Properties

Label 245.2.l.c.68.1
Level $245$
Weight $2$
Character 245.68
Analytic conductor $1.956$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,2,Mod(68,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.3317760000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 68.1
Root \(-2.15988 - 0.578737i\) of defining polynomial
Character \(\chi\) \(=\) 245.68
Dual form 245.2.l.c.227.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-2.15988 - 0.578737i) q^{3} +(-0.578737 - 2.15988i) q^{5} +3.16228i q^{6} +(-2.00000 - 2.00000i) q^{8} +(1.73205 + 1.00000i) q^{9} +(-2.73861 + 1.58114i) q^{10} +(0.500000 + 0.866025i) q^{11} +(-1.58114 + 1.58114i) q^{13} +5.00000i q^{15} +(-2.00000 + 3.46410i) q^{16} +(0.578737 - 2.15988i) q^{17} +(0.732051 - 2.73205i) q^{18} +(-1.58114 + 2.73861i) q^{19} +(1.00000 - 1.00000i) q^{22} +(-2.73205 + 0.732051i) q^{23} +(3.16228 + 5.47723i) q^{24} +(-4.33013 + 2.50000i) q^{25} +(2.73861 + 1.58114i) q^{26} +(1.58114 + 1.58114i) q^{27} -3.00000i q^{29} +(6.83013 - 1.83013i) q^{30} +(2.73861 - 1.58114i) q^{31} +(-0.578737 - 2.15988i) q^{33} -3.16228 q^{34} +(-2.19615 - 8.19615i) q^{37} +(4.31975 + 1.15747i) q^{38} +(4.33013 - 2.50000i) q^{39} +(-3.16228 + 5.47723i) q^{40} -9.48683i q^{41} +(-3.00000 - 3.00000i) q^{43} +(1.15747 - 4.31975i) q^{45} +(2.00000 + 3.46410i) q^{46} +(6.47963 - 1.73621i) q^{47} +(6.32456 - 6.32456i) q^{48} +(5.00000 + 5.00000i) q^{50} +(-2.50000 + 4.33013i) q^{51} +(0.366025 - 1.36603i) q^{53} +(1.58114 - 2.73861i) q^{54} +(1.58114 - 1.58114i) q^{55} +(5.00000 - 5.00000i) q^{57} +(-4.09808 + 1.09808i) q^{58} +(-4.74342 - 8.21584i) q^{59} +(-5.47723 - 3.16228i) q^{61} +(-3.16228 - 3.16228i) q^{62} +8.00000i q^{64} +(4.33013 + 2.50000i) q^{65} +(-2.73861 + 1.58114i) q^{66} +(1.36603 + 0.366025i) q^{67} +6.32456 q^{69} -6.00000 q^{71} +(-1.46410 - 5.46410i) q^{72} +(-10.3923 + 6.00000i) q^{74} +(10.7994 - 2.89368i) q^{75} +(-5.00000 - 5.00000i) q^{78} +(11.2583 + 6.50000i) q^{79} +(8.63950 + 2.31495i) q^{80} +(-5.50000 - 9.52628i) q^{81} +(-12.9593 + 3.47242i) q^{82} +(-3.16228 + 3.16228i) q^{83} -5.00000 q^{85} +(-3.00000 + 5.19615i) q^{86} +(-1.73621 + 6.47963i) q^{87} +(0.732051 - 2.73205i) q^{88} +(3.16228 - 5.47723i) q^{89} -6.32456 q^{90} +(-6.83013 + 1.83013i) q^{93} +(-4.74342 - 8.21584i) q^{94} +(6.83013 + 1.83013i) q^{95} +(-1.58114 - 1.58114i) q^{97} +2.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 16 q^{8} + 4 q^{11} - 16 q^{16} - 8 q^{18} + 8 q^{22} - 8 q^{23} + 20 q^{30} + 24 q^{37} - 24 q^{43} + 16 q^{46} + 40 q^{50} - 20 q^{51} - 4 q^{53} + 40 q^{57} - 12 q^{58} + 4 q^{67} - 48 q^{71}+ \cdots + 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.258819 0.965926i −0.965926 0.258819i \(-0.916667\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(3\) −2.15988 0.578737i −1.24700 0.334134i −0.425826 0.904805i \(-0.640016\pi\)
−0.821179 + 0.570671i \(0.806683\pi\)
\(4\) 0 0
\(5\) −0.578737 2.15988i −0.258819 0.965926i
\(6\) 3.16228i 1.29099i
\(7\) 0 0
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 1.73205 + 1.00000i 0.577350 + 0.333333i
\(10\) −2.73861 + 1.58114i −0.866025 + 0.500000i
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i 0.931505 0.363727i \(-0.118496\pi\)
−0.780750 + 0.624844i \(0.785163\pi\)
\(12\) 0 0
\(13\) −1.58114 + 1.58114i −0.438529 + 0.438529i −0.891517 0.452988i \(-0.850358\pi\)
0.452988 + 0.891517i \(0.350358\pi\)
\(14\) 0 0
\(15\) 5.00000i 1.29099i
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 0.578737 2.15988i 0.140364 0.523847i −0.859554 0.511045i \(-0.829258\pi\)
0.999918 0.0128014i \(-0.00407493\pi\)
\(18\) 0.732051 2.73205i 0.172546 0.643951i
\(19\) −1.58114 + 2.73861i −0.362738 + 0.628281i −0.988410 0.151805i \(-0.951491\pi\)
0.625672 + 0.780086i \(0.284825\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000 1.00000i 0.213201 0.213201i
\(23\) −2.73205 + 0.732051i −0.569672 + 0.152643i −0.532146 0.846653i \(-0.678614\pi\)
−0.0375258 + 0.999296i \(0.511948\pi\)
\(24\) 3.16228 + 5.47723i 0.645497 + 1.11803i
\(25\) −4.33013 + 2.50000i −0.866025 + 0.500000i
\(26\) 2.73861 + 1.58114i 0.537086 + 0.310087i
\(27\) 1.58114 + 1.58114i 0.304290 + 0.304290i
\(28\) 0 0
\(29\) 3.00000i 0.557086i −0.960424 0.278543i \(-0.910149\pi\)
0.960424 0.278543i \(-0.0898515\pi\)
\(30\) 6.83013 1.83013i 1.24700 0.334134i
\(31\) 2.73861 1.58114i 0.491869 0.283981i −0.233480 0.972362i \(-0.575011\pi\)
0.725350 + 0.688381i \(0.241678\pi\)
\(32\) 0 0
\(33\) −0.578737 2.15988i −0.100745 0.375986i
\(34\) −3.16228 −0.542326
\(35\) 0 0
\(36\) 0 0
\(37\) −2.19615 8.19615i −0.361045 1.34744i −0.872704 0.488250i \(-0.837635\pi\)
0.511658 0.859189i \(-0.329031\pi\)
\(38\) 4.31975 + 1.15747i 0.700756 + 0.187767i
\(39\) 4.33013 2.50000i 0.693375 0.400320i
\(40\) −3.16228 + 5.47723i −0.500000 + 0.866025i
\(41\) 9.48683i 1.48159i −0.671729 0.740797i \(-0.734448\pi\)
0.671729 0.740797i \(-0.265552\pi\)
\(42\) 0 0
\(43\) −3.00000 3.00000i −0.457496 0.457496i 0.440337 0.897833i \(-0.354859\pi\)
−0.897833 + 0.440337i \(0.854859\pi\)
\(44\) 0 0
\(45\) 1.15747 4.31975i 0.172546 0.643951i
\(46\) 2.00000 + 3.46410i 0.294884 + 0.510754i
\(47\) 6.47963 1.73621i 0.945151 0.253252i 0.246847 0.969054i \(-0.420605\pi\)
0.698303 + 0.715802i \(0.253939\pi\)
\(48\) 6.32456 6.32456i 0.912871 0.912871i
\(49\) 0 0
\(50\) 5.00000 + 5.00000i 0.707107 + 0.707107i
\(51\) −2.50000 + 4.33013i −0.350070 + 0.606339i
\(52\) 0 0
\(53\) 0.366025 1.36603i 0.0502775 0.187638i −0.936220 0.351414i \(-0.885701\pi\)
0.986498 + 0.163776i \(0.0523675\pi\)
\(54\) 1.58114 2.73861i 0.215166 0.372678i
\(55\) 1.58114 1.58114i 0.213201 0.213201i
\(56\) 0 0
\(57\) 5.00000 5.00000i 0.662266 0.662266i
\(58\) −4.09808 + 1.09808i −0.538104 + 0.144184i
\(59\) −4.74342 8.21584i −0.617540 1.06961i −0.989933 0.141536i \(-0.954796\pi\)
0.372393 0.928075i \(-0.378537\pi\)
\(60\) 0 0
\(61\) −5.47723 3.16228i −0.701287 0.404888i 0.106540 0.994308i \(-0.466023\pi\)
−0.807827 + 0.589420i \(0.799356\pi\)
\(62\) −3.16228 3.16228i −0.401610 0.401610i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 4.33013 + 2.50000i 0.537086 + 0.310087i
\(66\) −2.73861 + 1.58114i −0.337100 + 0.194625i
\(67\) 1.36603 + 0.366025i 0.166887 + 0.0447171i 0.341295 0.939956i \(-0.389135\pi\)
−0.174408 + 0.984673i \(0.555801\pi\)
\(68\) 0 0
\(69\) 6.32456 0.761387
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) −1.46410 5.46410i −0.172546 0.643951i
