Properties

Label 27.9.b.c
Level $27$
Weight $9$
Character orbit 27.b
Analytic conductor $10.999$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,9,Mod(26,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.26");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 27.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.9992224717\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-30}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 30 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{-30}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - 14 q^{4} + 26 \beta q^{5} - 679 q^{7} + 242 \beta q^{8} - 7020 q^{10} + 814 \beta q^{11} - 30817 q^{13} - 679 \beta q^{14} - 68924 q^{16} - 7806 \beta q^{17} - 138391 q^{19} - 364 \beta q^{20} + \cdots - 5303760 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 28 q^{4} - 1358 q^{7} - 14040 q^{10} - 61634 q^{13} - 137848 q^{16} - 276782 q^{19} - 439560 q^{22} + 416210 q^{25} + 19012 q^{28} + 704428 q^{31} + 4215240 q^{34} + 2379982 q^{37} - 3397680 q^{40}+ \cdots - 211852178 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
5.47723i
5.47723i
16.4317i 0 −14.0000 427.224i 0 −679.000 3976.47i 0 −7020.00
26.2 16.4317i 0 −14.0000 427.224i 0 −679.000 3976.47i 0 −7020.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 27.9.b.c 2
3.b odd 2 1 inner 27.9.b.c 2
4.b odd 2 1 432.9.e.f 2
9.c even 3 2 81.9.d.c 4
9.d odd 6 2 81.9.d.c 4
12.b even 2 1 432.9.e.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.9.b.c 2 1.a even 1 1 trivial
27.9.b.c 2 3.b odd 2 1 inner
81.9.d.c 4 9.c even 3 2
81.9.d.c 4 9.d odd 6 2
432.9.e.f 2 4.b odd 2 1
432.9.e.f 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 270 \) acting on \(S_{9}^{\mathrm{new}}(27, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 270 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 182520 \) Copy content Toggle raw display
$7$ \( (T + 679)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 178900920 \) Copy content Toggle raw display
$13$ \( (T + 30817)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 16452081720 \) Copy content Toggle raw display
$19$ \( (T + 138391)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 92227767480 \) Copy content Toggle raw display
$29$ \( T^{2} + 1760115852000 \) Copy content Toggle raw display
$31$ \( (T - 352214)^{2} \) Copy content Toggle raw display
$37$ \( (T - 1189991)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 1196882028000 \) Copy content Toggle raw display
$43$ \( (T - 6246086)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 5755320 \) Copy content Toggle raw display
$53$ \( T^{2} + 158204139936480 \) Copy content Toggle raw display
$59$ \( T^{2} + 111009186297720 \) Copy content Toggle raw display
$61$ \( (T - 16580399)^{2} \) Copy content Toggle raw display
$67$ \( (T - 7667153)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 539220139793280 \) Copy content Toggle raw display
$73$ \( (T - 24949631)^{2} \) Copy content Toggle raw display
$79$ \( (T - 41685089)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 20\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{2} + 548647042680 \) Copy content Toggle raw display
$97$ \( (T + 105926089)^{2} \) Copy content Toggle raw display
show more
show less