 486
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 27 = 3^{3} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 6 \)
Sturm bound: \(486\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(27))\).

Total New Old
Modular forms 231 179 52
Cusp forms 201 163 38
Eisenstein series 30 16 14

Trace form

\( 163 q - 3 q^{2} - 6 q^{3} - 1013 q^{4} - 885 q^{5} - 774 q^{6} + 2033 q^{7} - 9 q^{8} - 12960 q^{9} - 12453 q^{10} + 57345 q^{11} + 77421 q^{12} - 52675 q^{13} - 241941 q^{14} + 105507 q^{15} + 329059 q^{16}+ \cdots + 228876057 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(27))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
27.9.b \(\chi_{27}(26, \cdot)\) 27.9.b.a 1 1
27.9.b.b 2
27.9.b.c 2
27.9.b.d 6
27.9.d \(\chi_{27}(8, \cdot)\) 27.9.d.a 14 2
27.9.f \(\chi_{27}(2, \cdot)\) 27.9.f.a 138 6

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(27))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(27)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)