\(73\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(74\) −10.3923 + 6.00000i −1.20808 + 0.697486i
\(75\) 10.7994 2.89368i 1.24700 0.334134i
\(76\) 0 0
\(77\) 0 0
\(78\) −5.00000 5.00000i −0.566139 0.566139i
\(79\) 11.2583 + 6.50000i 1.26666 + 0.731307i 0.974355 0.225018i \(-0.0722440\pi\)
0.292306 + 0.956325i \(0.405577\pi\)
\(80\) 8.63950 + 2.31495i 0.965926 + 0.258819i
\(81\) −5.50000 9.52628i −0.611111 1.05848i
\(82\) −12.9593 + 3.47242i −1.43111 + 0.383465i
\(83\) −3.16228 + 3.16228i −0.347105 + 0.347105i −0.859030 0.511925i \(-0.828933\pi\)
0.511925 + 0.859030i \(0.328933\pi\)
\(84\) 0 0
\(85\) −5.00000 −0.542326
\(86\) −3.00000 + 5.19615i −0.323498 + 0.560316i
\(87\) −1.73621 + 6.47963i −0.186141 + 0.694689i
\(88\) 0.732051 2.73205i 0.0780369 0.291238i
\(89\) 3.16228 5.47723i 0.335201 0.580585i −0.648323 0.761366i \(-0.724529\pi\)
0.983523 + 0.180781i \(0.0578625\pi\)
\(90\) −6.32456 −0.666667
\(91\) 0 0
\(92\) 0 0
\(93\) −6.83013 + 1.83013i −0.708251 + 0.189775i
\(94\) −4.74342 8.21584i −0.489246 0.847399i
\(95\) 6.83013 + 1.83013i 0.700756 + 0.187767i
\(96\) 0 0
\(97\) −1.58114 1.58114i −0.160540 0.160540i 0.622266 0.782806i \(-0.286212\pi\)
−0.782806 + 0.622266i \(0.786212\pi\)
\(98\) 0 0
\(99\) 2.00000i 0.201008i
\(100\) 0 0
\(101\) −2.73861 + 1.58114i −0.272502 + 0.157329i −0.630024 0.776576i \(-0.716955\pi\)
0.357522 + 0.933905i \(0.383622\pi\)
\(102\) 6.83013 + 1.83013i 0.676283 + 0.181210i
\(103\) 4.05116 + 15.1191i 0.399173 + 1.48973i 0.814556 + 0.580086i \(0.196981\pi\)
−0.415383 + 0.909647i \(0.636352\pi\)
\(104\) 6.32456 0.620174
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) −1.09808 4.09808i −0.106155 0.396176i 0.892319 0.451406i \(-0.149077\pi\)
−0.998474 + 0.0552301i \(0.982411\pi\)
\(108\) 0 0
\(109\) 6.06218 3.50000i 0.580651 0.335239i −0.180741 0.983531i \(-0.557850\pi\)
0.761392 + 0.648292i \(0.224516\pi\)
\(110\) −2.73861 1.58114i −0.261116 0.150756i
\(111\) 18.9737i 1.80090i
\(112\) 0 0
\(113\) 12.0000 + 12.0000i 1.12887 + 1.12887i 0.990362 + 0.138503i \(0.0442291\pi\)
0.138503 + 0.990362i \(0.455771\pi\)
\(114\) −8.66025 5.00000i −0.811107 0.468293i
\(115\) 3.16228 + 5.47723i 0.294884 + 0.510754i
\(116\) 0 0
\(117\) −4.31975 + 1.15747i −0.399361 + 0.107009i
\(118\) −9.48683 + 9.48683i −0.873334 + 0.873334i
\(119\) 0 0
\(120\) 10.0000 10.0000i 0.912871 0.912871i
\(121\) 5.00000 8.66025i 0.454545 0.787296i
\(122\) −2.31495 + 8.63950i −0.209586 + 0.782184i
\(123\) −5.49038 + 20.4904i −0.495051 + 1.84756i
\(124\) 0 0
\(125\) 7.90569 + 7.90569i 0.707107 + 0.707107i
\(126\) 0 0
\(127\) 9.00000 9.00000i 0.798621 0.798621i −0.184257 0.982878i \(-0.558988\pi\)
0.982878 + 0.184257i \(0.0589879\pi\)
\(128\) 10.9282 2.92820i 0.965926 0.258819i
\(129\) 4.74342 + 8.21584i 0.417635 + 0.723364i
\(130\) 1.83013 6.83013i 0.160513 0.599042i
\(131\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.00000i 0.172774i
\(135\) 2.50000 4.33013i 0.215166 0.372678i
\(136\) −5.47723 + 3.16228i −0.469668 + 0.271163i
\(137\) −2.73205 0.732051i −0.233415 0.0625433i 0.140215 0.990121i \(-0.455220\pi\)
−0.373630 + 0.927578i \(0.621887\pi\)
\(138\) −2.31495 8.63950i −0.197061 0.735443i
\(139\) −18.9737 −1.60933 −0.804663 0.593732i \(-0.797654\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(140\) 0 0
\(141\) −15.0000 −1.26323
\(142\) 2.19615 + 8.19615i 0.184297 + 0.687806i
\(143\) −2.15988 0.578737i −0.180618 0.0483964i
\(144\) −6.92820 + 4.00000i −0.577350 + 0.333333i
\(145\) −6.47963 + 1.73621i −0.538104 + 0.144184i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.3923 6.00000i −0.851371 0.491539i 0.00974235 0.999953i \(-0.496899\pi\)
−0.861113 + 0.508413i \(0.830232\pi\)
\(150\) −7.90569 13.6931i −0.645497 1.11803i
\(151\) −4.50000 7.79423i −0.366205 0.634285i 0.622764 0.782410i \(-0.286010\pi\)
−0.988969 + 0.148124i \(0.952676\pi\)
\(152\) 8.63950 2.31495i 0.700756 0.187767i
\(153\) 3.16228 3.16228i 0.255655 0.255655i
\(154\) 0 0
\(155\) −5.00000 5.00000i −0.401610 0.401610i
\(156\) 0 0
\(157\) 2.31495 8.63950i 0.184753 0.689507i −0.809930 0.586526i \(-0.800495\pi\)
0.994683 0.102981i \(-0.0328382\pi\)
\(158\) 4.75833 17.7583i 0.378552 1.41278i
\(159\) −1.58114 + 2.73861i −0.125392 + 0.217186i
\(160\) 0 0
\(161\) 0 0
\(162\) −11.0000 + 11.0000i −0.864242 + 0.864242i
\(163\) −8.19615 + 2.19615i −0.641972 + 0.172016i −0.565097 0.825025i \(-0.691161\pi\)
−0.0768756 + 0.997041i \(0.524494\pi\)
\(164\) 0 0
\(165\) −4.33013 + 2.50000i −0.337100 + 0.194625i
\(166\) 5.47723 + 3.16228i 0.425115 + 0.245440i
\(167\) 11.0680 + 11.0680i 0.856465 + 0.856465i 0.990920 0.134454i \(-0.0429282\pi\)
−0.134454 + 0.990920i \(0.542928\pi\)
\(168\) 0 0
\(169\) 8.00000i 0.615385i
\(170\) 1.83013 + 6.83013i 0.140364 + 0.523847i
\(171\) −5.47723 + 3.16228i −0.418854 + 0.241825i
\(172\) 0 0
\(173\) −4.05116 15.1191i −0.308004 1.14949i −0.930329 0.366727i \(-0.880478\pi\)
0.622325 0.782759i \(-0.286188\pi\)
\(174\) 9.48683 0.719195
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 5.49038 + 20.4904i 0.412682 + 1.54015i
\(178\) −8.63950 2.31495i −0.647558 0.173513i
\(179\) 5.19615 3.00000i 0.388379 0.224231i −0.293079 0.956088i \(-0.594680\pi\)
0.681457 + 0.731858i \(0.261346\pi\)
\(180\) 0 0
\(181\) 22.1359i 1.64535i −0.568511 0.822676i \(-0.692480\pi\)
0.568511 0.822676i \(-0.307520\pi\)
\(182\) 0 0
\(183\) 10.0000 + 10.0000i 0.739221 + 0.739221i
\(184\) 6.92820 + 4.00000i 0.510754 + 0.294884i
\(185\) −16.4317 + 9.48683i −1.20808 + 0.697486i
\(186\) 5.00000 + 8.66025i 0.366618 + 0.635001i
\(187\) 2.15988 0.578737i 0.157946 0.0423214i
\(188\) 0 0
\(189\) 0 0
\(190\) 10.0000i 0.725476i
\(191\) 1.50000 2.59808i 0.108536 0.187990i −0.806641 0.591041i \(-0.798717\pi\)
0.915177 + 0.403051i \(0.132050\pi\)
\(192\) 4.62990 17.2790i 0.334134 1.24700i
\(193\) −2.92820 + 10.9282i −0.210777 + 0.786629i 0.776834 + 0.629705i \(0.216824\pi\)
−0.987611 + 0.156924i \(0.949842\pi\)
\(194\) −1.58114 + 2.73861i −0.113519 + 0.196621i
\(195\) −7.90569 7.90569i −0.566139 0.566139i
\(196\) 0 0
\(197\) −1.00000 + 1.00000i −0.0712470 + 0.0712470i −0.741832 0.670585i \(-0.766043\pi\)
0.670585 + 0.741832i \(0.266043\pi\)
\(198\) 2.73205 0.732051i 0.194158 0.0520246i
\(199\) 4.74342 + 8.21584i 0.336252 + 0.582405i 0.983724 0.179683i \(-0.0575073\pi\)
−0.647473 + 0.762089i \(0.724174\pi\)
\(200\) 13.6603 + 3.66025i 0.965926 + 0.258819i
\(201\) −2.73861 1.58114i −0.193167 0.111525i
\(202\) 3.16228 + 3.16228i 0.222497 + 0.222497i
\(203\) 0 0
\(204\) 0 0
\(205\) −20.4904 + 5.49038i −1.43111 + 0.383465i
\(206\) 19.1703 11.0680i 1.33566 0.771142i
\(207\) −5.46410 1.46410i −0.379781 0.101762i
\(208\) −2.31495 8.63950i −0.160513 0.599042i
\(209\) −3.16228 −0.218739
\(210\) 0 0
\(211\) 17.0000 1.17033 0.585164 0.810915i \(-0.301030\pi\)
0.585164 + 0.810915i \(0.301030\pi\)
\(212\) 0 0
\(213\) 12.9593 + 3.47242i 0.887954 + 0.237926i
\(214\) −5.19615 + 3.00000i −0.355202 + 0.205076i
\(215\) −4.74342 + 8.21584i −0.323498 + 0.560316i
\(216\) 6.32456i 0.430331i
\(217\) 0 0
\(218\) −7.00000 7.00000i −0.474100 0.474100i
\(219\) 0 0
\(220\) 0 0
\(221\) 2.50000 + 4.33013i 0.168168 + 0.291276i
\(222\) 25.9185 6.94484i 1.73954 0.466107i
\(223\) 14.2302 14.2302i 0.952928 0.952928i −0.0460129 0.998941i \(-0.514652\pi\)
0.998941 + 0.0460129i \(0.0146515\pi\)
\(224\) 0 0
\(225\) −10.0000 −0.666667
\(226\) 12.0000 20.7846i 0.798228 1.38257i
\(227\) −0.578737 + 2.15988i −0.0384121 + 0.143356i −0.982469 0.186427i \(-0.940309\pi\)
0.944057 + 0.329783i \(0.106976\pi\)
\(228\) 0 0
\(229\) −7.90569 + 13.6931i −0.522423 + 0.904863i 0.477237 + 0.878775i \(0.341638\pi\)
−0.999660 + 0.0260883i \(0.991695\pi\)
\(230\) 6.32456 6.32456i 0.417029 0.417029i
\(231\) 0 0
\(232\) −6.00000 + 6.00000i −0.393919 + 0.393919i
\(233\) 24.5885 6.58846i 1.61084 0.431624i 0.662550 0.749018i \(-0.269474\pi\)
0.948294 + 0.317394i \(0.102808\pi\)
\(234\) 3.16228 + 5.47723i 0.206725 + 0.358057i
\(235\) −7.50000 12.9904i −0.489246 0.847399i
\(236\) 0 0
\(237\) −20.5548 20.5548i −1.33518 1.33518i
\(238\) 0 0
\(239\) 19.0000i 1.22901i −0.788914 0.614504i \(-0.789356\pi\)
0.788914 0.614504i \(-0.210644\pi\)
\(240\) −17.3205 10.0000i −1.11803 0.645497i
\(241\) 21.9089 12.6491i 1.41128 0.814801i 0.415768 0.909471i \(-0.363513\pi\)
0.995509 + 0.0946700i \(0.0301796\pi\)
\(242\) −13.6603 3.66025i −0.878114 0.235290i
\(243\) 4.62990 + 17.2790i 0.297008 + 1.10845i
\(244\) 0 0
\(245\) 0 0
\(246\) 30.0000 1.91273
\(247\) −1.83013 6.83013i −0.116448 0.434591i
\(248\) −8.63950 2.31495i −0.548609 0.146999i
\(249\) 8.66025 5.00000i 0.548821 0.316862i
\(250\) 7.90569 13.6931i 0.500000 0.866025i
\(251\) 12.6491i 0.798405i 0.916863 + 0.399202i \(0.130713\pi\)
−0.916863 + 0.399202i \(0.869287\pi\)
\(252\) 0 0
\(253\) −2.00000 2.00000i −0.125739 0.125739i
\(254\) −15.5885 9.00000i −0.978107 0.564710i
\(255\) 10.7994 + 2.89368i 0.676283 + 0.181210i
\(256\) 0 0
\(257\) −17.2790 + 4.62990i −1.07783 + 0.288805i −0.753709 0.657209i \(-0.771737\pi\)
−0.324126 + 0.946014i \(0.605070\pi\)
\(258\) 9.48683 9.48683i 0.590624 0.590624i
\(259\) 0 0
\(260\) 0 0
\(261\) 3.00000 5.19615i 0.185695 0.321634i
\(262\) 0 0
\(263\) 2.56218 9.56218i 0.157991 0.589629i −0.840840 0.541284i \(-0.817939\pi\)
0.998831 0.0483454i \(-0.0153948\pi\)
\(264\) −3.16228 + 5.47723i −0.194625 + 0.337100i
\(265\) −3.16228 −0.194257
\(266\) 0 0
\(267\) −10.0000 + 10.0000i −0.611990 + 0.611990i
\(268\) 0 0
\(269\) 9.48683 + 16.4317i 0.578422 + 1.00186i 0.995661 + 0.0930598i \(0.0296648\pi\)
−0.417238 + 0.908797i \(0.637002\pi\)
\(270\) −6.83013 1.83013i −0.415668 0.111378i
\(271\) 10.9545 + 6.32456i 0.665436 + 0.384189i 0.794345 0.607467i \(-0.207814\pi\)
−0.128909 + 0.991656i \(0.541148\pi\)
\(272\) 6.32456 + 6.32456i 0.383482 + 0.383482i
\(273\) 0 0
\(274\) 4.00000i 0.241649i
\(275\) −4.33013 2.50000i −0.261116 0.150756i
\(276\) 0 0
\(277\) 24.5885 + 6.58846i 1.47738 + 0.395862i 0.905454 0.424445i \(-0.139531\pi\)
0.571923 + 0.820307i \(0.306197\pi\)
\(278\) 6.94484 + 25.9185i 0.416524 + 1.55449i
\(279\) 6.32456 0.378641
\(280\) 0 0
\(281\) 9.00000 0.536895 0.268447 0.963294i \(-0.413489\pi\)
0.268447 + 0.963294i \(0.413489\pi\)
\(282\) 5.49038 + 20.4904i 0.326947 + 1.22018i
\(283\) 6.47963 + 1.73621i 0.385174 + 0.103207i 0.446209 0.894929i \(-0.352774\pi\)
−0.0610356 + 0.998136i \(0.519440\pi\)
\(284\) 0 0
\(285\) −13.6931 7.90569i −0.811107 0.468293i
\(286\) 3.16228i 0.186989i
\(287\) 0 0
\(288\) 0 0
\(289\) 10.3923 + 6.00000i 0.611312 + 0.352941i
\(290\) 4.74342 + 8.21584i 0.278543 + 0.482451i
\(291\) 2.50000 + 4.33013i 0.146553 + 0.253837i
\(292\) 0 0
\(293\) −7.90569 + 7.90569i −0.461856 + 0.461856i −0.899263 0.437408i \(-0.855897\pi\)
0.437408 + 0.899263i \(0.355897\pi\)
\(294\) 0 0
\(295\) −15.0000 + 15.0000i −0.873334 + 0.873334i
\(296\) −12.0000 + 20.7846i −0.697486 + 1.20808i
\(297\) −0.578737 + 2.15988i −0.0335817 + 0.125329i
\(298\) −4.39230 + 16.3923i −0.254439 + 0.949581i
\(299\) 3.16228 5.47723i 0.182879 0.316756i
\(300\) 0 0
\(301\) 0 0
\(302\) −9.00000 + 9.00000i −0.517892 + 0.517892i
\(303\) 6.83013 1.83013i 0.392381 0.105138i
\(304\) −6.32456 10.9545i −0.362738 0.628281i
\(305\) −3.66025 + 13.6603i −0.209586 + 0.782184i
\(306\) −5.47723 3.16228i −0.313112 0.180775i
\(307\) −4.74342 4.74342i −0.270721 0.270721i 0.558669 0.829390i \(-0.311312\pi\)
−0.829390 + 0.558669i \(0.811312\pi\)
\(308\) 0 0
\(309\) 35.0000i 1.99108i
\(310\) −5.00000 + 8.66025i −0.283981 + 0.491869i
\(311\) −19.1703 + 11.0680i −1.08705 + 0.627607i −0.932789 0.360423i \(-0.882632\pi\)
−0.154259 + 0.988031i \(0.549299\pi\)
\(312\) −13.6603 3.66025i −0.773360 0.207221i
\(313\) −5.20863 19.4389i −0.294409 1.09875i −0.941685 0.336495i \(-0.890759\pi\)
0.647276 0.762256i \(-0.275908\pi\)
\(314\) −12.6491 −0.713831
\(315\) 0 0
\(316\) 0 0
\(317\) 6.95448 + 25.9545i 0.390603 + 1.45775i 0.829143 + 0.559037i \(0.188829\pi\)
−0.438540 + 0.898712i \(0.644504\pi\)
\(318\) 4.31975 + 1.15747i 0.242240 + 0.0649079i
\(319\) 2.59808 1.50000i 0.145464 0.0839839i
\(320\) 17.2790 4.62990i 0.965926 0.258819i
\(321\) 9.48683i 0.529503i
\(322\) 0 0
\(323\) 5.00000 + 5.00000i 0.278207 + 0.278207i
\(324\) 0 0
\(325\) 2.89368 10.7994i 0.160513 0.599042i
\(326\) 6.00000 + 10.3923i 0.332309 + 0.575577i
\(327\) −15.1191 + 4.05116i −0.836090 + 0.224030i
\(328\) −18.9737 + 18.9737i −1.04765 + 1.04765i
\(329\) 0 0
\(330\) 5.00000 + 5.00000i 0.275241 + 0.275241i
\(331\) 3.00000 5.19615i 0.164895 0.285606i −0.771723 0.635959i \(-0.780605\pi\)
0.936618 + 0.350352i \(0.113938\pi\)
\(332\) 0 0
\(333\) 4.39230 16.3923i 0.240697 0.898293i
\(334\) 11.0680 19.1703i 0.605612 1.04895i
\(335\) 3.16228i 0.172774i
\(336\) 0 0
\(337\) −8.00000 + 8.00000i −0.435788 + 0.435788i −0.890592 0.454804i \(-0.849709\pi\)
0.454804 + 0.890592i \(0.349709\pi\)
\(338\) 10.9282 2.92820i 0.594416 0.159273i
\(339\) −18.9737 32.8634i −1.03051 1.78489i
\(340\) 0 0
\(341\) 2.73861 + 1.58114i 0.148304 + 0.0856235i
\(342\) 6.32456 + 6.32456i 0.341993 + 0.341993i
\(343\) 0 0
\(344\) 12.0000i 0.646997i
\(345\) −3.66025 13.6603i −0.197061 0.735443i
\(346\) −19.1703 + 11.0680i −1.03060 + 0.595018i
\(347\) −32.7846 8.78461i −1.75997 0.471583i −0.773262 0.634086i \(-0.781376\pi\)
−0.986708 + 0.162504i \(0.948043\pi\)
\(348\) 0 0
\(349\) 34.7851 1.86200 0.931001 0.365018i \(-0.118937\pi\)
0.931001 + 0.365018i \(0.118937\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) −19.4389 5.20863i −1.03463 0.277228i −0.298742 0.954334i \(-0.596567\pi\)
−0.735885 + 0.677106i \(0.763234\pi\)
\(354\) 25.9808 15.0000i 1.38086 0.797241i
\(355\) 3.47242 + 12.9593i 0.184297 + 0.687806i
\(356\) 0 0
\(357\) 0 0
\(358\) −6.00000 6.00000i −0.317110 0.317110i
\(359\) −19.0526 11.0000i −1.00556 0.580558i −0.0956683 0.995413i \(-0.530499\pi\)
−0.909887 + 0.414855i \(0.863832\pi\)
\(360\) −10.9545 + 6.32456i −0.577350 + 0.333333i
\(361\) 4.50000 + 7.79423i 0.236842 + 0.410223i
\(362\) −30.2383 + 8.10232i −1.58929 + 0.425848i
\(363\) −15.8114 + 15.8114i −0.829883 + 0.829883i
\(364\) 0 0
\(365\) 0 0
\(366\) 10.0000 17.3205i 0.522708 0.905357i
\(367\) −6.36611 + 23.7586i −0.332308 + 1.24019i 0.574450 + 0.818540i \(0.305216\pi\)
−0.906758 + 0.421651i \(0.861451\pi\)
\(368\) 2.92820 10.9282i 0.152643 0.569672i
\(369\) 9.48683 16.4317i 0.493865 0.855399i
\(370\) 18.9737 + 18.9737i 0.986394 + 0.986394i
\(371\) 0 0
\(372\) 0 0
\(373\) −16.3923 + 4.39230i −0.848761 + 0.227425i −0.656882 0.753994i \(-0.728125\pi\)
−0.191880 + 0.981418i \(0.561458\pi\)
\(374\) −1.58114 2.73861i −0.0817587 0.141610i
\(375\) −12.5000 21.6506i −0.645497 1.11803i
\(376\) −16.4317 9.48683i −0.847399 0.489246i
\(377\) 4.74342 + 4.74342i 0.244298 + 0.244298i
\(378\) 0 0
\(379\) 8.00000i 0.410932i −0.978664 0.205466i \(-0.934129\pi\)
0.978664 0.205466i \(-0.0658711\pi\)
\(380\) 0 0
\(381\) −24.6475 + 14.2302i −1.26273 + 0.729038i
\(382\) −4.09808 1.09808i −0.209676 0.0561825i
\(383\) −5.78737 21.5988i −0.295721 1.10364i −0.940643 0.339397i \(-0.889777\pi\)
0.644922 0.764248i \(-0.276890\pi\)
\(384\) −25.2982 −1.29099
\(385\) 0 0
\(386\) 16.0000 0.814379
\(387\) −2.19615 8.19615i −0.111637 0.416634i
\(388\) 0 0
\(389\) −19.9186 + 11.5000i −1.00991 + 0.583073i −0.911166 0.412039i \(-0.864817\pi\)
−0.0987463 + 0.995113i \(0.531483\pi\)
\(390\) −7.90569 + 13.6931i −0.400320 + 0.693375i
\(391\) 6.32456i 0.319847i
\(392\) 0 0
\(393\) 0 0
\(394\) 1.73205 + 1.00000i 0.0872595 + 0.0503793i
\(395\) 7.52358 28.0784i 0.378552 1.41278i
\(396\) 0 0
\(397\) 32.3981 8.68105i 1.62602 0.435690i 0.673255 0.739411i \(-0.264896\pi\)
0.952761 + 0.303721i \(0.0982290\pi\)
\(398\) 9.48683 9.48683i 0.475532 0.475532i
\(399\) 0 0
\(400\) 20.0000i 1.00000i
\(401\) 0.500000 0.866025i 0.0249688 0.0432472i −0.853271 0.521468i \(-0.825385\pi\)
0.878240 + 0.478220i \(0.158718\pi\)
\(402\) −1.15747 + 4.31975i −0.0577296 + 0.215450i
\(403\) −1.83013 + 6.83013i −0.0911651 + 0.340233i
\(404\) 0 0
\(405\) −17.3925 + 17.3925i −0.864242 + 0.864242i
\(406\) 0 0
\(407\) 6.00000 6.00000i 0.297409 0.297409i
\(408\) 13.6603 3.66025i 0.676283 0.181210i
\(409\) −1.58114 2.73861i −0.0781823 0.135416i 0.824283 0.566177i \(-0.191578\pi\)
−0.902466 + 0.430762i \(0.858245\pi\)
\(410\) 15.0000 + 25.9808i 0.740797 + 1.28310i
\(411\) 5.47723 + 3.16228i 0.270172 + 0.155984i
\(412\) 0 0
\(413\) 0 0
\(414\) 8.00000i 0.393179i
\(415\) 8.66025 + 5.00000i 0.425115 + 0.245440i
\(416\) 0 0
\(417\) 40.9808 + 10.9808i 2.00684 + 0.537730i
\(418\) 1.15747 + 4.31975i 0.0566139 + 0.211286i
\(419\) −15.8114 −0.772437 −0.386218 0.922407i \(-0.626219\pi\)
−0.386218 + 0.922407i \(0.626219\pi\)
\(420\) 0 0
\(421\) 19.0000 0.926003 0.463002 0.886357i \(-0.346772\pi\)
0.463002 + 0.886357i \(0.346772\pi\)
\(422\) −6.22243 23.2224i −0.302903 1.13045i
\(423\) 12.9593 + 3.47242i 0.630101 + 0.168835i
\(424\) −3.46410 + 2.00000i −0.168232 + 0.0971286i
\(425\) 2.89368 + 10.7994i 0.140364 + 0.523847i
\(426\) 18.9737i 0.919277i
\(427\) 0 0
\(428\) 0 0
\(429\) 4.33013 + 2.50000i 0.209061 + 0.120701i
\(430\) 12.9593 + 3.47242i 0.624951 + 0.167455i
\(431\) 11.5000 + 19.9186i 0.553936 + 0.959444i 0.997985 + 0.0634424i \(0.0202079\pi\)
−0.444050 + 0.896002i \(0.646459\pi\)
\(432\) −8.63950 + 2.31495i −0.415668 + 0.111378i
\(433\) 9.48683 9.48683i 0.455908 0.455908i −0.441402 0.897310i \(-0.645519\pi\)
0.897310 + 0.441402i \(0.145519\pi\)
\(434\) 0 0
\(435\) 15.0000 0.719195
\(436\) 0 0
\(437\) 2.31495 8.63950i 0.110739 0.413283i
\(438\) 0 0
\(439\) 6.32456 10.9545i 0.301855 0.522827i −0.674701 0.738091i \(-0.735728\pi\)
0.976556 + 0.215263i \(0.0690610\pi\)
\(440\) −6.32456 −0.301511
\(441\) 0 0
\(442\) 5.00000 5.00000i 0.237826 0.237826i
\(443\) −1.36603 + 0.366025i −0.0649018 + 0.0173904i −0.291124 0.956685i \(-0.594029\pi\)
0.226222 + 0.974076i \(0.427363\pi\)
\(444\) 0 0
\(445\) −13.6603 3.66025i −0.647558 0.173513i
\(446\) −24.6475 14.2302i −1.16709 0.673822i
\(447\) 18.9737 + 18.9737i 0.897424 + 0.897424i
\(448\) 0 0
\(449\) 17.0000i 0.802280i 0.916017 + 0.401140i \(0.131386\pi\)
−0.916017 + 0.401140i \(0.868614\pi\)
\(450\) 3.66025 + 13.6603i 0.172546 + 0.643951i
\(451\) 8.21584 4.74342i 0.386869 0.223359i
\(452\) 0 0
\(453\) 5.20863 + 19.4389i 0.244723 + 0.913318i
\(454\) 3.16228 0.148413
\(455\) 0 0
\(456\) −20.0000 −0.936586
\(457\) −0.366025 1.36603i −0.0171219 0.0639000i 0.956836 0.290627i \(-0.0938640\pi\)
−0.973958 + 0.226727i \(0.927197\pi\)
\(458\) 21.5988 + 5.78737i 1.00924 + 0.270426i
\(459\) 4.33013 2.50000i 0.202113 0.116690i
\(460\) 0 0
\(461\) 6.32456i 0.294564i −0.989095 0.147282i \(-0.952948\pi\)
0.989095 0.147282i \(-0.0470525\pi\)
\(462\) 0 0
\(463\) −4.00000 4.00000i −0.185896 0.185896i 0.608023 0.793919i \(-0.291963\pi\)
−0.793919 + 0.608023i \(0.791963\pi\)
\(464\) 10.3923 + 6.00000i 0.482451 + 0.278543i
\(465\) 7.90569 + 13.6931i 0.366618 + 0.635001i
\(466\) −18.0000 31.1769i −0.833834 1.44424i
\(467\) 15.1191 4.05116i 0.699630 0.187465i 0.108565 0.994089i \(-0.465374\pi\)
0.591065 + 0.806624i \(0.298708\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −15.0000 + 15.0000i −0.691898 + 0.691898i
\(471\) −10.0000 + 17.3205i −0.460776 + 0.798087i
\(472\) −6.94484 + 25.9185i −0.319662 + 1.19300i
\(473\) 1.09808 4.09808i 0.0504896 0.188430i
\(474\) −20.5548 + 35.6020i −0.944113 + 1.63525i
\(475\) 15.8114i 0.725476i
\(476\) 0 0
\(477\) 2.00000 2.00000i 0.0915737 0.0915737i
\(478\) −25.9545 + 6.95448i −1.18713 + 0.318091i
\(479\) 3.16228 + 5.47723i 0.144488 + 0.250261i 0.929182 0.369623i \(-0.120513\pi\)
−0.784694 + 0.619884i \(0.787180\pi\)
\(480\) 0 0
\(481\) 16.4317 + 9.48683i 0.749220 + 0.432562i
\(482\) −25.2982 25.2982i −1.15230 1.15230i
\(483\) 0 0
\(484\) 0 0
\(485\) −2.50000 + 4.33013i −0.113519 + 0.196621i
\(486\) 21.9089 12.6491i 0.993808 0.573775i
\(487\) −5.46410 1.46410i −0.247602 0.0663448i 0.132883 0.991132i \(-0.457576\pi\)
−0.380485 + 0.924787i \(0.624243\pi\)
\(488\) 4.62990 + 17.2790i 0.209586 + 0.782184i
\(489\) 18.9737 0.858019
\(490\) 0 0
\(491\) −41.0000 −1.85030 −0.925152 0.379597i \(-0.876063\pi\)
−0.925152 + 0.379597i \(0.876063\pi\)
\(492\) 0 0
\(493\) −6.47963 1.73621i −0.291828 0.0781950i
\(494\) −8.66025 + 5.00000i −0.389643 + 0.224961i
\(495\) 4.31975 1.15747i 0.194158 0.0520246i
\(496\) 12.6491i 0.567962i
\(497\) 0 0
\(498\) −10.0000 10.0000i −0.448111 0.448111i
\(499\) 16.4545 + 9.50000i 0.736604 + 0.425278i 0.820833 0.571168i \(-0.193510\pi\)
−0.0842294 + 0.996446i \(0.526843\pi\)
\(500\) 0 0
\(501\) −17.5000 30.3109i −0.781842 1.35419i
\(502\) 17.2790 4.62990i 0.771200 0.206642i
\(503\) 7.90569 7.90569i 0.352497 0.352497i −0.508541 0.861038i \(-0.669815\pi\)
0.861038 + 0.508541i \(0.169815\pi\)
\(504\) 0 0
\(505\) 5.00000 + 5.00000i 0.222497 + 0.222497i
\(506\) −2.00000 + 3.46410i −0.0889108 + 0.153998i
\(507\) 4.62990 17.2790i 0.205621 0.767388i
\(508\) 0 0
\(509\) −9.48683 + 16.4317i −0.420496 + 0.728321i −0.995988 0.0894865i \(-0.971477\pi\)
0.575492 + 0.817808i \(0.304811\pi\)
\(510\) 15.8114i 0.700140i
\(511\) 0 0
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) −6.83013 + 1.83013i −0.301557 + 0.0808021i
\(514\) 12.6491 + 21.9089i 0.557928 + 0.966360i
\(515\) 30.3109 17.5000i 1.33566 0.771142i
\(516\) 0 0
\(517\) 4.74342 + 4.74342i 0.208615 + 0.208615i
\(518\) 0 0
\(519\) 35.0000i 1.53633i
\(520\) −3.66025 13.6603i −0.160513 0.599042i
\(521\) 35.6020 20.5548i 1.55975 0.900522i 0.562470 0.826817i \(-0.309851\pi\)
0.997280 0.0737049i \(-0.0234823\pi\)
\(522\) −8.19615 2.19615i −0.358736 0.0961230i
\(523\) −6.94484 25.9185i −0.303677 1.13334i −0.934078 0.357068i \(-0.883776\pi\)
0.630402 0.776269i \(-0.282890\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −14.0000 −0.610429
\(527\) −1.83013 6.83013i −0.0797216 0.297525i
\(528\) 8.63950 + 2.31495i 0.375986 + 0.100745i
\(529\) −12.9904 + 7.50000i −0.564799 + 0.326087i
\(530\) 1.15747 + 4.31975i 0.0502775 + 0.187638i
\(531\) 18.9737i 0.823387i
\(532\) 0 0
\(533\) 15.0000 + 15.0000i 0.649722 + 0.649722i
\(534\) 17.3205 + 10.0000i 0.749532 + 0.432742i
\(535\) −8.21584 + 4.74342i −0.355202 + 0.205076i
\(536\) −2.00000 3.46410i −0.0863868 0.149626i
\(537\) −12.9593 + 3.47242i −0.559233 + 0.149846i
\(538\) 18.9737 18.9737i 0.818013 0.818013i
\(539\) 0 0
\(540\) 0 0
\(541\) −4.50000 + 7.79423i −0.193470 + 0.335100i −0.946398 0.323003i \(-0.895308\pi\)
0.752928 + 0.658103i \(0.228641\pi\)
\(542\) 4.62990 17.2790i 0.198871 0.742197i
\(543\) −12.8109 + 47.8109i −0.549768 + 2.05176i
\(544\) 0 0
\(545\) −11.0680 11.0680i −0.474100 0.474100i
\(546\) 0 0
\(547\) 14.0000 14.0000i 0.598597 0.598597i −0.341342 0.939939i \(-0.610882\pi\)
0.939939 + 0.341342i \(0.110882\pi\)
\(548\) 0 0
\(549\) −6.32456 10.9545i −0.269925 0.467525i
\(550\) −1.83013 + 6.83013i −0.0780369 + 0.291238i
\(551\) 8.21584 + 4.74342i 0.350006 + 0.202076i
\(552\) −12.6491 12.6491i −0.538382 0.538382i
\(553\) 0 0
\(554\) 36.0000i 1.52949i
\(555\) 40.9808 10.9808i 1.73954 0.466107i
\(556\) 0 0
\(557\) 8.19615 + 2.19615i 0.347282 + 0.0930540i 0.428244 0.903663i \(-0.359132\pi\)
−0.0809616 + 0.996717i \(0.525799\pi\)
\(558\) −2.31495 8.63950i −0.0979996 0.365739i
\(559\) 9.48683 0.401250
\(560\) 0 0
\(561\) −5.00000 −0.211100
\(562\) −3.29423 12.2942i −0.138959 0.518601i
\(563\) −12.9593 3.47242i −0.546167 0.146345i −0.0248236 0.999692i \(-0.507902\pi\)
−0.521344 + 0.853347i \(0.674569\pi\)
\(564\) 0 0
\(565\) 18.9737 32.8634i 0.798228 1.38257i
\(566\) 9.48683i 0.398761i
\(567\) 0 0
\(568\) 12.0000 + 12.0000i 0.503509 + 0.503509i
\(569\) −27.7128 16.0000i −1.16178 0.670755i −0.210051 0.977690i \(-0.567363\pi\)
−0.951730 + 0.306935i \(0.900696\pi\)
\(570\) −5.78737 + 21.5988i −0.242406 + 0.904672i
\(571\) 13.0000 + 22.5167i 0.544033 + 0.942293i 0.998667 + 0.0516146i \(0.0164367\pi\)
−0.454634 + 0.890678i \(0.650230\pi\)
\(572\) 0 0
\(573\) −4.74342 + 4.74342i −0.198159 + 0.198159i
\(574\) 0 0
\(575\) 10.0000 10.0000i 0.417029 0.417029i
\(576\) −8.00000 + 13.8564i −0.333333 + 0.577350i
\(577\) 7.52358 28.0784i 0.313211 1.16892i −0.612433 0.790522i \(-0.709809\pi\)
0.925644 0.378396i \(-0.123524\pi\)
\(578\) 4.39230 16.3923i 0.182696 0.681830i
\(579\) 12.6491 21.9089i 0.525679 0.910503i
\(580\) 0 0
\(581\) 0 0
\(582\) 5.00000 5.00000i 0.207257 0.207257i
\(583\) 1.36603 0.366025i 0.0565750 0.0151592i
\(584\) 0 0
\(585\) 5.00000 + 8.66025i 0.206725 + 0.358057i
\(586\) 13.6931 + 7.90569i 0.565655 + 0.326581i
\(587\) −15.8114 15.8114i −0.652606 0.652606i 0.301014 0.953620i \(-0.402675\pi\)
−0.953620 + 0.301014i \(0.902675\pi\)
\(588\) 0 0
\(589\) 10.0000i 0.412043i
\(590\) 25.9808 + 15.0000i 1.06961 + 0.617540i
\(591\) 2.73861 1.58114i 0.112651 0.0650394i
\(592\) 32.7846 + 8.78461i 1.34744 + 0.361045i
\(593\) 7.52358 + 28.0784i 0.308956 + 1.15304i 0.929486 + 0.368858i \(0.120251\pi\)
−0.620529 + 0.784183i \(0.713082\pi\)
\(594\) 3.16228 0.129750
\(595\) 0 0
\(596\) 0 0
\(597\) −5.49038 20.4904i −0.224706 0.838615i
\(598\) −8.63950 2.31495i −0.353296 0.0946653i
\(599\) −11.2583 + 6.50000i −0.460003 + 0.265583i −0.712045 0.702133i \(-0.752231\pi\)
0.252043 + 0.967716i \(0.418898\pi\)
\(600\) −27.3861 15.8114i −1.11803 0.645497i
\(601\) 22.1359i 0.902944i 0.892285 + 0.451472i \(0.149101\pi\)
−0.892285 + 0.451472i \(0.850899\pi\)
\(602\) 0 0
\(603\) 2.00000 + 2.00000i 0.0814463 + 0.0814463i
\(604\) 0 0
\(605\) −21.5988 5.78737i −0.878114 0.235290i
\(606\) −5.00000 8.66025i −0.203111 0.351799i
\(607\) −19.4389 + 5.20863i −0.789000 + 0.211412i −0.630749 0.775987i \(-0.717252\pi\)
−0.158251 + 0.987399i \(0.550586\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 20.0000 0.809776
\(611\) −7.50000 + 12.9904i −0.303418 + 0.525535i
\(612\) 0 0
\(613\) 6.22243 23.2224i 0.251322 0.937945i −0.718778 0.695239i \(-0.755298\pi\)
0.970100 0.242706i \(-0.0780350\pi\)
\(614\) −4.74342 + 8.21584i −0.191429 + 0.331564i
\(615\) 47.4342 1.91273
\(616\) 0 0
\(617\) 4.00000 4.00000i 0.161034 0.161034i −0.621991 0.783025i \(-0.713676\pi\)
0.783025 + 0.621991i \(0.213676\pi\)
\(618\) −47.8109 + 12.8109i −1.92324 + 0.515330i
\(619\) 12.6491 + 21.9089i 0.508411 + 0.880593i 0.999953 + 0.00973920i \(0.00310013\pi\)
−0.491542 + 0.870854i \(0.663567\pi\)
\(620\) 0 0
\(621\) −5.47723 3.16228i −0.219793 0.126898i
\(622\) 22.1359 + 22.1359i 0.887570 + 0.887570i
\(623\) 0 0
\(624\) 20.0000i 0.800641i
\(625\) 12.5000 21.6506i 0.500000 0.866025i
\(626\) −24.6475 + 14.2302i −0.985113 + 0.568755i
\(627\) 6.83013 + 1.83013i 0.272769 + 0.0730882i
\(628\) 0 0
\(629\) −18.9737 −0.756530
\(630\) 0 0
\(631\) −31.0000 −1.23409 −0.617045 0.786928i \(-0.711670\pi\)
−0.617045 + 0.786928i \(0.711670\pi\)
\(632\) −9.51666 35.5167i −0.378552 1.41278i
\(633\) −36.7179 9.83853i −1.45941 0.391046i
\(634\) 32.9090 19.0000i 1.30698 0.754586i
\(635\) −24.6475 14.2302i −0.978107 0.564710i
\(636\) 0 0
\(637\) 0 0
\(638\) −3.00000 3.00000i −0.118771 0.118771i
\(639\) −10.3923 6.00000i −0.411113 0.237356i
\(640\) −12.6491 21.9089i −0.500000 0.866025i
\(641\) −22.0000 38.1051i −0.868948 1.50506i −0.863073 0.505079i \(-0.831463\pi\)
−0.00587459 0.999983i \(-0.501870\pi\)
\(642\) 12.9593 3.47242i 0.511461 0.137046i
\(643\) 4.74342 4.74342i 0.187062 0.187062i −0.607363 0.794425i \(-0.707772\pi\)
0.794425 + 0.607363i \(0.207772\pi\)
\(644\) 0 0
\(645\) 15.0000 15.0000i 0.590624 0.590624i
\(646\) 5.00000 8.66025i 0.196722 0.340733i
\(647\) 4.62990 17.2790i 0.182020 0.679308i −0.813229 0.581944i \(-0.802292\pi\)
0.995249 0.0973638i \(-0.0310411\pi\)
\(648\) −8.05256 + 30.0526i −0.316334 + 1.18058i
\(649\) 4.74342 8.21584i 0.186195 0.322500i
\(650\) −15.8114 −0.620174
\(651\) 0 0
\(652\) 0 0
\(653\) 25.9545 6.95448i 1.01568 0.272150i 0.287678 0.957727i \(-0.407117\pi\)
0.728000 + 0.685577i \(0.240450\pi\)
\(654\) 11.0680 + 19.1703i 0.432792 + 0.749618i
\(655\) 0 0
\(656\) 32.8634 + 18.9737i 1.28310 + 0.740797i
\(657\) 0 0
\(658\) 0 0
\(659\) 1.00000i 0.0389545i 0.999810 + 0.0194772i \(0.00620019\pi\)
−0.999810 + 0.0194772i \(0.993800\pi\)
\(660\) 0 0
\(661\) −10.9545 + 6.32456i −0.426079 + 0.245997i −0.697675 0.716415i \(-0.745782\pi\)
0.271596 + 0.962411i \(0.412449\pi\)
\(662\) −8.19615 2.19615i −0.318553 0.0853559i
\(663\) −2.89368 10.7994i −0.112381 0.419413i
\(664\) 12.6491 0.490881
\(665\) 0 0
\(666\) −24.0000 −0.929981
\(667\) 2.19615 + 8.19615i 0.0850354 + 0.317356i
\(668\) 0 0
\(669\) −38.9711 + 22.5000i −1.50671 + 0.869900i
\(670\) −4.31975 + 1.15747i −0.166887 + 0.0447171i
\(671\) 6.32456i 0.244157i
\(672\) 0 0
\(673\) −24.0000 24.0000i −0.925132 0.925132i 0.0722542 0.997386i \(-0.476981\pi\)
−0.997386 + 0.0722542i \(0.976981\pi\)
\(674\) 13.8564 + 8.00000i 0.533729 + 0.308148i
\(675\) −10.7994 2.89368i −0.415668 0.111378i
\(676\) 0 0
\(677\) 19.4389 5.20863i 0.747097 0.200184i 0.134867 0.990864i \(-0.456939\pi\)
0.612230 + 0.790680i \(0.290273\pi\)
\(678\) −37.9473 + 37.9473i −1.45736 + 1.45736i
\(679\) 0 0
\(680\) 10.0000 + 10.0000i 0.383482 + 0.383482i
\(681\) 2.50000 4.33013i 0.0958002 0.165931i
\(682\) 1.15747 4.31975i 0.0443220 0.165412i
\(683\) 11.7128 43.7128i 0.448178 1.67262i −0.259227 0.965816i \(-0.583468\pi\)
0.707406 0.706808i \(-0.249865\pi\)
\(684\) 0 0
\(685\) 6.32456i 0.241649i
\(686\) 0 0
\(687\) 25.0000 25.0000i 0.953809 0.953809i
\(688\) 16.3923 4.39230i 0.624951 0.167455i
\(689\) 1.58114 + 2.73861i 0.0602366 + 0.104333i
\(690\) −17.3205 + 10.0000i −0.659380 + 0.380693i
\(691\) −27.3861 15.8114i −1.04182 0.601494i −0.121470 0.992595i \(-0.538761\pi\)
−0.920348 + 0.391102i \(0.872094\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 48.0000i 1.82206i
\(695\) 10.9808 + 40.9808i 0.416524 + 1.55449i
\(696\) 16.4317 9.48683i 0.622841 0.359597i
\(697\) −20.4904 5.49038i −0.776129 0.207963i
\(698\) −12.7322 47.5173i −0.481921 1.79856i
\(699\) −56.9210 −2.15295
\(700\) 0 0
\(701\) −13.0000 −0.491003 −0.245502 0.969396i \(-0.578953\pi\)
−0.245502 + 0.969396i \(0.578953\pi\)
\(702\) 1.83013 + 6.83013i 0.0690737 + 0.257787i
\(703\) 25.9185 + 6.94484i 0.977535 + 0.261930i
\(704\) −6.92820 + 4.00000i −0.261116 + 0.150756i
\(705\) 8.68105 + 32.3981i 0.326947 + 1.22018i
\(706\) 28.4605i 1.07113i
\(707\) 0 0
\(708\) 0 0
\(709\) 7.79423 + 4.50000i 0.292718 + 0.169001i 0.639167 0.769068i \(-0.279279\pi\)
−0.346449 + 0.938069i \(0.612613\pi\)
\(710\) 16.4317 9.48683i 0.616670 0.356034i
\(711\) 13.0000 + 22.5167i 0.487538 + 0.844441i
\(712\) −17.2790 + 4.62990i −0.647558 + 0.173513i
\(713\) −6.32456 + 6.32456i −0.236856 + 0.236856i
\(714\) 0 0
\(715\) 5.00000i 0.186989i
\(716\) 0 0
\(717\) −10.9960 + 41.0376i −0.410653 + 1.53258i
\(718\) −8.05256 + 30.0526i −0.300519 + 1.12155i
\(719\) −15.8114 + 27.3861i −0.589665 + 1.02133i 0.404611 + 0.914489i \(0.367407\pi\)
−0.994276 + 0.106841i \(0.965926\pi\)
\(720\) 12.6491 + 12.6491i 0.471405 + 0.471405i
\(721\) 0 0
\(722\) 9.00000 9.00000i 0.334945 0.334945i
\(723\) −54.6410 + 14.6410i −2.03212 + 0.544505i
\(724\) 0 0
\(725\) 7.50000 + 12.9904i 0.278543 + 0.482451i
\(726\) 27.3861 + 15.8114i 1.01639 + 0.586816i
\(727\) 9.48683 + 9.48683i 0.351847 + 0.351847i 0.860796 0.508949i \(-0.169966\pi\)
−0.508949 + 0.860796i \(0.669966\pi\)
\(728\) 0 0
\(729\) 7.00000i 0.259259i
\(730\) 0 0
\(731\) −8.21584 + 4.74342i −0.303874 + 0.175442i
\(732\) 0 0
\(733\) 6.36611 + 23.7586i 0.235138 + 0.877545i 0.978087 + 0.208197i \(0.0667597\pi\)
−0.742949 + 0.669348i \(0.766574\pi\)
\(734\) 34.7851 1.28394
\(735\) 0 0
\(736\) 0 0
\(737\) 0.366025 + 1.36603i 0.0134827 + 0.0503182i
\(738\) −25.9185 6.94484i −0.954074 0.255643i
\(739\) 32.0429 18.5000i 1.17872 0.680534i 0.223001 0.974818i \(-0.428415\pi\)
0.955718 + 0.294285i \(0.0950814\pi\)
\(740\) 0 0
\(741\) 15.8114i 0.580846i
\(742\) 0 0
\(743\) −9.00000 9.00000i −0.330178 0.330178i 0.522476 0.852654i \(-0.325008\pi\)
−0.852654 + 0.522476i \(0.825008\pi\)
\(744\) 17.3205 + 10.0000i 0.635001 + 0.366618i
\(745\) −6.94484 + 25.9185i −0.254439 + 0.949581i
\(746\) 12.0000 + 20.7846i 0.439351 + 0.760979i
\(747\) −8.63950 + 2.31495i −0.316103 + 0.0846995i
\(748\) 0 0
\(749\) 0 0
\(750\) −25.0000 + 25.0000i −0.912871 + 0.912871i
\(751\) −18.5000 + 32.0429i −0.675075 + 1.16926i 0.301373 + 0.953506i \(0.402555\pi\)
−0.976447 + 0.215757i \(0.930778\pi\)
\(752\) −6.94484 + 25.9185i −0.253252 + 0.945151i
\(753\) 7.32051 27.3205i 0.266774 0.995615i
\(754\) 4.74342 8.21584i 0.172745 0.299203i
\(755\) −14.2302 + 14.2302i −0.517892 + 0.517892i
\(756\) 0 0
\(757\) −16.0000 + 16.0000i −0.581530 + 0.581530i −0.935324 0.353794i \(-0.884892\pi\)
0.353794 + 0.935324i \(0.384892\pi\)
\(758\) −10.9282 + 2.92820i −0.396930 + 0.106357i
\(759\) 3.16228 + 5.47723i 0.114783 + 0.198811i
\(760\) −10.0000 17.3205i −0.362738 0.628281i
\(761\) −21.9089 12.6491i −0.794197 0.458530i 0.0472409 0.998884i \(-0.484957\pi\)
−0.841438 + 0.540354i \(0.818290\pi\)
\(762\) 28.4605 + 28.4605i 1.03102 + 1.03102i
\(763\) 0 0
\(764\) 0 0
\(765\) −8.66025 5.00000i −0.313112 0.180775i
\(766\) −27.3861 + 15.8114i −0.989501 + 0.571289i
\(767\) 20.4904 + 5.49038i 0.739865 + 0.198246i
\(768\) 0 0
\(769\) −22.1359 −0.798243 −0.399121 0.916898i \(-0.630685\pi\)
−0.399121 + 0.916898i \(0.630685\pi\)
\(770\) 0 0
\(771\) 40.0000 1.44056
\(772\) 0 0
\(773\) 49.6771 + 13.3110i 1.78676 + 0.478762i 0.991789 0.127883i \(-0.0408181\pi\)
0.794973 + 0.606644i \(0.207485\pi\)
\(774\) −10.3923 + 6.00000i −0.373544 + 0.215666i
\(775\) −7.90569 + 13.6931i −0.283981 + 0.491869i
\(776\) 6.32456i 0.227038i
\(777\) 0 0
\(778\) 23.0000 + 23.0000i 0.824590 + 0.824590i
\(779\) 25.9808 + 15.0000i 0.930857 + 0.537431i
\(780\) 0 0
\(781\) −3.00000 5.19615i −0.107348 0.185933i
\(782\) 8.63950 2.31495i 0.308948 0.0827824i
\(783\) 4.74342 4.74342i 0.169516 0.169516i
\(784\) 0 0
\(785\) −20.0000 −0.713831
\(786\) 0 0
\(787\) 6.36611 23.7586i 0.226927 0.846904i −0.754696 0.656075i \(-0.772216\pi\)
0.981623 0.190829i \(-0.0611177\pi\)
\(788\) 0 0
\(789\) −11.0680 + 19.1703i −0.394030 + 0.682480i
\(790\) −41.1096 −1.46261
\(791\) 0 0
\(792\) 4.00000 4.00000i 0.142134 0.142134i
\(793\) 13.6603 3.66025i 0.485090 0.129979i
\(794\) −23.7171 41.0792i −0.841688 1.45785i
\(795\) 6.83013 + 1.83013i 0.242240 + 0.0649079i
\(796\) 0 0
\(797\) 1.58114 + 1.58114i 0.0560068 + 0.0560068i 0.734555 0.678549i \(-0.237391\pi\)
−0.678549 + 0.734555i \(0.737391\pi\)
\(798\) 0 0
\(799\) 15.0000i 0.530662i
\(800\) 0 0
\(801\) 10.9545 6.32456i 0.387056 0.223467i
\(802\) −1.36603 0.366025i −0.0482360 0.0129248i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 10.0000 0.352235
\(807\) −10.9808 40.9808i −0.386541 1.44259i
\(808\) 8.63950 + 2.31495i 0.303937 + 0.0814396i
\(809\) −2.59808 + 1.50000i −0.0913435 + 0.0527372i −0.544976 0.838452i \(-0.683461\pi\)
0.453632 + 0.891189i \(0.350128\pi\)
\(810\) 30.1247 + 17.3925i 1.05848 + 0.611111i
\(811\) 37.9473i 1.33251i −0.745724 0.666256i \(-0.767896\pi\)
0.745724 0.666256i \(-0.232104\pi\)
\(812\) 0 0
\(813\) −20.0000 20.0000i −0.701431 0.701431i
\(814\) −10.3923 6.00000i −0.364250 0.210300i
\(815\) 9.48683 + 16.4317i 0.332309 + 0.575577i
\(816\) −10.0000 17.3205i −0.350070 0.606339i
\(817\) 12.9593 3.47242i 0.453387 0.121485i
\(818\) −3.16228 + 3.16228i −0.110566 + 0.110566i
\(819\) 0 0
\(820\) 0 0
\(821\) 11.5000 19.9186i 0.401353 0.695163i −0.592537 0.805543i \(-0.701873\pi\)
0.993889 + 0.110380i \(0.0352068\pi\)
\(822\) 2.31495 8.63950i 0.0807431 0.301337i
\(823\) −1.09808 + 4.09808i −0.0382765 + 0.142850i −0.982420 0.186686i \(-0.940225\pi\)
0.944143 + 0.329535i \(0.106892\pi\)
\(824\) 22.1359 38.3406i 0.771142 1.33566i
\(825\) 7.90569 + 7.90569i 0.275241 + 0.275241i
\(826\) 0 0
\(827\) −26.0000 + 26.0000i −0.904109 + 0.904109i −0.995789 0.0916799i \(-0.970776\pi\)
0.0916799 + 0.995789i \(0.470776\pi\)
\(828\) 0 0
\(829\) −14.2302 24.6475i −0.494237 0.856044i 0.505741 0.862685i \(-0.331219\pi\)
−0.999978 + 0.00664181i \(0.997886\pi\)
\(830\) 3.66025 13.6603i 0.127049 0.474154i
\(831\) −49.2950 28.4605i −1.71003 0.987284i
\(832\) −12.6491 12.6491i −0.438529 0.438529i
\(833\) 0 0
\(834\) 60.0000i 2.07763i
\(835\) 17.5000 30.3109i 0.605612 1.04895i
\(836\) 0 0
\(837\) 6.83013 + 1.83013i 0.236084 + 0.0632584i
\(838\) 5.78737 + 21.5988i 0.199921 + 0.746117i
\(839\) 50.5964 1.74678 0.873392 0.487019i \(-0.161916\pi\)
0.873392 + 0.487019i \(0.161916\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) −6.95448 25.9545i −0.239667 0.894451i
\(843\) −19.4389 5.20863i −0.669511 0.179395i
\(844\) 0 0
\(845\) 17.2790 4.62990i 0.594416 0.159273i
\(846\) 18.9737i 0.652328i
\(847\) 0 0
\(848\) 4.00000 + 4.00000i 0.137361 + 0.137361i
\(849\) −12.9904 7.50000i −0.445829 0.257399i
\(850\) 13.6931 7.90569i 0.469668 0.271163i
\(851\) 12.0000 + 20.7846i 0.411355 + 0.712487i
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 10.0000 + 10.0000i 0.341993 + 0.341993i
\(856\) −6.00000 + 10.3923i −0.205076 + 0.355202i
\(857\) −11.5747 + 43.1975i −0.395386 + 1.47560i 0.425737 + 0.904847i \(0.360015\pi\)
−0.821122 + 0.570752i \(0.806652\pi\)
\(858\) 1.83013 6.83013i 0.0624795 0.233177i
\(859\) −6.32456 + 10.9545i −0.215791 + 0.373761i −0.953517 0.301339i \(-0.902566\pi\)
0.737726 + 0.675100i \(0.235900\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 23.0000 23.0000i 0.783383 0.783383i
\(863\) 17.7583 4.75833i 0.604501 0.161975i 0.0564286 0.998407i \(-0.482029\pi\)
0.548072 + 0.836431i \(0.315362\pi\)
\(864\) 0 0
\(865\) −30.3109 + 17.5000i −1.03060 + 0.595018i
\(866\) −16.4317 9.48683i −0.558371 0.322376i
\(867\) −18.9737 18.9737i −0.644379 0.644379i
\(868\) 0 0
\(869\) 13.0000i 0.440995i
\(870\) −5.49038 20.4904i −0.186141 0.694689i
\(871\) −2.73861 + 1.58114i −0.0927944 + 0.0535748i
\(872\) −19.1244 5.12436i −0.647632 0.173533i
\(873\) −1.15747 4.31975i −0.0391746 0.146201i
\(874\) −12.6491 −0.427863
\(875\) 0 0
\(876\) 0 0
\(877\) 6.22243 + 23.2224i 0.210117 + 0.784166i 0.987829 + 0.155545i \(0.0497135\pi\)
−0.777712 + 0.628621i \(0.783620\pi\)
\(878\) −17.2790 4.62990i −0.583138 0.156251i
\(879\) 21.6506 12.5000i 0.730258 0.421615i
\(880\) 2.31495 + 8.63950i 0.0780369 + 0.291238i
\(881\) 37.9473i 1.27848i 0.769008 + 0.639239i \(0.220751\pi\)
−0.769008 + 0.639239i \(0.779249\pi\)
\(882\) 0 0
\(883\) −18.0000 18.0000i −0.605748 0.605748i 0.336084 0.941832i \(-0.390897\pi\)
−0.941832 + 0.336084i \(0.890897\pi\)
\(884\) 0 0
\(885\) 41.0792 23.7171i 1.38086 0.797241i
\(886\) 1.00000 + 1.73205i 0.0335957 + 0.0581894i
\(887\) −4.31975 + 1.15747i −0.145043 + 0.0388642i −0.330610 0.943767i \(-0.607254\pi\)
0.185567 + 0.982632i \(0.440588\pi\)
\(888\) 37.9473 37.9473i 1.27343 1.27343i
\(889\) 0 0
\(890\) 20.0000i 0.670402i
\(891\) 5.50000 9.52628i 0.184257 0.319142i
\(892\) 0 0
\(893\) −5.49038 + 20.4904i −0.183729 + 0.685684i
\(894\) 18.9737 32.8634i 0.634574 1.09911i
\(895\) −9.48683 9.48683i −0.317110 0.317110i
\(896\) 0 0
\(897\) −10.0000 + 10.0000i −0.333890 + 0.333890i
\(898\) 23.2224 6.22243i 0.774943 0.207645i
\(899\) −4.74342 8.21584i −0.158202 0.274014i
\(900\) 0 0
\(901\) −2.73861 1.58114i −0.0912364 0.0526754i
\(902\) −9.48683 9.48683i −0.315877 0.315877i
\(903\) 0 0
\(904\) 48.0000i 1.59646i
\(905\) −47.8109 + 12.8109i −1.58929 + 0.425848i
\(906\) 24.6475 14.2302i 0.818859 0.472768i
\(907\) −30.0526 8.05256i −0.997879 0.267381i −0.277322 0.960777i \(-0.589447\pi\)
−0.720557 + 0.693396i \(0.756114\pi\)
\(908\) 0 0
\(909\) −6.32456 −0.209772
\(910\) 0 0
\(911\) 54.0000 1.78910 0.894550 0.446968i \(-0.147496\pi\)
0.894550 + 0.446968i \(0.147496\pi\)
\(912\) 7.32051 + 27.3205i 0.242406 + 0.904672i
\(913\) −4.31975 1.15747i −0.142963 0.0383068i
\(914\) −1.73205 + 1.00000i −0.0572911 + 0.0330771i
\(915\) 15.8114 27.3861i 0.522708 0.905357i
\(916\) 0 0
\(917\) 0 0
\(918\) −5.00000 5.00000i −0.165025 0.165025i
\(919\) −23.3827 13.5000i −0.771324 0.445324i 0.0620230 0.998075i \(-0.480245\pi\)
−0.833347 + 0.552751i \(0.813578\pi\)
\(920\) 4.62990 17.2790i 0.152643 0.569672i
\(921\) 7.50000 + 12.9904i 0.247133 + 0.428048i
\(922\) −8.63950 + 2.31495i −0.284527 + 0.0762387i
\(923\) 9.48683 9.48683i 0.312263 0.312263i
\(924\) 0 0
\(925\) 30.0000 + 30.0000i 0.986394 + 0.986394i
\(926\) −4.00000 + 6.92820i −0.131448 + 0.227675i
\(927\) −8.10232 + 30.2383i −0.266115 + 0.993155i
\(928\) 0 0
\(929\) −1.58114 + 2.73861i −0.0518755 + 0.0898510i −0.890797 0.454401i \(-0.849853\pi\)
0.838922 + 0.544252i \(0.183187\pi\)
\(930\) 15.8114 15.8114i 0.518476 0.518476i
\(931\) 0 0
\(932\) 0 0
\(933\) 47.8109 12.8109i 1.56526 0.419410i
\(934\) −11.0680 19.1703i −0.362155 0.627271i
\(935\) −2.50000 4.33013i −0.0817587 0.141610i
\(936\) 10.9545 + 6.32456i 0.358057 + 0.206725i
\(937\) −14.2302 14.2302i −0.464882 0.464882i 0.435370 0.900252i \(-0.356618\pi\)
−0.900252 + 0.435370i \(0.856618\pi\)
\(938\) 0 0
\(939\) 45.0000i 1.46852i
\(940\) 0 0
\(941\) −32.8634 + 18.9737i −1.07131 + 0.618524i −0.928540 0.371231i \(-0.878936\pi\)
−0.142774 + 0.989755i \(0.545602\pi\)
\(942\) 27.3205 + 7.32051i 0.890150 + 0.238515i
\(943\) 6.94484 + 25.9185i 0.226155 + 0.844023i
\(944\) 37.9473 1.23508
\(945\) 0 0
\(946\) −6.00000 −0.195077
\(947\) 2.56218 + 9.56218i 0.0832596 + 0.310729i 0.994979 0.100085i \(-0.0319114\pi\)
−0.911719 + 0.410814i \(0.865245\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −21.5988 + 5.78737i −0.700756 + 0.187767i
\(951\) 60.0833i 1.94833i
\(952\) 0 0
\(953\) −3.00000 3.00000i −0.0971795 0.0971795i 0.656846 0.754025i \(-0.271890\pi\)
−0.754025 + 0.656846i \(0.771890\pi\)
\(954\) −3.46410 2.00000i −0.112154 0.0647524i
\(955\) −6.47963 1.73621i −0.209676 0.0561825i
\(956\) 0 0
\(957\) −6.47963 + 1.73621i −0.209457 + 0.0561237i
\(958\) 6.32456 6.32456i 0.204337 0.204337i
\(959\) 0 0
\(960\) −40.0000 −1.29099
\(961\) −10.5000 + 18.1865i −0.338710 + 0.586662i
\(962\) 6.94484 25.9185i 0.223911 0.835646i
\(963\) 2.19615 8.19615i 0.0707700 0.264117i
\(964\) 0 0
\(965\) 25.2982 0.814379
\(966\) 0 0
\(967\) −33.0000 + 33.0000i −1.06121 + 1.06121i −0.0632081 + 0.998000i \(0.520133\pi\)
−0.998000 + 0.0632081i \(0.979867\pi\)
\(968\) −27.3205 + 7.32051i −0.878114 + 0.235290i
\(969\) −7.90569 13.6931i −0.253967 0.439885i
\(970\) 6.83013 + 1.83013i 0.219302 + 0.0587618i
\(971\) 30.1247 + 17.3925i 0.966749 + 0.558153i 0.898244 0.439498i \(-0.144844\pi\)
0.0685054 + 0.997651i \(0.478177\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 8.00000i 0.256337i
\(975\) −12.5000 + 21.6506i −0.400320 + 0.693375i
\(976\) 21.9089 12.6491i 0.701287 0.404888i
\(977\) 1.36603 + 0.366025i 0.0437030 + 0.0117102i 0.280604 0.959824i \(-0.409465\pi\)
−0.236901 + 0.971534i \(0.576132\pi\)
\(978\) −6.94484 25.9185i −0.222072 0.828783i
\(979\) 6.32456 0.202134
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) 15.0070 + 56.0070i 0.478894 + 1.78726i
\(983\) 28.0784 + 7.52358i 0.895561 + 0.239965i 0.677109 0.735883i \(-0.263233\pi\)
0.218452 + 0.975848i \(0.429899\pi\)
\(984\) 51.9615 30.0000i 1.65647 0.956365i
\(985\) 2.73861 + 1.58114i 0.0872595 + 0.0503793i
\(986\) 9.48683i 0.302122i
\(987\) 0 0
\(988\) 0 0
\(989\) 10.3923 + 6.00000i 0.330456 + 0.190789i
\(990\) −3.16228 5.47723i −0.100504 0.174078i
\(991\) −2.00000 3.46410i −0.0635321 0.110041i 0.832510 0.554010i \(-0.186903\pi\)
−0.896042 + 0.443969i \(0.853570\pi\)
\(992\) 0 0
\(993\) −9.48683 + 9.48683i −0.301056 + 0.301056i
\(994\) 0 0
\(995\) 15.0000 15.0000i 0.475532 0.475532i
\(996\) 0 0
\(997\) 5.20863 19.4389i 0.164959 0.615636i −0.833086 0.553143i \(-0.813428\pi\)
0.998045 0.0624926i \(-0.0199050\pi\)
\(998\) 6.95448 25.9545i 0.220140 0.821575i
\(999\) 9.48683 16.4317i 0.300150 0.519875i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.2.l.c.68.1 8
5.2 odd 4 inner 245.2.l.c.117.1 8
7.2 even 3 35.2.f.a.13.2 yes 4
7.3 odd 6 inner 245.2.l.c.178.1 8
7.4 even 3 inner 245.2.l.c.178.2 8
7.5 odd 6 35.2.f.a.13.1 4
7.6 odd 2 inner 245.2.l.c.68.2 8
21.2 odd 6 315.2.p.c.118.2 4
21.5 even 6 315.2.p.c.118.1 4
28.19 even 6 560.2.bj.a.433.2 4
28.23 odd 6 560.2.bj.a.433.1 4
35.2 odd 12 35.2.f.a.27.1 yes 4
35.9 even 6 175.2.f.c.118.1 4
35.12 even 12 35.2.f.a.27.2 yes 4
35.17 even 12 inner 245.2.l.c.227.1 8
35.19 odd 6 175.2.f.c.118.2 4
35.23 odd 12 175.2.f.c.132.2 4
35.27 even 4 inner 245.2.l.c.117.2 8
35.32 odd 12 inner 245.2.l.c.227.2 8
35.33 even 12 175.2.f.c.132.1 4
105.2 even 12 315.2.p.c.307.1 4
105.47 odd 12 315.2.p.c.307.2 4
140.47 odd 12 560.2.bj.a.97.1 4
140.107 even 12 560.2.bj.a.97.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.f.a.13.1 4 7.5 odd 6
35.2.f.a.13.2 yes 4 7.2 even 3
35.2.f.a.27.1 yes 4 35.2 odd 12
35.2.f.a.27.2 yes 4 35.12 even 12
175.2.f.c.118.1 4 35.9 even 6
175.2.f.c.118.2 4 35.19 odd 6
175.2.f.c.132.1 4 35.33 even 12
175.2.f.c.132.2 4 35.23 odd 12
245.2.l.c.68.1 8 1.1 even 1 trivial
245.2.l.c.68.2 8 7.6 odd 2 inner
245.2.l.c.117.1 8 5.2 odd 4 inner
245.2.l.c.117.2 8 35.27 even 4 inner
245.2.l.c.178.1 8 7.3 odd 6 inner
245.2.l.c.178.2 8 7.4 even 3 inner
245.2.l.c.227.1 8 35.17 even 12 inner
245.2.l.c.227.2 8 35.32 odd 12 inner
315.2.p.c.118.1 4 21.5 even 6
315.2.p.c.118.2 4 21.2 odd 6
315.2.p.c.307.1 4 105.2 even 12
315.2.p.c.307.2 4 105.47 odd 12
560.2.bj.a.97.1 4 140.47 odd 12
560.2.bj.a.97.2 4 140.107 even 12
560.2.bj.a.433.1 4 28.23 odd 6
560.2.bj.a.433.2 4 28.19 even 6